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Hilbert-Schmidt operators T : L2(X) → L2(Y ) are usefully described in terms of their Schwartz kernels
K(x, y), such that

Tf(y) =

∫
Y

K(x, y) f(x) dx

Unfortunately, not all continuous linear maps T : L2(X)→ L2(Y ) have Schwartz kernels, unless one or the
other of the two spaces is finite-dimensional.

Sufficiently enlarging the class of possible K(x, y) turns out to require a family of topological vector spaces

with tensor products. [1] The connection between integral/Schwartz kernels and tensor products is suggested
by the prototypical Cartan-Eilenberg adjunction, for example for k-vectorspaces without topologies: with
the usual tensor product of vector spaces,

Homk(A,Homk(B,C)) ≈ Hom(A⊗k B,C) (by ϕ→
(
a⊗ b→ ϕ(a)(b)

)
)

The special case C = k gives

Homk(A,B∗) ≈ Hom(A⊗k B, k) = (A⊗k B)∗ (k-vectorspaces A,B,C)

That is, maps from A to B∗ are given by integral kernels in (A⊗B)∗. However, the validity of this adjunction
depends on existence of a genuine tensor product. We recall in an appendix the demonstration that infinite-
dimensional Hilbert spaces do not have tensor products. Also, we must specify the topology on the duals B∗

and (A⊗B)∗. The strongest conclusion gives these the strong topology, as colimit of Hilbert-space topologies
on the duals of Hilbert spaces.

Countable projective limits of Hilbert spaces with transition maps Hilbert-Schmidt constitute the simplest
class of nuclear spaces: they admit tensor products. The simplest example of such a space is the Levi-Sobolev
space H∞(Tn) on a product Tn of circles T = S1, where the simplest Rellich-Kondrachev compactness lemma
is easily refined to prove the requisite Hilbert-Schmidt property.

The main corollary of existence of tensor products of nuclear spaces is Schwartz’ Kernel Theorem, which
provides a framework for later discussion of pseudo-differential operators, for example.

[1] A categorically genuine tensor product of topological vector spaces V,W would be a topological vector space X

and continuous bilinear map j : V ×W −→ X such that, for every continuous bilinear V ×W −→ Y to a topological

vector space Y , there is a unique continuous linear X −→ Y fitting into the commutative diagram

X

##G
G

G
G

G

V ×W

j

OO

// Y
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1. Hilbert-Schmidt operators

[1.1] Prototype: integral operators

For K(x, y) in Co
(
[a, b]× [a, b]

)
, define T : L2[a, b]→ L2[a, b] by

Tf(y) =

∫ b

a

K(x, y) f(x) dx

The function K is the integral kernel, or Schwartz kernel of T . Approximating K by finite linear combinations
of 0-or-1-valued functions shows T is a uniform operator norm limit of finite-rank operators, so is compact.
The Hilbert-Schmidt operators include such operators, where the integral kernel K(x, y) is allowed to be in
L2
(
[a, b]× [a, b]

)
.

[1.2] Hilbert-Schmidt norm on V ⊗alg W

In the category of Hilbert spaces and continuous linear maps, there is no tensor product in the categorical
sense, as demonstrated in an appendix.

Without claiming anything about genuine tensor products in any category of topological vector spaces, the
algebraic tensor product X ⊗alg Y of two Hilbert spaces has a hermitian inner product 〈, 〉

HS
determined by

〈x⊗ y, x′ ⊗ y′〉
HS

= 〈x, x′〉 〈y, y′〉

Let X ⊗
HS
Y be the completion with respect to the corresponding norm |v|

HS
= 〈v, v〉1/2

HS

X ⊗
HS
Y = | · |

HS
-completion of X ⊗alg Y

This completion is a Hilbert space.

[1.3] Hilbert-Schmidt operators

For Hilbert spaces V,W the finite-rank [2] continuous linear maps T : V → W can be identified with the
algebraic tensor product V ∗ ⊗alg W , by [3]

(λ⊗ w)(v) = λ(v) · w

The space of Hilbert-Schmidt operators V → W is the completion of the space V ∗ ⊗alg W of finite-rank
operators, with respect to the Hilbert-Schmidt norm | · |HS on V ∗ ⊗alg W . For example,

|λ⊗ w + λ′ ⊗ w′|2
HS

= 〈λ⊗ w + λ′ ⊗ w′, λ⊗ w + λ′ ⊗ w′〉

= 〈λ⊗ w, λ⊗ w〉+ 〈λ⊗ w, λ′ ⊗ w′〉+ 〈λ′ ⊗ w′, λ⊗ w〉+ 〈λ′ ⊗ w′, λ′ ⊗ w′〉

= |λ|2|w|2 + 〈λ, λ′〉〈w,w′〉+ 〈λ′, λ〉〈w′, w〉+ |λ′|2|w′|2

[2] As usual a finite-rank linear map T : V →W is one with finite-dimensional image.

[3] Proof of this identification: on one hand, a map coming from V ∗ ⊗alg W is a finite sum
∑
i λi ⊗ wi, so certainly

has finite-dimensional image. On the other hand, given T : V → W with finite-dimensional image, take v1, . . . , vn
be an orthonormal basis for the orthogonal complement (kerT )⊥ of kerT . Define λi ∈ V ∗ by λi(v) = 〈v, vi〉. Then

T ∼
∑
i λi ⊗ Tvi is in V ∗ ⊗W . The second part of the argument uses the completeness of V .
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When λ ⊥ λ′ or w ⊥ w′, the monomials λ⊗ w and λ′ ⊗ w′ are orthogonal, and

|λ⊗ w + λ′ ⊗ w′|2
HS

= |λ|2|w|2 + |λ′|2|w′|2

That is, the space Hom
HS

(V,W ) of Hilbert-Schmidt operators V → W is the closure of the space of finite-
rank maps V → W , in the space of all continuous linear maps V → W , under the Hilbert-Schmidt norm.
By construction, HomHS(V,W ) is a Hilbert space.

[1.4] Expressions for Hilbert-Schmidt norm, adjoints

The Hilbert-Schmidt norm of finite-rank T : V →W can be computed from any choice of orthonormal basis
vi for V , by

|T |2
HS

=
∑
i

|Tvi|2 (at least for finite-rank T )

Thus, taking a limit, the same formula computes the Hilbert-Schmidt norm of T known to be Hilbert-
Schmidt. Similarly, for two Hilbert-Schmidt operators S, T : V →W ,

〈S, T 〉
HS

=
∑
i

〈Svi, T vi〉 (for any orthonormal basis vi)

The Hilbert-Schmidt norm | · |HS dominates the uniform operator norm | · |op: given ε > 0, take |v1| ≤ 1 with
|Tv1|2 + ε > |T |2op. Choose v2, v3, . . . so that v1, v2, . . . is an orthonormal basis. Then

|T |2op ≤ |Tv1|2 + ε ≤ ε+
∑
n

|Tvn|2 = ε+ |T |2
HS

This holds for every ε > 0, so |T |2op ≤ |T |2HS
. Thus, Hilbert-Schmidt limits are operator-norm limits, and

Hilbert-Schmidt limits of finite-rank operators are compact.

Adjoints T ∗ : W → V of Hilbert-Schmidt operators T : V →W are Hilbert-Schmidt, since for an orthonormal
basis wj of W ∑

i

|Tvi|2 =
∑
ij

|〈Tvi, wj〉|2 =
∑
ij

|〈vi, T ∗wj〉|2 =
∑
j

|T ∗wj |2

[1.5] Criterion for Hilbert-Schmidt operators

We claim that a continuous linear map T : V → W with Hilbert space V is Hilbert-Schmidt if for some
orthonormal basis vi of V ∑

i

|Tvi|2 < ∞

and then (as above) that sum computes |T |2
HS

. Indeed, given that inequality, letting λi(v) = 〈v, vi〉, T is
Hilbert-Schmidt because it is the Hilbert-Schmidt limit of the finite-rank operators

Tn =

n∑
i=1

λi ⊗ Tvi

[1.6] Composition of Hilbert-Schmidt operators with continuous operators

Post-composing: for Hilbert-Schmidt T : V →W and continuous S : W → X, the composite S ◦T : V → X
is Hilbert-Schmidt, because for an orthonormal basis vi of V ,∑

i

|S ◦ Tvi|2 ≤
∑
i

|S|2op · |Tvi|2 = |S|op · |T |2HS
(with operator norm |S|op = sup|v|≤1 |Sv|)

3
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Pre-composing: for continuous S : X → V with Hilbert X and orthonormal basis xj of X, since adjoints of
Hilbert-Schmidt are Hilbert-Schmidt,

T ◦ S = (S∗ ◦ T ∗)∗ = (Hilbert-Schmidt)∗ = Hilbert-Schmidt

2. Simplest nuclear Fréchet spaces

Roughly, the intention of nuclear spaces is that they should admit genuine tensor products, aiming at a
general Schwartz Kernel Theorem.

For the moment, we consider a more accessible sub-class of nuclear spaces, sufficient for the Schwartz Kernel
Theorem for Levi-Sobolev spaces below: countable projective limits of Hilbert spaces with Hilbert-Schmidt
transition maps. Thus, they are also Fréchet, so are among nuclear Fréchet spaces.

[2.1] V ⊗
HS

W is not a categorical tensor product

Again, the Hilbert space V ⊗HS W is not a categorical tensor product of (infinite-dimensional) Hilbert spaces
V,W . In particular, although the bilinear map V × W → V ⊗HS W is continuous, there are (jointly)
continuous β : V ×W → X to Hilbert spaces H which do not factor through any continuous linear map
B : V ⊗

HS
W → X.

The case W = V ∗ and X = C, with β(v, λ) = λ(v) already illustrates this point, since not every Hilbert-
Schmidt operator has a trace. That is, letting vi be an orthonormal basis for V and λi(v) = 〈v, vi〉 an
orthonormal basis for V ∗, necessarily

B(
∑
ij

cij vi ⊗ λj) =
∑
ij

cijβ(vi, λj) =
∑
i

cii (???)

However,
∑
i
1
i vi ⊗ λi is in V ⊗

HS
V ∗, but the alleged value of B is impossible. In effect, the obstacle is that

there are Hilbert-Schmidt maps which are not of trace class.

[2.2] Approaching tensor products and nuclear spaces

Let V,W, V1,W1 be Hilbert spaces with Hilbert-Schmidt maps S : V1 → V and T : W1 →W . We claim that
for any (jointly) continuous β : V ×W → X, there is a unique continuous B : V1 ⊗HS

W1 → X giving a
commutative diagram

V1 ⊗HS
W1

B

��

s
p

l i e ` \ W R L
F

@
:

5
2

// V ⊗
HS
W

V1 ×W1
S×T //

OO

V ×W
β //

OO

X

In fact, B : V1 ⊗HS
W1 → X is Hilbert-Schmidt. As the diagram suggests, V ⊗

HS
W is bypassed, playing no

role.

Proof: Once the assertion is formulated, the argument is the only thing it can be: The continuity of β gives
a constant C such that |β(v, w)| ≤ C · |v| · |w|, for all v ∈ V , w ∈W . The Hilbert-Schmidt condition is that,
for chosen orthonormal bases vi of V1 and wj of W1,

|S|2
HS

=
∑
i

|Svi|2 < ∞ |T |2
HS

=
∑
j

|Twi|2 < ∞

4
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Thus,

|β(Sv, Tw)| ≤ C · |Sv| · |Tv|

Squaring and summing over vi and wj ,∑
ij

|β(Svi, Twj)|2 ≤ C ·
∑
ij

|Svi|2 · |Twj |2 = C · |S|2
HS
· |T |2

HS
< ∞

That is, with the obvious definition-attempt

B(
∑
ij

cij vi ⊗ wj) =
∑
ij

cij β(Svi, Twj)

Cauchy-Schwarz-Bunyakowsky∑
ij

∣∣cij β(Svi, Twj)
∣∣2 ≤ ∑

ij

∣∣cij∣∣2 · ∑
ij

∣∣β(Svi, Twj)
∣∣2 ≤ ∑

ij

∣∣cij∣∣2 · (C · |S|2HS
· |T |2

HS

)
shows that B : V1 ⊗W1 → X is Hilbert-Schmidt. ///

[2.3] A class of nuclear Fréchet spaces

We take the basic nuclear Fréchet space to be a countable limit [4] of Hilbert spaces where the transition
maps are Hilbert-Schmidt.

That is, for a countable collection of Hilbert spaces V0, V1, V2, . . . with Hilbert-Schmidt maps ϕi : Vi → Vi−1,
the limit V = limi Vi in the category of locally convex topological vector spaces is a nuclear Fréchet space.
[5]

Let C be the category of Hilbert spaces enlarged to include limits.

[2.3.1] Theorem: Nuclear Fréchet spaces admit tensor products in C. That is, for nuclear spaces V = limi Vi
and W = limWi there is a nuclear space V ⊗W and continuous bilinear V ×W → V ⊗W such that, given
a jointly continuous bilinear map β : V × W → X of nuclear spaces V,W to X ∈ C, there is a unique
continuous linear map B : V ⊗W → X giving a commutative diagram

V ⊗W
B

''PPPPPPP

V ×W
β

//

OO

X

In particular, V ⊗W ≈ limi Vi ⊗HS Wi.

Proof: As will be seen at the end of this proof, the defining property of (projective) limits reduces to the
case that X is itself a Hilbert space. Let ϕi : Vi → Vi−1 and ψi : Wi →Wi−1 be the transition maps. First,
we claim that, for large-enough index i, the bilinear map β : V ×W → X factors through Vi ×Wi. Indeed,

[4] Properly, the class of categorical limits includes products and other objects whose indexing sets are not necessarily

directed. In that context, requiring that the index set be directed, a projective limit is a directed or filtered limit.

Similarly, what we will call simply colimits are properly filtered or directed colimits.

[5] The new aspect is the nuclearity, not the Fréchet-ness: an arbitrary countable limit of Hilbert spaces is (provably)

Fréchet, since an arbitrary countable limit of Fréchet spaces is Fréchet.
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the topologies on V and W are such that, given εo > 0, there are indices i, j and open neighborhoods of zero
E ⊂ Vi, F ⊂Wj such that β(E × F ) ⊂ εo-ball at 0 in X. Since β is C-bilinear, for any ε > 0,

β(
ε

εo
E × F ) ⊂ ε-ball at 0 in X

That is, β is already continuous in the Vi ×Wj topology. Replace i, j by their maximum, so i = j.

The argument of the previous section exhibits continuous linear B fitting into the diagram

Vi+1 ⊗HS
Wi+1 B

&&

\ [ Z X W V U S R Q O N
Vi+1 ×Wi+1

ϕi+1×ψi+1//

OO

Vi ×Wi
β // X

In fact, B is Hilbert-Schmidt. Applying the same argument with X replaced by Vi+1 ⊗HS Wi+1 shows that
the dotted map in

Vi+2 ⊗HS
Wi+2

//______ Vi+1 ⊗HS
Wi+1

B

&&LLLLLLLLLLL

Vi+2 ×Wi+2

OO

ϕi+2×ψi+2 // Vi+1 ×Wi+1

OO

β // X

is Hilbert-Schmidt. Thus, the categorical tensor product is the limit of the Hilbert-Schmidt completions of
the algebraic tensor products of the limitands:

(lim
i
Vi)⊗ (lim

j
Wj) = lim

i

(
Vi ⊗HS

Wi)

The transition maps in this limit have been proven Hilbert-Schmidt, so the limit is again nuclear.

As remarked at the beginning of the proof, the general case follows from the basic characterization of
projective limits: for X = limiXi with Xi Hilbert, a continuous bilinear map V ⊗W → X is exactly a
compatible family of maps V ⊗ W → Xi. To obtain this compatible family, observe that a continuous
bilinear V ×W → X composed with projections X → Xi gives a compatible family of continuous bilinear
maps V ×W → Xi. These induce compatible linear maps V ⊗W → Xi, as in the commutative diagram

X
&&))

. . . X2
// X1

V ⊗W

OO 55kkkkkkkk

33gggggggggggggg
V ×Woo

OO�
�
�

;;vvvvv

iiSSSSSSSSSSSSSSSSS

These linear maps V ⊗W → Xi induce a unique continuous linear V ⊗W → X. ///

[2.4] Example: tensor products of Levi-Sobolev spaces

Let T be the circle R/2πZ. In terms of Fourier series, for s ≥ 0 the sth L2 Levi-Sobolev space on Tm is

Hs(Tm) = {
∑
ξ

cξ e
iξ·x ∈ L2(Tm) :

∑
ξ

|cξ|2 · (1 + |ξ|2)s <∞}

The Levi-Sobolev imbedding theorem asserts that

Hk+
m
2 + ε(Tm) ⊂ Ck(Tm) (for all ε > 0)

6
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Thus,

C∞(Tm) = H+∞(Tm) = lim
s
Hs(Tm) ≈ lim

(
. . .→ H2(Tm)→ H1(Tm)→ H0(Tm)

)
We claim that

H+∞(Tm)⊗C H
+∞(Tn) ≈ H+∞(Tm+n)

induced from the natural

(ϕ⊗ ψ)(x, y) = ϕ(x)ψ(y) (ϕ ∈ H+∞(Tm), ψ ∈ H+∞(Tn), x ∈ Tm, y ∈ Tn)

Indeed, our construction of this tensor product is

H+∞(Tm)⊗C H
+∞(Tn) = lim

s

(
Hs(Tm)⊗HS H

s(Tn)
)

The inequalities

(1 + |ξ|2 + |η|2)2 ≥ (1 + |ξ|2)(1 + |η|2) ≥ 1 + |ξ|2 + |η|2 (for ξ ∈ Zm, η ∈ Zn)

give
H2sTm+n) ⊂ Hs(Tm)⊗HS H

s(Tn) ⊂ Hs(Tm+n) (for s ≥ 0)

The limit only depends on cofinal sublimits, so, indeed,

H+∞(Tm)⊗C H
+∞(Tn) ≈ H+∞(Tm+n)

3. Schwartz Kernel Theorem for Levi-Sobolev spaces

Continue the example of Levi-Sobolev spaces on products Tm of circles T. The following is the simplest
example of Schwartz’ Kernel Theorem:

[3.0.1] Theorem: We have an isomorphism

Homo
(
H∞(Tm), H−∞(Tn)

)
≈ H−∞(Tm+n)

induced by(
f −→ (F → Φ(f ⊗ F )

)
←− Φ (with f ∈ H∞(Tm), F ∈ H∞(Tn), Φ ∈ H−∞(Tm+n))

The distribution Φ ∈ H−∞(Tm+n) producing a given continuous map H∞(Tm)→ H−∞(Tn) is the Schwartz
kernel of the map.

[3.0.2] Remark: The Hom-space Homo is continuous linear maps, so giving sense to the assertion requires
a topology on the dual space H−∞(Tn) = H∞(Tn)∗. The strongest result is true, namely, giving this dual
the strong dual topology, here meaning the colimit of Hilbert-space topologies on the duals H−s(Tn) and

H−s(Tm+n), as opposed to some other topology on those duals of Hilbert spaces. [6]

[6] The strong dual topology is traditionally described in other terms, but, later, we show that the traditional and

the present sense coincide. There are other useful topologies on duals, such as the weak dual topology, which will be

seen shortly.
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Proof: Let X = H∞(Tm) and Y = H∞(Tn), Given the existence of the categorical tensor product,
established above, it suffices to show that the vector space

Bilo(X × Y,C)

of jointly continuous bilinear maps is linearly isomorphic to Hom(X,Y ∗), via the expected

β −→ (x −→ (y → β(x, y))) (for β ∈ Bilo(X,Y ), x ∈ X, and y ∈ Y )

where Y ∗ is given the strong dual topology, namely, as colimit of Hilbert-space topologies on the duals
H−s(Tn) with −s < 0. The issue is topological.

Given x ∈ X, bounded E ⊂ Y , and ε > 0, by joint continuity of β, there are neighborhoods M,N of 0 in
X,Y such that

β(x+M,N) = β(x+M,N)− β(x, 0) ⊂ ε-ball in Y ∗

Since E is bounded, there is t > 0 such that tN ⊃ E. Then

β(x+m, e)− β(x, e) = β(m, e) ∈ β(M,E) ⊂ β(M, tN) (for m ∈M and e ∈ E)

This suggests replacing M by t−1M , so

β(x+m, e)− β(x, e) = β(t−1M,E) ⊂ β(t−1M, tN) ⊂ ε-ball in Y ∗ (for m ∈ t−1M and e ∈ E)

That is,
β(x+m,−)− β(x,−) ∈ UE,ε (for m ∈ t−1M)

This proves the continuity of the map X → Y ∗ induced by β.

Conversely, given ϕ : X → Y ∗, put β(x, y) = ϕ(x)(y). For fixed x, β(x,−) = ϕ(x) is continuous, by
hypothesis. For fixed y, E = {y} is a bounded set in Y , so by the continuity of x → ϕ(x), for given x and
ε > 0 there is a neighborhood M of 0 in X so that ϕ(x + M) − ϕ(x) ⊂ UE,ε. This proves that β(−, y)
is continuous. Thus, β is separately continuous. An appendix shows that separately continuous bilinear
functions on Hilbert spaces are jointly continuous. ///

4. Appendix: joint continuity of bilinear maps

Joint continuity of separately continuous bilinear maps on Hilbert spaces, is a corollary of Baire category:

[4.0.1] Claim: A bilinear map β : X × Y → Z on Hilbert spaces X,Y, Z, continuous in each variable
separately, is jointly continuous.

Proof: Fix a neighborhood N of 0 in Z. Take sequences xn → xo in X and yn → yo in Y . For each x ∈ X,
by continuity in Y , β(x, yn) → β(x, yo). Thus, for each x ∈ X, the set of values β(x, yn) is bounded in Z.
The linear functionals x→ β(x, yn) are equicontinuous, by Banach-Steinhaus, so there is a neighborhood U
of 0 in X so that bn(U) ⊂ N for all n. In the identity

β(xn, yn)− β(xo, yo) = β(xn − xo, yn) + β(xo, yn − yo)

we have xn − xo ∈ U for large n, and β(xn − xo, yo) ∈ N . Also, by continuity in Y , β(xo, yn − yo) ∈ N
for large n. Thus, β(xn, yn)− β(xo, yo) ∈ N +N , proving sequential continuity. Since X × Y is metrizable,
sequential continuity implies continuity. ///
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5. Appendix: non-existence of tensor products of Hilbert spaces

Tensor products of infinite-dimensional Hilbert spaces do not exist.

That is, for infinite-dimensional Hilbert spaces V,W , there is no Hilbert space X and continuous bilinear
map j : V ×W −→ X such that, for every continuous bilinear V ×W −→ Y to a Hilbert space Y , there is
a unique continuous linear X −→ Y fitting into the commutative diagram

X

##G
G

G
G

G

V ×W

j

OO

// Y

That is, there is no tensor product in the category of Hilbert spaces and continuous linear maps.

Yes, it is possible to put an inner product on the algebraic tensor product V⊗algW , by

〈v ⊗ w, v′ ⊗ w′〉 = 〈v, v′〉 · 〈w,w′〉

and extending. The completion V ⊗
HS
W , often denoted V ⊗̂W , of V⊗algW with respect to the associated

norm, is a Hilbert space, identifiable with Hilbert-Schmidt operators V −→W ∗. However, this Hilbert space
fails to have the universal property in the categorical characterization of tensor product, as we see below.
This Hilbert space H is important in its own right, but is widely misunderstood as being a tensor product
in the categorical sense.

The non-existence of tensor products of infinite-dimensional Hilbert spaces is important in practice, not only
as a cautionary tale [7] about naive category theory, insofar as it leads to Grothendieck’s idea of nuclear
spaces, which do admit tensor products.

Proof: First, we review the point that the Hilbert-Schmidt tensor product H = V ⊗̂W is not a Hilbert-
space tensor product. For simplicity, suppose that V,W are separable, in the sense of having countable
Hilbert-space bases.

Choice of such bases allows an identification of W with the continuous linear Hilbert space dual V ∗ of V .
Then we have the continuous bilinear map V × V ∗ −→ C by v × λ −→ λ(v). The algebraic tensor product
V⊗algW injects to H = V ⊗̂V ∗, and the image is identifiable with the finite-rank maps V −→ V . The linear
map T : H −→ C induced on the image of V⊗algV

∗ is trace. If H = V ⊗̂V ∗ were a Hilbert-space tensor
product, the trace map would extend continuously to it from finite-rank operators. However, there are many
Hilbert-Schmidt operators that are not of trace class. For example, letting ei be an orthonormal basis, the
element ∑

n

1

n
· en ⊗ en ∈ V ⊗̂V ∗

does not have a finite trace, since
∑
n≤N 1/n ∼ logN . In other words, the difficulty is that

T
( ∑
a≤n≤b

1

n
· en ⊗ en

)
=

∑
a≤n≤b

1

n
· T (en ⊗ en) =

∑
a≤n≤b

1

n

[7] Many of us are not accustomed to worry about existence of objects defined by universal mapping properties,

because we proved their existence by set-theoretic constructions of them, long before becoming aware of mapping-

property characterizations. Much as naive set theory does not lead to paradoxes without effort, naive category

theory’s recharacterization of objects close to prior experience rarely describes non-existent objects. Nevertheless,

the present example is genuine.
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Thus, the partial sums of
∑
n

1
n en⊗ en form a Cauchy sequence, but the values of T on the partial sums go

to +∞. Thus, the Hilbert-Schmidt tensor product cannot be a Hilbert-space tensor product.

Now we show that no other Hilbert space can be a tensor product, by comparing to the Hilbert-Schmidt
tensor product.

Let V ×W −→ X be a purported Hilbert-space tensor product, and, again, let W be the dual of V , without
loss of generality. By assumption, the continuous bilinear injection V × V ∗ −→ V ⊗HS V

∗ induces a unique
continuous linear map T : X −→ H fitting into a commutative diagram

X

T

��

^ \ Z X U S P M I
F

B
=

9
6

3

V⊗algV
∗

ffL L L L L L

&&M
M

M
M

M

V × V ∗

OO

//

99rrrrrrrrrr
V ⊗

HS
V ∗

The linear map V⊗algV
∗ −→ V ⊗

HS
V ∗ is injective, since V ⊗

HS
V ∗ is a completion of V⊗algV

∗. Thus,
unsurprisingly, V⊗algV

∗ −→ X is necessarily injective. The uniqueness of the linear induced maps implies
that the image of V⊗algV

∗ is dense in X. Also, T : X −→ V ⊗HS V
∗ is the identity on the copies of V⊗algV

∗

imbedded in X and V ⊗HS V
∗. Let T ∗ : V ⊗HS V

∗ −→ X be the adjoint of T , defined by

〈x, T ∗y〉X = 〈Tx, y〉V⊗
HS
V ∗

On the imbedded copies of V⊗algV
∗

〈v⊗λ, T ∗(w⊗µ)〉X = 〈T (v⊗λ), w⊗µ〉V⊗
HS
V ∗ = 〈v⊗λ,w⊗µ〉V⊗

HS
V ∗ (for v, w ∈ V and λ, µ ∈ V ∗)

Given v ∈ V and λ ∈ V ∗, the orthogonal complement (v⊗λ)⊥ is the closure of the span of monomials v′⊗λ′
where either v′ ⊥ v or λ′ ⊥ λ. For such v′ ⊗ λ′,

0 = 〈v′ ⊗ λ′, v ⊗ λ〉H = 〈T (v′ ⊗ λ′), v ⊗ λ〉H = 〈v′ ⊗ λ′, T ∗(v ⊗ λ)〉X

Thus, for any monomial v ⊗ λ, the image T ∗(v ⊗ λ) is a scalar multiple of v ⊗ λ. The same is true of
monomials (v+w)⊗ (λ+µ). Taking v, w linearly independent and λ, µ linearly independent and expanding
shows that the scalars do not depend on v, λ. Thus, T ∗ is a scalar on V⊗algV

∗.

That is, there is a (necessarily real) constant C such that

C · 〈v ⊗ λ,w ⊗ µ〉X = 〈v ⊗ λ, T ∗(w ⊗ µ)〉X = 〈T (v ⊗ λ), w ⊗ µ〉V⊗
HS
V ∗ = 〈v ⊗ λ,w ⊗ µ〉V⊗

HS
V ∗

since T identifies the imbedded copies of V⊗algV
∗. That is, up to the constant C, the inner products from

X and V ⊗
HS
V ∗ restrict to the same hermitian form on V⊗algV

∗. Thus, any putative tensor product X
differs from V ⊗

HS
V ∗ only by scaling. However, we saw that the natural pairing V × V ∗ −→ C does not

factor through a continuous linear map V ⊗
HS
V ∗ −→ C, because there exist Hilbert-Schmidt maps not of

trace class.

Thus, there is no tensor product of infinite-dimensional Hilbert spaces. ///

10



Paul Garrett: Hilbert-Schmidt operators, nuclear spaces, kernel theorem I (March 25, 2014)

Bibliography

[Gelfand-Silov 1964] I.M. Gelfand, G.E. Silov, Generalized Functions, I: Properties and Operators, Academic
Press, NY, 1964.

[Grothendieck 1955] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Am.
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