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Introduction and historical notes

The aim here is persuasive proof of several important analytical results about automorphic forms, among
them spectral decompositions of spaces of automorphic forms, discrete decompositions of spaces of cuspforms,
meromorphic continuation of Eisenstein series, spectral synthesis of automorphic forms, a Plancherel theorem,
and various notions of convergence of spectral expansions. Rather than assuming prior knowledge of
the necessary analysis, or giving extensive external references, we provide customized discussions of that
background, especially of ideas from 20th century analysis often neglected in the contemporary standard
curriculum. Similarly, we avoid assumptions of background that would certainly be useful in studying
automorphic forms, but which beginners cannot be expected to have. Therefore, we keep external references
to a minimum, treating the modern analysis and other background as a significant part of the discussion.

Not only for reasons of space, the treatment of automorphic forms is deliberately neither systematic nor
complete, but by three families of examples, in all cases aiming to illustrate aspects beyond the introductory
case of SL2(Z) and its congruence subgroups.

The first three chapters set up three families of examples, proving essential preparatory results, proving
many of the basic facts about automorphic forms, while merely stating results whose proofs are more
sophisticated or difficult. The proofs of the more difficult results occupy the remainder of the book, as
in many cases the arguments require various ideas not visible in the statements.

The first family of examples is introduced in chapter one, consisting of waveforms on quotients having
dimensions 2, 3, 4, 5 with a single cusp, which is just a point. In the two-dimensional case, the space on which
the functions live is the usual quotient SL2(Z)\H of the complex upper half-plane H. The three-dimensional
case is related to SL2(Z[i]), and the four-dimensional and five-dimensional cases are similarly explicitly
described. Basic discussion of the physical spaces themselves involves explication of the groups acting on
them, and decompositions of these groups in terms of subgroups, and the expression of the physical spaces
as G/K for K a maximal compact subgroup of G. There are natural invariant measures and integrals on
G/K and on Γ\G/K, whose salient properties can be described quickly, with proofs deferred to a later point.
Similarly, a natural Laplace-Beltrami operator ∆ on G/K and Γ\G/K can be described easily, but with
proofs deferred. The first serious result specific to automorphic forms is about reduction theory, that is,
determination of a nice set in G/K that surjects to the quotient Γ\G/K, for specific discrete subgroups Γ
of G. The four examples in this simplest scenario all admit very simple sets of representatives, called Siegel
sets in every case a product of a ray and a box, with Fourier expansions possible along the box-coordinate,
consonant with a decomposition of part of the group G (Iwasawa decomposition). This greatly simplifies
both statements and proofs of fundamental theorems.

In the simplest family of examples, the space of cuspforms consists of those functions on the quotient
Γ\G/K with 0th Fourier coefficient identically 0. The basic theorem, quite non-trivial to prove, is that the
space of cuspforms in L2(Γ\G/K) has a basis consisting of eigenfunctions for the invariant Laplacian ∆. This
result is one form of the discrete decomposition of cuspforms. We delay its proof, which uses many ideas
not apparent in the statement of the theorem. The orthogonal complement to cuspforms in L2(Γ\G/K)
is readily characterized as the space of pseudo-Eisenstein series, parametrized here by test functions on
(0,+∞). However, these simple, explicit automorphic forms are never eigenfunctions for ∆. Rather, via
Euclidean Fourier-Mellin inversion, they are expressible as integrals of (genuine) Eisenstein series, the latter
eigenfunctions for ∆, but unfortunately not in L2(Γ\G/K). Further, it turns out that the best expression of
pseudo-Eisenstein series in terms of genuine Eisenstein series Es involves the latter with complex parameter
outside the region of convergence of the defining series. Thus arises the need to meromorphically continue
the Eisenstein series in that complex parameter. Genuine proof of meromorphic continuation, with control
over the behavior of the meromorphically continued function, is another basic but non-trivial result, whose
proof is delayed. Granting those postponed proofs, a Plancherel theorem for the space of pseudo-Eisenstein
series follows from their expansion in terms of genuine Eisenstein series, together with attention to integrals
as vector-valued (rather than merely numerical), with the important corollary that such integrals commute
with continuous operators on the vector space. This and other aspects of vector-valued integrals are treated
at length in an appendix. Then we obtain the Plancherel theorem for the whole space of L2 waveforms.
Even for the simplest examples, these few issues illustrate the goals of this book: discrete decomposition of
spaces of cuspforms, meromorphic continuation of Eisenstein series, and a Plancherel theorem.
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In chapter two is the second family of examples, adele groups GL2 over number fields. These
examples subsume classical examples of quotient Γ0(N)\H with several cusps, reconstituting things so that
operationally there is a single cusp. Also, examples of Hilbert modular groups and Hilbert modular forms
are subsumed, by rewriting things so that the vagaries of class numbers and unit groups become irrelevant.
Assuming some basic algebraic number theory, we prove p-adic analogues of the group decomposition results
proven earlier in chapter one for the purely archimedean examples. Integral operators made from Coc functions
on the p-adic factor groups, known as Hecke operators, are reasonable p-adic analogues of the archimedean
factors’ ∆, although the same integral operators do make the same sense on archimedean factors. Again,
the first serious result for these examples is that of reduction theory, namely, that there is a single nice set,
an adelic form of a Siegel set, again nearly the product of a ray and a box, that surjects to the quotient
Z+GL2(k)\GL2(A), where Z+ is itself a ray in the center of the group. The first serious analytical result
is again about discrete decomposition of spaces of cuspforms, where now relevant operators are both the
invariant Laplacians and the Hecke operators. And, again, the deferred proof is much more substantial than
the statement, and needs ideas not visible in the assertion itself. The orthogonal complement to cuspforms is
again describable as the L2 span of pseudo-Eisenstein series, now with a discrete parameter, a Hecke character
(grossencharacter) of the ground field, in addition to the test function on (0,+∞). The pseudo-Eisenstein
series are never eigenfunctions for invariant Laplacians nor for Hecke operators. Within each family, indexed
by Hecke characters, every pseudo-Eisenstein series again decomposes via Euclidean Fourier-Mellin inversion
as an integral of (genuine) Eisenstein series with the same discrete parameter. The genuine Eisenstein series
are eigenfunctions for invariant Laplacians, and are eigenfunctions for Hecke operators at almost all finite
places, but are not square-integrable. And, again, the best assertion of spectral decomposition requires a
meromorphic continuation of the genuine Eisenstein series in the continuous parameter. Then a Plancherel
theorem for pseudo-Eisenstein series for each discrete parameter value follows from the integral representation
in terms of genuine Eisenstein series and general properties of vector-valued integrals. These are assembled
into a Plancherel theorem for all L2 automorphic forms. An appendix computes periods of Eisenstein series
along copies of GL1(k̃) of quadratic field extensions k̃ of the ground field.

Chapter three treats the most complicated of the three families of examples, including automorphic forms
for SLn(Z), both purely archimedean and adelic. Again, some relatively elementary set-up regarding group
decompositions is necessary, and carried out immediately. Identification of invariant differential operators
and Hecke operators at finite places is generally similar to that for the previous example GL2. A significant
change is the proliferation of types of parabolic subgroups (essentially, subgroups conjugate to subgroups
containing upper-triangular matrices). This somewhat complicates the notion of cuspform, although the
general idea, that zeroth Fourier coefficients vanish, is still correct, if suitably interpreted. Again, the
space of square-integrable cuspforms decomposes discretely, although the complexity of the proof for these
examples increases significantly, and is again delayed. The increased complication of parabolic subgroups
also complicates the description of the orthogonal complement to cuspforms, in terms of pseudo-Eisenstein
series. For purposes of spectral decomposition, the discrete parameters now become more complicated
than the GL2 situation: cuspforms on the Levi components (diagonal blocks) in the parabolics generalize
the role of Hecke characters. Further, the continuous complex parametrizations need to be over larger-
dimensional Euclidean spaces. Thus, we restrict attention to the two extreme cases: minimal parabolics
(also called Borel subgroups) consisting exactly of upper-triangular matrices, and maximal proper parabolics,
which have exactly two diagonal blocks. The minimal parabolics use no cuspidal data, but for SLn(Z) have
an (n − 1)-dimensional complex parameter. The maximal proper parabolics have just a one-dimensional
complex parameter, but typically need two cuspforms on smaller groups, one on each of the two diagonal
blocks. The general qualitative result that the L2 orthogonal complement to cuspforms is spanned by
pseudo-Eisenstein series of various types does still hold, and the various types of pseudo-Eisenstein series are
integrals of genuine Eisenstein series with the same discrete parameters. And, again, the best description of
these integrals requires the meromorphic continuation of the Eisenstein series. For non-maximal parabolics,
Bochner’s lemma (recalled and proven in an appendix) reduces the problem of meromorphic continuation to
the maximal proper parabolic case, with cuspidal data on the Levi components. Elementary devices such as
Poisson summation, that suffice for meromorphic continuation for GL2, as we have seen in the appendix to
chapter two, are inadequate to prove meromorphic continuation involving the non-elementary cuspidal data.
We defer the proof. Plancherel theorems for the spectral fragments follow from the integral representations
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in terms of genuine Eisenstein series, together with properties of vector-valued integrals.
The rest of the book gives proofs of those foundational analytical results, discreteness of cuspforms and

meromorphic continuation of Eisenstein series, at various levels of complication, and by various devices.
Perhaps surprisingly, the required analytical underpinnings are considerably more substantial than an
unsuspecting or innocent bystander might imagine. Further, not everyone interested in the truth of
foundational analytical facts about automorphic forms will necessarily care about their proofs, especially
upon discovery that that burden is greater than anticipated. These obvious points reasonably explain the
compromises made in many sources. Nevertheless, rather than either gloss over the analytical issues, or refer
to encyclopedic treatments of modern analysis on a scope quite unnecessary for our immediate interests, or
give suggestive but misleading neo-classical heuristics masquerading as adequate arguments for what is truly
needed, the remaining bulk of the book aims to discuss analytical issues at a technical level truly sufficient
to convert appealing heuristics to persuasive, genuine proofs. For that matter, one’s own lack of interest in
the proofs might provide all the more interest in knowing that things widely believed are in fact provable by
standard methods.

Chapter four explains enough Lie theory to understand the invariant differential operators on the ambient
archimedean groups G, both in the simplest small examples and more generally, determining the invariant
Laplace-Beltrami operators explicitly in coordinates on the four simplest examples.

Chapter five explains how to integrate on quotients, without concern for explicit sets of representatives.
Although in very simple situations, such as quotients R/Z (the circle), it is easy to manipulate sets of
representatives (the interval [0, 1] for the circle), this eventually becomes infeasible, despite the traditional
example of the explicit fundamental domain for SL2(Z) acting on the upper half-plane H. That is, much of
the picturesque detail is actually inessential, which is fortunate since that level of details is also unsustainable
in all but the very simplest little examples.

Chapter six introduces natural actions of groups on spaces of functions on physical spaces on which the
groups act. In some contexts, one might make a more elaborate representation theory formalism here,
but it is possible to reap many of the benefits of the ideas of representation theory without the usual
superstructure. That is, the idea of a linear action of a topological group on a topological vector space
of functions on a physical space is the beneficial notion, with or without classification. It is true that at
certain technical moments classification results are crucial, so, although we do not prove either the Borel-
Casselman-Matsumoto classification in the p-adic case [Borel 1976], [Matsumoto 1977], [Casselman 1980],
nor the subrepresentation theorem [Casselman 1978/80], [Casselman Miličić 1982] in the archimedean case,
hopefully the roles of these results are made clear. Classification results per se, while difficult and interesting
problems, do not necessarily affect the foundational analytic aspects of automorphic forms.

Chapter seven proves the discreteness of spaces of cuspforms, in various senses, in examples of varying
complexity. Here, it becomes apparent that genuine proofs, as opposed to heuristics, require some
sophistication concerning topologies on natural function spaces, beyond the typical Hilbert, Banach, and
Fréchet spaces. Here again, there is a forward reference to the extended appendix on function spaces
and classes of topological vector spaces necessary for practical analysis. Further, even less immediately
apparent, but in fact already needed in the discussion of decomposition of pseudo-Eisenstein series in terms
of genuine Eisenstein series, we need a coherent and effective theory of vector-valued integrals, a complete,
succinct form given in the corresponding appendix, following Gelfand and Pettis, making explicit the most
important corollaries on uniqueness of invariant functions, differentiation under integral signs with respect
to parameters, and related.

Chapter eight fills an unobvious need, proving that automorphic forms that are of moderate growth and
are eigenfunctions for Laplacians have asymptotics given by their constant terms. In the smaller examples,
it is easy to make this precise. For SLn with n ≥ 3, some effort is required for an accurate statement. As
corollaries, L2 cuspforms that are eigenfunctions are of rapid decay, and Eisenstein series have relatively
simple asymptotics given by their constant terms. Thus, we discover again the need to prove that Eisenstein
series have vector-valued meromorphic continuations, specifically, as moderate-growth functions.

Chapter nine carefully develops ideas concerning unbounded symmetric operators on Hilbert spaces,
thinking especially of operators related to Laplacians ∆, and especially those such that (∆ − λ)−1 is a
compact-operator-valued meromorphic function of λ ∈ C. On one hand, even a naive conception of the
general behavior of Laplacians is fairly accurate, but this is due to a subtle fact that needs proof, namely,
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the essential self-adjointness of Laplacians on natural spaces such as Rn, multi-toruses Tn, spaces G/K,
and even spaces Γ\G/K. This has a precise sense: the (invariant) Laplacian restricted to test functions has
a unique self-adjoint extension, which then is necessarily its graph-closure. Thus, the naive presumption,
implicit or explicit, that the graph closure is a (maximal) self-adjoint extension is correct. On the other
hand, the proof of meromorphic continuation of Eisenstein series in [Colin de Verdière 1981/82/83] makes
essential use of some quite counter-intuitive features of (Friedrichs’) self-adjoint extensions of restrictions of
self-adjoint operators, which therefore merit careful attention. In this context, the basic examples are the
usual Sobolev spaces on T or R, and the quantum harmonic oscillator −∆ + x2 on R. An appendix recalls
the proof of the spectral theorem for compact, self-adjoint operators.

Chapter ten extends the idea from [Lax-Phillips 1976] to prove that larger spaces than spaces of cuspforms

decompose discretely under the action of self-adjoint extensions ∆̃a of suitable restrictions ∆a of Laplacians.
Namely, the space of pseudo-cuspforms L2

a at cut-off height a is specified, not by requiring constant terms to
vanish entirely, but by requiring that all constant terms vanish above height a. The discrete decomposition
is proven, as expected, by showing that the resolvent (∆̃a−λ)−1 is a meromorphic compact-operator-valued
function of λ, and invoking the spectral theorem for self-adjoint compact operators. The compactness of the
resolvent is a Rellich-type compactness result, proven by observing that (∆̃a − λ)−1 maps L2

a to a Sobolev-
type space B1

a with a finer topology on B1
a than the subspace topology, and that the inclusion B1

a → L2
a is

compact.
Chapter eleven uses the discretization results of chapter ten to prove meromorphic continuations and

functional equations of a variety of Eisenstein series, following [Colin de Verdière 1981/82/83]’s application
of the discreteness result in [Lax-Phillips 1976]. This is carried out first for the four simple examples, then
for maximal proper parabolic Eisenstein series for SLn(Z), with cuspidal data. In both the simplest cases
and the higher-rank examples, we identify the exotic eigenfunctions as being certain truncated Eisenstein
series.

Chapter twelve uses several of the analytical ideas and methods of the previous chapters to reconsider
automorphic Green’s functions, and solutions to other differential equations in automorphic forms, by spectral
methods. We prove a pre-trace formula in the simplest example, as an application of a comparably simple
instance of a subquotient theorem, which follows from asymptotics of solutions of second-order ordinary
differential equations, recalled in a later appendix. We recast the pre-trace formula as a demonstration
that an automorphic Dirac δ-function lies in the expected global automorphic Sobolev space. The same
argument gives a corresponding result for any compact automorphic period. Subquotient/subrepresentation
theorems for groups such as G = SO(n, 1) (rank-one groups with abelian unipotent radicals) appeared in
[Casselman-Osborne 1975], [Casselman-Osborne 1978]. For higher-rank groups SLn(Z), the corresponding
subrepresentation theorem is [Casselman 1978/80], [Casselman Miliči’c 1982]. Granting that, we obtain a
corresponding pre-trace formula for a class of compactly-supported automorphic distributions, showing that
these distributions lie in the expected global automorphic Sobolev spaces.

Chapter thirteen is an extensive appendix with many examples of natural spaces of functions and
appropriate topologies on them. One point is that too-limited types of topological vector spaces are
inadequate to discuss natural function spaces arising in practice. We include essential standard arguments
characterizing locally convex topologies in terms of families of seminorms. We prove the quasi-completeness
of all natural function spaces, and weak duals, and spaces of maps between them. Notably, this includes
spaces of distributions.

Chapter fourteen proves existence of Gelfand-Pettis vector-valued integrals of compactly-supported
continuous functions taking values in locally convex, quasi-complete topological vector space. Conveniently,
the previous chapter showed that all function spaces of practical interest meet these requirements. The
fundamental property of Gelfand-Pettis integrals is that

T
(∫

f
)

=

∫
T ◦ f (for V -valued f , T : V →W continuous linear)

at least for f continuous, compactly supported, V -valued, where V is quasi-complete and locally convex.
That is, continuous linear operators pass inside the integral. In suitably-topologized natural function spaces,
this situation includes differentiation with respect to a parameter. In this situation, as corollaries we can
easily prove uniqueness of invariant distributions, density of smooth vectors, and similar.
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Chapter fifteen carefully discusses holomorphic V -valued functions, using the Gelfand-Pettis integrals as
well as a variant of the Banach-Steinhaus theorem. That is, weak holomorphy implies (strong) holomorphy,
and the expected Cauchy integral formulas and Cauchy-Goursat theory apply almost verbatim in the vector-
valued situation. Similarly, we prove that for f a V -valued function on an interval [a, b], λ ◦ f being Ck for
all λ ∈ V ∗ implies that f itself is Ck−1 as a V -valued function.

Chapter sixteen reviews basic results on asymptotic expansions of integrals, and of solutions to second-order
ordinary differential equations. The methods are deliberately general, rather than invoking specific features
of special functions, to illustrate methods that are applicable more broadly. The simple subrepresentation
theorem in chapter twelve makes essential use of asymptotic expansions.

Our coverage of modern analysis does not aim to be either systematic or complete, but well-grounded and
adequate for the above-mentioned issues concerning automorphic forms. In particular, several otherwise-
apocryphal results are treated carefully. We want a sufficient viewpoint so that attractive heuristics, for
example, from physics, can become succinct, genuine proofs. Similarly, we do not presume familiarity with
Lie theory, nor algebraic groups, nor representation theory, nor algebraic geometry, and certainly not with
classification of representations of Lie groups or p-adic groups. All these are indeed very useful, in the long
run, but it is unreasonable to demand mastery of these prior to thinking about analytical issues concerning
automorphic forms. Thus, we directly develop some essential ideas in these supporting topics, sufficient for
immediate purposes here. [Lang 1975] and [Iwaniec 2002] are examples of the self-supporting exposition
intended here.

Naturally, any novelty here is mostly in the presentation, rather than in the facts themselves, most of
which have been known for several decades. Sources and origins can be most clearly described in a historical
context, as follows.

The reduction theory in [1.5] is merely an imitation of the very classical treatment for SL2(Z), including
some modern ideas, as in [Borel 1997]. The subtler versions in [2.2] and [3.3] are expanded versions of the
first part of [Godement 1963], a more adele-oriented reduction theory than [Borel 1965/6b], [Borel 1969],
and [Borel-HarishChandra 1962]. Proofs [1.9.1], [2.8.6], [3.10.1-2], [3.11.1] of convergence of Eisenstein series
are due to Godement use similar ideas, reproduced for real Lie groups in [Borel 1965/6]. Convergence
arguments on larger groups go back at least to [Braun 1939]’s treatment of convergence of Siegel Eisenstein
series. Holomorphic Hilbert-Blumenthal modular forms were studied by [Blumenthal 1904]. What would
now be called degenerate Eisenstein series for GLn appeared in [Epstein 1903/07]. [Picard 1882/83/84]
was one of the earliest investigations beyond the elliptic modular case. Our notion of truncation is from
[Arthur 1978] and [Arthur 1980].

Eigenfunction expansions and various notions of convergence are a pervasive theme here, and have a long
history. The idea that periodic functions should be expressible in terms of sines and cosines is at latest
from [Fourier 1822], including what we now call the Dirichlet kernel, although [Dirichlet 1829] came later.
Somewhat more generally, eigenfunction expansions for Sturm-Liouville problems appeared in [Sturm 1836]
and [Sturm 1833a,b/36a,b] but were not made rigorous until [Bôcher 1898/99] and [Steklov 1898] (see
[Lützen 1984]). Refinements of the spectral theory of ordinary differential equations continued in [Weyl 1910],
[Kodaira 1949], and others, addressing issues of non-compactness and unboundedness echoing complications
in the behavior of Fourer transform and Fourier inversion on the line [Bochner 1932], [Wiener 1933].
Spectral theory and eigenfunction expansions for integral equations, which we would now call compact
operators [9.A], were recognized as more tractable than direct treatment of diffferential operators soon
after 1900: [Schmidt 1907], [Myller-Lebedev 1907], [Riesz 1907], [Hilbert 1909], [Riesz 1910], [Hilbert 1912].
Expansions in spherical harmonics were used in the 18th century by S. P. Laplace and J.-L. Lagrange, and
eventually subsumed in the representation theory of compact Lie groups [Weyl 1925/6], and in eigenfunction
expansions on Riemannian manifolds and Lie groups, as in [Minakshisundaram-Pleijel 1949], [Povzner 1953],
[Avakumović 1956], [Berezin 1956], and many others.

Spectral decomposition and synthesis of various types of automorphic forms is more recent, beginning
with [Maaß 1949], [Selberg 1956], and [Roelcke 1956a,b]. The spectral decomposition for automorphic
forms on general reductive groups is more complicated than might have been anticipated by the earliest
pioneers. Subtleties are already manifest in [Gelfand-Fomin 1952], and then in [Gelfand-Graev 1959],
[HarishChandra 1959], [Gelfand-PS 1963], [Godement 1966b], [HarishChandra 1968], [Langlands 1966],
[Langlands 1967/76], [Arthur 1978], [Arthur 1980], [Jacquet 1982/83], [Moeglin-Waldspurger 1989], [Moeglin-
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Waldspurger 1995], [Casselman 2005], [Shahidi 2010]. Despite various formalizations, spectral synthesis
of automorphic forms seems most clearly understood in fairly limited scenarios: [Godement 1966a],
[Faddeev 1967], [Venkov 1971], [Faddeev-Pavlov 1972], [Arthur 1978], [Venkov 1979], [Arthur 1980], [Cogdell-
PS 1990], largely due to issues of convergence, often leaving discussions in an ambiguous realm of (nevertheless
interesting) heuristics.

Regarding meromorphic continuation of Eisenstein series: our proof [2.B] for the case [2.9] of GL2 is
an adaptation of the Poisson summation argument from [Godement 1966a]. The essential idea already
occurred in [Rankin 1939] and [Selberg 1940]. [Elstrodt-Grunewald-Mennicke 1985] treated examples
including our example SL2(Z[i]), and in that context [Elstrodt-Grunewald-Mennicke 1987] treats special
cases of the period computation of [2.C]. For Eisenstein series in rank one groups, compare also [Cohen-
Sarnak 1980], which treats a somewhat larger family including our simplest four examples, and then
[Müller 1996]. The minimal-parabolic example in [3.12] using Bochner’s lemma [3.A] essentially comes
from an appendix in [Langlands 1967/76]. The arguments for the broader class of examples in chapter
eleven are adaptations of [Colin de Verdière 1981/82/83], using discretization effects of pseudo-Laplacians
from chapter ten, which adapts the idea of [Lax-Phillips 1976]. Certainly one should compare the arguments
in [HarishChandra 1968], [Langlands 1967/76], [Wong 1990], and [Moeglin-Waldspurger 1995]. The latter
gives a version of Colin de Verdière’s idea due to H. Jacquet.

The discussion of group actions on function spaces in chapter six is mostly very standard. Apparently
the first occurrence of the Gelfand-Kazhdan criterion idea is in [Gelfand 1950]. An extension of that idea
appeared in [Gelfand-Kazhdan 1975].

The arguments for discrete decomposition of cuspforms in chapter seven are adaptations of [Gode-
ment 1966b]. The discrete decomposition examples for larger spaces of pseudo-cuspforms in chapter ten use
the idea of [Lax-Phillips 1976]. The idea of this decomposition perhaps goes back to [Gelfand-Fomin 1952],
and, as with many of these ideas, was elaborated-upon in the iconic sources [Gelfand-Graev 1959], [Har-
ishChandra 1959], [Gelfand-PS 1963], [Godement 1966b], [HarishChandra 1968], [Langlands 1967/76], and
[Moeglin-Waldspurger 1989].

Difficulties with pointwise convergence of Fourier series of continuous functions, and problems in other
otherwise-natural Banach spaces of functions, were well appreciated in the late 19th century. There was a
precedent for constructs avoiding strictly pointwise conceptions of functions in the very early 20th century,
when B. Levi, G. Fubini, and D. Hilbert used Hilbert space constructs to legitimize Dirichlet’s minimization
principle, in essence that a non-empty closed convex set should have a (unique) point nearest a given point
not in that set. The too-general form of this principle is false, in that both existence and uniqueness easily
fail in Banach spaces, in natural examples, but the principle is correct in Hilbert spaces. Thus, natural
Banach spaces of pointwise-valued functions, such as continuous functions on a compact set with sup norm,
do not support this minimization principle. Instead, Hilbert-space versions of continuity and differentiability
are needed, as in [Levi 1906]. This idea was systematically developed by [Sobolev 1937, 1938, 1950]. We
recall the L2 Sobolev spaces for circles in [9.5], for lines in [9.7], and develop various (global) automorphic
versions of Sobolev spaces in chapters ten, eleven, and twelve.

For applications to analytic number theory, automorphic forms are often constructed by winding up
various simpler functions containing parameters, forming Poincaré series [Cogdell-PS 1990], [Cogdell-PS-
Sarnak 1991. Spectral expansions are the standard device for demonstration of meromorphic continuation
in the parameters, if it exists at all, which is a non-trivial issue [Estermann 1928], [Kurokawa 1985a,b].
For the example of automorphic Green’s functions, namely, solutions to equations (∆ − s(s − 1))u = δafc

w

with invariant Laplacian ∆ on H and automorphic Dirac δ on the right, [Huber 1955] had considered such
matters in the context of lattice-point problems in hyperbolic spaces, and, independently, [Selberg 1954]
had addressed this issue in lectures in Göttingen. [Neunhöffer 1973] carefully considers the convergence and
meromorphic continuation of a solution of that equation formed by winding up. See also [Elstrodt 1973].
The complications or failures of pointwise convergence of the spectral synthesis expressions can often be
avoided entirely by considering convergence in suitable global automorphic Sobolev spaces described in
chapter twelve. See [DeCelles 2012] and [DeCelles 2016] for developments in this spirit.

Because of the naturality of the issue, and to exploit interesting idiosyncrasies, we pay considerable
attention to invariant Laplace-Beltrami operators and their eigenfunctions. To have genuine proofs,
rather than heuristics, chapter nine attends to rigorous notions of unbounded operators on Hilbert spaces
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[vonNeumann 1929], with motivation toward [vonNeumann 1931], [Stone 1929/32], [Friedrichs 1934],
[Krein 1945], [Krein 1947]. In fact, [Friedrichs 1934/5]’ special construction [9.2] has several useful
idiosyncracies, exploited in chapters ten and eleven. Incidentally, the apparent fact that the typically naive
treatment of many natural Laplace-Beltrami operators without boundary conditions does not lead to serious
mistakes is a corollary of their essential self-adjointness [9.9], [9.10]. That is, in many situations, the naive
form of the operator admits a unique self-adjoint extension, and this extension is the graph closure of the
original. Thus, in such situations, a naive treatment is provably reasonable. However, the Lax-Phillips
discretization device, and Colin de Verdière’s use of it to prove meromorphic continuation of Eisenstein
series, and also to convert certain inhomogeneous differential equations to homogeneous ones, illustrate the
point that restrictions of essentially self-adjoint operators need not remain essentially self-adjoint. With
hindsight, this possibility is already apparent in the context of Sturm-Liouville problems [9.3].

The global automorphic Sobolev spaces of chapter twelve already enter in important auxiliary roles as the
spaces B1, B1

a in chapter ten’s proofs of discrete decomposition of spaces of pseudo-cuspforms, and E1 and E1
a

in [11.7-11.11] proving meromorphic continuation of Eisenstein series. The basic estimate called a pre-trace
formula occurred as a precursor to trace formulas, as in [Selberg 1954], [Selberg 1956], [Hejhal 1976/83],
and [Iwaniec 2002]. The notion of global automorphic Sobolev spaces provides a reasonable context for
discussion of automorphic Green’s functions, other automorphic distributions, and solutions of partial
differential equations in automorphic forms. The heuristics for Green’s functions [Green 1828], [Green 1837]
had repeatedly shown their utility in the 19th century. Differential equations (−∆ − λ)u = δ related to
Green’s functions had been used by physicists [Dirac 1928a/b, 1930], [Thomas 1935], [Bethe-Peierls 1935],
with excellent corroboration by physical experiments, and are nowadays known as solvable models. At the
time, and currently, in physics contexts they are rewritten as ((−∆ + δ) − λ)u = 0, viewing −∆ + δ as
a perturbation of −∆ by a singular potential δ, a mathematical idealization of a very-short-range force.
This was treated rigorously in [Berezin-Faddeev 1961]. The necessary systematic estimates on eigenvalues
of integral operators use a subquotient theorem, which we prove for the four simple examples, as in that
case the issue is about asymptotics of solutions of second-order differential equations, classically understood
as recalled in an appendix (chapter sixteen). The general result is the subrepresentation theorem from
[Casselman 1978/80], [Casselman Miličić 1982], improving the subquotient theorem of [Harish-Chandra 1954].
In [Varadarajan 1989] there are related computations for SL2(R).

In the discussion of natural function spaces in chapter thirteen, in preparation for the vector-valued
integrals of the following chapter, the notion of quasi-completeness proves to be the correct general version of
completeness. The incompleteness of weak duals has been known at least since [Grothendieck 1950], which
gives a systematic analysis of completeness of various types of duals. This larger issue is systematically
discussed in [Schaefer 1966/99], p. 147-8 and following. The significance of the compactness of the closure
of the convex hull of a compact set appears, for example, in the discussion of vector-valued integrals in
[Rudin 1991], although the latter does not make clear that this condition is fulfilled in more than Fréchet
spaces, and does not mention quasi-completeness. To apply these ideas must be applicable to distributions,
one might cast about for means to prove the compactness condition, eventually hitting upon the hypothesis
of quasi-completeness in conjunction with ideas from the proof of the Banach-Alaoglu theorem. Indeed,
in [Bourbaki 1987] it is shown (by apparently different methods) that quasi-completeness implies this
compactness condition. The fact that a bounded subset of a countable strict inductive limit of closed
subspaces must actually be a bounded subset of one of the subspaces, easy to prove once conceived, is
attributed to Dieudonne and Schwartz in [Horvath 1966]. See also [Bourbaki 1987], III.5 for this result.
Pathological behavior of uncountable colimits was evidently first exposed in [Douady 1963].

In chapter fourteen, rather than constructing vector-valued integrals as limits following [Bochner 1935],
[Birkhoff 1935], et alia, we use the [Gelfand 1936]-[Pettis 1938] characterization of integrals, which has good
functorial properties and gives a forceful reason for uniqueness. The issue is existence. Density of smooth
vectors follows [G̊arding 1947]. Another of application of holomorphic and meromorphic vector-valued
functions is to generalized functions, as in [Gelfand-Shilov 1964], studying holomorphically parametrized
families of distributions. A hint appears in the discussion of holomorphic vector-valued functions in
[Rudin 1991]. A variety of developmental episodes and results in the Banach-space-valued case is surveyed in
[Hildebrandt 1953]. Proofs and application of many of these results are given in [Hille-Phillips 1957]. (The
first edition, authored by Hille alone, is sparser in this regard.) See also [Brooks 1969] to understand the
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viewpoint of those times.
Ideas about vector-valued holomorphic and differentiable functions, in chapter fifteen, appeared in

[Schwartz 1950/51], [Schwartz 1952], [Schwartz 1953/4], and in [Grothendieck 1953a,b].
The asymptotic expansion results of chapter sixteen are standard. [Blaustein-Handelsman 1975] is a

standard source for asymptotics of integrals. Watson’s lemma and Laplace’s method for integrals have been
used and rediscovered repeatedly. Watson’s lemma dates from at latest [Watson 1918], and Laplace’s method
at latest from [Laplace 1774]. [Olver 1954] notes that Carlini, [Green 1837], and [Liouville 1837] investigated
relatively simple cases of asymptotics at irregular singular points of ordinary differential equations, without
complete rigor. According to [Erdélyi 1956] p. 64, there are roughly two proofs that the standard
argument produces genuine asymptotic expansions for solutions of the differential equation. Poincaré’s
approach, elaborated by J. Horn, expresses solutions as Laplace transforms and invokes Watson’s lemma to
obtain asymptotics. G.D. Birkhoff and his students constructed auxiliary differential equations from partial
sums of the asymptotic expansion, and compared these auxiliary equations to the original [Birkhoff 1908],
[Birkhoff 1909], [Birkhoff 1913]. Volterra integral operators are important in both approaches, insofar as
asymptotic expansions behave better under integration than under differentiation. Our version of the Birkhoff
argument is largely adapted from [Erdélyi 1956].

Many parts of this exposition are adapted and expanded from [Garrett vignettes], [Garrett mfms-notes],
[Garrett fun-notes], and [Garrett alg-noth-notes]. As is surely usual in book writing, many of the issues here
had plagued me for decades.
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1. Four small examples

1. Four small examples

1. Groups G = SL2(R), SL2(C), Sp∗1,1, and SL2(H)
2. Compact subgroups K ⊂ G, Cartan decompositions
3. Iwasawa decompositions G = PK = NA+K
4. Some convenient Euclidean rings
5. Discrete subgroups Γ ⊂ G, reduction theory
6. Invariant measures, invariant Laplacians
7. Discrete decomposition of L2(Γ\G/K) cuspforms
8. Pseudo-Eisenstein series
9. Eisenstein series
10. Meromorphic continuation of Eisenstein series
11. Truncation and Maaß-Selberg relations
12. Decomposition of pseudo-Eisenstein series
13. Plancherel for pseudo-Eisenstein series
14. Automorphic spectral expansion and Plancherel theorem
15. Exotic eigenfunctions, discreteness of pseudo-cuspforms

We recall basic notions related to automorphic forms on some simple arithmetic quotients, including the
archetypical quotient SL2(Z)\H of the complex upper half-plane H and the related quotient SL2(Z)\SL2(R).

To put this in a somewhat larger context, [1] we consider parallel examples Γ\X and Γ\G for a few other
groups G, discrete subgroups Γ, and spaces X ≈ G/K for compact subgroups K of G. The other three
examples share several of the features of G = SL2(R), Γ = SL2(Z), X = H ≈ G/K with K = SO2(R),
allowing simultaneous treatment.

For many reasons, even if we are only interested in harmonic analysis on quotients Γ\X, it is necessary
to consider spaces of functions on the overlying spaces Γ\G, on which G acts by right translations, with a
corresponding translation action on functions.

Some basic discussions not specific to the four examples are postponed, such as determination of invariant
Laplacians in coordinates, self-adjointness properties of invariant Laplacians, proof of the formula for the
left G-invariant measure on X = G/K, unwinding properties of integrals and sums, continuity of the action
of G on test functions on Γ\G, density of test functions in L2(Γ\X), vector-valued integrals, holomorphic
vector-valued functions, and other generalities.

We also postpone the relatively specific proofs of the major theorems stated in the last sections of
this chapter, concerning the spectral decomposition of automorphic forms, meromorphic continuation of
Eisenstein series, and the theory of the constant term. Those proofs make pointed use of finer details from
the more sophisticated analysis.

[1] In slightly more sophisticated terms inessential to this discussion: the four examples G immediately considered

are real-rank one semi-simple Lie groups, and the discrete subgroups Γ are unicuspidal in the sense that Γ\G/K is

reasonably compactified by adding just a single cusp, where K is a (maximal) compact subgroup of G. That is, the

reduction theory of Γ\G is especially simple in these four cases. Examples with larger real rank, such as GLn with

n ≥ 3, will be considered later.
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Garrett: Modern Analysis of Automorphic Forms

1.1 Groups G = SL2(R), SL2(C), Sp∗1,1, and SL2(H)

These four groups share some convenient simplifying features, which we will exploit. The first two examples
G are easy to describe:

G =

 a special linear group over R = SL2(R) = two-by-two real matrices with determinant 1

a special linear group over C = SL2(C) = two-by-two complex matrices with determinant 1

We will have occasion to use the general linear groups GL2(R) of 2-by-2 invertible matrices with entries in a
ring R. Our other two example groups are conveniently described in terms of the Hamiltonian quaternions
H = R + Ri+ Rj + Rk, with the usual relations

i2 = j2 = k2 = −1 ij = −ji = k jk = −kj = i ki = −ik = j

The quaternion conjugation is α = a+ bi+ cj + dk = a− bi− cj − dk for α = a+ bi+ cj + dk, the norm is
Nα = α · α, and |α| = (Nα)

1
2 . H can be modeled in two-by-two complex matrices by

ρ(a+ bi+ cj + dk) =

(
a+ bi c+ di
−c+ di a− bi

)
with det ρ(α) = Nα. For a quaternion matrix g, let g∗ be the transpose of the entry-wise conjugate:(

α β
γ δ

)∗
=

(
α γ
β δ

)
(for α, β, γ, δ ∈ H)

The third example group is a kind of symplectic group:

G = Sp∗1,1 = {g ∈ GL2(H) : g∗Sg = S} (with S =

(
0 1
1 0

)
)

The fourth example is a special linear group G = SL2(H). In the latter, SL2 is more convenient than GL2,
having a smaller center. However, since H is not commutative, the notion of determinant is problemmatical.
One way to skirt the issue is to imbed r : GL2(H)→ GL4(C): with quaternions α, β, γ, δ,

r

(
α β
γ δ

)
=

(
ρ(α) ρ(β)
ρ(γ) ρ(δ)

)
(identified with a 4-by-4 complex matrix)

using the map ρ of H to 2-by-2 complex matrices, and require that the image in GL4(C) be in the subgroup
SL4(C) where determinant is 1:

SL2(H) = {g ∈ GL2(H) : r(g) ∈ SL4(C)}

Standard subgroups of any of these groups G are

P = {
(
∗ ∗
0 ∗

)
} N = {

(
1 ∗
0 1

)
} M = {

(
∗ 0
0 ∗

)
} A+ = {

(
t 0
0 t−1

)
: t > 0}

The Levi-Malcev decomposition P = NM is elementary to check. By direct computation from the defining
relations of the groups, one finds

M =



{
(
m 0
0 m−1

)
: m ∈ R×} (for G = SL2(R))

{
(
m 0
0 m−1

)
: m ∈ C×} (for G = SL2(C))

{
(
m 0
0 m−1

)
: m ∈ H×} (for G = Sp∗1,1)

{
(
a 0
0 d

)
: N(ad) = 1, a, d ∈ H×} (for G = SL2(H))
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and

N =



{
(

1 x
0 1

)
: x ∈ R} (for G = SL2(R))

{
(

1 x
0 1

)
: x ∈ C} (for G = SL2(C))

{
(

1 x
0 1

)
: x ∈ H, x+ x = 0} (for G = Sp∗1,1)

{
(

1 x
0 1

)
: x ∈ H} (for G = SL2(H))

The subgroup P is the standard (proper) parabolic, N is its unipotent radical, M is the standard Levi-
Malcev component, and A+ is the standard split component. We will use these (standard) names without
elaborating on their history or their connotations.

In these examples, the (spherical) Bruhat decomposition is

G =
⊔

w=1,wo

PwP = P t PwoP = P t PwoN (where wo =

(
0 −1
1 0

)
)

with the last equality following because wo normalizes M :

PwoP = PwoMN = P (woMw−1
o )woN = PwoN

The element wo is the long Weyl element. The small (Bruhat) cell is P itself, and the big (Bruhat) cell is
PwoP . The (spherical, geometric) Weyl group is {1, wo}. It is a group modulo the center of G. The proof

of the Bruhat decomposition is straightforward: g =

(
a b
c d

)
∈ P if and only if c = 0. Otherwise, c 6= 0,

and we try to find p ∈ P and n ∈ N such that g = pwon. To simplify, since c 6= 0, it is invertible, so, in

a form applicable to all four cases, we can left multiply by

(
c 0
0 c−1

)
∈ M to make c = 1 without loss of

generality. Then try to solve(
a b
1 d

)
= g = pwon =

(
p11 p12

0 1

)(
0 −1
1 0

)(
1 n12

0 1

)
=

(
p12 p12n12 − p11

1 n12

)
From the lower right entry, apparently n12 = d. For the case G = Sp∗1,1 the additional condition must be
checked, as follows. Observe that inverting g∗Sg = S gives g−1S−1(g∗)−1 = S−1, and then S = gSg∗. In
particular, this gives a relation between the c, d entries of g:(

0 1
1 0

)
= S = gSg∗ =

(
∗ ∗
c d

)(
0 1
1 0

)(
∗ c
∗ d

)
=

(
∗ ∗
∗ cd+ dc

)

For c = 1, this gives d+d = 0, which is the condition for

(
1 d
0 1

)
∈ N in that case. Thus, in all cases, right

multiplying g by

(
1 −d
0 1

)
∈ N makes d = 0, without loss of generality. Thus, it suffices to solve

(
a b
1 0

)
= g = pwo =

(
p11 p12

0 1

)(
0 −1
1 0

)
=

(
p12 −p11

1 0

)
That is,

gw−1
o =

(
−b a

0 1

)
= p

Since g ∈ G, the entries a, b satisfy whatever relations G requires, and p ∈ G. This proves the Bruhat
decomposition.

16



Garrett: Modern Analysis of Automorphic Forms

1.2 Compact subgroups K ⊂ G, Cartan decompositions

We describe the standard maximal [2] compact subgroups K ⊂ G for the four examples G. With H1 the
quaternions of norm 1, in a notation consistent with that for Sp∗1,1, write

Sp∗1 = {g ∈ GL1(H) : g∗g = 1} = {g ∈ H× : gg = 1} = H1

Letting 12 be the two-by-two identity matrix, the four maximal compact subgroups are

K =



SO2(R) = {g ∈ SL2(R) : g>g = 12} (for G = SL2(R))

SU2 = {g ∈ SL2(C) : g∗g = 12} (for G = SL2(C))

Sp∗1 × Sp∗1 = H1 ×H1 (for G = Sp∗1,1)

Sp∗2 = {g ∈ GL2(H) : g∗g = 12} (for G = SL2(H))

In all four cases, the indicated groups are compact. Verification of the compactness of the first three is
straightforward, since their defining equations present them as spheres or products of spheres. Verification
that Sp∗2 is compact and is a subgroup of SL2(H) merits discussion. For the fourth, observe that the defining
condition (

1 0
0 1

)
=

(
a b
c d

)∗ (
a b
c d

)
=

 |a|2 + |c|2 ab+ cd

ba+ dc |b|2 + |d|2


makes Sp∗2 a closed subset of a product of two seven-spheres, |a|2 + |c|2 = 1 and |b|2 + |d|2 = 1, thus, compact.
Further, Sp∗2 lies inside SL2(H) rather than merely GL2(H). For the moment, we will prove a slightly weaker
property, that the relevant determinant is ±1. Use the feature

ρ(α) = ερ(α)>ε−1 (where ε =

(
0 −1
1 0

)
, for α ∈ H)

of the imbedding ρ of H in 2-by-2 complex matrices, and again let

r

(
a b
c d

)
=

(
ρ(a) ρ(b)
ρ(c) ρ(d)

)
(for a, b, c, d ∈ H)

viewed as mapping to 4-by-4 complex matrices. Then

r(g∗) = J · r(g) · J−1 (where J =

(
ε

ε

)
=


−1

1
−1

1

, and g ∈ GL2(H))

Thus, for g∗g = 12 ∈ GL2(H),

14 = r(12) = r(g∗g) = r(g∗) · r(g) = J · r(g)> · J−1 · r(g)

In other words, r(g)>Jr(g) = J . [3] Taking determinants shows det r(g)2 = 1, so det r(g) = ±1. Thus, g in
the connected component of Sp∗2 containing 1 has det r(g) = 1.

[2] The maximality of each of these subgroups K among all compact subgroups in the corresponding G is not obvious,

but is not used in the sequel.
[3] Thus, r(g) is inside a symplectic group denoted Sp4(C) or Sp2(C), depending on convention.
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The copy K of Sp∗1 × Sp∗1 inside Sp∗1,1 is not immediately visible in these coordinates, which were chosen
to make the parabolic P visible. That is, defining Sp∗1,1 as the isometry group of the quaternion hermitian
form S obscures the nature of the (maximal) compact K. Changing coordinates by replacing S by

S′ = 1
2

(
1 −1
1 1

)
S

(
1 −1
1 1

)>
= 1

2

(
1 −1
1 1

)(
0 1
1 0

)(
1 1
−1 1

)
=

(
−1 0

0 1

)
gives (

1 −1
1 1

)
Sp∗1,1

(
1 −1
1 1

)−1

= {g ∈ GL2(H) : g∗S′g = S′}

and makes the two copies of Sp∗1 visible on the diagonal:{
k =

(
∗ 0
0 ∗

)
: k∗S′k = S′

}
=
{
k =

(
µ 0
0 ν

)
: µ, ν ∈ H1

}
That is,

K =

(
1 −1
1 1

)−1

·
{(

µ 0
0 ν

)
: µ, ν ∈ H1

}
·
(

1 −1
1 1

)
=

{ µ+ ν

2

−µ+ ν

2
−µ+ ν

2

µ+ ν

2

 : µ, ν ∈ H1
}

[1.2.1] Claim:

K ∩ P = K ∩M =



±12 (for G = SL2(R))

{
(
µ 0
0 µ−1

)
: µ ∈ C×, |µ| = 1} (for G = SL2(C))

{
(
µ 0
0 µ

)
: µ ∈ H1} (for G = Sp∗1,1)

{
(
µ 0
0 ν

)
: µ, ν ∈ H1} (for G = SL2(H))

Proof: In all but the third case, this follows from the description of K. For example, for G = SL2(R) and

K = SO2(R), take p =

(
a b
0 a−1

)
∈ P and examine the relation p>p = 12 for p to be in K:

(
1 0
0 1

)
= p>p =

(
a 0
b a−1

)(
a b
0 a−1

)
=

(
a2 (a+ a−1)b

(a+ a−1)b b2 + a−2

)
From the upper-left entry, a = ±1. From the off-diagonal entries, b = 0. The arguments for SL2(C) and
SL2(H) are similar. For Sp∗1,1, comparison to the coordinates that diagonalize K ≈ Sp∗1 × Sp∗1 gives

{
(
k1 0
0 k2

)
: k1, k2 ∈ H1} =

(
1 −1
1 1

)
K

(
1 −1
1 1

)−1

3
(

1 −1
1 1

)(
a b
0 (a∗)−1

)(
1 −1
1 1

)−1

=

= 1
2

(
a+ (a∗)−1 − b a− (a∗)−1 + b
a− (a∗)−1 − b a+ (a∗)−1 + b

)
For example, adding the elements of the bottom row gives a = k2 ∈ H1, and also (a∗)−1 = a. From either
off-diagonal entry, b = 0. ///

In all four cases, the same discussion gives M = A+ · (P ∩K) = A+ · (M ∩K).
The following will be essential in [7.1]:

[1.2.2] Claim: (Cartan decomposition) G = KA+K.
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Proof: First, treat G = SL2(R). Prove that every g ∈ G can be written as g = sk with s> = s and s
positive-definite. To find such s, assume for the moment that it exists, and consider

g · g> = (sk) · (sk)> = sk · k−1s = s2

Certainly gg> is symmetric and positive-definite, so having a positive-definite symmetric square root of
positive-definite symmetric t would produce s. Such t gives a positive, symmetric operator on R2, which by
the spectral theorem has an orthonormal basis of eigenvalues. That is, there is h ∈ K such that hth> = δ is
diagonal, necessarily with positive diagonal entries. With δ

1
2 be the positive diagonal square root of δ,

(h>δ
1
2h)2 = h>δ

1
2h · h>δ 1

2h = h>δ
1
2 · δ 1

2h = h>δh = t

Thus, take s = h>δ
1
2h, and every g ∈ G can be written as g = ks. Indeed, we have more:

g = ks = k · h>δ 1
2h = (k · h>) · δ 1

2 · h ∈ K ·A+ ·K

giving the claim in this case. The cases of G = SL2(C) is similar, using g = sk with s = s∗ hermitian
positive-definite and k∗ = k−1 ∈ K, invoking the spectral theorem for hermitian positive-definite operators.
The same argument succeeds for G = SL2(H) with quaternion conjugation replacing complex, with a suitably
adapted spectral theorem for s ∈ GL2(H) with s∗ = s and x∗sc real and positive for all non-zero 2-by-1

quaternion matrices x. [4]

The case of G = Sp∗1,1 essentially reduces to the case of SL2(H), as follows. Since g∗Sg = S,
SgS−1 = (g∗)−1. Anticipating the Cartan decomposition g = sk, from gg∗ = ss∗ = s2, by the quaternionic
version of the spectral theorem, there is k ∈ Sp∗2 such that k−1gg∗k = Λ with Λ positive real diagonal. We
want to adjust k to be in Sp∗1,1 ∩ Sp∗2, while preserving the property k−1gg∗k = Λ. Unless gg∗ is scalar, the
diagonal entries are distinct. By SgS−1 = (g∗)−1 and Sg∗S−1 = g−1 for g ∈ G,

Λ−1 = (Λ∗)−1 = SΛS−1 = S(k−1gg∗k)S−1 = (SkS−1)−1 · Sgg∗S−1 · SkS−1

= (SkS−1)−1 · (gg∗)−1 · SkS−1

Inverting gives Λ = (SkS−1)−1 · gg∗ · SkS−1. Also Λ = k−1gg∗k, so

(SkS−1) · Λ · (SkS−1)−1 = gg∗ = k · Λ · k−1

That is, k−1 · SkS−1 commutes with Λ, and δ = k−1 · SkS−1 is at worst diagonal:

SkS−1 = k · δ = k ·
(
a 0
0 d

)
Since δ ∈ Sp∗2, a ·a = 1 and d ·d = 1. To preserve k−1gg∗k = Λ, to adjust k to be in K = Sp∗2 ∩Sp∗1,1, adjust
k by diagonal matrices ε in Sp∗2. The condition for kε to be in K is

(k · ε) = ((kε)∗)−1 = S(kε)S−1 = SkS−1 · SεS−1 = k · δ · SεS−1

so take ε = S−1δS. The rest of the argument runs as in the first three cases. ///

[4] In all three of these cases, a Rayleigh-Ritz approach gives a sufficient spectral theorem, as follows. Let F be R,

C, or H. Let 〈x, y〉 = y∗x for 2-by-1 matrices x, y over F . Let T : F 2 → F 2 be right F -linear, and positive hermitian

in the sense that 〈Tx, x〉 is positive, real for x 6= 0. Then x with 〈x, x〉 = 1 maximizing 〈Tx, x〉 is an eigenvector for

T . For non-scalar T , the unit vector y minimizing 〈Ty, y〉 is an eigenvector for T orthogonal to x. Letting k be the

matrix with columns x, y, the conjugated matrix k−1Tk is diagonal.
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1.3 Iwasawa decomposition G = PK = NA+K

The subgroups P and K are not normal in G, so the Iwasawa decompositions G = PK = {pk : p ∈ P, k ∈
K} do not express G as a product group. Nevertheless, these decompositions are essential.

[1.3.1] Claim: (Iwasawa decomposition) G = PK = NA+K. In particular, the map N ×A+ ×K −→ G by
n× a× k −→ nak is an injective set map (and is a diffeomorphism).

Proof: For g =

(
a b
c d

)
∈ G, in the easy case that c = 0, then g ∈ P . In all cases, once we have g = nm ∈ P ,

we can adjust g on the right by M ∩K to put the Levi component m into A+.
One approach is to think of right multiplication by K as rotating the lower row (c d) of g ∈ G to put it into

the form (0 ∗) of the lower row of an element of P . For g =

(
a b
c d

)
∈ G = SL2(R): right multiplication

by the explicit element

k =


d√

c2 + d2

c√
c2 + d2

−c√
c2 + d2

d√
c2 + d2

 ∈ K = SO2(R)

puts gk ∈ P : (
a b
c d

)
·


d√

c2 + d2

c√
c2 + d2

−c√
c2 + d2

d√
c2 + d2

 =

(
∗ ∗
0 ∗

)

Similarly, for g =

(
a b
c d

)
∈ G = SL2(C), right multiplication by

k =


d√

|c|2 + |d|2
c√

|c|2 + |d|2
−c√
|c|2 + |d|2

d√
|c|2 + |d|2

 ∈ K = SU(2)

gives gk ∈ P . Likewise, for G = SL2(H), nearly the same explicit expression as for SL2(C) succeeds, with

complex conjugation replaced by quaternion conjugation, accommodating the non-commutativity: [5]

(
a b
c d

)
·


c−1d√

1 + |c−1d|2
1√

1 + |c−1d|2
−1√

1 + |c−1d|2
c−1d√

1 + |c−1d|2

 =

(
∗ ∗
0 ∗

)
∈ P

For g =

(
a b
c d

)
∈ G = Sp∗1,1, we hope that a matrix k of a similar form lies in K ≈ Sp∗1 × Sp∗1, and then

gk ∈ P . To be sure that the defining relation for Sp∗1,1 is fulfilled, use the more explicit coordinates

K =
{( µ+ν

2
−µ+ν

2
−µ+ν

2
µ+ν

2

)
: µ, ν ∈ H1

}

To reduce the issue to more manageable pieces, left multiply g =

(
a b
c d

)
by

(
c∗ 0
0 c−1

)
to make c = 1. As

earlier, g∗Sg = S implies gSg∗ = S, so cd+dc = 0, and with c = 1 we have d+d = 0. Also, |1+d|2 = 1+ |d|2.

[5] This explicit element lies in the connected component of Sp∗2 containing 1, so this argument for the Iwasawa

decomposition is complete whether or not we have verified that Sp∗2 ⊂ SL2(H).
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Thus, with µ = d+1
|d+1| and ν = d−1

|d−1| , K contains

( µ+ν
2

−µ+ν
2

−µ+ν
2

µ+ν
2

)
=

( d√
1+|d|2

−1√
1+|d|2

−1√
1+|d|2

d√
1+|d|2

)

Then gk ∈ P , giving the Iwasawa decomposition in this case. In all cases, the fact that N ∩ A+ = {1} and
NA+ ∩K = {1} proves the injectivity of the multiplication n× a× k → nak. ///

The following assertion is a generalization of the standard fact that

Im(gz) =
y

|cz + d|2
(for z = x+ iy ∈ H and g =

(
a b
c d

)
∈ SL2(R))

This is the foundation for reduction theory for these examples, that is, for determination of the behavior of
images γ · gK as γ varies in Γ, as below. Let

ay =

(√
y 0

0 1/
√
y

)
(with y > 0)

[1.3.2] Claim: For Iwasawa decomposition g = nayk with n ∈ N , y > 0, and k ∈ K, say that y is the height
of g. In all four cases,

height(g · nxay) =
y

|cy|2 + |cx+ d|2
(for g =

(
a b
c d

)
∈ G, nx ∈ N , and y > 0)

Proof: This is a direct computation.

gnxay =

(
a b
c d

)(
1 x
0 1

)(√
y 0

0 1/
√
y

)
=

(
a
√
y ax+b√

y

c
√
y cx+d√

y

)
=

(
∗ 0
0 c
√
y

)(
∗ ∗
1 x+c−1d

y

)
For G = SL2(R), SL2(C), and SL2(H) with respect compact subgroups K, for D in R,C,H, respectively,

k =

 D√
1+|D|2

1√
1+|D|2

−1√
1+|D|2

D√
1+|D|2

 ∈ K

In those three cases, letting D = x+c−1d
y ,

gnxay · k =

(
∗ 0
0 c
√
y

)(
∗ ∗
1 x+c−1d

y

) D√
1+|D|2

1√
1+|D|2

−1√
1+|D|2

D√
1+|D|2


=

(
∗ 0
0 c
√
y

)( ∗ ∗
0 1+|D|2√

1+|D|2

)
=

 ∗ ∗

0 |c|√y
√

1 + |D|2

 · ( ∗ 0
0 c

|c|

)

noting that

(
∗ 0
0 c

|c|

)
∈ K. Simplifying,

|c|√y
√

1 + |D|2 = |c|√y

√
1 +

∣∣∣x+ c−1d

y

∣∣∣2 =

√
|cy|2 + |cx+ d|2

y

Thus, in these three cases,

gnxay ∈ N

(√
y′ 0
0 1/

√
y′

)
K with y′ =

y

|cy|2 + |cx+ d|2

21



1. Four small examples

For G = Sp∗1,1, the explicit element of K is slightly different

k =

( D√
1+|D|2

−1√
1+|D|2

−1√
1+|D|2

D√
1+|D|2

)
∈ K

but the conclusion will be the same: with D = x+c−1d
y

gnxay · k =

(
∗ 0
0 c
√
y

)(
∗ ∗
1 x+c−1d

y

)( D√
1+|D|2

−1√
1+|D|2

−1√
1+|D|2

D√
1+|D|2

)
=

(
∗ 0
0 c
√
y

)( ∗ ∗
0 −1+D2√

1+|D|2

)

For Sp∗1,1, as in earlier computations, the relation h∗Sh = S gives hSh∗ = S, so for h =

(
∗ ∗
1 D

)
we find

D +D = 0. That is, D is purely imaginary, so D2 = −|D|2, and

gnxay · k =

 ∗ ∗

0 −c√y
√

1 + |D|2

 =

 ∗ ∗

0 |c|√y
√

1 + |D|2

 · ( ∗ 0
0 −c

|c|

)
The remainder of the computation is identical to the other three cases. ///

1.4 Some convenient Euclidean rings

We recall proofs that, just as the ordinary integers are Euclidean, the Gaussian integers Z[i] and Hurwitz
quaternion integers are Euclidean. This will greatly simplify the geometry of quotients Γ\X in [1.5.1] by
assuring that there is just a single cusp.

Recall the simplest version of Euclidean-ness for a ring R with 1: there is a function || · || : R → Z such
that ||r|| ≥ 0 and ||r|| = 0 implies r = 0, such that ||rr′|| = ||r|| · ||r′||, and, for every a ∈ R and every 0 6= d ∈ R,
there is q ∈ R such that ||a− qd|| < ||d||.

Since ||1|| = ||12|| = ||1|| · ||1|| and 0 < ||1||, necessarily ||1|| = 1. Units r ∈ R× have ||r|| = 1, because rs = 1
gives ||r|| · ||s|| = ||rs|| = ||1|| = 1, and || · || takes non-negative integer values.

Euclidean-ness implies that every left ideal is principal: let d be an element having the smallest norm in
a given non-zero left ideal I. For any a ∈ I, there is q ∈ R such that ||a− qd|| < ||d||. Thus, ||a− qd|| = 0, and
a = qd.

To show that R = Z[i] is Euclidean with respect to the square of the usual complex absolute value
|| · || = | · |2, for a ∈ Z[i] and given 0 6= d ∈ Z[i], we need to find q ∈ Z[i] such that ||a − dq|| < ||d||. The
requirement ||a− qd|| < ||d|| is equivalent to ||a/d− q|| < 1. Thus, given a/d ∈ Q(i), we want q ∈ Z[i] within
distance-squared 1. With a/d = u+ iv with u, v ∈ Q, taking u′, v′ ∈ Z such that |u−u′| ≤ 1

2 and |v−v′| ≤ 1
2

gives the desired ||a/d− (u′ + iv′)|| ≤ ( 1
2 )2 + ( 1

2 )2 < 1.
In the rational quaternions HQ = Q + Qi+ Qj + Qk, the natural choice Z + Zi+ Zj + Zk for integers is

not optimal. Instead, we use the slightly larger ring of Hurwitz integers:

o = (Z + Zi+ Zj + Zk) + Z · 1 + i+ j + k

2

We prove that the Hurwitz integers are Euclidean, using the square of the quaternion norm: || · || = | · |2. To
see that the norm-squared takes integer values on o, the only possible difficulty might be a denominator of
4, which does not occur, since

(2a+ 1)2 + (2b+ 1)2 + (2c+ 1)2 + (2d+ 1)2 = 0 mod 4 (for all a, b, c, d ∈ Z)

Given a ∈ o and 0 6= d ∈ o, to show that there is q ∈ o such that ||a−qd|| < ||d|| is equivalent to ||ad−1−q|| < 1.
For ad−1 = x+ yi+ zj +wk with x, y, z, w ∈ Q, there are x′, y′, z′, w′ ∈ Z differing by at most 1

2 in absolute
value from the respective x, y, z, w. However, the resulting estimate

||(x+ yi+ zj + wk)− (x′ + y′i+ z′j + w′k)|| ≤ (
1

2
)2 + (

1

2
)2 + (

1

2
)2 + (

1

2
)2 = 1
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is insufficient. Nevertheless, being slightly more precise, if |x − x′| < 1
2 or |y − y′| < 1

2 or |z − z′| < 1
2 or

|w − w′| < 1
2 , then we do have the desired

||(x+ yi+ zj + wk)− (x′ + y′i+ z′j + w′k)|| < 1

That is, the only case of failure is |x− x′| = |y − y′| = |z − z′| = |w − w′| = 1
2 . Subtracting 1 from x, y, z, w

if necessary, without loss of generality x− x′ = y − y′ = z − z′ = w − w′ = 1
2 . In that case,

(x+ yi+ zj + wk)−
(

(x′ + y′i+ z′j + w′k) +
1 + i+ j + k

2

)
= 0

proving that the Hurwitz integers are Euclidean. A qualitative version of the Euclidean-ness of o will
be useful in one of the proofs of unicuspidality: for α = x + yi + zj + wk with x, y, z, w ∈ Q, there is
x′ + y′i+ z′j + w′k ∈ o such that

|(x+ yi+ zj + wk)− (x′ + y′i+ z′j + w′k)| ≤
√

13

4

Adjust α by an element of Z+Zi+Zj+Zk so that, without loss of generality, all coefficients are of absolute
value at most 1

2 . If any one coefficient is smaller than 1/4, then |α|2 ≤ ( 1
2 )2 + ( 1

2 )2 + ( 1
2 )2 + ( 1

4 )2 = 13/16
as desired. When all coefficients are between 1/4 and 1/2 in absolute value, make them all of the same sign
by adding or subtracting 1 to either one or two, paying the price that those one or two are of absolute value
between 1/2 and 3/4, while the others are still of absolute value between 1/4 and 1/2. Adding or subtracting
(1 + i+ j + k)/2 depending on sign, all coefficients are between −1/4 and 1/4, and the quaternion norm of

the result is at most 1
2 ≤

√
13
4 .

1.5 Discrete subgroups Γ ⊂ G, reduction theory

We specify discrete [6] subgroups Γ of each of the examples G, so that Γ\G/K has just one cusp, in a sense
made precise below. Reduction theory is the exhibition of a simple approximate collection of representatives
for the quotient Γ\G/K sufficient to understand the most basic geometric features of that quotient. [7] The
simple outcome in the present examples, unicuspidality, simplifies meromorphic continuation of Eisenstein
series and simplifies the form of the spectral decomposition of the space of square-integrable automorphic
forms on Γ\G/K. The four cases are [8]

Γ =



SL2(Z) (for G = SL2(R)) (elliptic modular group)

SL2(Z[i]) (for G = SL2(C)) (a Bianchi modular group)

Sp∗1,1(o) (for G = Sp∗1,1)

SL2(o) (for G = SL2(H))

[6] As usual, a subset D of a topological space X is discrete when every point x ∈ D has a neighborhood U such

that U ∩D = {x}. The topologies on our groups G are the subspace topologies from the ambient real vector spaces

of 2-by-2 real, complex, or quaternion matrices.
[7] In some contexts, the goal of determination of an exact, explicit collection of representatives in G/K for the

quotient Γ\G/K is given high priority. A precise collection of representative is often called a fundamental domain.

However, in general determination of an explicit fundamental domain is infeasible. Fortunately, it is also inessential.
[8] The elliptic modular group has its origins in dim antiquity. [Picard 1883] and [Picard 1884] looked at similar

subgroups of small non-compact unitary groups. L. Bianchi [Bianchi 1892] looked at a family of discrete subgroups

of SL2(C), such as SL2(Z[i]). W. de Sitter proposed a model of space-time in which the cosmological constant

dominates and matter is negligible, with symmetry group SO(4, 1), and Sp∗1,1 is a two-fold cover of SO(4, 1). No

automorphic forms directly entered his work, but his attention to specific groups, as in the more theoretical work

of [Bargman 1947] and [Wigner 1939], provided examples which eventually were appreciated for their illustration of

phenomena with mathematical significance beyond physics itself. [Hurwitz 1898] studied the quaternion integers o

which bear his name. See also [Hurwitz 1919] and [Conway-Smith 2003].
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where Sp∗1,1(o) and SL2(o) denote the elements of Sp∗1,1 and SL2(H) with entries in the ring of Hurwitz
integers o.

In all examples, Γ ∩ P = (Γ ∩M) · (Γ ∩N). We have

Γ ∩N = {
(

1 x
0 1

)
where



x ∈ Z (for Γ = SL2(Z))

x ∈ Z[i] (for Γ = SL2(Z[i]))

x ∈ Zi+ Zj + Zk (for Γ = Sp∗1,1(o))

x ∈ o (for Γ = SL2(H))

As in the discussion of Euclidean-ness, the quotients (Γ ∩N)\N have (redundant) representatives

(Γ ∩N)\N = {
(

1 x
0 1

)
} where



x ∈ R, |x| ≤ 1
2 (for Γ = SL2(Z))

x ∈ C, |x| ≤ 1√
2

(for Γ = SL2(Z[i]))

x = ai+ bj + ck, |x| ≤
√

3
2 (for Γ = Sp∗1,1(o))

x ∈ H, |x| ≤
√

13
4 (for Γ = SL2(H))

In particular, (Γ ∩N)\N is compact. We have

Γ ∩M = {
(
a 0
0 d

)
} where



a = d−1 ∈ Z× = {±1} (for Γ = SL2(Z))

a = d−1 ∈ Z[i]× = {±1,±i} (for Γ = SL2(Z[i]))

a = (d∗)−1 ∈ o× (for Γ = Sp∗1,1(o))

a, d ∈ o× (for Γ = SL2(H))

The groups of units Z× and Z[i]× are well-known, and finite. The group o× is also finite, but less trivial.
As noted earlier, α ∈ o× implies |α| = 1. Certainly o ⊂ 1

2 · (Z + Zi+ Zj + Zk) and

a2 + b2 + c2 + d2

4
=
∣∣∣a+ bi+ cj + dk

2

∣∣∣2 ≤ 1

implies |a| ≤ 2, |b| ≤ 2, |c| ≤ 2, and |d| ≤ 2, giving a crude bound on the number of possibilities for integers
a, b, c, d.

For compact C ⊂ N , a standard Siegel set is a subset of G of the form

St,C = {nayk : n ∈ C, k ∈ K, y ≥ t}

This is essentially a half-infinite rectangle right-multiplied by K. On other occasions, a Siegel set is construed
as a subset of the quotient (Γ ∩ N)\G, or as a subset of G/K. These distinctions are inessential. Let
Γ∞ = P ∩ Γ. Left multiplication by N does not change heights on G. Since Γ∞ ⊂ N × (M ∩ Γ) and
M ∩ Γ ⊂ M ∩ K, left multiplication by Γ∞ does not change heights. Siegel sets are a simple type of set
among which, as it turns out, we can find approximate sets of representatives for the quotient Γ\G/K. That
is, reduction theory for these examples is relatively simple:

[1.5.1] Theorem: For all four examples, Γ\G is unicuspidal, in the sense that there is t > 0 and compact
C ⊂ N such that a single Siegel set covers G:⋃

γ∈Γ

γ ·St,C = G
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Proof: For fixed x, y, the function q(c, d) = qx,y(c, d) = |cx+d|2+|cy|2 is a homogeneous real-valued quadratic
polynomial function on R⊕R, C⊕C, or H⊕H, in the respective cases, with y > 0 and appropriate x. It is
positive definite: q(c, d) = 0 implies c = 0 = d. Thus, q(c, d) is comparable to |c|2 + |d|2: there are positive
constants A,B depending on x, y such that

A · (|c|2 + |d|2) ≤ q(c, d) ≤ B · (|c|2 + |d|2)

The number of points (c, d) in a lattice Z ⊕ Z, Z[i] ⊕ Z[i], or o ⊕ o inside a ball of finite radius is finite. In
particular, in the orbit Γ · nxay there are only finitely-many values height(γ · nxay) above a given bound
t > 0. In particular, the supremum of these heights is attained. Thus, every Γ-orbit contains (at least one)
nxay of maximum height, and |cx+d|2 + |cy|2 ≥ 1 for all lower rows (c d) of γ ∈ Γ. In particular, with c = 1
and d = 0, |x|2 + |y|2 ≥ 1.

Thus, given nxayK ∈ G/K, adjust on the left by γ ∈ Γ so that γnxayK is (one of) the highest in its
orbit on G/K. In particular, this makes |x|2 + |y|2 ≥ 1. From the specific estimates on parameters ξ for
representatives nξ of (Γ ∩N)\N , in all cases there is 0 < t < 1 such that |ξ| ≤ 1− t for all representatives.
Thus, if |x| > 1− t, further adjust on the left by γ ∈ Γ ∩N so that |x| ≤ 1− t, without altering the height.
Thus, the new nxay is still among the highest in its orbit, and |x|2 + |y|2 ≥ 1 still holds. Thus

|y|2 ≥ 1− |x|2 ≥ 1− (1− t)2 = t(2− t) ≥ t

Thus, every Γ-orbit has a representative in the Siegel set St,C , where C = {nx ∈ N : |x| ≤ 1− t}. ///

The following part of reduction theory is more technical, but essential.

[1.5.2] Theorem: For given t, t′ > 0 and compact subsets C,C ′ of N , there are only finitely-many γ ∈ Γ
such that St,C ∩ γ ·St′,C′ 6= φ. Further, given t > 0, for sufficiently large t′ > 0, St,C ∩ γSt′,C′ 6= φ implies
γ ∈ Γ∞.

Proof: Continue in the context of the proof of the previous theorem. Given t > 0, take t′ > 1/t. For

γ =

(
a b
c d

)
6∈ Γ∞, c 6= 0, so |c| ≥ 1. For y ≥ t′ and arbitrary x,

height(γ · nxay) =
y

|cx+ d|2 + |cy|2
≤ y

|c|2 · y2
≤ 1

1 · y
≤ 1

t′
< t

Thus, St,C ∩ γ ·St′,C′ 6= φ implies γ ∈ Γ∞ for such t, t′.
For arbitrary 0 < t ≤ t′, to show finiteness of the set of γ so that St,C ∩ γSt′,C′ 6= φ, take t′′ strictly

larger than t, t′, 1/t, and 1/t′. The two sets

Ω = {nxayk : n ∈ C, k ∈ K, t ≤ y ≤ t′′} and Ω′ = {nxayk : n ∈ C ′, k ∈ K, t′ ≤ y ≤ t′′}

are compact, and St,C = St′′,C ∪ Ω and St′,C′ = St′′,C′ ∪ Ω′. For the asserted finiteness, it suffices to treat
the pieces separately.

By the previous paragraph, St,C = St′′,C∪Ω meets γSt′′,C′ only for γ ∈ Γ∞. Since Γ∞ = (Γ∩N)·(Γ∩M)
and Γ∩M is finite, it suffices to consider γ = nx ∈ Γ∩N . In that case, γSt′′,C′ = St′′,C′+x. By the Iwasawa
decomposition, St,C ∩St′′,C′+x 6= φ if and only if C ∩ (C ′ + x) 6= φ. Equivalently, x ∈ C − C ′ and x is in a
lattice Z, Z[i], Zi+Zj+Zk, or o, respectively. The set C−C ′ of element-wise differences is compact. Either
by the lemma below, or by more elementary considerations, the set of such x is finite.

Similarly St′′,C meets γΩ′ only for γ ∈ Γ∞, and there are only finitely many possibilities.
The interaction of Ω and Ω′ is subtler. For γ such that Ω ∩ γΩ′ 6= φ, there are ω ∈ Ω and ω′ ∈ Ω′ such

that ω = γω′. That is,
γ = ω(ω′)−1 ∩ Γ ⊂ Ω · Ω′−1 ∩ Γ

where Ω′−1 is element-wise inversion. Inversion and multiplication are continuous maps [9] G → G and
G×G→ G, so they map compacts to compacts, so ΩΩ′−1 is compact. By the following lemma, such a set
is finite. ///

[9] The multiplication of real, complex, or quaternion matrices is polynomial in the entries, so is continuous. The

continuity of inversion can be seen via the explicit formula in terms of determinants of minors over a field k, for

example: for g ∈ SLn(k), letting Aij be the (n − 1)-by-(n − 1) matrix obtained by deleting the ith row and jth

column, (−1)i+j detAij is the ijth entry of g−1.
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[1.5.3] Lemma: The intersection Ω ∩ Γ of a compact subset Ω of a topological group [10] G and a discrete
subgroup Γ ⊂ G is finite.

Proof: First, we prove that Γ is closed, which would not necessarily hold for a discrete subset. For us, a
topological group is locally compact, Hausdorff, and countably-based. Let U be a neighborhood of 1 such
that U ∩ Γ = {1}. By continuity of inversion and multiplication, there is a neighborhood U1 of 1 such that
U−1

1 · U1 ⊂ U . For g 6∈ Γ but g in the closure of Γ in G, the neighborhood gU1 of g contains infinitely-many
elements of Γ. For γ 6= δ two such,

1 6= γ−1 · δ ∈ (gU1)−1 · (gU1) = U−1
1 · U1 ⊂ U

contradiction. Thus, Γ is closed in G.
In a Hausdorff space G, a compact subset C is closed, so C ∩ Γ is closed. A closed subset of a compact

set is compact. Thus, C ∩ Γ is compact, and it is (still) discrete. Discrete compact sets are finite, proven
as follows. For each γ ∈ C ∩ Γ, let Nγ be a neighborhood of γ in G containing no other element of Γ. The
open cover {Nγ : γ ∈ C ∩ Γ} of C ∩ Γ has a finite subcover Nγ1

∪ . . . ∪Nγn . Since Nγi ∩ Γ = γi, necessarily
C ∩ Γ is finite. ///

1.6 Invariant measures, invariant Laplacians

Proofs of the assertions in this section require substantial preparation, and succeed for very general reasons,
so are postponed to [5.2] and [4.2]. In all four examples, the subgroup NA+ of P is transitive on X = G/K,
by the Iwasawa decomposition G = NA+K, giving a bijection

X = G/K = (NA+K)/K ≈ (NA+)/(NA+ ∩K) = NA+

In coordinate-independent formulations, notation x ∈ X is reasonable, despite the fact that, somewhat
incompatibly, when convenient we will use coordinates

(x, y) −→ nxay =

(
1 x
0 1

)(√
y 0

0 1/
√
y

)
on NA+ ≈ G/K = X, as above, with y > 0, and x in R, C ≈ R2, Ri + Rj + Rk ≈ R3, or H ≈ R4,
respectively. These coordinates (x, y) ∈ R`−1 × (0,+∞) are standard coordinates on real hyperbolic `-space,
with ` = 2, 3, 4, 5.

Although we will eventually need the right translation action of G on G and on functions on G, for the
moment we are considering the quotient X = G/K. Since K is not a normal subgroup, there is no sensible
right translation action of G on X = G/K, only the left translation action g · (goK) = (ggo)K.

The group G acts on the collection Coc (X) of continuous, compactly-supported functions on X = G/K by
left translation

Lgf(x) = f(g−1x)

with the inverse inserted to have the associativity

Lg1Lg2f = Lg1g2f

A G-invariant measure/integral µ on the quotient X = G/K is characterized by the property∫
X

Lgf dµ =

∫
X

f dµ (for all g ∈ G, f ∈ Coc (X))

[10] As usual, a topological group is a locally compact, Hausdorff topological space G with a countable basis, and so

that the inverse map g → g−1 and multiplication g1 × g2 → g1g2 are continuous.
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In [14.4] we will see that such an invariant measure/integral is unique up to scalar multiples, and is given in
the x, y → nxay coordinates by

f −→
∫ ∞

0

∫
R`−1

f(x, y)
dx dy

|y|`
(where ` = 2, 3, 4, 5, respectively)

[1.6.1] Corollary: (of reduction theory) The invariant volume of Γ\X = Γ\G/K is finite.

Proof: Since there is a Siegel set St,C that surjects to Γ\X for some compact C ⊂ N and some t > 0, it
suffices to show that the invariant measure of a Siegel set is finite. In the x, y → nxay coordinates,∫

St,C

1 dµ =

∫ ∞
t

∫
{x:nx∈C}

1
dx dy

y`
= (N -volume of C) ·

∫ ∞
t

dy

y`

where ` = 2, 3, 4, 5 in the respective examples. Each of these integrals is finite. ///

Test functions C∞c (G/K) should be compactly-supported, infinitely-differentiable functions on G/K.
However, while these groups G are smooth manifolds, it is less clear whether G/K is a smooth manifold.
This potential issue is rendered irrelevant by taking

C∞c (G/K) = {right K-invariant test functions on G} = C∞c (G)K

where right K-invariance means f(gk) = f(g) for all g ∈ G and k ∈ K. The invariance of a G-invariant
Laplacian ∆ on the quotient X = G/K is the property

∆(Lgf) = Lg(∆f) (for all g ∈ G, f ∈ C∞c (X))

In [4.2] we will see that such a Laplacian is essentially canonical, and in the x, y coordinates is, up to constants
which we might want to adjust later for notational convenience,

∆ =



y2
(
∂2

∂x2 + ∂2

∂y2

)
(for G = SL2(R), x ∈ R)

y2
(
∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂y2

)
− y ∂

∂y (for G = SL2(C), x = x1 + ix2 ∈ C)

y2
(
∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

+ ∂2

∂y2

)
− 2y ∂

∂y (for G = Sp∗1,1, x = x1i+ x2j + x3k)

y2
(
∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

+ ∂2

∂x2
4

+ ∂2

∂y2

)
− 3y ∂

∂y (for G = SL2(H), x = x1 + x2i+ x3j + x4k)

In [6.6] we will see the symmetry property of ∆:∫
X

∆f · F dµ =

∫
X

f ·∆F dµ (for f, F ∈ C∞c (X))

Also, the negative-semi-definite property∫
X

∆f · f dµ ≤ 0 (for f ∈ C∞c (X))

For G = SL2(R), where ` = 2, by chance the first-order term in y in ∆ disappears, the powers of y in ∆ and
µ cancel, and the symmetry property reduces to symmetry of the Euclidean Laplacian, just integration by
parts. Although attractive, this coincidence is inessential.

The left G-invariance of µ and ∆ assure that they descend to the quotient Γ\X ≈ Γ\G/K. We will use the
same symbols for the versions on Γ\X. As we see in [5.2], uniqueness of invariant measure/integral entails
unwinding identities such as∫

Γ\X

(∑
γ∈Γ

Lγf
)
dµ =

∫
Γ\X

(∑
γ∈Γ

f(γ−1x)
)
dµ(x) =

∫
X

f dµ (for f ∈ Coc (X))
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For the Laplacian,
∆f ◦ q = ∆(f ◦ q) (for f ∈ C∞c (Γ\X))

The symmetry and negative semi-definiteness of ∆ descend to C∞(Γ\X) = C∞(Γ\G)K , where we take
advantage of the fact that Γ\G is a smooth manifold. Again, see [6.6] for proofs.

As expected, with invariant measure µ descended to Γ\X, the usual hermitian inner product is [11]

〈f, F 〉Γ\X =

∫
Γ\X

f · F dµ

with associated norm
|f |L2(Γ\X) = 〈f, f〉

1
2

Γ\X

As usual, in the characterization

L2(Γ\X) = {measurable f : |f |L2(Γ\X) <∞}

elements of L2(Γ\X) are equivalence classes of measurable functions, with equivalence being equality almost-
everywhere. In [6.5] we will see that this characterization is equivalent to a characterization as L2-completion
of test functions C∞c (Γ\X).

1.7 Discrete decomposition of L2(Γ\G/K) cuspforms

The theorems stated below will be proven later, in [7.1-7.7], but we can set up precise statements.
In this section and much of the sequel, waveform, automorphic form, and automorphic function will be

used roughly as synonyms, referring to C-valued functions on Γ\X, meeting further conditions depending
on the situation. Such functions are identifiable with Γ-invariant functions on X, by composing with the
quotient map X → Γ\X.

The constant term cP f of a waveform f on Γ\X is a function on X = G/K defined by

(constant term)f(x) = cP f(x) =

∫
(N∩Γ)\N

f(n · x) dn

Here the group N is abelian, isomorphic to R`−1 for ` = 2, 3, 4, 5, and N ∩ Γ is a discrete subgroup with
compact quotient (N ∩ Γ)\N . We give N the measure from the coordinate x → nx with x ∈ R`−1, and as
above and in [5.2] give the quotient the unique compatible measure for unwindings∫

(N∩Γ)\N

( ∑
γ∈N∩Γ

ϕ(γn)
)
dn =

∫
N

ϕ(n) dn (for all ϕ ∈ Coc (N))

By changing variables, we see that, although the constant term has probably lost left Γ-invariance, cP f is a
left N -invariant function on X = G/K:

cP f(n′x) =

∫
(N∩Γ)\N

f(n·n′x) dn =

∫
(N∩Γ)\N

f((nn′)·x) dn =

∫
(N∩Γ)\N

f(n·x) dn (for n′ ∈ N)

Thus, constant terms of functions f on Γ\G/K can be viewed as functions on the ray

N\X = N\G/K = N\(NA+K)/K) ≈ A+ ≈ (0,∞)

[11] While integrals of Γ-invariant functions on H on the quotient Γ\X can be understood in an elementary way

as integrals over explicit fundamental domains, such a viewpoint impedes understanding of integration by parts on

C∞c (Γ\X). It is better to use an intrinsic integral on the quotient, characterized by the unwinding relation above, as

in [5.2].
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Similarly, since Γ∞ = P ∩ Γ normalizes N ∩ Γ, the constant term is left Γ∞-invariant. [12] Altogether, cP f
is left invariant by the group NΓ∞.

All this presumes that cP f has at least as much sense as a function with point-wise values as did f , but
we need more than that. For example, unfortunately, it turns out that f ∈ L2(Γ\G/K) does not imply
that cP f ∈ L2(N\G/K). More cautiously, suppose f is locally L1, meaning that |f | has finite integrals
over compact subsets of Γ\G. Fubini’s theorem implies that a compactly-supported integral of f in one of
several variables is again locally L1. This applies to n× y → f(nay). The nature of the constant term map
is clarified in [1.8].

Cuspforms are waveforms f meeting the Gelfand condition cP f = 0. In some contexts, the term cuspform
further connotes ∆-eigenfunctions in L2(Γ\G/K), but for present purposes the latter usage is too-restrictive.
A genuine minor complication is that L2 functions do not have good pointwise values, so vanishing of the
constant term must mean almost everywhere for L2 functions. Thus, it is often better to consider the constant-
term map as a map on distributions, and the Gelfand condition as a distributional vanishing condition on
distributions, as below in [1.8]. As usual, put

L2
o(Γ\X) = {L2-cuspforms} = {f ∈ L2(Γ\G/K) : cP f = 0}

The first main theorem, proven in [7.1-7.7], is the discrete decomposition of the space of cuspforms: one
version is

[1.7.1] Theorem: The space L2
o(Γ\G/K) of square-integrable cuspforms is a closed subspace of L2(Γ\G/K),

and has an orthonormal basis of ∆-eigenfunctions. Each eigenspace is finite-dimensional, and the number of
eigenvalues below a given bound is finite. (Proof in [7.1-7.7].)

The closed-ness of the space of L2 cuspforms comes from recharacterization of it in terms of pseudo-
Eisenstein series, in [1.8].

In contrast, the full space L2(Γ\X) does not have a basis of ∆-eigenfunctions: as proven in [1.12], the
orthogonal complement of cuspforms in L2(Γ\X) mostly consists of integrals of non- L2 eigenfunctions for
∆, the Eisenstein series Es, introduced just below in [1.9].

The operator ∆ presents some technical issues. For example, while L2(Γ\X) lies inside the collection of
distributions on Γ\X, and interpreting ∆ distributionally would make it well-defined on all of L2(Γ\X),
it would not stabilize L2(Γ\X). This would seem to obstruct use of its symmetry or self-adjointness as an
(unbounded) operator on a Hilbert space. On the other hand, indeed, no version of ∆ can be defined on all of
L2(Γ\X) while retaining the symmetry 〈∆f, F 〉 = 〈f,∆F 〉 for test functions f, F in L2(Γ\X). This situation
requires careful treatment of unbounded, densely-defined operators on Hilbert spaces, as in [9.1-9.2].

1.8 Pseudo-Eisenstein series

Returning to L2(Γ\X), we want to express the orthogonal complement of cuspforms L2
o(Γ\X) in terms

of ∆-eigenfunctions, as discussed below in [1.12] and [1.13]. To exhibit explicit L2 functions demonstrably
spanning the orthogonal complement to cuspforms, we intend to recast the Gelfand vanishing condition.
First, for f ∈ L2(Γ\X), the constant term cP f is a left NΓ∞-invariant function on G. It vanishes as a
distribution if and only if∫

NΓ∞\G
ϕ · cP f = 0 (for all ϕ ∈ C∞c (NΓ∞\G))

with right G-invariant measure on NΓ∞\G as in [5.2]. In fact, since f is right K-invariant, cP f is right
K-invariant, so we need only test against ϕ ∈ C∞c (NΓ∞\G)K . The isomorphisms

N\X ≈ N\G/K ≈ N\(NA+K)/K ≈ A+

identify N\X with the ray A+ ≈ (0,+∞), and identify right K-invariant functions ϕ on N\G with functions
of y = height(nayk). As in the previous section, for f in L2, since f is locally integrable its constant term is
locally integrable, by Fubini’s theorem. Thus, cP f can be integrated against test functions on N\G/K.

[12] In the present examples, Γ∞ = P ∩Γ is only finite index larger than N ∩Γ, but in other examples this index can

be infinite.
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Given ϕ in C∞c (NΓ∞\G)K , the corresponding pseudo-Eisenstein series Ψϕ should be a function in
C∞c (Γ\X) fitting into an adjunction:∫

NΓ∞\G
ϕ · cP f =

∫
Γ\G

Ψϕ · f (for f ∈ L2(Γ\X))

This adjunction will involve an unwinding/winding-up, so we might prefer that cP f be continuous, to easily
invoke properties of vector-valued integrals [14.1]. For general reasons [6.1], Coc (Γ\G) is dense in L2(Γ\G) in
the L2 topology, and for general reasons [5.1] the left action of (N∩Γ)\N on the Fréchet space Co((N∩Γ)\G)
is a continuous map (N ∩Γ)\N ×Co((N ∩Γ)\G)→ Co(N\G), so cP f exists as a Co(N\G)-valued Gelfand-
Pettis integral [14.1]. For f ∈ Co(Γ\G), the integral of cP f against ϕ ∈ C∞c (N\G/K) is the integral of a
compactly-supported, continuous function.

Direct computation yields a canonical expression for the desired Ψϕ, using the left NΓ∞-invariance of ϕ
and the left Γ-invariance of f , as follows. First, unwinding as in [5.2],∫

NΓ∞\G
ϕ · cP f =

∫
NΓ∞\G

ϕ(g)
(∫

N∩Γ\N
f(ng) dn

)
dµ(g) =

∫
Γ∞\G

ϕ(g) f(g) dµ(g)

Winding up, using the left Γ-invariance of f ,∫
Γ∞\G

f(g)ϕ(g) dµ(g) =

∫
Γ\G

∑
γ∈Γ∞\Γ

f(γ · g)ϕ(γ · g) dµ(g) =

∫
Γ\G

f(g)
( ∑
γ∈Γ∞\Γ

ϕ(γg)
)
dµ(g)

The inner sum in the last integral is the pseudo-Eisenstein series [13] attached to ϕ:

Ψϕ(g) =
∑

γ∈Γ∞\Γ

ϕ(γg)

The convergence of the sum needs attention:

[1.8.1] Claim: The series for a pseudo-Eisenstein series Ψϕ is locally finite, meaning that for g in a
fixed compact in G, there are only finitely-many non-zero summands in Ψϕ(g) =

∑
γ ϕ(γg). Thus,

Ψϕ ∈ C∞c (Γ\X).

Proof: Given ϕ ∈ C∞c (N\G/K), let C ⊂ G be compact so that N ·C contains the support of ϕ. Fix compact
Co ⊂ G in which g ∈ G is constrained to lie. Then a summand ϕ(γg) is non-zero only if γg ∈ N · C, which
holds only if

γ ∈ Γ∞ · C · g−1

so
γ ∈ Γ ∩ Γ∞ · C · C−1

o

In the quotient G→ Γ∞\G, the image of Γ is closed and discrete. The image of the compact set N ·C ·C−1
o

under the continuous quotient map is compact, since (Γ ∩ N)\N is compact, and continuous images of
compacts are compact. Thus, left modulo Γ∞, that intersection is the intersection of a closed discrete set
and a compact set, so finite. (Compare the [1.5.2] from reduction theory.) Therefore, the series is locally finite,
and defines a smooth function on Γ\G. Summing over left translates certainly retains right K-invariance.

To show that Ψϕ has compact support in Γ\G, proceed similarly. That is, for a summand ϕ(γg) to be
non-zero, it must be that g ∈ Γ · C. The image Γ\(Γ · C) is compact, being the continuous image of the
compact set C under the continuous map G→ Γ\G, proving the compact support. ///

[1.8.2] Corollary: Square-integrable cuspforms are the orthogonal complement in L2(Γ\X) to the subspace
of L2(Γ\X) spanned by the pseudo-Eisenstein series Ψϕ with ϕ ∈ C∞c (N\X). The map f → cP f is
continuous from L2(Γ\G/K) to distributions on N\G/K.

[13] In 1966 Godement called these incomplete theta series. More recently Moeglin-Waldspurger reinforced the

precedent of calling them pseudo-Eisenstein series
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Proof: Again, as above, for general reasons [6.1] Coc (Γ\G/K) is dense in L2(Γ\G/K), and the constant terms
cP f are continuous for such f , so integrals against ϕ ∈ C∞c (N\G/K) exist. Then the adjunction gives∣∣ ∫

N\G/K
cP f · ϕ

∣∣ =
∣∣〈f,Ψϕ〉

∣∣ ≤ |f |L2 · |Ψϕ|L2

Thus, f →
∫
N\G/K cP f ·ϕ is a continuous linear functional on L2. In particular, the kernels are closed, and

the intersection of all these is the space of L2 cuspforms. The inequality is exactly the continuity of f → cP f
with the weak dual topology [13.14] on distributions on (0,∞) ≈ N\G/K. ///

Since ∆ commutes with the group action, the effect of ∆ on a pseudo-Eisenstein series is reflected entirely
in its effect on the data: the sum is locally finite, so interchange of the operator and the sum is easy, giving

∆Ψϕ = ∆
∑

γ∈Γ∞\Γ

ϕ ◦ γ =
∑

γ∈Γ∞\Γ

∆(ϕ ◦ γ) =
∑

γ∈Γ∞\Γ

(∆ϕ) ◦ γ = Ψ∆ϕ

This correctly suggests that a suitable dense subspace of L2
o(Γ\X) is indeed stable under ∆. However, at

this point we do not have a good device to prove density of smooth cuspforms with sufficient decay to prove
symmetry 〈∆f, F 〉 = 〈f,∆F 〉. For that matter, there is no reason to expect test functions in L2

o(Γ\X) to be
dense, since smooth-truncation to arrange compact support can succeed directly in y � 1, but disturbs the
constant term as y → 0+. A convincing argument for smoothness of cuspforms and behavior of ∆ on them
can be given after the decomposition result of [7.1-7.7].

1.9 Eisenstein series

We can attempt to make a pseudo-Eisenstein series Ψϕ which is a ∆-eigenfunction, by using a function ϕ
on N\X = N\G/K which is a ∆-eigenfunction. Using the y-coordinate on N\G/K ≈ A+, the differential
equation is

λ · ϕ = ∆ϕ =
(
y2 ∂

2

∂y2
− (`− 2)y

∂

∂y

)
ϕ = y2ϕ′′ − (`− 2)yϕ′

The differential equation y2ϕ′′ − (`− 2)yϕ′ − λϕ = 0 is of Euler type, that is, will have solutions of the form
yα, with α determined by

0 = y2 · α(α− 1)yα−2 − (`− 2)y · αyα−1 − λ · yα = yα · (α(α− 1)− (`− 2)α− λ)

That is, for given λ, the corresponding exponents α are found by solving the indicial equation
α(α− 1)− (`− 2)α− λ = 0, so λ = α(α − (` − 1)). This computation suggests incorporating the factor
`− 1 into the exponent. Thus, with a function η on N\G/K defined by

η(nayk) = y`−1 (with n ∈ N , k ∈ K, and ` = 2, 3, 4, 5, respectively)

we have
∆ηs = (`− 1)2 · s(s− 1) · ηs

Unfortunately, ηs is not in C∞c (N\G/K), although it is smooth. The genuine Eisenstein series Es on Γ\X
is [14]

Es(g) =
∑

γ∈Γ∞\Γ

η(γ · g)s

The following claim has a much more elementary proof in the two simplest cases Γ = SL2(Z), SL2(Z[i]),
but something more is required for Γ = Sp∗1,1 and SL2(H). We give an argument that applies uniformly to
all four:

[14] There is no universal choice of normalization. Here, the choice is made so that the critical strip is 0 ≤ Re(s) ≤ 1,

the rightmost pole is at s = 1, and the functional equation relates Es and E1−s. In more general contexts, other

considerations dominate.
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[1.9.1] Claim: For Re(s) > 1, the series expression for Es converges absolutely and uniformly on compacts,
to a continuous function on Γ\X, of moderate growth

|Es(g)| �t,C ηRe(s) (on St,C , implied constant depending on t, C)

Proof: It suffices to consider s = σ real. From [1.3.2], in x, y → nxay coordinates,

η(

(
∗ ∗
c d

)
nxay) =

( y

|cx+ d|2 + |cy|2
)`−1

and (c d)→ |cx+ d|2 + |cy|2 is a positive-definite quadratic function on the real vector space in which (c d)
lies. The coefficients of the quadratic function depend continously on x, y, so for x, y in a fixed compact
there are uniform constants A,B such that

A · (|c|2 + |d|2) ≤ |cx+ d|2 + |cy|2 ≤ B · (|c|2 + |d|2)

In particular, for another pair x′, y′ in the same compact,

|cx′ + d|2 + |cy′|2 ≤ B · (|c|2 + |d|2) =
B

A
·
(
A · (|c|2 + |d|2)

)
≤ B

A
·
(
|cx+ d|2 + |cy|2

)
Thus, convergence of the series is equivalent to convergence of an averaged form, namely,∫

C

∑
Γ∞\Γ

η(γnxay)σ
dx dy

y`

Similarly, since the inf of lengths of non-zero vectors in a lattice in a real vector space is positive, there is a
uniform non-zero lower bound for |cx + d|2 + |cy|2 for nxay ∈ C and (c d) a lower row in Γ. That is, the
sup of η(γg) over γ ∈ Γ and g ∈ C is finite, and is attained. Let the sup be µ`−1 for µ > 0. Then Γ · C is
contained in

Y = {nxay ∈ X : y`−1 = η(nxay) ≤ µ`−1} = {nxay ∈ X : y ≤ µ}

By discreteness of Γ in G, we can shrink C so that, for γ in Γ, if γC ∩ C 6= φ then γ = 1, so that∫
C

Es =

∫
Γ\Γ·C

Es

Unwind:∫
Γ\Γ·C

Es =

∫
Γ∞\Γ·C

η(nxay)σ
dx dy

y`
le

∫
Γ∞\Y

η(nxay)σ
dx dy

y`
=

∫
N∩Γ\N

1 ·
∫ µ

0

ησ
dy

y`

�
∫ µ

0

y(`−1)σ dy

y`
=

∫ µ

0

y(`−1)(σ−1) dy

y

This is convergent for σ − 1 > 0. This argument also proves the uniform convergence on compacts.
To see the moderate growth property, without yet attempting to prove that Es is smooth, differentiating

the summands with c 6= 0

∂

∂y

∣∣∣ 1

(|cx+ d|2 + |cy|2)s(`−1)

∣∣∣ =
∂

∂y

1

(|cx+ d|2 + |cy|2)Re(s)·(`−1)
< 0

shows that they all strictly decrease as η(g) increases. Precisely, |Es(nay)| < |Es(nay′)| for 0 < y < y′,
for every n ∈ N . Since Es is continuous, it has a bound B on a compact set {g ∈ St,C : η(g) ≤ T}. Thus,
|y−sEs| ≤ B on St,C . ///

Of course, we want convergence to a smooth function:
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[1.9.2] Claim: The series for Es converges in the C∞ topology for Re(s) > 1, and produces a C∞ moderate-
growth function on Γ\X = Γ\G/K. (Proof in [11.5].)

As in [13.5], the idea of the C∞ topology is that it is given by the collection of seminorms given by sups on
compacts of all derivatives. One issue is which derivatives to use, and how to estimate them. In the present
setting, one might be tempted to use derivatives with respect to coordinates x, y, but there is a significant
disadvantage: ∂/∂x and ∂/∂y do not commute with the action of Γ on X, so that ∂Es/∂x is unlikely to be
left Γ-invariant. For that matter, the effect of differentiating with respect to y (after removing the common
factor ys(`−1))

∂

∂y

1

(|cx+ d|2 + |cy|2)s(`−1)
= −s(`− 1) · 2y · |c|2

(|cx+ d|2 + |cy|2)s(`−1)+1

on convergence of the series is difficult to appraise. The less-elementary approach in [11.5] uses left-G-
invariant derivatives on G, which preserve left Γ-invariance, and which stabilize a somewhat-larger class of
Eisenstein series.

[1.9.3] Corollary: In Re(s) > 1, Es inherits the eigenvalue property from ηs:

∆Es = (`− 1)2 · s(s− 1) · Es

Proof: Granting the convergence in the C∞ topology, in Re(s) > 1, and using the fact that ∆ commutes
with translations by Γ, letting ∆ηs = λs · ηs,

∆
∑
γ

η(γg)s =
∑
γ

∆(η(γg)s) =
∑
γ

(∆ηs)(γg) = λs ·
∑
γ

ηs(γg)

as claimed. ///

However, as we see below, Es is never in L2(Γ\G).
Granting adequate convergence of Es, and granting that the differential operator ∆ can move inside the

integral (see [14.1]) expressing the constant term, the constant term cPEs is a ∆-eigenfunction with the
same eigenvalue:

∆
(
cPEs)(g) = ∆

∫
N∩Γ\N

Es(ng) dn =

∫
N∩Γ\N

∆Es(ng) dn =

∫
N∩Γ\N

(`− 1)2 · s(s− 1) · Es(ng) dn

= (`− 1)2 · s(s− 1) ·
∫
N∩Γ\N

Es(ng) dn = (`− 1)2 · s(s− 1) · cPEs(g)

[1.9.4] Claim: The constant term of the Eisenstein series Es is of the form

cPEs = ηs + csη
1−s

Proof: From the very beginning of this section, at least for s 6= 1
2 , ηs and η1−s are a basis for the space

of ∆-eigenfunctions with eigenvalue (` − 1)2 · s(s − 1) on N\G/K. Thus, the constant term cPEs is
a linear combination of ηs and η1−s. The term ηs comes from the representative 1 ∈ Γ∞\Γ. Every

other representative γ =

(
a b
c d

)
has c 6= 0. Implicitly recapitulating the computation in the Bruhat

decomposition from [1.1],∫
N∩Γ\N

∑
c,d

( y

|cx+ d|2 + |cy|2
)s(`−1)

dnx =
∑
06=c

′ 1

|c|s(`−1)

∫
N∩Γ\N

∑
d

( y

|x+ d
c |2 + |y|2

)s(`−1)

dnx

where the sum over c is over all possible lower-left entries of γ ∈ Γ, modulo M ∩ Γ, and the inner sum over
d is over possible lower-right entries given lower-left entry c. With Ξ = {ξ : nξ ∈ Γ ∩N}, this is∑

06=c

1

|c|s(`−1)

∑
d mod c

∫
N∩Γ\N

∑
ξ∈Ξ

( y

|x+ ξ + d
c |2 + |y|2

)s(`−1)

dnx
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Note that if γ =

(
∗ ∗
c d

)
∈ Γ and ξ ∈ Ξ, then

Γ 3 γ · nξ =

(
∗ ∗
c d

)
·
(

1 ξ
0 1

)
=

(
∗ ∗
c d+ cξ

)
The integral unwinds, giving

∑
06=c

1

|c|s(`−1)

∑
d mod c

∫
N

( y

|x+ d
c |2 + |y|2

)s(`−1)

dnx

For each suitable d mod c, replace x by x− d
c , and let ν(c) be the number of such d, so the whole becomes

∑
06=c

ν(c)

|c|s(`−1)

∫
R`−1

( y

|x|2 + |y|2
)s(`−1)

dx = y(1−s)(`−1)
∑
06=c

ν(c)

|c|s(`−1)

∫
R`−1

( 1

|x|2 + 1

)s(`−1)

dx

upon replacing x by yx. This demonstrates the asserted shape of the constant term. ///

In fact, as usual, cs has an Euler product, and is identifiable as a ratio of L-functions, as we consider
further in the sequel.

[1.9.5] Corollary: The Eisenstein series is not in L2(Γ\X).

Proof: By reduction theory [1.5], it suffices to show that it is not square-integrable on a quotient
(N∩Γ)\{nxay ∈ X : y ≥ to} for to large enough. Functions on such a set are left N∩Γ-invariant functions on
N ×A+, so have Fourier expansions on the product of circles (N ∩Γ)\N , with Fourier coefficients depending
on a ∈ A+. Specifically, let Ψ be the collection of N ∩ Γ-invariant continuous group homomorphisms
ψ : N → C×. A function f in L2((N ∩ Γ)\N) has a Fourier expansion converging (at least) in L2: the ψth

Fourier coefficient is

f̂(ψ) =

∫
(N∩Γ)\N

ψ(n) · f(n) dn

giving (N ∩ Γ)\N total measure 1, and

f(n) =
∑
ψ

f̂(ψ) · ψ(n) (n ∈ N , convergent in an L2 sense)

The Plancherel theorem for L2((N ∩ Γ)\N) is∫
(N∩Γ)\N

|f(n)|2 dn =
∑
ψ

|f̂(ψ)|2

For a function f on (N ∩ Γ)\N ×A+, the Fourier coefficients are functions of a ∈ A+, and

f(na) =
∑
ψ

f̂(ψ)(a) · ψ(n)

Plancherel for L2((N ∩ Γ)\N) now gives∫
(N∩Γ)\N

|f(na)|2 dn =
∑
ψ

|f̂(ψ)(a)|2

In particular, Bessel’s inequality applied to the trivial character ψ = 1 gives∫
(N∩Γ)\N

|f(na)|2 dn ≥ |f̂(1)(a)|2
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For f(na) = Es(na), that Fourier component for the trivial character in is exactly the constant term
cPEs = ηs + csη

1−s, so ∫
(N∩Γ)\N

∫ ∞
to

|Es(na)|2 dn da ≥
∫ ∞
to

|ηs + csη
1−s|2 dy

y`

With σ = Re(s) > 1, ∫ T

to

|ηs + csη
1−s|2 dy

y`
�s

∫ T

to

η2σ dy

y`
=

∫ T

to

y2σ(`−1) dy

y`

=

∫ T

to

y(2σ−1)(`−1) dy

y
= T (2σ−1)(`−1) − t(2σ−1)(`−1)

o

This blows up as T →∞ for 2σ − 1 > 0. ///

1.10 Meromorphic continuation of Eisenstein series

Although special tricks [2.B] applicable to Γ = SL2(Z) and Γ = SL2(Z[i]) have been known for almost
100 years, those tricks almost immediately fail in any larger context. For example, they do not apply to
Γ = Sp∗1,1(o) or Γ = SL2(Z). [Selberg 1956] and [Roelcke 1956] first approached more general cases.

In [11.4] we will give a proof applying uniformly to our four example cases:

[1.10.1] Theorem: Es has a meromorphic continuation in s ∈ C, as a smooth function of moderate growth
on Γ\G. As a function of s, Es(g) it is of at most polynomial growth vertically, uniformly in bounded strips,
uniformly for g in compacts. (Proof in [11.4].)

Although we give further details in a somewhat different logical order in [11.4], some consequences of the
meromorphic continuation can be discussed directly:

[1.10.2] Corollary: The eigenfunction property ∆Es = λs · Es with λs = (` − 1)2 · s(s − 1) persists under
meromorphic continuation.

Proof: Both ∆Es and λs ·Es are holomorphic function-valued functions of s, taking values in the topological
vector space of smooth functions. They agree in the region of convergence Re(s) > 1, so the vector-valued
form [15.2] of the Identity Principle from complex analysis gives the result. ///

[1.10.3] Corollary: The meromorphic continuation of Es implies the meromorphic continuation of the
constant term cPEs = ηs + csη

1−s, in particular, of the function cs.

Proof: Since Es meromorphically continues at least as a smooth function, the integral over the compact set
(N ∩Γ)\N expressing a pointwise value cPEs(g) of the constant term certainly converges absolutely. In fact,
the function-valued function n→ (g → Es(ng)) is a continuous smooth-function-valued function, and has a
smooth-function-valued Gelfand-Pettis integral g → cPEs(g) [14.1].

In particular, the constant term cPEs of the continuation of Es must still be of the form Asη
s + Bsη

1−s

for some functions As, Bs, since (at least for s 6= 1
2 ) ηs and η1−s are the two linearly independent solutions

of ∆f = λs · f for functions f on N\G/K ≈ A+. In the region of convergence Re(s) > 1, the linear
independence of ηs and η1−s gives As = 1 and Bs = cs. The vector-valued form of the Identity Principle
from complex analysis implies that As = 1 throughout, and that Bs = cs throughout. In particular, this
gives the meromorphic continuation of cs. ///

The theory of the constant term in [8.1] asserts that a ∆-eigenfunction of moderate growth is asymptotic
to its constant term. For example,

[1.10.4] Claim: For every s away from poles of s→ Es, in a fixed Siegel set St,C ,

Es(nayk)− (ηs + csη
1−s) � y−B

for every B > 0, with the implied constant depending on t, s and B. That is, Es−cPEs is rapidly decreasing
in a Siegel set. More generally, for so a pole of s→ Es of order ν,

(s− so)νEs(nayk)
∣∣∣
s=so

− (s− so)ν(ηs + csη
1−s)

∣∣∣
s=so

� y−B
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Proof: Since Es is a ∆-eigenfunction of moderate growth, the theory of the constant term [8.1] exactly assures
that Es is asymptotic to its constant term, in the sense of the first assertion. Near a pole so of order ν,
writing a vector-valued Laurent expansion

Es =
Cν

(s− so)ν
+

Cν−1

(s− so)ν−1
+ . . .

as in [15.2], where the coefficients Cj are moderate-growth automorphic forms. Application of ∆ termwise
is justified, for example by invocation of the vector-valued form of Cauchy’s formulas [15.2]: with λs =
(`− 1)2 · s(s− 1),

λs ·
( Cν

(s− so)ν
+

Cν−1

(s− so)ν−1
+ . . .

)
= λs · Es = ∆Es =

∆Cν
(s− so)ν

+
∆Cν−1

(s− so)ν−1
+ . . .

Multiplying through by (s − so)ν and evaluating at s = so, λso · Cν = ∆Cν as claimed. Then apply the
theory of the constant term [8.1]. ///

Granting the meromorphic continuation and the asymptotic estimation of the Eisenstein series by its
constant term, the functional equation of Es is determined by its constant term:

[1.10.5] Corollary: Es has the functional equation E1−s = c1−sEs, and cs · c1−s = 1. In particular, |cs| = 1
on Re(s) = 1

2 .

Proof: Take Re(s) = σ > 1
2 and s 6∈ R. Then f = E1−s − c1−sEs has constant term

cP f = (η1−s + c1−sη
s)− c1−s(ηs + csη

1−s) = (1− c1−scs) · η1−s

For Re(s) > 1
2 , η1−s is square-integrable on St,C :∫

St,C

|η1−s|2 dx dy
y`

= (N -measure C) ·
∫ ∞
t

|y(1−s)(`−1)|2 dy
y`

= (N -measure C) ·
∫ ∞
t

y(1−2σ)(`−1) dy

y

Since 1 − 2σ < 0, the integral is absolutely convergent. By the theory of the constant term [8.1], on a
standard Siegel set

f = cP f + (rapidly decreasing) �s η1−σ + (rapidly decreasing)

Thus, on St,C ,

|f |2 � |η1−σ + (rapidly decreasing)|2

= η2(1−σ) + 2 · η1−σ · (rapidly decreasing) + (rapidly decreasing)
2

= η2(1−σ) + (rapidly decreasing)

Thus, f = E1−s − c1−sEs ∈ L2(Γ\X). It is a ∆-eigenfunction with eigenvalue λs = (` − 1)2 · s(s − 1),
which is not real for Re(s) > 1

2 and s 6∈ R. But

λs · 〈f, f〉 = 〈λsf, f〉 = 〈∆f, f〉 = 〈f,∆f〉 = 〈f, λsf〉 = λs · 〈f, f〉 = λs · 〈f, f〉

Note that we did not use symmetry properties of ∆, but only that 〈f, F 〉 = 〈F, f〉. Thus, necessarily
E1−s− c1−sEs = 0 for such s. For all g ∈ G, by the Identity Principle applied to the C-valued meromorphic
functions s −→ (E1−s(g)− c1−sEs(g)), the same identity applies for all s away from poles.

Since the constant term (1 − csc1−s) · η1−s of E1−s − c1−sEs = 0 is identically 0, necessarily csc1−s = 1.
Further, s → cs is holomorphic and equal to cs for Re(s) � 1, so the Identity Principle gives equality
everywhere. Then c 1

2 +it = c1−( 1
2 +it) = c 1

2−it
, and |c 1

2 +it|2 = c 1
2 +itc 1

2−it
= 1. ///

[1.10.6] Claim: For Re(s) 6= 1
2 and s 6∈ R, so that λso 6∈ R, the poles of s→ Es are exactly the poles of cs,

and of the same order.
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Proof: For so such a pole, of order ν ≥ 1, corollary [1.10.2] showed that the leading Laurent coefficient is a
∆-eigenfunction with eigenvalue λso and is of moderate growth, so is asymptotic to its constant term. The
Laurent expansion of the constant term is the constant term of the Laurent expansion, from the vector-
valued version of Cauchy’s formula [15.2], and using the good behavior of continuous, compactly-supported
vector-valued integrals [14.1]. Thus, if cs failed to have a pole at so, then the leading Laurent coefficient of
Es at so would have vanishing constant term, so (by the theory of the constant term) would be in L2(Γ\X).
Then λso ∈ R, which is impossible for so as in the hypotheses. ///

1.11 Truncation and Maaß-Selberg relations

The genuine Eisenstein series are not in L2(Γ\X), but from the theory of the constant term [8.1] the only
obstruction is the constant term, which is subtly altered by truncation, sufficiently removing this obstacle.
The Maaß-Selberg relations are computation of the L2 inner products of the resulting truncated Eisenstein
series. As corollaries, we show that Es has only finitely-many poles in Re(s) ≥ 1

2 , that these are simple,
lie on ( 1

2 , 1], and the residues are in L2(Γ\X). Granting the spectral decomposition of cuspforms [7.1], and
from the theory of the constant term [8.1] that the ∆-eigenfunction cuspforms are of rapid decay, we prove
that these residues of Eisenstein series are orthogonal to cuspforms.

The truncation operators ∧T for large positive real T act on an automorphic form f by killing off f ’s
constant term for large y. Thus, for a right K-invariant function, with a normalized version of height given
by η(nayk) = y`−1, one might imagine

(naive T -truncation of f)(g) =

 f(g) for η(g) ≤ T

f(g)− cP f(g) for η(g) > T

This is not quite right. On a standard Siegel set St,C this description is accurate, but it fails to correctly
describe the truncated function on the whole domain X or whole group G, in the sense that the truncation
is not properly described as an automorphic form, that is, as a left Γ-invariant function. We want truncation
to produce automorphic forms. For sufficiently large (depending on the reduction theory) T we achieve the
same effect by first defining the tail cTP f of the constant term cP f of f to be

cTP f(g) =

 0 (for η(g) ≤ T )

cP f(y) (for η(g) > T )

For legibility, we may replace a subscript by an argument in parentheses in the notation for pseudo-Eisenstein
series: write

Ψ(ϕ) = Ψϕ

Although cTP f need not be smooth, nor compactly supported, by design (that is, for T sufficiently large) its
support is sufficiently high so that we have control over the analytical issues:

[1.11.1] Claim: For T sufficiently large, the pseudo-Eisenstein series Ψ(cTP f) is a locally finite sum, hence,
uniformly convergent on compacts.

Proof: The tail cTP f is left N -invariant. The reduction theory of [1.5] shows that, given to, for large-enough
t, a set {nayk : y > to} does not meet γ · {nayk : y > t} unless γ ∈ Γ∞. Thus, for large-enough T ,
{nayk : y > T} does not meet γ · {nayk : y > T} unless γ ∈ Γ∞. Thus, γ1 · {nayk : y > T} does not meet
γ2 · {nayk : y > T} unless γ1Γ∞ = γ2Γ∞. ///

Similarly,

[1.11.2] Claim: On a standard Siegel set St,C , Ψ(cTP f) = cTP f for all T sufficiently large depending on t.

Proof: By reduction theory, a set {nayk : y > to} does not meet γ · {nayk : y > T} unless γ ∈ Γ∞, for
large-enough T depending on to. Thus, for large-enough T , {nayk : y > T} does not meet Sto,C unless
γ ∈ Γ∞. That is, the only non-zero summand in Ψ(cTP f) is the term cTP f itself. ///
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Thus, we find that the proper definition of the truncation operator ∧T is

∧T f = f −Ψ(cTP f)

As desired, a critical effect of the truncation procedure is:

[1.11.3] Claim: For s away from poles, the truncated Eisenstein series ∧TEs is of rapid decay in all Siegel
sets.

Proof: From the theory of the constant term [8.1], Es − cPEs is of rapid decay in a standard Siegel set. By
the previous claim, (Es − cTPEs)(g) = (Es − cPEs)(g) for η(g) ≥ T , so it is is also of rapid decay. ///

[1.11.4] Theorem: (Maaß-Selberg relation) Up to a uniform constant depending on normalization of
measure,

1

`− 1

∫
Γ\X
∧TEs · ∧TEr =

T s+r−1

s+ r − 1
+ cs

T (1−s)+r−1

(1− s) + r − 1
+ cr

T s+(1−r)−1

s+ (1− r)− 1
+ cscr

T (1−s)+(1−r)−1

(1− s) + (1− r)− 1

Proof: First, ∫
Γ\X
∧TEs · ∧TEr =

∫
Γ\X
∧TEs · Er

because the tail of the constant term of Er is orthogonal to the truncated version ∧TEs of Es. Then

∫
Γ\X
∧TEs · ∧TEr =

∫
Γ\X

(
Ψ(ηs)−Ψ

 0 (for η < T )

ηs + csη
1−s (for η ≥ T )

) · Er
=

∫
Γ\X

Ψ

 ηs (for η < T )

−csη1−s (for η ≥ T )

 · Er
Unwinding the awkward pseudo-Eisenstein series, noting that Γ∞ differs from N ∩Γ only by the finite group
M ∩K which commutes with A+, and the integrand is right K-invariant,

∫
Γ∞\X

 ηs (for η < T )

−csη1−s (for η ≥ T )

 · Er =

∫
N\X

∫
N∩Γ\N

 ηs (for η < T )

−csη1−s (for η ≥ T )

 · Er
=

∫
N\X

 ηs (for η < T )

−csη1−s (for η ≥ T )

 · (
∫
N∩Γ\N

Er(ng) dn
)
dg

=

∫
N\X

 ηs (for η < T )

−csη1−s (for η ≥ T )

 · (ηr + crη
1−r) =

∫ ∞
0

 ηs(ηr + crη
1−r) (for η < T )

−csη1−s(ηr + crη
1−r) (for η ≥ T )

=

∫ T

0

ηs · (ηr + crη
1−r)

dy

y`
−
∫ ∞
T

csη
1−s (ηr + crη

1−r)
dy

y`

Note that the measure dy/y` is descended from the right G-invariant measure on N\G. Assume that Re(r)
is bounded above and below, so that Re(1− r) is also bounded, and take Re(s) sufficiently large so that all
the integrals converge. The above becomes∫ T

0

ηs+r−1 dy

y
+ cr

∫ T

0

ηs+(1−r)−1 dy

y
− cs

∫ ∞
T

η(1−s)+r−1 dy

y
− cscr

∫ ∞
T

η(1−s)+(1−r)−1 dy

y

Since dη/η = (`−1) ·dy/y, this gives the expression of the theorem. Note that `−1 = 1 in the most familiar
case of Γ = SL2(Z). By analytic continuation (in s and in r) it is valid everywhere it makes sense. ///
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The following corollaries can be proven directly in special cases by use of explicit details about Fourier
expansion of the Eisenstein series. However, the arguments here generalize.

[1.11.5] Corollary: There are only finitely-many poles of Es in the region Re(s) ≥ 1
2 , all on the segment

( 1
2 , 1], and these are poles of cs. Any such pole is simple, with residue in L2(Γ\X). Specifically, with measure

normalized as in the previous proof,∫
Γ\X
|ResσoEs|2 = (`− 1) · Resσocs < +∞

Such a residue is also smooth, and moderate growth, and has eigenvalue λso = (`− 1)2 · so(so − 1).

Proof: The Eisenstein series is indeed treated as a meromorphic function-valued function, as in [15.2], so its
Laurent coefficients or power series coefficients are functions in the same topological vector space, by the
vector-valued form of Cauchy’s formulas [15.2]. From the identity principle, since Es = Es for Re(s) > 1,
we have Es = Es for all s away from poles, and similarly for truncated Eisenstein series. Thus, taking
r = s = σ − it in the theorem,

1

`− 1

∫
Γ\X
| ∧T Es|2 =

T 2σ−1

2σ − 1
+ cs

T−2it

−2it
+ cs

T 2it

2it
+ cscs

T 1−2σ

1− 2σ

Suppose Es has a pole so = σo + ito of order ν with to 6= 0 and σo >
1
2 .

From corollary [1.10.4] to the theory of the constant term [8.1], with non-real eigenvalue, this is equivalent
to the assertion that cs has a pole at so of order ν. Also, cs = cs, so cs has a pole at so as well, of the same
order, with leading Laurent term the complex conjugate of that at so. Thus, the function ∧TEs also has a
pole exactly at poles of cs, of the same order, for non-real λs.

Take s = σo + it in the above. In the real variable t, the left-hand side of the Maaß-Selberg relation is
asymptotic to a positive constant multiple of (t − to)−2ν as t → to, since the pole is of order ν and inner
products are positive. The first term on the right-hand side is bounded as t→ to, and the second and third
terms are asymptotic to non-zero constant multiples of (t−to)−ν . Thus, the first three terms on the right can
be ignored as t→ to. The fourth term on the right-hand side is asymptotic to a positive constant multiple of
(t− to)−2ν from cscs, multiplied by T 1−2σo/(1− 2σo). The denominator is negative, so that, altogether, the
fourth term on the right-hand side is asymptotic to a negative constant multiple of (t−to)−2ν . The positivity
of the left-hand side of the Maaß-Selberg, and negativity of the right-hand side (as t → to), contradict the
hypothesized pole. Thus, Es and cs have no poles off the real axis in the region Re(s) > 1/2.

Next, let so = σo be a pole of Es of order ν ≥ 1 on ( 1
2 , 1]. Take r = s = σo + it, obtaining

1

`− 1

∫
Γ\X
|tν · ∧TEs|2 = t2ν ·

( T 2σo−1

2σo − 1
+ cs

T−2it

−2it
+ cs

T 2it

2it
+ cscs

T 1−2σo

1− 2σo

)
As t → to = 0, the right-hand side goes to 0 unless cs also has a pole of order ν at so. The fourth term
is negative, and if ν > 1 is the only term that survives on the right-hand side as t → 0, contradicting the
non-negativity of the left-hand side. Thus, ν = 1, in which case the second and third terms’ blow-up is of
the same order as the left-hand side and the fourth term on the right-hand side. This proves that any pole
on ( 1

2 , 1] is simple.
Letting t→ 0,

1

`− 1

∫
Γ\X
|ResσoE

T
s |2 =

Resσocs
2

+
Resσocs

2
+ Resσocs · Resσocs

T 1−2σo

1− 2σo

Since 1− 2σo < 0, the limit of the last term is 0 as T → +∞, given the square-integrability of the residue.
General considerations about meromorphic vector-valued functions [15.2] and Gelfand-Pettis integrals [14.1]
assure that taking residues commutes with taking the limit as T →∞. The two remaining terms are equal,
since the pole is on the real line.

Now suppose so is a pole of Es of order ν ≥ 1 on the line Re(s) = 1
2 and off R. The leading Laurent

coefficient Cν of Es at so is a ∆-eigenfunction with eigenvalue λso , and is of moderate growth, again by the
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vector-valued form of Cauchy’s formulas. Thus, by the theory of the constant term [8.1], Cν is asymptotic to
its constant term cPCν , which, again, is the the leading Laurent coefficient of the constant term ηs + csη

1−s

of Es. The property |cs| = 1 on Re(s) = 1
2 shows that cs has no pole there. Then cPCν = 0, so ∧TCν = Cν ,

and Cν is in L2(Γ\X). By Maaß-Selberg with r = s = σ − it,

1

`− 1

∫
Γ\X
|Cν |2 =

1

`− 1

∫ ∣∣∣ lim
s→so

(s− so)2ν ∧T Es
∣∣∣2

= lim
s→so

(s− so)2ν ·
( T 2σ−1

2σ − 1
+ cs

T−2it

−2it
+ cs

T 2it

2it
+ cscs

T 1−2σ

1− 2σ

)
Since ν ≥ 1, approaching so from off the line, the limit of (s − so)

2ν/(2σ − 1) is 0. Since |cs| → 1 as
s→ so ∈ 1

2 + iR, the whole limit is 0. Thus, Es has no pole on 1
2 + iR.

Finally, we see that the residues are not only in L2(Γ\X), but are also smooth (and moderate growth
pointwise) ∆-eigenfunctions with the indicated eigenvalues. By the vector-valued form of Cauchy’s formula
for residues,

Ress=soEs =
1

2πi

∫
γ

Ew
w − s

dw

where γ is a small circle around so, traversed counter-clockwise. Since w → Ew/(s − w) is a continuous
moderate-growth-function-valued function, Gelfand-Pettis [14.1] assures that the integral is in the same
space. In particular, the residue is smooth. Because the pole is simple, the function fs = (s − so)Es has a
removable singularity at so, and its value there is the residue. In the topology on moderate-growth functions
(as in [13.10]), ∆ is a continuous map. From the theory of vector-valued holomorphic functions [15.2] and
Gelfand-Pettis integrals [14.1], evaluation commutes with continuous linear maps, so

∆(RessoEs) = ∆(fs|s=so) = (∆fs)|s=so = λso · fso

demonstrating that residues are (smooth and) ∆-eigenfunctions. ///

For Γ = SL2(Z) and SL2(Z[i]), there are special arguments that show that the only relevant residues of
Eisenstein series are at s = 1. The eigenvalue λs = s(s− 1) of ∆ at s = 1 is 0.

[1.11.6] Claim: Any smooth f ∈ L2(Γ\G/K) such that ∆f = 0 is constant.

Proof: Let ∇ be the tangent-space-valued gradient on Γ\G/K, as developed in more detail in [10.7],∫
Γ\G

∆f · F = −
∫

Γ\G
〈∇f,∇F 〉

where, for the moment, 〈−,−〉 is a inner product on the tangent space. For ∆f = 0, this gives

0 =

∫
Γ\G

0 · f =

∫
Γ\G

∆f · f = −
∫

Γ\G
〈∇f,∇f〉

Thus, ∇f is identically 0, so f is constant. ///

The other two current examples, Γ = Sp∗1,1(o) and SL2(o), do not admit those special arguments to
decisively locate poles, although they still do have poles at s = 1, with constant residues, by the same
argument. To treat residues in Re(s) > 1

2 generally:

[1.11.7] Corollary: Residues of Eisenstein series at distinct poles s1, s2 in ( 1
2 , 1] are mutually orthogonal.

Proof: Let fj be the residue at sj , with eigenvalue λj . The eigenvalues are real, since s1, s2 ∈ R. It is
reasonable to think that ∆ has the symmetry 〈∆f1, f2〉 = 〈f1,∆f2〉 so that the usual argument

λ1 · 〈f1, f2〉 = 〈∆f1, f2〉 = 〈f1,∆f2〉 = λ2 · 〈f1, f2〉

would give (λ1 − λ2) · 〈f1, f2〉 = 0, and then 〈f1, f2〉 = 0. However, the defensible starting-point [6.6] for
this symmetry property of ∆ is that it holds for functions in C∞c (Γ\G/K), in effect avoiding any boundary
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terms in integration by parts. To preserve symmetry in an extension requires care. In fact, the method of
[9.10] shows that ∆ is essentially self-adjoint in the sense of having a unique self-adjoint extension to an
unbounded operator densely-defined in L2(Γ\G/K). The domain of that extension does include the residues
fj , but demonstration of the latter fact is more a consequence than starting-point.

Instead, the Maaß-Selberg relation (with s1 6= s2 both real, eliminating some complex conjugations) gives
1

`− 1

∫
Γ\X
∧TEs1 · ∧TEs2

=
T s1+s2−1

s1 + s2 − 1
+ cs1

T (1−s2)+s2−1

(1− s1) + s2 − 1
+ cs2

T s1+(1−w2)−1

s1 + (1− s2)− 1
+ cs1cs2

T (1−s1)+(1−s2)−1

(1− s1) + (1− s2)− 1

With simple poles of Es at s1 and s2, multiplying through by (s − s1)(s′ − s2) and taking the limit as
s→ s1 and s′ → s2 gives

1

`− 1

∫
Γ\X
∧TRess1Es1 · ∧TRess2Es2 = 0 + 0 + 0 + Ress=s1cs · Ress=s2cs ·

T (1−s1)+(1−s2)−1

(1− s1) + (1− s2)− 1

Since (1− s1) + (1− s2)− 1 < (1− 1
2 ) + (1− 1

2 )− 1 < 0, letting T → +∞ gives the orthogonality. ///

[1.11.8] Corollary: The residues of Es for s ∈ ( 1
2 , 1] are orthogonal to cuspforms.

Proof: This uses the spectral decomposition of cuspforms [1.7]: there is an orthonormal basis for L2 cuspforms
consisting of ∆-eigenfunctions, and each eigenspace is finite-dimensional. The theory of the constant term
[8.1] shows that any such eigenfunction is asymptotic to its constant term. Since constant terms of cuspforms
are 0, cuspform-eigenfunctions are of rapid decay in Siegel sets.

Thus, for a cuspform-eigenfunction f , granting [1.9.1] that Eisenstein series Es are of moderate growth on
Siegel sets, the literal integrals 〈f,Es〉 =

∫
Γ\X f · Es are absolutely convergent for all s away from poles.

These are not L2 inner products, since Es is never in L2, but we use the same notation for brevity. In
the region of convergence Re(s) > 1, any integral

∫
Γ\X f · Es unwinds to compute an integral against the

constant term of f , and the latter is 0:∫
Γ\X

f · Es =

∫
Γ∞\X

f · ηs =

∫
NΓ∞\X

(∫
(N∩Γ)\N

f(ng) η(ng)s dn
)
dg

=

∫
NΓ∞\X

ηs(g)
(∫

(N∩Γ)\N
f(ng) dn

)
dg =

∫
NΓ∞\X

ηs(g) · cP f(g) dg =

∫
NΓ∞\X

ηs(g) · 0 dg = 0

Because s→ Es is a meromorphic function-valued function taking values in (at least continuous) functions
of moderate growth, the function s → 〈f,Es〉 is meromorphic on C. By the Identity Principle, since this
function is 0 on Re(s) > 1, it is identically 0. The vector-valued form of Cauchy’s formula expresses the
residue at s = so as an integral:

Ress=soEs =
1

2πi

∫
γ

Ew
w − s

dw

where γ is a small circle around so, traversed counter-clockwise. Then

〈f, RessoEs〉 =
〈
f,

1

2πi

∫
γ

Ew
w − s

dw
〉

The functional u → 〈f, u〉 is a continuous linear functional on functions of moderate growth, and
w → Ew/(s − w) is a continuous, compactly-supported moderate-growth-function-valued function, so by
Gelfand-Pettis [14.1] the inner product passes inside the integral:

〈f, RessoEs〉 =
1

2πi

∫
γ

〈f, Ew〉
1

w − s
dw =

1

2πi

∫
γ

0 · 1

w − s
dw = 0
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Again, 〈f,Es〉 is not an L2 pairing, because Es is not in L2. Nevertheless, because of the rapid decay of f ,
the implied integral is absolutely convergent. This proves that the residues of Es for s ∈ ( 1

2 , 1], all of which
are in L2, are L2-orthogonal to cuspforms. ///

1.12 Decomposition of pseudo-Eisenstein series

We saw in [1.8] that the pseudo-Eisenstein series Ψϕ with ϕ ∈ C∞c (N\G/K) generate the orthogonal
complement to cuspforms in L2(Γ\G/K): since the orthogonal complement of these pseudo-Eisenstein series
is the space of cuspforms, the orthogonal complement to cuspforms is the L2-closure of the set of these
pseudo-Eisenstein series.

To express such pseudo-Eisenstein series as superpositions of ∆-eigenfunctions in the four examples at
hand, once we know the meromorphic continuation and functional equation of the genuine Eisenstein series
Es, the essential harmonic analysis is Fourier transform on the real line, in coordinates in which it is known
as a Mellin transform. That is, the non-cuspidal part of harmonic analysis on Γ\X in each of these four
examples reduces to harmonic analysis on R.

For ϕ ∈ C∞c (Γ\G/K) = C∞c (N\G)K , the pseudo-Eisenstein series Ψϕ is in C∞c (Γ\G)K , so its integral
against Es converges absolutely, since Es is continuous, even after meromorphic continuation. Thus, by
abuse of notation, we may write

〈Ψϕ, Es〉 =

∫
Γ\X

Ψϕ · Es

even though this 〈, 〉 cannot be the L2 pairing, since Es 6∈ L2(Γ\X). The following is a preliminary version
of a spectral decomposition of the L2 closure of the space containing pseudo-Eisenstein series, insofar as it
only treats Ψϕ with test-function ϕ, only computes point-wise values, so does not consider the integral of
genuine Eisenstein series as a function-valued integral, and omits a Plancherel assertion.

[1.12.1] Theorem: (Numerical form) Let so run over poles of Es in Re(s) > 1
2 . For ϕ ∈ C∞c (N\G/K), the

pseudo-Eisenstein series Ψϕ is expressible in terms of genuine Eisenstein series, by an integral converging
absolutely and uniformly on compacts in Γ\G/K:

Ψϕ(g) =
(`− 1)

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es〉 · Es(g) ds + (`− 1)
∑
so

〈Ψϕ,RessoEs〉 · RessoEs(g)

where we abuse notation by writing 〈Ψϕ, Es〉 =
∫

Γ\G Ψϕ · Es even though Es is not in L2.

Proof: One form of Fourier inversion for Schwartz functions [15] f on the real line is

f(x) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(u) e−iξu du
)
eiξx dξ

Both outer and inner integrals converge very well, uniformly pointwise. The inner integral is a Schwartz
function in ξ. Fourier transforms on R put into multiplicative coordinates are Mellin transforms: for
ϕ ∈ C∞c (0,+∞), take f(x) = ϕ(ex). Let y = ex and r = eu, and rewrite Fourier inversion as

ϕ(y) =
1

2π

∫ ∞
−∞

(∫ ∞
0

ϕ(r) r−iξ
dr

r

)
yiξ dξ

The Fourier transform in these coordinates is a Mellin or Laplace transform. For compactly-supported ϕ,
as we use throughout this discussion, the integral definition extends to all complex s in place of iξ, and dξ
replaced by −i ds. The variant Fourier inversion identity gives Mellin inversion

ϕ(y) =
1

2πi

∫ i∞

−i∞

(∫ ∞
0

ϕ(r) r−s
dr

r

)
ys ds

[15] As usual, Schwartz functions S (R) on R or any copy of it are smooth functions f such that f and all its derivatives

are rapidly decreasing, in the sense that (1 + x2)N · |f (k)(x)| is bounded on x ∈ R for every k and N . These sups are

a family of seminorms that give S (R) a Fréchet space structure. See chapter 12.

42



Garrett: Modern Analysis of Automorphic Forms

By an easy part of the Paley-Wiener theorem [13.16], for f ∈ C∞c (R) the Fourier transform is an entire
function in s, of rapid decay on horizontal lines, uniformly so on strips of finite width, so the Mellin transform
of ϕ has rapid decay vertically. This allows movement of the contour: for compactly-supported ϕ, Mellin
inversion is

ϕ(y) =
1

2πi

∫ σ+i∞

σ−i∞

(∫ ∞
0

ϕ(r) r−s
dr

r

)
ys ds (for any real σ)

In the present context, adjust the coordinates so that the Mellin transform is an integral against η(ay)s =
y(`−1)s, and inversion likewise: replace s by s(`− 1) (and re-adjust the contour):

ϕ(y) =
(`− 1)

2πi

∫ σ+i∞

σ−i∞

(∫ ∞
0

r−(`−1)s ϕ(r)
dr

r

)
ys(`−1) ds

=
(`− 1)

2πi

∫ σ+i∞

σ−i∞

(∫ ∞
0

η(ar)
−s ϕ(r)

dr

r

)
η(ay)s ds

Identifying N\G/K ≈ A+ ≈ (0,+∞), this is

ϕ(ay) =
(`− 1)

2πi

∫ σ+i∞

σ−i∞

(∫ ∞
0

η(ar)
−s ϕ(ar)

dr

r

)
η(ay)s ds

Thus,

ϕ(g) =
(`− 1)

2πi

∫ σ+i∞

σ−i∞

(∫ ∞
0

η(ar)
−s ϕ(ar)

dr

r

)
η(g)s ds (for all g ∈ G)

The Mellin transform useful here is

Mϕ(s) =

∫ ∞
0

η(ar)
−s ϕ(ar)

dr

r

and the pseudo-Eisenstein series is

Ψϕ(g) =
∑

γ∈Γ∞\Γ

ϕ(γg) =
∑

γ∈Γ∞\Γ

ϕ(aγg) =
(`− 1)

2πi

∑
γ∈Γ∞\Γ

∫ σ+i∞

σ−i∞
Mϕ(s) · η(γg)s ds

Taking σ = 0 would be natural, but with σ = 0 the double integral (sum and integral) is not absolutely
convergent, and the two integrals cannot be interchanged. For σ > 1, the Eisenstein series is absolutely
convergent, so the rapid vertical decrease of Mϕ makes the double integral absolutely convergent, and by
Fubini the two integrals can be interchanged:

Ψϕ(g) =
(`− 1)

2πi

∫ σ+i∞

σ−i∞
Mϕ(s)

( ∑
γ∈Γ∞\Γ

η(γg)s
)
ds (with σ > 1)

The inner sum is the Eisenstein series Es(g), so

Ψϕ(g) =
(`− 1)

2πi

∫ σ+i∞

σ−i∞
Mϕ(s) · Es(g) ds (for σ > 1)

Although this does express Ψϕ as a superposition of ∆-eigenfunctions, it is unsatisfactory, because it should
refer to McPΨϕ, not to Mϕ, in order to give a direct decomposition formula for functions in the span of
the pseudo-Eisenstein series.

We want to move the line of integration to the left, to σ = 1/2, stabilized by the functional equation of
Es. From the corollary [1.11.5] to the Maaß-Selberg relations, there are only finitely-many poles of Es in
Re(s) ≥ 1

2 , removing one possible obstacle to the contour move. From the theorem [1.10.1] on meromorphic
continuation, even the meromorphically continued Es(go) is of polynomial growth vertically in s, uniformly in
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bounded strips in s, uniformly for go in compacts. Thus, we may move the contour, picking up finitely-many
residues:

Ψϕ =
(`− 1)

2πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s)Es ds + (`− 1)
∑
so

Mϕ(so) · RessoEs

since the poles of Es are simple and Mϕ is entire. The 1/2πi from inversion cancels the 2πi in the residue
formula. By the adjunction/unwinding property of Ψϕ, on Re(s) = 1

2 ,

〈Ψϕ, Es〉 =

∫
Γ\X

Ψϕ · E1−s =

∫
Γ∞\X

ϕ · cPE1−s =

∫
Γ∞\X

(η1−s + c1−sη
s) · ϕ

=

∫ ∞
0

(η1−s + c1−sη
s) · ϕ(y)

dy

y`
=

∫ ∞
0

(η−s + c1−sη
−(1−s)) · ϕ(y)

dy

y
= Mϕ(s) + c1−sMϕ(1− s)

The integral part of the expression of Ψϕ in terms of Eisenstein series can be folded in half, integrating from
1
2 + i0 to 1

2 + i∞ rather than from 1
2 − i∞ to 1

2 + i∞:

Ψϕ−(residual part) =
(`− 1)

2πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s) ·Es(g) ds =
(`− 1)

2πi

∫ 1
2 +i∞

1
2 +i0

Mϕ(s)Es+Mϕ(1−s)E1−s ds

=
(`− 1)

2πi

∫ 1
2 +i∞

1
2 +i0

Mϕ(s)Es +Mϕ(1− s) c1−sEs ds =
(`− 1)

2πi

∫ 1
2 +i∞

1
2 +i0

〈Ψϕ, Es〉Es ds

by the functional equation and the computation of 〈Ψϕ, Es〉 just above. The integral can be written as an
integral over the whole line Re(s) = 1

2 , by the functional equation of Es and dividing by 2:

Ψϕ − (residual part) =
(`− 1)

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es〉 · Es ds

It remains to explicate the finitely-many residues which appear. The notation is normalized so that in all
these examples there is a pole at s = 1. The coefficient Mϕ(1) is

Mϕ(1) =

∫ +∞

0

ϕ(ay) η−1 dy

y
=

∫ +∞

0

ϕ(ay)
dy

y`
=

∫
Γ∞\X

ϕ(nxay)
dx dy

y`

giving (N ∩ Γ)\N total measure 1. Winding up,

Mϕ(1) =

∫
Γ\H

∑
γ∈Γ∞\Γ

ϕ(γnxay)
dx dy

y`
=

∫
Γ\H

Ψϕ(nxay)
dx dy

y`
=

∫
Γ\H

Ψϕ(nxay)·1 dx dy

y`
= 〈Ψϕ, 1〉

That is,Mϕ(1) is the inner product of Ψϕ with the constant function 1. For Γ = SL2(Z) and Γ = SL2(Z[i]),
special arguments [2.B] easily show that the only pole of Es in the half-plane Re(s) ≥ 1/2 is at so = 1,
is simple, and the residue is a constant function. However, these special arguments do not easily extend
to Sp∗1,1(o) or SL2(o), and, in any case, these are meant to be examples toward a larger context. As the
pseudo-Eisenstein series do, Es fits into an adjunction∫

Γ\X
Es · f =

∫
Γ∞\X

ηs · cP f (for f on Γ\X)

whenever the implied integrals converge absolutely. Via the analytic continuation of Es, the adjunction
asserts that integrals against Eisenstein series are Mellin transforms of constant terms:∫

Γ\X
Es · f =

∫ ∞
0

cP f(ay) ηs
dy

y`
=

∫ ∞
0

cP f(ay) η−(1−s) dy

y
= McP f

(
1− s

)
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Again, at a pole so of Es in Re(s) > 1
2 , cs also has a pole of the same order. Since cs · c1−s = 1, necessarily

c1−s has a zero at so. Thus, from

McPΨϕ(s) = Mϕ(s) + c1−sMϕ(1− s)

at a pole so of Es we have

McPΨϕ(so) = Mϕ(so) + c1−soMϕ(1− so) = Mϕ(so) + 0 · Mϕ(1− so) = Mϕ(so)

That is, the valueMcPΨϕ at so is just the value ofMϕ, so the coefficients appearing in the decomposition
of Ψϕ are intrinsic. Thus, the decomposition above has an intrinsic form as in the statement of the theorem.

///

To have an L2 assertion and Plancherel require somewhat more care in the argument, as in the following
section.

1.13 Plancherel for pseudo-Eisenstein series

A refined form of the previous theorem, proving convergence of the integral as a C∞(Γ\G/K)-valued
integral, from a corresponding result for behavior of Fourier inversion integrals, gives an immediate proof of
a Plancherel theorem for pseudo-Eisenstein series.

[1.13.1] Theorem: (Function-valued form) Let so run over poles of Es in Re(s) > 1
2 . For ϕ ∈ C∞c (N\X) =

C∞c (N\G)K , the pseudo-Eisenstein series Ψϕ is expressible in terms of genuine Eisenstein series, by an
integral converging as a Gelfand-Pettis C∞(Γ\G/K)-valued integral:

Ψϕ =
(`− 1)

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es〉 · Es ds + (`− 1)
∑
so

〈Ψϕ,RessoEs〉 · RessoEs

writing 〈Ψϕ, Es〉 =
∫

Γ\G Ψϕ · Es even though Es is not in L2.

Proof: Let ψξ(x) = eiξx. The integral expressing Fourier inversion for Schwartz functions f on the real line

f(x) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(u) ψξ(u) du
)
ψξ(x) dξ =

1

2π

∫ ∞
−∞

ψξ(x) · f̂(ξ) dξ

does not express f as a superposition of Schwartz functions, but as a superposition of exponentials x→ e2πiξx.
These exponentials are not Schwartz, and are not L2. But the Fourier inversion integral does converge as
a Gelfand-Pettis integral with values in the Fréchet space C∞(R), by [14.3]. Changing coordinates to give
Mellin inversion for functions on (0,+∞) ≈ N\G/K gives convergence as Gelfand-Pettis integral with values
in C∞(0,+∞) ≈ C∞(N\G/K) ⊂ C∞(G), with its Fréchet-space structure as in [13.5].

By the same steps as in the proof of the numerical form of the theorem,

Ψϕ =
(`− 1)

4πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s)Es ds + (`− 1)
∑
so

Mϕ(so) · RessoEs

as a C∞(G)-valued Gelfand-Pettis integral. As in [13.6] and the analogue for G as in [6.2], [6.4], left and
right translation by G are continuous maps on C∞(G), so the linear operators of left translation by Γ and
right translation by K commute with the integral, so the integral converges as a Gelfand-Pettis integral
with values in C∞(Γ\G/K). Similarly, the rearrangement to the statement of the theorem preserves this
convergence. ///

[1.13.2] Corollary: For ϕ,ψ ∈ C∞c (N\G/K) ≈ C∞c (A+) ≈ C∞c (0,+∞),

〈Ψϕ,Ψψ〉 =
(`− 1)

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es〉 〈Ψψ, Es〉 ds + (`− 1)
∑
so

〈Ψϕ,RessoEs〉 · 〈Ψψ,RessoEs〉
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Proof: For f ∈ C∞c (Γ\G/K), the map F →
∫

Γ\G F · f is a continuous linear functional on F ∈ Co(Γ\G/K),

so the Gelfand-Pettis property legitimizes the obvious interchange:

〈Ψϕ, f〉 =
〈 (`− 1)

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es〉Es ds+ (`− 1)
∑
so

〈Ψϕ,RessoEs〉 · RessoEs, f
〉

=
(`− 1)

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es〉 〈f, Es〉 ds +
∑
so

〈Ψϕ,RessoEs〉 · 〈f, RessoEs〉

where 〈Es, f〉 converges because f ∈ Coc (Γ\G/K). Taking f = Ψψ for ψ ∈ C∞c (N\G/K) gives the asserted
equality. ///

This corollary looks like an assertion of a Plancherel theorem, that is, inducing (extending by continuity)
an isometry from the L2 closure of the span of pseudo-Eisenstein series Ψϕ with test function data ϕ to
spaces of functions on 1

2 + iR and a finite-dimensional space generated by residues. What remains to show is
surjectivity to a clearly specified space, and orthogonality of the residues to the integrals on 1

2 + iR, neither
of which is surprising.

[1.13.3] Claim: The residues of Es in Re(s) ≥ 1
2 are in the closure of the space of pseudo-Eisenstein series.

Proof: The residues RessjEs are in L2 by [1.11.5], mutually orthogonal by [1.11.7], and orthogonal to
cuspforms by [1.11.8]. By the adjunction property [1.8.2] they are in the closure of the span of the pseudo-
Eisenstein series. ///

Thus, for test function ϕ and expansion

Ψϕ =
(`− 1)

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es〉 · Es ds + (`− 1)
∑
so

〈Ψϕ,RessoEs〉 · RessoEs

the integral is itself in the closure of the span of the pseudo-Eisenstein series. The functions F on 1
2 + iR

possibly arising as F (s) = 〈Ψϕ, Es〉 are constrained by the functional equation E1−s = c1−sEs:

〈Ψϕ, E1−s〉 = 〈Ψϕ, c1−sEs〉 = c1−s · 〈Ψϕ, Es〉 = cs · 〈Ψϕ, Es〉 (on Re(s) = 1
2 )

Let
V = {F ∈ L2( 1

2 + iR) : F (1− s) = csF (s)}

[1.13.4] Claim: The images 〈Ψϕ, Es〉 ⊕ (. . . , 〈Ψϕ,RessjEs〉, . . .) are dense in V ⊕ Cn.

Proof: The residues are in the closure of pseudo-Eisenstein series, so the integral parts of the spectral
decompositions are in the closure, as well, by subtraction. The remaining question is identification of the
L2 closure of the functions s → 〈Ψϕ, Es〉. Test functions ϕ are dense in the Schwartz space, and the map
ϕ→Mϕ, essentially Fourier transform, is an isomorphism to the Schwartz space on 1

2 + iR, so the images
Mϕ of test functions are dense in that Schwartz space, which is dense in L2. Noting that |cs| = 1 on
Re(s) = 1

2 , the averaging map F (s) −→ F (s)+c1−sF (1−s) is a surjection of L2( 1
2 + iR) to V , so the images

〈Ψϕ, Es〉 =McPΨϕ are dense there, so are dense in V . ///

A typical polarization argument finishes the proof of Plancherel. Recall

[1.13.5] Lemma: Let V be a Hilbert space with subspaces V1 and V2. If |v1 + v2|2 = |v1|2 + v2|2 for every
v1 ∈ V1 and v2 ∈ V2, then V1 and V2 are orthogonal.

Proof: We aim to show that 〈v1, v2〉 = 0. Adjusting v2 by a complex number of absolute value 1, we may
suppose that this inner product is real. Then

4〈v1, v2〉 = |v1 + v2|2 − |v1 − v2|2 = |v1|2 + |v2|2 −
(
|v1|2 + |v2|2

)
= 0

as claimed. ///
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Thus, we can distinguish the residual part of Ψϕ by

ΨR
ϕ = (`− 1)

∑
sj

〈Ψϕ,RessjEs〉 · RessjEs

and the continuous part

ΨC
ϕ = Ψϕ −ΨR

ϕ =
(`− 1)

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es〉 · Es ds

Both parts are in the closure of the images of pseudo-Eisenstein series, from above. Extending by continuity
the relation [1.13.2],

|Ψϕ|2L2 = |ΨC
ϕ |2L2 + |ΨR

ϕ |2L2

and these two parts are orthogonal. We have the corresponding Plancherel theorem:

[1.13.6] Corollary: The map Ψϕ −→ 〈Ψϕ, Es〉 ⊕ (. . . , 〈Ψϕ,RessjEs〉, . . .) with test functions ϕ is an L2

isometry to its image in V ⊕ Cn, and that image is dense in V ⊕ Cn. Extending by continuity gives an
isometry of the L2 closure of the space of Ψϕ’s to V ⊕ Cn. ///

[1.13.7] Remark: Except on smaller subspaces, such as the span of the pseudo-Eisenstein series with test-
function data, the integrals above are not literal, but are the extension-by-continuity of those integrals, as
with Fourier transform and Fourier inversion on L2(R).

1.14 Automorphic spectral expansion and Plancherel theorem

Combining the decomposition of cuspforms and the decomposition of their orthogonal complement: letting
so run over the poles of Es in Re(s) > 1

2 , and letting F run over an orthonormal basis for the space of
cuspforms on Γ\G/K,

[1.14.1] Corollary: Functions f ∈ L2(Γ\G/K) have expansions

f =
∑

cfm F

〈f, F 〉 · F +
(`− 1)

4πi

∫ 1
2 +i∞

1
2−i∞

〈f,Es〉 · Es ds+ (`− 1)
∑
so

〈f,RessoEs〉 · RessoEs

and Plancherel

|f |2L2(Γ\X) =
∑

cfm F

|〈f, F 〉|2 +
(`− 1)

4π

∫ ∞
−∞
|〈f,Es〉|2 dt+ (`− 1)

∑
so

|〈f,RessoEs〉|2

where integrals involving Eisenstein series are isometric extensions, as in the previous section. ///

Again, although the discrete part of the expansion converges in a straightforward L2 sense, the
continuous/Eisenstein part only makes sense as an isometric extension of literal integrals. Nevertheless,
the Plancherel theorem is a literal equality.

The factor of (`− 1) is purely artifactual, and could be normalized away.
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1. Four small examples

1.15 Exotic eigenfunctions, discreteness of pseudo-cuspforms

An important variant approach both to the discrete decomposition of the space of cuspforms as above,
and to the meromorphic continuation of Eisenstein series, as in [11.5], is the decomposition of spaces of
pseudo-cuspforms

L2
b(Γ\G/K) = {f ∈ L2(Γ\G/K) : cP f(ay) = 0 for y > b} (for fixed b ≥ 1)

with respect to a self-adjoint operator [16] ∆̃b closedly related to ∆, but subtly different. For any b > 0,
the corresponding space of pseudo-cuspforms contains the space of genuine cuspforms L2

o(Γ\G/K). This

operator ∆̃b is a pseudo-Laplacian. The basic, surprising result is

[1.15.1] Theorem: L2
b(Γ\G/K) is a direct sum of eigenspaces for the pseudo-Laplacian ∆̃b, each of finite

dimension. In particular, ∆̃b has compact resolvent. (Proof in [10.3].)
Without further information, this does not instantly prove that the subspace consisting of genuine

cuspforms decomposes discretely for ∆̃b, because the description [9.2] of the domain ∆̃b puts technical
requirements on possible eigenfunctions.

In any case, for b � 1, the space L2
b(Γ\G/K) contains many functions not in the space of genuine

cuspforms, for example, pseudo-Eisenstein series Ψϕ with data ϕ supported in the interval [1, b]. As in [1.12],
these are expressible as integrals of genuine Eisenstein series. However, by the theorem, apparently these
pseudo-Eisenstein series are (infinite) sums of L2-eigenfunctions for ∆̃b orthogonal to cuspforms. Further,
truncations ∧bEso of genuine Eisenstein series are square-integrable, by [1.11.3] or [1.11.4], for any so ∈ C
away from the poles of s→ Es. By [1.12], these truncations are expressible as integrals of genuine Eisenstein

series, but, by the theorem here, are also infinite sums of L2-eigenfunctions for ∆̃b. Thus, evidently, there
are many exotic eigenfunctions for ∆̃b, pseudo-cuspforms in a strong sense. Indeed,

[1.15.2] Corollary: The eigenfunctions for ∆̃b in L2
b(Γ\G/K) with eigenvalues λ = s(s − 1) < −1/4 are

exactly the truncated Eisenstein series ∧bEs with cPE(ab) = 0. (Proof in [10.4].)
These particular truncated Eisenstein series are indeed not smooth. The slightly non-intuitive nature of

the operator ∆̃b explains the situation, in [10.4]. For example, in addition to meeting the Gelfand condition
of constant-term vanishing about height b:

[1.15.3] Corollary: An L2-eigenfunction u for ∆̃b with eigenvalue λ satisfies (∆̃b−λ)u = 0 locally at heights
above b. ///

[16] This ∆̃b is the Friedrichs self-adjoint extension [9.2] of the restriction of the unbounded operator ∆ to the test

functions C∞c (Γ\G/K) ∩ L2
b(Γ\G/K) in the space L2

b(Γ\G/K) of pseudo-cuspforms.
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2. The quotient Z+GL2(k)\GL2(A)

1. Groups Kv = GL2(ov) ⊂ Gv = GL2(kv)
2. Discrete subgroup GL2(k) ⊂ GL2(A), reduction theory
3. Invariant measures
4. Hecke operators, integral operators
5. Decomposition by central characters
6. Discrete decomposition of cuspforms
7. Pseudo-Eisenstein series
8. Eisenstein series
9. Meromorphic continuation of Eisenstein series
10. Truncation and Maaß-Selberg relations
11. Decomposition of pseudo-Eisenstein series: level one
12. Decomposition of pseudo-Eisenstein series: higher level
13. Plancherel for continuous/Eisenstein spectrum: level one
14. Spectral expansion, Plancherel theorem: level one
15. Exotic eigenfunctions, discreteness of pseudo-cuspforms
Appendix A: compactness of J1/k×

Appendix B: meromorphic continuation
Appendix C: Hecke-Maaß periods of Eisenstein series

This chapter treats a slightly less elementary example, automorphic forms on GL2(k)\GL2(A) for a
number field k. The shape of the group elements is still two-by-two matrices, but the contents are not
the purely archimedean R,C,H of the previous chapter, now involving p-adic and adelic scalars. Among
several advantages, this viewpoint consistently maintains the unicuspidality of the quotient. In contrast, a
classical approach to congruence subgroups of SL2(Z) apparently produces an ever-growing number of cusps,

and for Hilbert-Blumenthal groups GL2(o) for rings of integers o of totally real [17] number fields k, even
at level one, the number of cusps is a class number. Miraculously, in the adelic formulation, there is only
one cusp, regardless of class number or congruence conditions. That is, a single adelic Siegel set covers the
quotient, as below in [2.2].

In fact, very little subtle information about p-adic numbers or adeles or ideles is used. For most purposes,
it is merely the shape of matrices that matters, or their structural role, so things can be cast in a form
that scarcely refers to details of the distinctions. The significant result is the compactness of J1/k×, in the
appendix [2.A]. Earlier in the chapter, we prove p-adic and archimedean Iwasawa and Cartan decompositions
from the most basic features of completions of number fields, with the incidental goal of practicing the relevant
physical intuition and noting the truly relevant aspects.

Another point of this example is to accommodate more complicated data in Eisenstein series. With
or without congruence conditions, number fields beyond Q have non-trivial grossencharacters (Hecke
characters), and apart from complex quadratic extensions there are always unramified grossencharacters.
For non-trivial ideal class groups, there are non-trivial ideal class characters. Using GL2(A) unifies these
seemingly disparate features. Thus, the decomposition [2.11-2.12] of pseudo-Eisenstein series involves not
only the continuous parameter s, but at least one discrete parameter χ running through grossencharacters
with various constraints on ramification. Further, congruence conditions specify further data in Eisenstein
series. The functional equation(s) of Eisenstein series will no longer relate one Eisenstein series to itself under
s→ 1− s, but must tell how the further data transforms. Suggested by physical analogues, the description
of the transformation of the further data is often called a scattering matrix or scattering operator.

Most of the analytical archimedean issues in later chapters are already well illustrated by the previous
chapter. The present chapter illustrates interaction of those archimedean issues with p-adic.

[17] A finite extension k of Q is totally real when all archimedean completions are isomorphic to R, rather than to C.
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2. The quotient Z+GL2(k)\GL2(A)

2.1 Groups Kv = GL2(ov) ⊂ Gv = GL2(kv)

Throughout this chapter, k is a number field. [18] Let o be its ring of algebraic integers. Denote the various
archimedean and p-adic (non-archimedean) completions by kv, where v < ∞ means non-archimedean, and
v|∞ means archimedean. For non-archimedean v, let ov be the local integers. Normalize all the norms | · |v
so that the product formula

∏
v |t|v = 1 holds for t ∈ k×, preferably by taking the norm in kv to be the

composition of the Galois norm to the corresponding completion Qp of Q and then the standard p-adic norm
on Qp, by |t|v = |Nkv/Qpt|p, and similarly for archimedean places. When useful, $v will be a local parameter
at a non-archimedean place v, that is, a prime element in ov. Let A, J be the adeles and ideles of k.

Let Gv = GL2(kv). Let Zv be the center of Gv. Temporarily let r be the number of non-isomorphic
archimedean completions of k, thus not counting a complex completion and its conjugate as 2, but just 1.
That is, [k : Q] = r1 + 2r2 where r1 is the number of real completions, and r2 the number of complex, and
r = r1 + r2. Let Z+ be the positive real scalar matrices diagonally imbedded across all archimedean v, by
the map

δ : t −→ (. . . , t1/r, . . .) (for t > 0)

This map δ gives a section of the idele norm map |t| =
∏
v |tv|v, in that |δ(t)| = t. As usual, let

Pv = {
(
∗ ∗
0 ∗

)
∈ Gv} Nv = {

(
1 ∗
0 1

)
∈ Gv} Mv = {

(
∗ 0
0 ∗

)
∈ Gv}

We have already noted the compact subgroups Kv ≈ SO2(R) ⊂ SL2(R) and Kv ≈ SU(2) ⊂ SL2(C) for
archimedean completions kv ≈ R and kv ≈ C, and the corresponding Iwasawa decompositions [1.3].

[2.1.1] Claim: For v <∞, the subgroup

Kv = GL2(ov) = {two-by-two matrices with entries in ov and determinant in o×v }

is a compact, open subgroup of Gv = GL2(kv). We have Iwasawa decomposition

Gv = Pv ·Kv = Nv ·Mv ·Kv

and Cartan decomposition
Gv = Kv ·Mv ·Kv

Proof: The local fields kv are finite-dimensional vectorspaces over respective Qp and R, so are locally compact.
For non-archimedean v, the local integers are both closed and open:

ov = {x ∈ kv : |x|v ≤ 1} = {x ∈ kv : |x|v < |$−1|v}

Similarly for the local units:

o×v = {x ∈ kv : |x|v = 1} = {x ∈ kv : |$v|v < |x|v < |$−1|v}

From this, the conditions defining the subgroups Kv are both open and closed. Since Kv is a closed subset
of the compact set

{
(
a b
c d

)
: a, b, c, d ∈ ov} ≈ ov × ov × ov × ov

it is compact. Given

(
a b
c d

)
∈ Gv, either |c|v ≥ |d|v or |c|v ≤ |d|v, so either d/c ∈ ov or c/d ∈ ov,

respectively. Thus, either(
a b
c d

)
·
(
−d/c 1

1 0

)
=

(
∗ ∗
0 ∗

)
(when

(
−d/c 1

1 0

)
∈ Kv)

[18] The potential conflict with k being an element of a compact subgroup K is avoidable only by other notational

infelicities.
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or (
a b
c d

)
·
(

1 0
−c/d 1

)
=

(
∗ ∗
0 ∗

)
(when

(
1 0
−c/d 1

)
∈ Kv)

giving the Iwasawa decomposition.
The Cartan decomposition is a corollary of the structure theorem for finitely-generated modules over a

principal ideal domain such as ov, as follows. Given g ∈ Gv, multiply by a scalar matrix (in Mv) so that all
entries of the modified g are in ov. (Of course, this does not at all assure that the determinant is in o×v .)
The columns of such g generate a rank-two ov-submodule V of o2

v. By the structure theorem, there is an
ov-basis f1, f2 for o2

v and d1, d2 in ov such that V = ovd1f1 + ovd2f2. Since {djfj} is another ov-basis for
V , there is h ∈ Kv expressing the two columns of g as ov-linear combinations of d1f1, d2f2 (and vice-versa).
That is, in terms of matrix multiplication, writing d1f1, d2f2 as column vectors,(

a b
c d

)
=
(
d1f1 d2f2

)
· h

At the same time, there is h′ ∈ Kv such that h′e1 = f1 and h′e2 = f2, where {ej} is the standard ov-basis
for o2

v. Thus, (
a b
c d

)
= h′ ·

(
d1 0
0 d2

)
· h

giving the p-adic Cartan decomposition. ///

Unlike the archimedean situation, the compact Kv has substantial intersections with both Nv and Mv, so
with Pv. Indeed, since kv is an ascending union kv =

⋃
`≥0$

−` · ov, the subgroup Nv is an ascending union
of compact, open subgroups:

Nv =
⋃
`≥0

(
1 $−`v ov
0 1

)
Again unlike the archimedean situation, Kv has a neighborhood basis at 1 consisting of compact, open
subgroups, namely, the (local) principal congruence subgroups

Kv,` = {
(
a b
c d

)
∈ GL2(ov) : a = 1 mod $`, b = 0 mod $`, c = 0 mod $`, and d = 1 mod $`}

The corresponding adele group is GA = GL2(A), meaning two-by-two matrices with entries in A, with
determinant in the ideles J. This group is also an ascending union (colimit) of products

GS =
∏
v∈S

Gv ×
∏
v 6∈S

Kv (S a finite set of places v, including archimedean places)

ordering finite sets S (of places v) by containment. Similarly, PA, MA, NA, and ZA are the adelic forms
of those groups, that is, obtained by allowing entries in A, or, equivalently, as colimits of products of
local groups. Let KA =

∏
vKv ⊂ GA. Let δ : (0,∞) → J the usual diagonal imbedding of (0,∞) to

the archimedean component of the ideles by δ(t) = (. . . , t1/dv , . . .) where dv is the local degree, so that
δ : (0,∞)→ J gives a one-sided inverse to the idele norm |α| =

∏
v≤∞ |α|v. Then

ZA/Z
+Zk ≈ J/δ(0,∞) · k× ≈ J1/k× = compact

where Zk is invertible scalar matrices with entries in k. The compactness is non-trivial [2.A], but standard.
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2. The quotient Z+GL2(k)\GL2(A)

2.2 Discrete subgroup GL2(k) ⊂ GL2(A), reduction theory

Let Gk = GL2(k), Pk, Mk, Nk be the groups with entries in k. Here we demonstrate that a single (adelic)
Siegel set surjects to the quotient Gk\GA, and that (adelic) Siegel sets behave well. First,

[2.2.1] Claim: Gk is a discrete subgroup of GA.

Proof: To show that a subgroup of a topological group is discrete, it suffices to show that there is a
neighborhood of the identity containing no element of the subgroup except 1, since multiplication U → gU
is homeomorphism of neighborhoods U of 1 to neighborhoods gU of g.

We do this in two steps. First, the subgroup H =
∏
v|∞Gv ×

∏
v<∞Kv is an open neighborhood of

1 ∈ GA, so it suffices to show that the group Gk ∩ H is discrete. The condition on H is that entries are
locally integral at all finite places, and the determinants are local units. An element of k that is a local
integer everywhere is an integer, and an element of k× that is a local unit everywhere is a unit in o×. Thus,
Gk ∩ H = GL2(o), and it suffices to show that the projection of GL2(o) to G∞ =

∏
v|∞Gv is discrete in

the latter. The topology on G∞ is the subspace topology from the real vectorspace of 2-by-2 matrices with
entries in k∞ =

∏
v|∞ kv, which itself has the product topology. From classical algebraic number theory, o

is discrete in k∞, giving the discreteness. ///

On some occasions, one uses

G1 = {g ∈ GA : |det g| = 1}

noting that GA = Z+ × G1. The product formula
∏
v≤∞ |t|v = 1 for t ∈ k× shows that Gk ⊂ G1. In

particular, Gk is still discrete in Z+\GA ≈ G1.
Now define local and global height functions hv and h. For v-adic completion kv ≈ R, let hv be the usual real

Hilbert-space norm on k2
v ≈ R2. To accommodate the product formula, for kv ≈ C, let hv be the square of the

usual complex Hilbert-space norm on k2
v ≈ C2. For kv non-archimedean, let hv(x1, x2) = max{|x1|v, |x2|v}.

Put h(x) =
∏
v≤∞ hv(x). There is good behavior under scalar multiplication, via the product formula: for

t ∈ k×,

h(t · x) =
∏
v≤∞

hv(t · x) =
∏
v≤∞

|t|v · hv(x) =
∏
v≤∞

|t|v ·
∏
v≤∞

hv(x) = 1 ·
∏
v≤∞

hv(x)

Sufficient conditions are given below for finiteness of the product. By design, the isometry groups of the
height functions hv are the compact subgroups Kv already specified.

For each prime v the group Kv is transitive on the collection of vectors in k2
v with given norm: at

archimedean places, this is because all vectors of a given length can be rotated to each other, while at
non-archimedean places the suitable analogue of length is greatest common divisor.

Let Gk, Pk, Nk,Mk, Zk be the corresponding groups of matrices with entries in k, and use subscript A to
denote the adelic points.

Now we identify a class of vectors with finite height. First, given x ∈ k2 − {0}, for all but finitely-many
v the components of the vector x are all v-integral, and generate the local integers ov. In particular, for all
but finitely-many v the vth local height hv(x) of x ∈ kr is 1, and the infinite product for h(x) is a finite
product. Write vectors as row vectors, and let GA = GL2(A) act on the right by matrix multiplication. A
non-zero vector x ∈ A2 is primitive when x ∈ (k2 − {0}) ·GA.

[2.2.2] Theorem: For fixed g ∈ GA and for fixed c > 0,

card
(
k×
∖{

x ∈ k2 − {0} : h(x · g) < c
})

< ∞

For compact C ⊂ GA there are positive implied constants such that

h(x) �C h(x · g) �C h(x) (for all g ∈ C, for all primitive x)

Proof: Fix g ∈ GA. Since K = KA =
∏
vKv preserves heights, via Iwasawa decompositions locally

everywhere, we may suppose that g is in the group PA of upper triangular matrices in GA. Choose
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representatives x = (x1, x2) for non-zero vectors in k×\k2 either of the form x = (1, x2) or x = (0, 1).
There is just one vector of the latter shape, so we consider x = (1, x2):

x · g = (1 x2)

(
a b
0 d

)
= (a b+ x2d) (for g =

(
a b
0 d

)
)

At each place v, including archimedean ones, max(|a|v, |b+ x2d|v) ≤ hv(xg), so

|b+ x2d|v
∏
w 6=v

|a|w ≤
∏
all w

hw(xg) = h(xg)

Since g is fixed, a is fixed, and at almost all places |a|w = 1. Thus, for h(xg) < c,

|b+ x2d|v < c ·
( ∏
w 6=v

|a|w
)−1

�g,c 1 (for fixed g, for x with h(xg) < c, for all places v)

For the product formula to hold we are using the normalization of norms that |$v| = q−1
v , where $v is a local

parameter at v and qv is the residue field cardinality at v. There are only finitely-many places v with residue
field cardinality less than a given constant, so, in fact, |b+ x2d|v ≤ 1 for v outside a finite set depending on
g and c. Therefore, b+ x2d lies in a compact subset Ω of A depending on g, c. Since b, d are fixed, and since
k is discrete (and closed by [1.5.3]) in A, the collection of images {b + x2d : x2 ∈ k} is discrete in A. The
intersection of a closed, discrete set and a compact set is finite, so collection of x2 ∈ k so that b+ x2d lies in
Ω is finite, proving the first assertion.

For the last assertion, use the Cartan decompositions Gv = Kv · Mv · Kv from [2.1]. The map
θ1 × m × θ2 −→ θ1mθ2, with θ1, θ2 ∈ Kv and m ∈ Mv, is not an injection, so we cannot immediately
infer that for a given compact C ⊂ Gv the set

{m ∈Mv : for some c ∈ C, c ∈ KvmKv}

is compact. Since Kv is compact, C ′ = Kv · C · Kv is compact, and now θ1mθ2 ∈ C ′ with θi ∈ Kv

implies m ∈ C ′ ∩ Mv, which is compact. Thus, any compact subset of GA is contained in a set
{θ1mθ2 : θ1, θ2 ∈ K,m ∈ CM} with compact CM ⊂ MA. Since K preserves heights and since the set
of primitive vectors is stable under K, the set of values {h(xg)/h(x) : x primitive, g ∈ C} is contained in a
set {h(xδ)

h(x)
: x primitive, m ∈ CM

}
for some compact CM ⊂M . Letting the diagonal entries of m be mi,

0 < inf
m∈CM

inf
i
|mi| ≤

h(xm)

h(x)
≤ sup

m∈CM
sup
i
|mi| < +∞

This gives the desired bound. ///

To compare to the purely archimedean height functions η used in the four earlier examples, for g upper-
triangular,

hv

(
(0 1) ·

(
a b
0 d

))
= hv

(
0 d
)

= |d|−1
v

For example, with kv ≈ R, for g = nxay =

(
1 x
0 1

)(√
y 0

0 1/
√
y

)
∈ SL2(R),

hv
(
(0 1) · g

)
= hv

(
0

1
√
y

)
=

1
√
y
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2. The quotient Z+GL2(k)\GL2(A)

However, we want local height functions which are right Kv-invariant and

ηv

(
a b
0 d

)
=
∣∣∣a
d

∣∣∣
v

so put

ηv(g) = |det g|v · hv
(
(0 1) · g

)−2
((for g ∈ Gv))

and η(g) =
∏
v ηv(g). This matches earlier use for SL2(R). Left multiplication by γ ∈ Gk does not change

|det g| (with idele norm), because of the product formula:

|det(γg)| = |det γ · det g| = |det γ| · | det g| = 1 · | det g|

[2.2.3] Lemma: η is left Pk-invariant, and ZA-invariant.

Proof: Via the product formula, with p =

(
a b
0 d

)
∈ Pk,

η(p · g) = |det pg| · h
(
(0 1) · pg

)−2
= |det pg| · h

(
(0 d) · g

)−2

= |det p| · | det g| · |d| · h
(
(0 1) · g

)−2
= |det g| · h

(
(0 1) · g

)−2

For the center-invariance, with z =

(
t 0
0 t

)
∈ ZA,

η(z · g) = |det zg| · h
(
(0 1) · zg

)−2
= |det zg| · h

(
(0 t) · g

)−2

= |t2| · | det g| · |t|−2 · h
(
(0 1) · g

)−2
= |det g| · h

(
(0 1) · g

)−2

as claimed. ///

[2.2.4] Corollary: For fixed g ∈ GA, there are finitely-many γ ∈ Pk\Gk such that η(γ · g) > η(g).

Proof: There is a natural bijection

k×\(k2 − {0}) ←→ Pk\Gk by k× · (c d) ←→ Pk ·
(
∗ ∗
c d

)
for any invertible matrix with bottom row (c d). Indeed, Gk is transitive on non-zero vectors, and Pk is the
stabilizer, acting on the right, of the line (minus a point) (0 ∗) = k× · {(0 1)}. The theorem shows that
there are finitely-many x ∈ k×\(k2 − {0}) such that h(xg) < c, that is, such that h(xg)−1 > c−1. Since
|det g| is Gk-invariant, the bijection just demonstrated gives the assertion of the corollary. ///

[2.2.5] Corollary: supγ∈Gk η(γ · g) <∞, and the sup is attained, and

Gk · {g ∈ GA : η(g) ≥ η(γ · g) for all γ ∈ Gk} = GA

Proof: The previous corollary shows that the sup is finite and that the sup is attained. Thus, the indicated
set is a (possibly redundant) collection of representatives for all orbits, by choosing group elements attaining
the sup in their Gk-orbit. ///

Critical in legitimizing treatment of truncated Eisenstein series:

[2.2.6] Corollary: Given to > 0, there is t1 � 1 such that, for η(g) ≥ t1, if η(γ · g) ≥ to then γ ∈ Pk.

Proof: It suffices to take g = nm since η is right KA-invariant, invoking Iwasawa. Since η is ZA-invariant

it suffices to consider m =

(
m1 0
0 1

)
. Adjusting on the left by Mk, by the compactness lemma [2.A], we

can take m1 of the special form m1 = mo · δ(t) for t > 0 and mo in a sufficiently large compact subset of
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J, where δ : (0,+∞) → J imbeds the ray (0,∞) at archimedean places. Take compact C ⊂ NA such that
Nk · C = NA. For v ∈ k2 − {0},

h(v · nm) = h(v ·m ·m−1nm)

For m of the special sort indicated, given t1 > 0, there is compact C ′ ⊂ NA such that if η(m) = |m1/m2| ≥ t1,
then m−1Cm ⊂ C ′. Let (c d) ∈ k2 − {0}. From the second assertion of the theorem, there are constants
depending only on C ′ such that, for all (primitive) x = v ·m,

h(v ·m) = h(x) �C′ h(x · n) �C′ h(x) = h(v ·m) (for all n ∈ C ′)

Thus, it suffices to treat simply g = m. In that case, with v = (c d) with c 6= 0,

h(v ·m) = h((c d) ·m) = h(cm1 d) ≥ |cm1| = |c| · |m1| = |m1|

by the product rule, since c ∈ k×. Thus, with γ =

(
a b
c d

)
∈ Gk, but not in Pk,

η(γ ·m) =
|det γm|

h((c d) ·m)2
=

|m1|
h((c d) ·m)2

≤ |m1|
|m1|2

=
1

|m1|

With whatever constants are implied in the simplifications in the first part of the proof, a sufficiently high
lower bound η(m) = |m1| ≥ t1 assures that η(γ ·m) is below to. ///

An element g ∈ GA such that η(g) ≥ η(γ · g) for all γ ∈ Gk is reduced. Given the above preparation, as an
application of Dirichlet’s pigeon-hole principle, after Minkowski, we can prove

[2.2.7] Theorem: There is a constant to > 0 depending on k such that η(g) ≥ to for reduced g ∈ GA,

Proof: Since heights are right K-invariant, take g = nm with n = nx ∈ NA and m ∈ MA. Adjusting by the
center, take

m =

(
y 0
0 1

)
n = nx =

(
1 x
0 1

)
with y ∈ J, x ∈ A. Let J1 be the ideles of idele-norm 1, and let δ : (0,+∞)→ J by

δ(y∞) = (y
1
n∞, . . . , y

1
n∞, 1, 1, 1, . . .) (where, temporarily, n = [k : Q])

with non-trivial values at the archimedean components. Then J = J1 × δ(0,+∞). Let U =
∏
v|∞ k×v ×∏

v<∞ o×v . The quotient k×\J1 is compact, by [2.A], so k×\J1/U is finite.

Thus, adjusting on the left by {
(
m1 0
0 1

)
: m1 ∈ k×} and on the right by {

(
m1 0
0 1

)
: m1 ∈ U},

we can suppose that y = δ(y∞) · θ with y∞ ∈ (0,+∞) and θ in a finite list Θ of finite ideles, essentially
representatives for the ideal class group. We can take θ ∈ Θ everywhere locally integral at finite places.
Write

m = m∞ ·mfin with m∞ =

(
δ(y∞) 0

0 1

)
mfin =

(
θ 0
0 1

)
For fixed θ ∈ Θ, with

Vθ = θ
( ∏
v<∞

ov

)
θ−1 Uθ = mfin

(
NA ∩

∏
v<∞

Kv

)
m−1

fin

we have

Uθ = {
(

1 u
0 1

)
: u ∈ Vθ}

Let A∞ = k ⊗Q R be the archimedean component of the adeles. For each fixed θ ∈ Θ, acting on nx on the
left by Nk is equivalent to adjusting x ∈ A by k. By additive approximation, we can adjust x by k to be in
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2. The quotient Z+GL2(k)\GL2(A)

A∞ + Vθ. Right multiplication of nxm by NA ∩
∏
v<∞Kv is equivalent to adjusting x by Vθ. Thus, without

loss of generality, x ∈ A∞. None of these adjustments changed the height η(nm).
The inequality

h((0 1) · nm) ≤ h((1 − α) · nm)

holds for every α ∈ k, by the reduced property of g = nm. Letting hfin =
∏
v<∞ hv and h∞ =

∏
v|∞ hv, since

(0 1) is fixed by

(
∗ ∗
0 1

)
,

1 = h((0 1) · nm) ≤ h∞(δ(y∞), x− α∞) · hfin(θ, −αfin)

where α∞ and αfin are the projections to the archimedean and finite components of the adeles. This is

1

hfin(θ, −αfin)
≤

∏
v|∞

(
|y∞|2/dvv + |xv − αv|2/dvv

)dv/2
where dv is the local degree at the vth archimedean place. We want to use Dirichlet’s principle to choose
α ∈ k so that |xv − αv|v is much smaller than hfin(θ, −αfin), thereby to give a lower bound on y∞.

Choose a Z-basis ω1, ω2, . . . for o, and put

F = {
∑
j

rj · ωj : each 0 ≤ rj < 1} ⊂ A∞

Thus, given x ∈ A∞, there is β ∈ o such that x − β ∈ F . For fixed large 1 ≤ ` ∈ Z, for each integer
1 ≤ a ≤ `[k:Q] + 1, let b = ba ∈ o such that ax − b ∈ F . Since F is a disjoint union of `[k:Q] translates of
`−1F , by the pigeon-hole principle there are a, b and a′, b′ such that (ax− b)− (a′x− b′) ∈ `−1F . Thus,

x− b− b′

a− a′
∈ 1

`(a− a′)
· F

Put p = b − b′ ∈ o, q = a − a′ ∈ Z, and α = p/q. Without loss of generality, q > 0. With

µ = supx∈F, v|∞ |xv|
2/dv
v , we have

1

hfin(θ, −pq )
≤

∏
v|∞

(
y2
∞ +

µ

(` · q)2

)dv/2
=

(
y2
∞ +

µ

(` · q)2

)[k:Q]/2

Now

hfin(θ, −p
q

) ≤
∏
v<∞

max
{
|θv|v,

∣∣p
q

∣∣
v

}
≤

∏
v<∞

max
{
|θv|v, 1

}
·
∏
v<∞

max
{

1,
∣∣1
q

∣∣
v

}
= qn

since θ ∈ Θ is everywhere locally integral. Then

1

qn
≤

(
y2
∞ +

µ

(` · q)2

)n/2
or

1

q2
≤ y2

∞ +
µ

(` · q)2

Since 1 ≤ q ≤ `n, this implies

1

`2n
·
(

1− µ

`2

)
≤ 1

q2
·
(

1− µ

`2

)
≤ y2

∞

Taking `2 ≥ 2µ gives a uniform positive lower bound y∞ ≥ t1 = 1
2`2 > 0. For each of the finitely-many

θ ∈ Θ,
η(m) = η(m∞ ·mfin) = η(δ(y∞)) · η(θ) = yn∞ · η(θ) ≥ tn1 ·min θ∈Θη(θ)
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That is, every reduced g ∈ GA has η(g) bounded from below by that (positive) quantity. ///

For compact C ⊂ NA and t > 0, the corresponding Siegel set is

SC,t = {nmk : n ∈ C, k ∈ KA, |m1/m2| ≥ t} (where m =

(
m1 0
0 m2

)
)

[2.2.8] Corollary: Let C be any compact subset of NA sufficiently large so that Nk · C = NA. With to as
in the theorem, SC,to surjects to the quotient Gk\GA. That is, Gk ·SC,to = GA.

Proof: The theorem asserts that S = {g : η(g) ≥ to} surjects to Gk\GA. The set S is left Pk-invariant
and left NA-invariant. Thus, we can certainly adjust on the left by Nk so that with g ∈ nmK in Iwasawa
coordinates n ∈ C. ///

2.3 Invariant measures

We seldom need explicit formulaic evaluation of integrals on groups Gv = GL2(kv) or their subgroups.
Rather, qualitative features of the invariant integrals, such as uniqueness and unwinding properties, play the
main roles.

Locally, from [14.4], up to scalar multiples there is a unique right Gv-invariant measure on Gv, left Pv-
invariant measure on Pv, and (left and right) Kv-invariant measure on Kv, for each place v. Even though
Pv ∩Kv is non-trivial, given any two of the scalar multiple choices, the third is determined, so that∫

Gv

f =

∫
Pv

∫
Kv

f(ph) dp dh

The idea of the proof from [5.2] and [14.4] is that the group H = Pv × Kv acts transitively on Gv by
(p × k)(g) = p−1gk, with isotropy group Pv × Kv at 1 ∈ Gv. Since the modular function of Pv × Kv is
inevitably trivial on the compact Pv∩Kv, there is a unique H-invariant measure on Gv ≈ (Pv∩Kv)\(Pv×Kv).
Since the (left and right) Gv-invariant measure is such, these must be the same, by uniqueness. For example,
for f right Kv-invariant,∫

Gv

f =

∫
Pv

f(p) dp (f right Kv-invariant, left Pv-invariant measure dp on Pv)

Even more simply, Pv = NvMv ≈ Nv ×Mv has a left (or right) invariant measure given by the product of
the invariant measures on Nv and Mv. Archimedean examples were already considered in [1.6], and p-adic
examples below.

Similarly, globally, there is a unique right GA-invariant measure on GA, ZA\GA, and Z+\GA. Given
these, there are unique right GA-invariant measures on Gk\GA, ZAGk\GA, and Z+Gk\GA such that the
corresponding unwindings are correct: for example,∫

Z+GA
f =

∫
Z+Gk\GA

( ∑
γ∈Gk

f ◦ γ
)

(for every f ∈ Coc (Z+GA))

Comparisons between global integrals and products of local integrals are as expected: for f(g) =
∏
v fv(gv)

in Coc (GA) expressible as a product of functions fv ∈ Coc (Gv), up to a scalar depending on all the
normalizations, ∫

GA
f =

∏
v

∫
Gv

fv

despite the fact that the adele group GA is not the product of the local groups Gv, but only the colimit of
the products GS =

∏
v∈S Gv×

∏
v 6∈S Kv. Indeed, in practice fv will be Kv-invariant for all but finitely-many

v, so ∫
GA

f = lim
S

∫
GS

f = lim
S

(∏
v∈S

∫
Gv

fv ·
∏
v 6∈S

∫
Kv

fv

)
= lim

S

( ∏
v∈S

∫
Gv

fv · 1
)

=
∏
v∈S

∫
Gv

fv
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2. The quotient Z+GL2(k)\GL2(A)

Nevertheless, on some occasions explicit computations are useful or necessary. Measures and integrals on
R and C are familiar. On Qp and its finite extensions, somewhat less so. However, the totally-disconnected
nature of Qp and finite extensions makes measure and integration simpler, at least for nice functions. We
treat Qp, and every non-archimedean kv is a finite cartesian product of such. We do not need to prove
uniqueness, since this follows for general reasons [14.4].

To give a (regular, Borel) measure it suffices to tell the measure of every open. Since Qp is a group whose
group operation and inversion are continuous, for an invariant measure it suffices to tell the measure of a
local basis at 0, since every translate (coset!) of a given basis element must have the same measure. Such
a basis is p`Zp. Since these are subgroups, we can easily compare them: for 1 ≤ ` < `′ the subgroup p`

′Zp
is of index p`

′−` in p`Zp. The ratio of measures must be the index. Thus, normalizing everything by taking
the measure of Zp to be 1, the measure of p`Zp is its index in Zp, namely, p−`. Larger opens are unions of
translates of sets p`Zp. This gives the standard additive Haar measure on Qp for p <∞.

On finite extensions kv of Qp, the same process produces an additive Haar measure giving ov total measure
1. For kv/Qp unramified, this is almost always a good normalization. However, for kv/Qp ramified, other
choices may have advantages, for example with respect to local Fourier transforms.

A multiplicative Haar measure d×x on Q×p can be arranged from the additive d+x, much as for R× or C×,

namely, d×x = d+x/|x|v. However, this gives the local units Z×p measure p−1
p , not 1. Since Z×p is the unique

maximal compact subgroup of Q×p , we might prefer to give the local units measure 1. A similar device applies
to kv for v <∞. In practice, the superscripts are not used, because context explains and determines which
measure is meant.

SinceNv ≈ kv, the invariant measure onNv is just the additive Haar measure from kv. SinceMv ≈ k×v ×k×v ,
a product of multiplicative Haar measures is the invariant measure.

Much as in the archimedean cases considered earlier, a left-invariant measure on Pv = NvMv is

d(nm) = dn dm/|α(m)|v, where α

(
m1 0
0 m2

)
= m1/m2. That is,

d
(( 1 x

0 1

)(
m1 0
0 m2

))
=

d+x d×m1 d
×m2

|m1/m2|v
=

d+x d+m1 d
+m2

|m1|2v

[2.3.1] Claim: Quotients Z+Mk\SC,t of Siegel sets have finite volume.

Proof: The notation has compact C ⊂ NA and t > 0. Letting KA =
∏
v≤∞Kv, up to normalization,∫

Z+Mk\SC,t
1 dg =

∫
C

1 dn ·
∫
Z+Mk\MA

1
dm

|α(m)|
·
∫
K

1 dk �
∫
Z+Mk\MA

1
dm

|α(m)|

Further, Mk\MA ≈ (k×\J) × (k×\J), and the integrand is MA ∩ KA-invariant. By [2.A], the group k×\J
has compact subgroup k×\J1, on which |α(m)| is trivial, and k×\J ≈ δ(0,∞) × k×\J1. For brevity, write
R+ = δ(0,∞). In effect, Z+ is the diagonal copy of R+ in J× J. Thus,

Z+Mk\MA ≈ Z+\
(

(R+ × k×\J1)× (R+ × k×\J1)
)

so, the further quotient by the kernel of m → |α(m)| has representatives ay =

(
δ(y) 0

0 1

)
for y > 0. We

have |α(ay)| = y[k:Q] for y > 0. Thus, up to normalization, the integral is∫
y≥t

1
dy/y

y[k:Q]
< ∞

The quotient Mk\SC,t without that further quotient by Z+ will not have finite volume, because J/k× is
non-compact. ///

Thus,

[2.3.2] Corollary: The quotient Z+Gk\GA has finite volume. ///
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2.4 Hecke operators, integral operators

The simplest non-archimedean analogues of the differential operators on Gv for archimedean v are integral
operators of the form

ϕ · f =

∫
Gv

ϕ(g) g · f dg (for ϕ ∈ Coc (Gv) and f ∈ V )

for any continuous action Gv × V → V on a quasi-complete, locally convex topological vectorspace V . The
integrand is a continuous, compactly-supported V -valued function, so has a Gelfand-Pettis integral [14.1].
Thus, for f ∈ V = L2(Z+Gk\GA), with Gv acting by right translation, pointwise we have

(ϕ · f)(x) =

∫
Gv

ϕ(g) (g · f)(x) dg =

∫
Gv

ϕ(g) f(xg) dg (for ϕ ∈ Coc (Gv) and f ∈ V )

at least almost-everywhere. Better, for general reasons [6.1] the right-translation action
Gv × L2(Z+Gk\GA)→ L2(Z+Gk\GA) is continuous, so the integral converges as an L2(Z+Gk\GA)-valued
integral, and concern about pointwise values is unnecessary. The composition of two such operators is readily
described as the operator attached to the convolution: for ϕ,ψ ∈ Coc (GA),

ϕ · (ψ · f) =

∫
GA

ϕ(g) g ·
(∫

GA
ψ(h)h · f dh

)
dg =

∫
GA

∫
GA

ϕ(g)ψ(h)(gh · f) dh dg

because the operation of ϕ moves inside the Gelfand-Pettis integral. Replacing h by g−1h gives∫
GA

∫
GA

ϕ(g)ψ(g−1h) h · f dh dg =

∫
GA

(∫
GA

ϕ(g)ψ(g−1h) dg
)
h · f dh

by changing the order of integration. The inner integral is one expression for the convolution ϕ ∗ ψ.

[2.4.1] Lemma: The adjoint to the action of ϕ ∈ Coc (GA) on L2(Z+Gk\GA) is given by the action of
ϕ̌ ∈ Coc (GA), where ϕ̌(g) = ϕ(g−1).

Proof: This is a direct computation: for f, F ∈ L2(Z+Gk\GA), by properties of Gelfand-Pettis integrals,

〈ϕ · f, F 〉 =
〈∫

GA
ϕ(g) g · f dg, F

〉
=

∫
GA

ϕ(g) 〈g · f, F 〉 dg =

∫
GA

ϕ(g) 〈f, g−1 · F 〉 dg

because the right translation action of GA is unitary:

〈g · f, F 〉 =

∫
Z+Gk\GA

f(xg)F (x) dx =

∫
Z+Gk\GA

f(x)F (xg−1) dx = 〈f, g−1 · F 〉

by changing variables. This gives

〈ϕ · f, F 〉 =
〈
f,

∫
GA

ϕ(g) g−1 · F dg
〉

=
〈
f,

∫
GA

ϕ(g−1) g · F dg
〉

= 〈f, ϕ̌ · F 〉

by replacing g by g−1. ///

In the four earlier purely archimedean examples, we only considered automorphic forms invariant under
right translation by the standard compact subgroups. It is reasonable to consider comparable requirements
here, for simplicity possibly requiring right Kv-invariance for all places v. It is also reasonable to relax this
condition to requiring right Kv-invariance almost everywhere, that is, at all but finitely-many places.

A somewhat relaxed version of KA-invariance, to cope with the finitely-many places where right Kv-
invariance is not required, is K-finiteness of a function f on GA or Z+Gk\GA or other quotients of GA,
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2. The quotient Z+GL2(k)\GL2(A)

namely, the requirement that the vectorspace of functions spanned by {x → f(xh) : h ∈ KA} is finite-

dimensional. At the extreme of KA-invariant f , this space is one-dimensional. [19]

[2.4.2] Lemma: For v non-archimedean, Kv-finiteness is equivalent to invariance under some finite-index
subgroup K ′ ⊂ Kv.

Proof: Let f be in a topological vectorspace V on which Gv acts continuously. For f invariant under K ′, the
collection of translates of f under Kv is finite, given (with possible redundancy) by g ·f for representatives g
for Kv/K

′. On the other hand, when the collection of all right translates of f by Kv is a finite-dimensional
(complex) vectorspace F ⊂ V , the map Kv → AutC(F ) is a continuous group homomorphism ρ to some
GLn(C). Given a neighborhood U of 1 ∈ GLn(C), there is a small-enough neighborhood U ′ of 1 ∈ Kv such
that ρ(U ′) is inside U . In fact, we can take U ′ to be a subgroup, for example, {g = 12 mod $n

v } for varying
n. Then ρ(U ′) is a subgroup of GLn(C) inside U . Granting for a moment the no small subgroups property
of real or complex Lie groups, that a sufficiently small neighborhood of 1 contains no subgroups except {1},
it must be that ρ(U ′) = {1}. Since Kv is compact and U ′ is open, the cover of Kv by cosets of U ′ has a
finite subcover, so U ′ is of finite index in Kv. The proof is complete upon proof of the no small subgroups
property, following. ///

[2.4.3] Claim: GLn(C) has the no small subgroup property, that a sufficiently small neighborhood of 1
contains no subgroup larger than {1}.
Proof: For an n-by-n complex matrix x, let ||x|| be the operator norm

||x|| = sup
v∈Cn:|v|≤1

|x · v| (where |(v1, . . . , vn)| =
√
|v1|2 + . . .+ |vn|2)

With r > 0 small enough so that
∑
`≥2 r

`/`! < 1 + r, the matrix exponential x → ex is a bijection from
Er = {x : ||x|| < r} to a neighborhood of 1 ∈ GLn(C). We claim that U = {ex : x ∈ Er/2} contains no
subgroup other than {1}. Given 0 6= x ∈ Er/2, there is 1 ≤ ` ∈ Z such that ` ·x ∈ Er/2 but (`+ 1) ·x 6∈ Er/2.
Then ` · x ∈ Er/2, but (` + 1) · x 6∈ Er/2. Still, (` + 1) · x ∈ Er, so by the injectivity of the exponential on
Er, e

x 6∈ U . ///

Unsurprisingly, it turns out that K-finite functions on Z+Gk\GA are better behaved than arbitrary
functions. Of course, most f ∈ L2(Z+Gk\GA) are not K-finite.

For non-archimedean v, the spherical Hecke operators for Gv are the integral operators given by left-and-
right Kv-invariant ϕ ∈ Coc (Gv), also denoted Coc (Kv\Gv/Kv). Since Kv is open, such functions are locally
constant: given x ∈ Gv, ϕ(xh) = ϕ(x) for all h ∈ Kv, but xKv is a neighborhood of x. Then the compact
support implies that such ϕ takes only finitely-many distinct values. Thus, the associated integral operator
is really a finite sum. Nevertheless, expression as integral operators seems to explain the behavior well.

[2.4.4] Claim: The action of spherical Hecke operators attached to ϕ ∈ Gv stabilizes Kv-invariant vectors
f in any continuous group action Gv × V → V for quasi-complete, locally convex V .

Proof: Granting properties of Gelfand-Pettis integrals, this is a direct computation: for f ∈ V and h ∈ Kv,

h · (ϕ · f) = h ·
∫
Gv

ϕ(g) g · f dg =

∫
Gv

h ·
(
ϕ(g) g · f

)
dg =

∫
Gv

ϕ(g) hg · f dg =

∫
Gv

ϕ(h−1g) g · f dg

by replacing g by h−1g. Since ϕ is left Kv-invariant, this is just ϕ · f again. ///

[2.4.5] Claim: For v archimedean or non-archimedean, the spherical Hecke algebra Coc (Kv\Gv/Kv) with
convolution is commutative.

Proof: Gelfand’s trick is to find an involutive anti-automorphism σ of Gv, that is, g → gσ such that
(gh)σ = hσgσ and (gσ)σ = g, stabilizing double cosets for Kv, that is, using the Cartan decomposition [2.1],
such that (KvmKv)

σ = KvmKv for all m ∈ Mv. Here, transpose gσ = g> is such an anti-automorphism,
since we have a Cartan decomposition Gv = KvMvKv, Kv is stabilized by transpose, and the diagonal

[19] In the simplest example, Fourier series on the circle T, smoothness is equivalent to rapid decay of Fourier

coefficients, while T-finiteness is equivalent to having only finitely-many non-zero Fourier coefficients.

60



Garrett: Modern Analysis of Automorphic Forms

subgroup Mv of Gv is fixed pointwise by transpose. Then for ϕ in the spherical Hecke algebra, with
g = k1mk2 in Cartan decomposition,

ϕ(gσ) = ϕ(kσ2m
σkσ1 ) = ϕ(mσ) = ϕ(m) = ϕ(k1mk2) = ϕ(g)

Then the commutativity is a direct computation:

(ϕ ∗ ψ)(x) = (ϕ ∗ ψ)(xσ) =

∫
Gv

ϕ(g)ψ(g−1xσ) dg =

∫
Gv

ϕ(gσ)ψ((g−1xσ)σ) dg

=

∫
Gv

ϕ(gσ)ψ(x(gσ)−1) dg =

∫
Gv

ϕ(g)ψ(xg−1) dg

by replacing g by gσ. Then replace g by g−1x, and then by g−1, to obtain

(ϕ ∗ ψ)(x) =

∫
Gv

ϕ(gx)ψ(g−1) dg =

∫
Gv

ϕ(g−1x)ψ(g) dg = (ψ ∗ ϕ)(x)

as claimed. ///

It is easy to see that the spherical Hecke algebra is stable under adjoints. Thus, it is plausible to ask
for simultaneous eigenvectors for the spherical Hecke algebra. That is, for f ∈ L2(Z+Gk\GA), we might
additionally try to require that f be a spherical Hecke eigenfunction at almost all non-archimedean v, and be
an eigenfunction for invariant Laplacians or Casimir at archimedean places. However, in infinite-dimensional
Hilbert spaces there is no general promise of existence of such simultaneous eigenvectors.

2.5 Decomposition by central characters

We have seen that Z+Gk\GA has finite invariant volume, while Gk\GA does not. The further quotient
ZAGk\GA certainly has finite invariant volume.

Functions on ZAGk\GA are automorphic forms (or automorphic functions) with trivial central character,
since they are invariant under the center ZA of GA. Such automorphic forms give a reasonable class to
consider, but we can treat a larger class with little further effort. Namely, the compact abelian group
ZA/Z

+Zk ≈ J1/k×, being a quotient of the center ZA of GA, acts on functions on ZAGk\GA in a fashion
that commutes with right translation by GA. In particular, the action of ZA/Z

+Zk commutes with the
integral operators on Gv for v <∞, and with the Casimir or Laplacians on Gv at archimedean places.

Thus, for each central character ω of ZA/Z
+Zk, we can consider the space L2(Z+Gk\GA, ω) of all left

Z+Gk-invariant f on GA such that |f | ∈ L2(ZAGk\GA) and f(zg) = ω(a) · f(g) for all z ∈ ZA.

[2.5.1] Claim: L2(Z+Gk\GA) decomposes by central characters:

L2(Z+Gk\GA) = completion of
⊕
ω

L2(Z+Gk\GA, ω)

Proof: The argument applies to any compact abelian group A acting on a Hilbert space V by unitary
operators, meaning 〈a · v, a · w〉 = 〈v, w〉 for all a ∈ A and v, w ∈ V . For a character ω of A, let Vω be the
ω-eigenspace:

Vω = {v ∈ V : a · v = ω(a) · v, for all a ∈ A}

For ω 6= ω′, Vω and Vω′ are orthogonal: with a ∈ A such that ω(a) 6= ω′(a) and v ∈ Vω, v′ ∈ Vω′ ,

〈v, v′〉 =
1

ω(a)
〈a · v, v′〉 =

1

ω(a)
〈v, a−1v′〉 =

1

ω(a)
〈v, ω′(a−1)v′〉

=
ω′(a−1)

ω(a)
〈v, ω′(a−1)v′〉 =

ω′(a)

ω(a)
〈v, v′〉

giving orthogonality.
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Give A an invariant measure with total measure 1. First,
∫
A
ω(a)−1 a · v da exists as a Gelfand-Pettis

V -valued integral, so maps V → V continuously, and in fact maps to Vω: using the commutativity of the
integral with continuous maps, for b ∈ A,

b ·
∫
A

ω(a)−1 a · v da =

∫
A

ω(a)−1 ba · v da =

∫
A

ω(b−1a)−1 a · v da = ω(b) ·
∫
A

ω(a)−1 a · v da

Take v 6= 0 in V . The scalar-valued function a→ 〈a · v, v〉 is continuous on A, and, since 〈1 · v, v〉 = |v|2 6= 0,
is not identically 0. By [6.11], L2(A) is the completion of the direct sum of the one-dimensional spaces of
functions C · ω as ω ranges over characters. Thus, in L2(A),

0 6= 〈av, v〉 =
∑
ω

∫
A

ω(b)−1〈bv, v〉 db · ω(a) =
∑
ω

〈∫
A

ω(b)−1bv da, v
〉
· ω(a)

Thus, not all the coefficients on the right-hand side can be 0, so the projection of non-zero v ∈ V to some
Vω must be non-zero. Thus, the completion of the sum of the Vω is all of V . ///

2.6 Discrete decomposition of cuspforms

Automorphic forms or automorphic functions are functions of various sorts on Gk\GA, with Gk = GL2(k),
GA = GL2(A). Here, because Gk\GA has infinite volume, it is reasonable to look at the further quotient
Z+Gk\GA, for example. Naturally L2(Z+Gk\GA) is the space of square-integrable automorphic forms. The
constant term of an automorphic form f is

cP f(g) =

∫
Nk\NA

f(ng) dn

[2.6.1] Claim: Constant terms are functions on Z+NAMk\GA.

Proof: By changing variables, we can see that g → cP f(g) is a left NA-invariant function on GA:

cP f(n′x) =

∫
Nk\NA

f(n · n′x) dn =

∫
Nk\NA

f((nn′) · x) dn =

∫
Nk\NA

f(n · x) dn (for n′ ∈ NA)

Similarly, for m ∈Mk,

cP f(mx) =

∫
Nk\NA

f(n ·mx) dn =

∫
Nk\NA

f(m ·m−1nm · x) dn =

∫
Nk\NA

f(m−1nm · x) dn

since f itself is left Mk-invariant. Then replacing n by mnm−1 gives the expression for cP f(g), noting that
conjugation by m ∈ Mk stabilizes Nk, and by the product formula the change of measure on NA is trivial.
Invariance under Z+ is even easier. ///

A cuspform is a function f on Z+Gk\GA meeting Gelfand’s condition [20] cP f = 0. When f is merely
measurable, so does not have well-defined pointwise values everywhere, this condition is best interpreted

[20] In fact, the Gelfand condition for f on Gk\GA to be a cuspform is that
∫
NQk \N

Q

A
f(ng) dn = 0 as a function

of g ∈ GA for the unipotent radical NQ of every parabolic Q. For GL2(k), proper parabolic subgroups can be

characterized as stabilizers of lines in k2, and their unipotent radicals as pointwise-fixers of lines. Since GL2(k) is

transitive on lines, all proper parabolics (and their unipotent radicals) are conjugate. Thus, vanishing of one constant

term (as a function on GA) implies vanishing of every constant term, by a change of variables in the integral: for

h ∈ GL2(k), ∫
hNkh−1\hNAh−1

f(ng) dn =

∫
Nk\NA

f(hnh−1g) dn =

∫
Nk\NA

f(n · h−1g) dn = 0

using the left GL2(k)-invariance. Thus, vanishing of the constant term along N implies vanishing along every

conjugate of N .
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distributionally, as is clarified in the next section, using pseudo-Eisenstein series. The space of square-
integrable cuspforms is

L2
o(Z

+Gk\GA) = {f ∈ L2(Z+Gk\GA) : cP f = 0}

The fundamental theorem proven in [7.1-7.7] is the discrete decomposition of spaces of cuspforms. A simple
version addresses the space

L2
o(Z

+Gk\GA/KA, ω) = {right-KA-invariant square-integrable cuspforms with central character ω}

where KA =
∏
v≤∞Kv. This space is {0} unless ω is unramified, that is, is trivial on ZA ∩ KA, since

KA-invariance implies ZA ∩KA-invariance, and we also require ZA, ω-equivariance.
Since the spherical Hecke algebras act by right translation, and the Gelfand condition is an integral on

the left, spaces of cuspforms are stable under all these integral operators. It is less clear a priori how they
behave with respect to the invariant Laplacians [4.2].

[2.6.2] Theorem: L2
o(Z

+Gk\GA/KA, ω) has an orthonormal basis of simultaneous eigenfunctions for
invariant Laplacians ∆v at archimedean places, and for spherical Hecke algebras Coc (Kv\Gv/Kv) at
non-archimedean places. Each simultaneous eigenspace occurs with finite multiplicity, that is, is finite-
dimensional. (Proof in [7.1-7.7].)

In contrast, the full spaces L2(Z+Gk\GA/KA, ω) do not have bases of simultaneous L2-eigenfunctions: as
in [2.11-2.12], the orthogonal complement of cuspforms in L2(Z+Gk\GA/KA, ω) mostly consists of integrals
of non- L2 eigenfunctions for the Laplacians and Hecke operators, the Eisenstein series Es introduced just
below in [2.8].

For spaces of automorphic forms more complicated than being right Kv-invariant for every place v,
there is generally no decomposition in terms of simultaneous eigenspaces for commuting operators. The
decomposition argument in [7.7] directly uses the non-commutative algebras of test functions on the groups
Gv:

C∞c (Gv) =

 compactly-supported smooth functions for v archimedean

compactly-supported locally-constant functions for v non-archimedean

Both cases are called smooth. Letting right translation be Rgf(x) = f(xg) for x, g ∈ GA, the action of
ϕ ∈ C∞c (Gv) on functions f on Gk\GA is

ϕ · f =

∫
Gv

ϕ(g)Rgf dg

This makes sense not just as a pointwise-value integral, but as a Gelfand-Pettis integral when f lies in any
quasi-complete, locally convex topological vectorspace V on which Gv acts so that Gv×V → V is continuous.
Such V is a representation of Gv. The multiplication in C∞c (Gv) compatible with such actions is convolution:
associativity ϕ · (ψ · f) = (ϕ ∗ ψ) · f .

Here, we are mostly interested in actions Gv × X → X on Hilbert-spaces X. Such a representation is
(topologically) irreducible when X has no closed, Gv-stable subspace. The convolution algebras C∞c (Gv) are
not commutative, so, unlike the commutative case, few irreducible representations are one-dimensional. In
fact, typical irreducible representations of C∞c (Gv) turn out to be infinite-dimensional. Fortunately, there
is no mandate to attempt to classify these irreducibles. Indeed, the spectral theory of compact self-adjoint
operators still proves [7.7] discrete decomposition with finite multiplicities, for example, as follows.

For every place v, let K ′v be a compact subgroup of Gv, and for all but a finite set S of places require that
K ′v = Kv, the standard compact subgroup. For simplicity, we still assume K ′v = Kv at archimedean places.
Put K ′ =

∏
vK
′
v. Let ω be a central character trivial on ZA ∩K ′, so that the space L2

o(Z
+Gk\GA/K

′, ω)
of right K ′-invariant cuspforms with central character ω is not {0} for trivial reasons. For v ∈ S, we have a
subalgebra C∞v (K ′v\Gv/K ′v) of the convolution algebra of test functions at v, stabilizing L2

o(Z
+Gk\GA/K

′, ω).

[2.6.3] Theorem: L2
o(Z

+Gk\GA/K
′, ω) is the completion of the orthogonal direct sum of subspaces, each

consisting of simultaneous eigenfunctions for invariant Laplacians ∆v at archimedean places, of simultaneous
eigenfunctions for spherical Hecke algebras Coc (Kv\Gv/Kv) at non-archimedean places v 6∈ S, and irreducible
C∞v (K ′v\Gv/K ′v)-representations at v ∈ S. Each occurs with finite multiplicity. (Proof in [7.1-7.7].)
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The technical features of decomposition with respect to non-commutative rings of operators certainly bear
amplification, postponed to [7.2.18] and [7.7]. The notion of multiplicity is made precise in [9.D.14]. In
anticipation,

[2.6.4] Theorem: L2
o(Z

+Gk\GA/KA, ω) is the completion of the orthogonal direct sum of irreducibles V
for the simultaneous action of all algebras C∞c (Gv). Each irreducible occurs with finite multiplicity. (Proof
in [7.7].)

[2.6.5] Corollary: L2
o(Z

+Gk\GA, ω) is the completion of the orthogonal direct sum of subspaces, each
consisting of simultaneous eigenfunctions for invariant Laplacians ∆v at archimedean places, of simultaneous
eigenfunctions for spherical Hecke algebras Coc (Kv\Gv/Kv) at non-archimedean places v 6∈ S, and irreducible
C∞v (K ′v\Gv/K ′v)-representations at v ∈ S. Each occurs with finite multiplicity. ///

Again, the various sorts of orthogonal complements to spaces of cuspforms are mostly not direct sums of
irreducibles, but are integrals of Eisenstein series, as we see below.

2.7 Pseudo-Eisenstein series

Returning to the larger spaces L2(Z+Gk\GA/KA) or L2(Z+Gk\GA/KA, ω) or L2(Z+Gk\GA/K
′, ω), we

want to express the orthogonal complement of cuspforms in terms of simultaneous eigenfunctions for invariant
Laplacians at archimedean places, and for spherical Hecke algebras at finite places when possible. To consider
larger, non-commutative algebras of operators, the more complicated notion of irreducible representation
must replace the notion of simultaneous eigenvector. Therefore, we emphasize the commutating operators.
As it happens, the pseudo-Eisenstein series here and the genuine Eisenstein series in the next section avoid
some of the subtleties that cuspforms may require.

To exhibit explicit L2 functions demonstrably spanning the orthogonal complement to cuspforms, we will
recast the Gelfand condition that the constant term vanish as a requirement of vanishing as a distribution
on Z+NAMk\GA, and give an equivalent distributional vanishing condition on Z+Gk\GA.

Vanishing as a distribution is that∫
Z+NAMk\GA

ϕ · cP f = 0 (for all ϕ ∈ C∞c (Z+NAMk\GA))

where C∞c (Z+NAMk\GA) consists of compactly-supported functions on that quotient which are smooth
in the archimedean coordinates and locally constant in the non-archimedean coordinates. Smoothness of
such ϕ can be described more precisely in a fashion that makes clearer the non-interaction of this property
with taking a quotient on the left. Namely, smoothness for archimedean places should mean indefinite
differentiability on the right with respect to the differential operators coming from the Lie algebra, as in
[4.1], and, given the compact support, (uniform) smoothness for non-archimedean places should mean that
there exists a compact, open subgroup K ′ of

∏
v<∞Kv under which ϕ is right invariant.

As mentioned briefly in the previous section, the nature of cP f for f merely L2 is potentially obscure. For
example, it is not likely that cP f ∈ L2(Z+NAMk\GA). Instead, for general reasons [6.1], Coc (Z+Gk\GA)
is dense in L2(Z+Gk\GA) in the L2 topology, and for general reasons [6.1] the left action of Nk\NA on
the Fréchet space Co(Z+Nk\GA) is a continuous map (Nk\NA) × Co(Z+Nk\GA) → Co(Z+NA\GA), so
cP f exists as a Co(Z+NA\GA)-valued Gelfand-Pettis integral [14.1]. Then one sees directly that cP f is
left Mk-invariant. For such f , the integral of cP f against ϕ ∈ C∞c (Z+NAMk\GA) is the integral of a
compactly-supported, continuous function. There is no immediate necessity of elaborating a general notion
of distribution on p-adic groups or adele groups, since cuspforms are ordinary functions, essentially having
pointwise values.

For ϕ ∈ C∞c (Z+NAMk\GA), the corresponding pseudo-Eisenstein series is

Ψϕ(g) =
∑

γ∈Pk\Gk

ϕ(γ · g)

Convergence is good:
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[2.7.1] Claim: The series for a pseudo-Eisenstein series Ψϕ is locally finite, meaning that for g in a
fixed compact in GA, there are only finitely-many non-zero summands in Ψϕ(g) =

∑
γ ϕ(γg). Thus,

Ψϕ ∈ C∞c (Z+Gk\GA).

Proof: Grant for a moment that there is compact C ⊂ GA such that the image of C in the quotient contains
the (compact) support of ϕ. Fix compact Co ⊂ G in which g is constrained to lie. A summand ϕ(γg) is non-
zero only if γg ∈ Z+NAMk ·C, which holds only if γ ∈ Z+NAMk ·C ·g−1, so γ ∈ Gk ∩ (Z+NAMk ·C ·C−1

o ).
In the quotient Z+NAMk\GA, the image of Gk is Pk\Gk, is closed and discrete [1.5.3], while the continuous

image of the compact set C ·C−1
o is compact. Thus, left modulo Z+NAMk, that intersection is the intersection

of a closed discrete set and a compact set, so finite, as in [1.5.3]. Therefore, the series is locally finite, and
defines a smooth function on Z+Gk\GA. Summing over left translates certainly retains right KA-invariance.

Similarly, Ψϕ has compact support in Z+Gk\GA: for a summand ϕ(γg) to be non-zero, it must be that
g ∈ Gk · C. The image Gk\(Gk · C) is compact, being the continuous image of the compact set C.

To prove the existence of C, let q : G → Z+NAMk\GA be the quotient map. Let U be a neighborhood
of 1 ∈ GA having compact closure U . For each g ∈ GA, gU is a neighborhood of g. The images q(gU) are
open, by the characterization of the quotient topology. The support spt(ϕ) is covered by the opens q(gU),
and admits a finite subcover q(g1U), . . . , q(gnU). The set C = g1U ∪ . . . ∪ gnU is compact, and its image
covers the support of ϕ. ///

[2.7.2] Claim: Square-integrable cuspforms L2
o(Z

+Gk\GA) are the orthogonal complement in L2(Z+Gk\GA)
to the subspace spanned by the pseudo-Eisenstein series Ψϕ with ϕ ∈ C∞c (Z+NAMk\GA). In particular,
the pseudo-Eisenstein series Ψϕ fit into an adjunction∫

Z+NAMk\GA
ϕ · cP f =

∫
Z+Gk\GA

Ψϕ · f (for f ∈ L2(Z+Gk\GA))

Proof: As noted above, for general reasons [6.1] Coc (Z+Gk\GA) is dense in L2(Z+Gk\GA), and we consider
f ∈ Coc (Z+Gk\GA). This allows unwinding as in [5.2]:∫

Z+NAMk\GA
ϕ · cP f =

∫
Z+NAMk\GA

ϕ(g)
(∫

Nk\NA
f(ng) dn

)
dg =

∫
Z+NkMk\GA

ϕ(g) f(g) dg

Winding up, using the left Gk-invariance of f and NkMk = Pk,∫
Z+Pk\GA

f(g)ϕ(g) dg =

∫
Z+Gk\GA

∑
γ∈Pk\Gk

f(γ · g)ϕ(γ · g) dg =

∫
Z+Gk\GA

f(g)
( ∑
γ∈Pk\Gk

ϕ(γg)
)
dg

The inner sum in the last integral is the pseudo-Eisenstein series attached to ϕ. By Cauchy-Schwarz-
Bunyakowsky, ∣∣ ∫

Z+Pk\GA
f ϕ
∣∣ =

∣∣ ∫
Z+Gk\GA

f Ψϕ

∣∣ ≤ |f |L2 · |Ψϕ|L2

which proves that the functional f →
∫
Z+Pk\GA

f ϕ on Coc (Z+Gk\GA) is continuous in the L2 topology, so

extends by continuity to a continuous linear functional on L2(Z+Gk\GA). Indeed, this inequality asserts
continuity of f → cP f as a linear map from L2(Z+Gk\GA) to distributions on Z+NAMk\GA with the weak
dual topology as in [13.14]. ///

Similarly, with

C∞c (Z+NAMk\GA, ω) = {ϕ ∈ C∞c (Z+NAMk\GA) : ϕ(zg) = ω(z) · ϕ(g), for all z ∈ ZA, g ∈ G}

we have the comparable assertion, now keeping track of complex conjugations:

[2.7.3] Claim: Square-integrable cuspforms L2
o(Z

+Gk\GA, ω) with central character ω are the orthogonal
complement in L2(Z+Gk\GA, ω) to the subspace spanned by the pseudo-Eisenstein series Ψϕ with ϕ ∈
C∞c (Z+NAMk\GA, ω). The pseudo-Eisenstein series Ψϕ fit into an adjunction∫

Z+NAMk\GA
ϕ · cP f =

∫
Z+Gk\GA

Ψϕ · f (for f ∈ L2(Z+Gk\GA, ω))
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(Formation of pseudo-Eisenstein series respects central characters.) ///

It is useful to understand simpler sub-families of pseudo-Eisenstein series, toward their spectral
decomposition in terms of genuine Eisenstein series below in [2.11,2.12,2.13].

With

M1 = {
(
m1 0
0 m2

)
: m1,m2 ∈ J, |m1| = 1 = |m2|}

the group Mk\M1 is compact, because J1/k× is compact [2.A]. Certainly C∞c (Z+NAMk\GA) is inside
L2(Z+NAMk\GA), so such functions ϕ admit decompositions in L2(Z+NAMk\GA) by characters χ of the
compact abelian group Mk\M1 acting on the left, as in [6.11]. The integral expressing the χth component

ϕχ(g) =

∫
Mk\M1

χ(m)−1 ϕ(mg) dm

is a Gelfand-Pettis integral converging in C∞c (Z+NAMk\GA) for any quasi-complete [14.7] locally convex
[13.11] topology on this space. That is, the Fourier components ϕχ of a compactly-supported smooth
function along Mk\M1 are again compactly-supported smooth, and their sum converges to the original in
L2(Z+NAMk\GA), at least. The support of ϕχ is worst (Mk\M1)× sptϕ.

[2.7.4] Lemma: A function f ∈ L2(Z+Gk\GA) has constant term cP f integrating to 0 against ϕ in
C∞c (Z+NAMk\GA) if and only if cP f integrates to 0 against every Mk\M1-component ϕχ of ϕ.

Proof: The technicality is that there is no claim that constant terms of functions in L2(Z+Gk\GA) are in
L2(Z+NAMk\GA). Fortunately, this is not an obstacle: as earlier, it suffices to consider f ∈ Coc (Z+Gk\GA),
so cP f ∈ Co(Z+NAMk\GA). With u the characteristic function of (Mk\M1)× sptϕ, the truncation u · cP f
is in L2(Z+NAMk\GA), and truncation does not alter the integrals against ϕχ or ϕ. Letting 〈, 〉 be the inner
product in L2(Z+NAMk\GA), since ϕ =

∑
χ ϕ

χ in L2(Z+NAMk\GA),

〈cP f, ϕ〉 = 〈u · cP f, ϕ〉 =
∑
χ

〈u · cP f, ϕχ〉 =
∑
χ

〈cP f, ϕχ〉

giving the assertion. ///

For central character ω and character χ extending ω to Mk\M1, define a space of functions on GA by [21]

Jχ = {ϕ ∈ C∞c (Z+NAMk\GA) : ϕ(mg) = χ(m) · ϕ(g) for all m ∈M1, g ∈ GA}

[2.7.5] Remark: In [2.13.5] we will show that pseudo-Eisenstein series made from Jχ and Jχ′ with distinct
characters χ′ 6= χ and χ′ 6= χw are mutually orthogonal.

[2.7.6] Corollary: Square-integrable cuspforms L2
o(Z

+Gk\GA, ω) with central character ω are the
orthogonal complement in L2(Z+Gk\GA, ω) to the subspace spanned by the pseudo-Eisenstein series Ψϕ

with ϕ ∈ Jχ, as χ ranges over characters of M1 extending ω.

Proof: The lemma shows that it suffices to form pseudo-Eisenstein series from the Mk\M1-components ϕχ,
and each ϕχ is in Jχ. ///

[2.7.7] Claim: For any compact subgroup K ′ ⊂ KA, right K ′-invariant square-integrable cuspforms
L2
o(Z

+Gk\GA/K
′) are the orthogonal complement in L2(Z+Gk\GA/K

′) to the subspace spanned by the
pseudo-Eisenstein series Ψϕ with ϕ ∈ C∞c (NAMk\GA/K

′).

Proof: The point is that for f right K ′v-invariant, cP f remains K ′v-invariant, so we need only test against
test functions ϕ with the same right K ′v invariance as f , at all places v, because integration against more
general ϕ has the same effect as integrating against right K ′v-invariant ones: giving K ′v total measure one
for convenience, ∫

Z+NAMk\GA
ϕ · cP f =

∫
Z+NAMk\GA

ϕ(g)
(∫

K′v

cP f(gh) dh
)
dg

[21] This space Jχ is an instance of an induced representation, but we use no properties of such. Rather, the natural

appearance of this function space explains attention to induced representations.
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=

∫
K′v

∫
Z+NAMk\GA

cP f(gh)ϕ(g) dg dh =

∫
K′v

∫
Z+NAMk\GA

cP f(g)ϕ(gh−1) dg dh

=

∫
Z+NAMk\GA

cP f(g)
(∫

K′v

ϕ(gh−1) dh
)
dg

as claimed. ///

Right Kv-invariance requires that χ|Mv
be right (Mv∩Kv)-invariant, so χ is unramified at v, as is ω. That

is, the set of right Kv-invariant elements of Jχ is just {0} unless χ is unramified at v.

[2.7.8] Claim: Fix a central character ω, and character χ of Mk\M1 extending ω. Fix a place v. The
space of right Kv-invariant pseudo-Eisenstein series Ψϕ with ϕ ∈ Jχ is stable under the invariant Laplacians
for archimedean v, or under spherical Hecke operators for non-archimedean places v: ∆vΨϕ = E∆vϕ for
archimedean v and η ·Ψϕ = Eη·ϕ for η ∈ C∞c (Kv\Gv/Kv) for non-archimedean v.

Proof: Since the Laplacians ∆v commute with the group action, the effect of ∆v on a pseudo-Eisenstein
series is reflected entirely in its effect on the data: the sum is locally finite, so interchange of the operator
and the sum is easy, giving

∆vΨϕ = ∆v

∑
γ∈Γ∞\Γ

ϕ ◦ γ =
∑

γ∈Γ∞\Γ

∆v(ϕ ◦ γ) =
∑

γ∈Γ∞\Γ

(∆vϕ) ◦ γ = E∆vϕ

Similarly, the action of the spherical Hecke algebra is on the right, while the winding-up to form a pseudo-
Eisenstein series is on the left:

η ·Ψϕ = η ·
∑

γ∈Γ∞\Γ

ϕ ◦ γ =
∑

γ∈Γ∞\Γ

η · (ϕ ◦ γ) =
∑

γ∈Γ∞\Γ

(η · ϕ) ◦ γ = Eη·ϕ

as claimed. ///

As a simple special situation, consider cuspforms f right invariant under the standard compact subgroup
Kv for all v. Thus, we can invoke the Iwasawa decomposition Gv = PvKv everywhere locally, and the
constant term cP f is a function on

Z+NAMk\GA/KA ≈ Z+NAMk\NAMAKA/KA ≈ Z+Mk\MA/(MA ∩KA)

The quotient Z+Mk\MA is the quotient of k×\J × k×\J by a diagonal copy of the ray R+ = δ(0,+∞), as
above, thus, with representatives of the form(

R+ × J1/k× 0
0 J1/k×

)
Thus, for fixed central character ω and character χ on Mk\M1 extending ω, a test function ϕ on
Z+NAMk\GA/KA ≈ Z+Mk\MA that is in Jχ is entirely specified by a test function ϕ∞ on the ray δ(0,∞):

ϕ(ay) ·m = ϕ∞(y) · χ(m) (for ay =

(
δ(y) 0

0 1

)
, and m ∈M1, y > 0)
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2.8 Eisenstein series

We can attempt to make a pseudo-Eisenstein series Ψϕ which is an eigenfunction for an invariant Laplacian
∆v (or Casimir operator) at archimedean v, or for Hecke operators at non-archimedean v, by using a right
Kv-invariant ϕ which is such an eigenfunction. However, we already saw in [1.9] that left Nv-invariant right
Kv-invariant eigenfunctions on Gv with trivial central character are

ZvNv

(
y 0
0 1

)
Kv −→ ys (for y > 0, for suitable s ∈ C)

with eigenvalues s(s− 1) (up to normalization). That is, these are characters on Mv, and are not compactly
supported modulo Zv. At non-archimedean places, a parallel computation, but now of the effect of spherical
Hecke operators, gives a parallel result, illustrating the constraints on eigenfunctions for spherical Hecke
algebras:

[2.8.1] Claim: Let f be a function on Nv\Gv/Kv, with (unramified) central character ωv, which is an
eigenfunction for the spherical Hecke algebra C∞c (Kv\Gv/Kv). Then there is a character χv on Mv extending
ωv such that f is a linear combination of two Hecke eigenfunctions of the special form f1(nmk) = χv(m)
and f2(nmk) = χv(m)−1 · ω(m)|m1/m2|v for n ∈ Nv, m ∈ Mv, k ∈ Kv and character χv on Mv extending
ωv on Zv.

Proof: By the Iwasawa decomposition, the right Kv-invariance and left Nv-invariance of f , and central

character, determine f completely by its values on elements g` =

(
$` 0
0 1

)
. We need just a single Hecke

operator, the one attached to the characteristic function η of the set C = Kv

(
$ 0
0 1

)
Kv. Let η · f = λf

for λ ∈ C. Then

λ · f(g) = (η · f)(g) =

∫
Gv

η(h) f(gh) dh =

∫
C

f(gh) dh

By the p-adic Cartan decomposition [2.1], C is exactly the collection of two-by-two matrices with entries in
ov and determinant in $o×v with local parameter $ = $v. By p-adic Iwasawa decomposition [2.1], C is the
disjoint union of right Kv-cosets

C =

(
1 0
0 $

)
Kv ∪

⋃
b mod $

(
$ b
0 1

)
Kv

Giving Kv measure 1 and letting qv be the residue field cardinality,

λ · f(g`) =

∫
C

f(g`h) dh = f(

(
$` 0
0 1

)(
1 0
0 $

)
) +

∑
b

f(

(
$` 0
0 1

)(
$ b
0 1

)
)

= f

(
$` 0
0 $

)
+
∑
b

f

(
$`+1 b

0 1

)
= ω($)f

(
$`−1 0

0 1

)
+ qv · f

(
$`+1 0

0 1

)
= ω($) · f(g`−1) + qv · f(g`+1)

This gives the recursion (
f(g`+1)
f(g`)

)
=

(
λ/qv −ω($)/qv

1 0

)(
f(g`)
f(g`−1)

)
The eigenvalues of that two-by-two matrix are

{α, β} = {λ±
√
λ2 − 4qv
2qv

}

68



Garrett: Modern Analysis of Automorphic Forms

with eigenvectors

(
α
1

)
and

(
β
1

)
. Thus, there are two such eigenfunctions, both with value 1 at 1:

f1(g`) = α` f2(g`) = β`

extended to MA to have central character ω. That is, on MA, these two functions are characters. Since
α · β = ω($)/q, the two characters are related as asserted. ///

This last claim shows the impossibility of making Hecke eigenfunction pseudo-Eisenstein series with ϕ in
C∞c (Z+NAMk\GA). However, it does illustrate a systematic device to make Hecke eigenfunctions:

[2.8.2] Claim: For non-archimedean v, any function f on Gv of the form f(nmk) = χ(m) for unramified
character χ on Mv is an eigenfunction for the spherical Hecke algebra.

Proof: Let Iχ be the space of smooth functions f on Gv with the property f(nmk) = χ(m) · f(k) for all

n ∈ Nv, m ∈ Mv, and k ∈ Kv.
[22] Here the smoothness means that, for each f , there is a compact open

subgroup K ′ ⊂ Kv such that f is right K ′-invariant. Thus, by p-adic Iwasawa decomposition, Iχ is a colimit
of finite-dimensional spaces (compare [13.8]). The action of Gv on Iχ by right translation (g ·f)(h) = f(hg) is
continuous, so η in the spherical Hecke algebra C∞c (Kv\G/Kv) acts by the integrated version of the action:

(η · f)(h) =

∫
Gv

η(g) f(hg) dg

By changing variables in the integral, the action of such η preserves right Kv-invariance. By p-adic
Iwasawa decomposition, the subspace of Iχ of right Kv-invariant functions is one-dimensional, spanned
by f(nmk) = χ(m) itself. Since this one-dimensional space is stabilized by the spherical Hecke algebra, this
f is inevitably an eigenfunction for the Hecke algebra. ///

We wish to decompose pseudo-Eisenstein series Ψϕ into ∆v-eigenfunctions and spherical Hecke algebra
eigenfunctions to the extent possible. We have already seen that we can take ϕ in the spaces Jχ of [2.7], for χ
a character on Mk\M1. The previous two claims suggest taking this further: every character on Z+Mk\MA
can be written in the form

νs χ : ay ·m −→ |y|s · χ(m) (for ay =

(
δ(y) 0

0 1

)
, and m ∈M1, y > 0)

for suitable complex s and character χ on Mk\M1. Let

Is,χ = {f ∈ C∞(Z+NAMk\GA) : f(nmg) = (νsχ)(m) · f(g) for all n ∈ NA, m ∈MA}

A genuine Eisenstein series Ef for f ∈ Is,χ is

Ef (g) =
∑

γ∈Pk\Gk

f(γ · g) (for f ∈ Is,χ)

One immediate issue is convergence: unlike pseudo-Eisenstein series Ψϕ where ϕ has controlled support,
the sum for Ef is not locally finite. Ignoring convergence for a moment, Ef is genuine in the sense that
it is a spherical Hecke algebra eigenfunction at all but (at worst) finitely-many non-archimedean places,
since smoothness at finite places requires that f is right K ′-invariant for some compact open subgroup
K ′ =

∏
v<∞K ′v of

∏
v<∞Kv, and the product topology requires that K ′v = Kv for all but finitely-many

v <∞.

[22] This space Iχ is an example of an unramified principal series representation of Gv, meaning that it is induced

from χ̃(nm) = χ(m) on Pv, with χ unramified. The previous two claims touch on the importance of principal

series representations in the application of representation theory of p-adic groups to automorphic forms. A strong

form of the generalization of these claims to a wide class of p-adic groups is in [Borel 1976], [Matsumoto 1977],

[Casselman 1980].
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The extreme, simplest case is that f ∈ Is,χ is right Kv-invariant at all places v, that is, is spherical
everywhere locally. From all the Iwasawa decompositions for groups Gv, up to a scalar there is a unique
such f , namely, f(nmk) = f(m) = (νsχ)(m). The everywhere spherical Eisenstein series attached to an
unramified grossencharakter χ is

Es,χ(g) =
∑

γ∈Pk\Gk

f(γ · g) (for f(nmk) = f(m) = (νsχ)(m))

[2.8.3] Claim: Assuming the series expression for the everywhere-spherical Eisenstein series Es,χ is
convergent, it is an eigenfunction for the invariant Laplacians at archimedean places, and for the spherical
Hecke algebras at non-archimedean places.

Proof: Assuming convergence, the invariance of Laplacians and spherical Hecke operators under left
translation implies that we need merely check that the function f(nmk) = f(m) = χ̃(m) itself is an
eigenfunction. In [1.9] we saw the archimedean assertion, and the claim above proves the non-archimedean
assertion. ///

[2.8.4] Claim: Assuming the series expression for the everywhere-spherical Eisenstein series Es,χ is
convergent, its constant term is

cPEs,χ(znmk) = (νsχ)(m) + cs,χ · (ν1−sχw)(m) (for z ∈ Z+, n ∈ NA,m ∈MA, k ∈ KA)

where χw(m) = χ(wmw−1) with long Weyl element w =

(
0 1
1 0

)
, and

cs,χ =
Λ(2s− 1, χ1/χ2)

Λ(2s, χ1/χ2)
(with χ

(
m1 0
0 m2

)
= χ1(m1)χ2(m2))

where Λ(s, χ1/χ2) is the Hecke grossencharacter L-function completed by multiplying by the appropriate
Gamma factors.

Proof: Via the Bruhat decomposition Gk = Pk t PkwNk,

Pk\Gk = Pk\Pk t Pk\PkwNk ≈ {1} t wNk

The small Bruhat cell Pk produces the first summand in the constant term:∫
Nk\NA

∑
γ∈Pk\Pk

f(γng) dn =

∫
Nk\NA

f(ng) dn = f(g) ·
∫
Nk\NA

1 dn

The large Bruhat cell PkwNk gives∫
Nk\NA

∑
γ∈wNk

f(γng) dn =

∫
Nk\NA

∑
γ∈Nk

f(wγng) dn =

∫
NA

f(wng) dn

by unwinding, as in [5.2]. Since cP f will be left NA-invariant and right KA-invariant, it suffices to evaluate
this integral on g = m ∈MA. Then∫

NA
f(wnm) dn =

∫
NA

f(wm ·m−1nm) dn =

∫
NA

f(wm · n) ν(m) dn

by replacing n by mnm−1, with ν(m) resulting from change-of-measure. This is∫
NA

f(wmw−1 · wn) ν(m) dn = ν(m)νs(wmw−1)χ(wmw−1) ·
∫
NA

f(wn) dn

= ν(m)1−sχ(wmw−1) ·
∫
NA

f(wn) dn
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Since the right KA-invariance is preserved by integrating on the left, this is (unique up to constant) the
spherical function in I1−s,χw . That normalization constant is very significant, being a ratio of L-functions,
as follows.

Let fov (nmk) = (νsvχv)(m) be the normalized spherical vector on Gv, where νsvχv is the vth local factor of
νsχ,

(m1 0 m2 ) −→ |m1/m2|s · χ1(m1)χ2(m2) (on Mv)

The integral giving the normalizing constant factors over primes:∫
NA

f(wn) dn =
∏
v≤∞

∫
Nv

fov (wn) dn

To evaluate the vth factor, we must determine the local Iwasawa decomposition of wn for n ∈ Nv. At kv ≈ R,
as in [1.3]

w

(
1 x
0 1

)
=

(
0 1
1 x

)
=

( −1√
1+x2

∗
0

√
1 + x2

)
·

(
x√

1+x2

−1√
1+x2

1√
1+x2

x√
1+x2

)
with that last matrix in SO2(R). Unramified unitary characters on k×v ≈ R× are of the form αv(y) = |y|itv
for some purely imaginary itv. With |y|itv = χ1(y)/χ2(y), the corresponding local integral is evaluated via
the standard trick

∫∞
0
e−ty ts dt/t = y−s Γ(s): first, with itv = 0,∫

R
fov (wn) dn =

∫
R

1

(1 + x2)s
dx =

1

π−sΓ(s)

∫ ∞
0

∫
R
e−πt(1+x2) ts

dt

t

=
1

π−sΓ(s)

∫ ∞
0

∫
R
e−πt−πx

2

ts−
1
2
dt

t
=

π−(s− 1
2 )Γ(s− 1

2 )

π−sΓ(s)

Replacing s by s− itv, the general unramified case is∫
R
fov (wn) dn =

∫
R

1

(1 + x2)s−itv
dx =

π−(s−itv− 1
2 )Γ(s− itv − 1

2 )

π−(s−itv)Γ(s− itv)

Similarly, at kv ≈ C, with trivial χ1, χ2,

w

(
1 x
0 1

)
=

(
0 1
1 x

)
=

( −1√
1+|x|2

∗

0
√

1 + |x|2

)
·

( x√
1+|x|2

−1√
1+|x|2

1√
1+|x|2

x√
1+|x|2

)

With the normalization of local norms |t|C = |NC
R t| for the product formula, up to measure constants the

local integral is∫
C
fov (wn) dn =

∫
C

1

(1 + |x|2)2s
dx =

1

π−2sΓ(2s)

∫ ∞
0

∫
R
e−πt(1+|x|2) t2s

dt

t

=
1

π−2sΓ(2s)

∫ ∞
0

∫
R
e−πt−π|x|

2) t2s−1 dt

t
=

π−(2s−1)Γ(2s− 1)

π−2sΓ(2s)

In the general unramified case, with χ1(t)/χ2(t) = |t|itvC = |t|2itv , again there is a shift s→ s− itv.
At non-archimedean places, the Iwasawa decomposition has a different nature:

w

(
1 x
0 1

)
=

(
0 1
1 x

)
=


( −1

x 1
0 x

)(
1 0
1
x 1

)
for |x|v ≥ 1(

1 0
0 1

)(
0 1
1 x

)
for |x|v ≤ 1
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2. The quotient Z+GL2(k)\GL2(A)

There is a non-archimedean analogue of the Gamma trick: with ch the characteristic function of ov, with
multiplicative Haar measure giving o×v total measure 1,

[2.8.5] Lemma:

∫
k×v

ch(ty) ch(t) |t|sv dt =


1

1− q−sv
(for y ∈ ov)

|y|−s

1− q−sv
(for y 6∈ ov)

Proof: For y ∈ ov, the integral becomes an Iwasawa-Tate local zeta integral∫
k×v

ch(t) |t|s dt =
∑
`≥0

∫
$`o×v

q−`sv =
∑
`≥0

1 · q−`sv =
1

1− q−sv

For y 6∈ ov, replace t by t/y in the integral, producing the |y|−sv factor and then the integral just evaluated.
///

Returning to the evaluation of the non-archimedean local factor in the constant term, let

γ(s, y) =

∫
k×v

ch(ty) ch(t) |t|sv d×t

emphasizing that it is multiplicative Haar measure. With trivial χ1, χ2, the lemma gives∫
Nv

fov (wn) dn = (1− q−2s
v )

∫
kv

γ(2s, x) dx = (1− q−2s
v )

∫
k×v

∫
kv

ch(tx) ch(t) |t|2sv dx d×t

= (1− q−2s
v )

∫
k×v

∫
kv

ch(x) ch(t) |t|2s−1
v dx d×t

by replacing x by x/t. The integral in x is just meas (ov), which at kv unramified over the corresponding Qp
is reasonably taken to be 1. Thus,∫

Nv

fov (wn) dn = (1− q−2s
v )

∫
k×v

ch(t) |t|2s−1
v d×t =

1− q−2s
v

1− q−(2s−1)
v

=
1/(1− q−(2s−1)

v )

1/(1− q−2s
v )

The adjustment for a general unramified character again shifts s to s− itv. The products over all places give
the indicated ratios of completed L-functions, apart from ratios of powers of the conductor, which correspond
to the additive measure normalization at ramified places. A ratio of a value and a shift only leaves a constant,
not immediately important here. ///

[2.8.6] Claim: For Re(s) > 1, the series expression for Ef with (continuous) f ∈ Is,χ converges absolutely
and uniformly on compacts, to a continuous function on Z+Gk\GA.

Proof: The function f is dominated by the spherical vector, since |f(znmk)| = |(νsχ)(m)| · |f(k)| and the
continuous function f is bounded on the compact KA. Also, χ has absolute value 1, so we may as well
take χ trivial. And it suffices to treat s = σ ∈ R. Use the height functions hv on k2

v and h on A2, and

η(g) = |det g|/h(vog)2. In particular, η(znmk) = |m1/m2| for m =

(
m1 0
0 m2

)
. Also, ν(m)−1 dn dm is left

Haar measure dp on PA. Thus, it suffices to prove convergence of∑
γ∈Pk\Gk

η(γg)σ =
∑

γ∈Pk\Gk

|det γg|σ · h(voγg)−2σ = |det g|σ
∑

γ∈Pk\Gk

h(voγg)−2σ

By reduction theory [2.2], for compact C ⊂ GA, there are constants 0 < c ≤ c′ < +∞ such that

c · h(v) ≤ h(vg) ≤ c′ · h(v) (for all g ∈ C, for all primitive v ∈ A2)
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so

h(voγg) ≤ c′ · h(voγ) ≤ c′

c
· c · h(voγg

′) (for all g, g′ ∈ C, for all γ ∈ Gk)

Thus, convergence of the series is equivalent to convergence of an averaged integral
∫
C
Eσ. By discreteness

of Gk in GA, we can shrink C so that, for γ in Gk, if γC ∩ C 6= φ then γ = 1. Then∫
C

Eσ =

∫
C

∑
γ∈Pk\Gk

|det γg|σh(voγg)−2σ dg = |det g|σ
∫
Pk\Gk·C

h(vog)−2σ dg

Let µ be the infimum of h(v) over non-zero primitive v in A2. From reduction theory [2.2] this infimum is
attained, so µ > 0, and c · µ ≤ h(voγg) for all g ∈ C and γ ∈ Gk, and Gk · C is contained in a set

Y = {g ∈ GA : h(vog) ≥ c · µ and c1 ≤ |det g| ≤ c2} (with 0 < c1 and c2 < +∞)

The set Y is right KA-stable, since h is KA-invariant. Using Iwasawa decompositions, with left Haar measure
dp on PA, ∫

Pk\Gk·C

|det g|σ h(vog)−2σ dg ≤
∫

Pk\Y

|det g|σ h(vog)−2σ dg =

∫
Pk\(PA∩Y )

|det p|σ h(vop)
−2σ dp

The set Y is left NA-stable, and the induced measure on the compact quotient Nk\NA is finite, so up to a
constant the integral is∫

Mk\(MA∩Y )

|detm|σh(vom)−2σ ν(m)−1 dm =

∫
Mk\(MA∩Y )

ν(m)σ−1 dm

From

MA ∩ Y ⊂ {
(
m1 0
0 m2

)
: |m1/m2| ≥ cµ, c1 ≤ |m1m2| ≤ c2}

and compactness of J1/k×,

Mk\(MA ∩ Y ) = compact× {
(
δ(y1) 0

0 δ(y2)

)
} (with y2 ≥ cµ and c1 ≤ y1y2 ≤ c2)

Thus, ∫
Mk\(MA∩Y )

ν(m)σ−1 dm =

∫
Mk\(M1∩Y )

dm ·
∫ ∞
cµ

∫ c2/y2

c1/y2

(y1

y2

)σ−1 dy1

y1

dy2

y2

Replacing y1 by y1/y2, the latter elementary integral becomes∫ ∞
cµ

∫ c2

c1

(y1

y2
2

)σ−1 dy1

y1

dy2

y2
= (constant) ·

∫ ∞
cµ

(y2
2)1−σ dy2

y2

which converges for σ > 1. This also proves the uniform convergence on compacts. ///

We also want moderate growth on Siegel sets: for n ∈ NA, k ∈ KA, z ∈ Z+, and m = ay ·m′ with m′ ∈M1,

|Ef (znmk)| �t,C yRe(s) (on St,C , implied constant depending on t, C)

And we want convergence to a smooth function:

[2.8.7] Claim: The series for Es converges in the C∞ topology for Re(s) > 1, and produces a C∞ moderate-
growth function on Z+Gk\GA. (Proofs in [2.B], [11.5].)

As in [13.5], the idea of the archimedean aspect of the C∞ topology is that it is given by the collection
of seminorms given by sups on compacts of all derivatives, for example left-G-invariant derivatives on
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G∞ =
∏
v|infty Gv from the Lie algebra, preserving left Gk-invariance, and stabilizing a useful class of

Eisenstein series. The non-archimedean smoothness is simpler, being right invariance under some compact
open subgroup of K ′ ⊂

∏
v<∞Kv, which leads to taking an ascending union (colimit) over such K ′.

The everywhere spherical computation of constant terms applies to computation of local components of
cP f at good primes for general f ∈ Is,χ, that is, places v where f is right Kv-invariant and χ is unramified.
However, at the other, bad, primes for f ∈ Is,χ, where f is right K ′v-invariant only for K ′v ⊂ Kv of high
index, the local integrals

f −→
(
g −→

∫
Nv

f(wng) dn
)

are naturally more complicated. Still, these maps visibly commute with the right translation action of Gv,
and have predictable left-equivariance under Mv for the same reason as in the simpler computation:

[2.8.8] Claim: The constant term of the Eisenstein series Ef for f ∈ Is,χ is

cPEf = f + Cs,χ(f) (with Cs,χf(g) =
∫
NA

f(wng) dn)

The map Cs,χ is a GA-map in the sense that g · (Cs,χf) = Cs,χ(g · f) where g · f is right translation.

Proof: Integration on the left certainly commutes with right translation. As in the earlier, simpler, case, the
small Bruhat cell gives ∫

Nk\NA
f(ng) dn = f(g) ·

∫
Nk\NA

1 dn

and the volume of Nk\NA is reasonably normalized to 1. The big Bruhat cell integral unwinds:∫
Nk\NA

∑
γ∈Nk

f(wγng) dn =

∫
NA

f(wng) dn

For m ∈MA,∫
NA

f(wnmg) dn =

∫
NA

f(wm ·m−1nmg) dn =

∫
NA

ν(m)f(wmw−1 · wng) dn

= ν(m)1−sχ(wmw−1) ·
∫
NA

f(wng) dn

showing that this part of the constant term is in I1−s,χw . ///

The scattering matrix/operator is the map [23]

f −→
(
g −→

∫
NA

f(wng) dn
)

(from Is,χ to I1−s,χw)

Since the unwound integral over NA is a (limit of) product(s) of integrals over Nv, it is a (tensor) product
of local maps Cs,χ,v among corresponding local spaces

Is,χ,v = {f ∈ C∞(Gv) : f(nmg) = (νsχ)(m) · f(g), for all n ∈ Nv, m ∈Mv, g ∈ Gv}

in the natural way. For example, for monomial f ∈ Is,χ, that is, of the form f(g) =
∏
v≤∞ fv(gv), with fv

the spherical vector for v outside a finite set S of places,∫
NA

f(wng) dn =

∫
NA

∏
v

fv(wng) dn =
∏
v

∫
Nv

fv(wng) dn

[23] Since this map respects the right translation action of Gv and/or of GA on functions, it is an instance of an

intertwining operator among representations of Gv and/or GA.

74



Garrett: Modern Analysis of Automorphic Forms

The earlier, simple constant term computation shows that for places v 6∈ S, the local operator sends
the spherical vector in Is,χ,v to the spherical vector in I1−s,χw,v, multiplied by the vth Euler factor of
Λ(2s− 1, χw)/Λ(2s, χ).

[2.8.9] Remark: The space of functions Is,χ has central character(
z 0
0 z

)
−→ νs

(
z 0
0 z

)
· χ1(z)χ2(z) = χ1(z)χ2(z)

The condition χw = χ is that χ1 = χ2. Thus, for f ∈ Is,χ, the normalized function g → χ1(det g)−1f(g) has
trivial central character, and, further, is in Is,1.

2.9 Meromorphic continuation of Eisenstein series

This is an issue of showing that a family of Eisenstein series Efs with fs ∈ Is,χ has a meromorphic
continuation in s beyond the range of convergence Re(s) > 1. So certainly Efs must be holomorphic in
Re(s) > 1, and the dependence of fs on s must be constrained for this to be plausible. The simplest
example is to take fs to be the everywhere-spherical vector in Is,χ, with χ unramified everywhere. As special
argument applicable to GL2 is in [2.B], and instantiation of a more general approach is in [11.5]. The basic
theorem is

[2.9.1] Theorem: The everywhere-spherical Eisenstein series Es,χ has a meromorphic continuation in s ∈ C,
as a smooth function of moderate growth on Z+Gk\GA. As a function of s, Es,χ(g) is of at most polynomial
growth vertically, uniformly in bounded strips, uniformly for g in compacts. (Proofs in [2.B] and [11.5].)

[2.9.2] Corollary: At archimedean v, let tv ∈ R be associated to the character χ, as in the proof of [2.8.4], so
that Es,χ is an eigenfunction for the vth invariant Laplacian ∆v, with eigenvalue λs,χ = (s− itv)(s− itv−1).
This eigenfunction property persists under meromorphic continuation.

Proof: Both ∆vEs,χ and λs,χ · Es,χ are holomorphic function-valued functions of s, taking values in the
topological vector space of smooth moderate-growth functions. They agree in the region of convergence
Re(s) > 1, then apply the vector-valued form [15.2] of the Identity Principle from complex analysis. ///

[2.9.3] Corollary: The meromorphic continuation of Es,χ implies the meromorphic continuation of the
constant term cPEs,χ(m) = (νsχ)(m) + cs,χ · (ν1−sχw)(m), and, in particular, of the function

cs,χ =
Λ(2s− 1, χ1/χ2)

Λ(2s, χ1/χ2)
(with χ

(
m1 0
0 m2

)
= χ1(m1)χ2(m2))

Proof: Since Es,χ meromorphically continues at least as a smooth function, the integral over the compact set
Nk\NA expressing a pointwise value cPEs,χ(g) of the constant term certainly converges absolutely. In fact,
the integral converges as a continuous-function-valued function n → (g → Es,χ(nm)), so has a continuous-
function-valued Gelfand-Pettis integral m → cPEs,χ(m). In brief, the constant term has a meromorphic
continuation. Then the vector-valued form of the Identity Principle from complex analysis implies that the
form of the constant term persists outside the region of convergence Re(s) > 1. In particular, this gives the
meromorphic continuation of cs,χ. ///

The theory of the constant term in [8.2] yields

[2.9.4] Claim: For every s away from poles of s→ Es,χ, in a fixed Siegel set St,C ,

Es,χ(nmk)−
(

(νsχ)(m) + cs,χ(ν1−sχw)(m)
)
�B ν(m)−B

That is, Es,χ − cPEs,χ is rapidly decreasing in standard Siegel sets.

Proof: Since Es,χ is an eigenfunction for invariant Laplacians and for spherical Hecke algebras, and is of
moderate growth, the theory of the constant term [8.2] exactly assures that Es,χ is asymptotic to its constant
term, in the sense of the assertion. ///

[2.9.5] Corollary: The poles of Es,χ are exactly the poles of the constant term cs,χ. ///
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Granting the meromorphic continuation and the asymptotic estimation of the Eisenstein series by its
constant term, the functional equation is determined by its constant term:

[2.9.6] Corollary: Es,χ has the functional equation E1−s,χ = c1−s,χEs,χw , and cs,χ · c1−s,χw = 1.

[2.9.7] Remark: Note that the functional equation does not generally relate E1−s,χ to Es,χ, but to Es,χw .

Proof: Take Re(s) > 1
2 and s off the real line. The function f = E1−s,χ − c1−s,χEs,χw has constant term

cP f(m) =
(

(ν1−sχ)(m) + c1−s,χ · (νsχw)(m)
)
− c1−s,χ ·

(
(νsχ)(m) + cs,χw · (ν1−sχ)(m)

)
= ν1−s(m) ·

(
1− c1−s,χcs,χw

)
· χ(m)

For σ = Re(s) > 1
2 , ν1−s is square-integrable on St,C : via an Iwasawa decomposition, noting that

ν(m)−1 dn dm is left Haar measure on PA,

∫
St,C

|ν1−s|2 =

∫
St,C

ν2−2σ(m) ν(m)−1dn dmdk �
∫

m∈Z+Mk\MA : ν(m)≥t

ν(m)1−2σ dm �
∞∫
t

y1−2σ dy

y

By the theory of the constant term [8.2], on a standard Siegel set

f = cP f + (rapidly decreasing) �s η1−σ + (rapidly decreasing)

Thus, on St,C ,

|f |2 � |ν1−σ + (rapidly decreasing)|2

= ν2(1−σ) + 2 · η1−σ · (rapidly decreasing) + (rapidly decreasing)
2

= ν2(1−σ) + (rapidly decreasing)

Thus, f ∈ L2(Z+Gk\GA). For archimedean v, f is a ∆v-eigenfunction, with eigenvalue of the form
λ = (s− itv)(s− itv − 1) for itv purely imaginary, depending on χ. This eigenvalue is not real for Re(s) > 1

2
and s 6∈ R. But

λ · 〈f, f〉 = 〈λf, f〉 = 〈∆vf, f〉 = 〈f,∆vf〉 = 〈f, λf〉 = λ · 〈f, f〉 = λ · 〈f, f〉

We did not use symmetry properties of ∆v, but only that 〈f, F 〉 = 〈F, f〉. Necessarily E1−s,χ−c1−s,χEs,χw =
0 for such s. For all g ∈ GA, by the Identity Principle applied to the C-valued meromorphic functions
s −→ (E1−s,χ(g)− c1−s,χEs,χw(g)), the same identity applies for all s away from poles. Since the constant
term is identically 0, necessarily c1−s,χcs,χw = 1. ///

The more general scenario needs some restrictions to stay near enough to the simple case to apply the
same causal mechanisms. In particular, generalizing right KA-invariance, the function f ∈ Is,χ must be
right KA-finite, in the sense that the collection of right translates of f by KA spans a finite-dimensional
space of functions. For non-archimedean places, this is equivalent to being fixed by a finite-index subgroup
in
∏
v<∞Kv, but for archimedean places there is no such equivalence. Also, unsurprisingly, the dependence

of f on the complex parameter s must also be controlled: take f(nmk) = (νsχ)(m)fo(k) with the function
fo on KA independent of s, and right KA-finite, and write E(s, χ, fo) = Ef . Of course, to avoid the
potential ambiguity due to the non-triviality of MA ∩ KA, it must be that χ is trivial on M1 ∩ KA, and
fo(mk) = χ(m)fo(k) for m ∈ M1 and k ∈ KA, or else f = 0. The scattering operator Cs,χ not only flips
s→ 1− s and χ→ χw, but also acts on the function fo by (possibly a meromorphic continuation of)

(Cs,χfo)(k) =

∫
NA

f(wnk) dk (for k ∈ KA)

The constant term becomes

cPEf = cPE(s, χ, fo) = νsχ⊗ fo + ν1−sχw ⊗ Cs,χ(fo)
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[2.9.8] Theorem: E(s, χ, fo) has a meromorphic continuation in s ∈ C, as a smooth function of moderate
growth on Γ\G. As a function of s, E(s, χ, fo)(g) is of at most polynomial growth vertically, uniformly in
bounded strips, uniformly for g in compacts. (Proofs in [2.B] and [11.5].)

The general analogue of the argument in the special case proves meromorphic continuation of scattering
matrix/operators, with the qualification that they be restricted to KA-finite functions Ifin

s,χ in Isχ,
commensurate with the conditions for meromorphic continuation of Eisenstein series.

[2.9.9] Corollary: The scattering matrix/operator Cs,χ restricted to a map Cfin
s,χ : Ifin

s,χ → Ifin
1−s,χw , has a

meromorphic continuation.

Proof: The appropriate sense of meromorphic continuation is that Cs,χf has a meromorphic continuation as
a Ifin

1−s,χw -valued function for every f ∈ Ifin
s,χ. The meromorphic continuation of Ef gives the meromorphic

continuation of cPEf = f + Cs,χf , and the special form of f assures that s → f is entire, so Cs,χf has a
meromorphic continuation. ///

[2.9.10] Corollary: For fo as in the theorem, the functional equation E(1− s, χ, fo) = E(s, χw, C1−s,χwfo)
holds, and C1−s,χw ◦ Cs,χ = 1. The operator Cfin

s,χ has poles exactly where Ef has a pole for some f ∈ Ifin
s,χ.

Proof: Arranging to cancel the νs part of the constant terms,

cP

(
E(1− s, χ, fo)− E(s, χw, C1−s,χwfo)

)
=
(
ν1−sχ⊗ fo + νsχw ⊗ C1−s,χfo

)
−
(
νsχw ⊗ C1−s,χfo + ν1−sχ⊗ C1−s,χwC1−s,χfo

)
= ν1−sχ⊗

(
fo − C1−s,χwC1−s,χfo

)
The theory of the constant term [8.2] implies that Eisenstein series E(s, χ, fo) are asymptotic to their constant
terms. In Re(s) > 1

2 , the function ν1−s is in L2 on Siegel sets, so E(1 − s, χ, fo) − E(s, χw, C1−s,χwfo) is
in L2. However, the eigenvalues of the invariant Casimir operators Ωv at archimedean places are not real in
Re(s) > 1

2 off the real line, so this difference must be 0. This holds for all fo. ///

2.10 Truncation and Maaß-Selberg relations

The genuine Eisenstein series are not in L2(Z+Gk\GA), but from the theory of the constant term [8.2]
the only obstruction is the constant term, which is sufficiently altered by truncation. The Maaß-Selberg
relations are computation of the L2 inner products of the resulting truncated Eisenstein series.

The truncation operators ∧T for large positive real T act on an automorphic form f by killing off f ’s
constant term on g = nmk for large ν(m). Thus, for a right KA-invariant function, one might imagine that

(naive T -truncation of f)(nmk) =

 f(g) for ν(m) ≤ T

f(g)− cP f(g) for ν(m) > T

This is flawed. On a standard Siegel set St,C this description is good, but it fails to describe the truncated
function on the whole group GA, in the sense that this failed truncation is not an automorphic form, that
is, as a left Z+Gk-invariant function. Truncation should produce automorphic forms. For sufficiently large
T the same effect is achieved by first defining the tail cTP f of the constant term cP f of f :

cTP f(nmk) =

 0 (for ν(m) ≤ T )

cP f(nmk) (for ν(m) > T )

Although cTP f need not be smooth, nor compactly supported, by design, for T large, its support is sufficiently
high to control analytical issues: writing Ψ(ϕ) = Ψϕ for legibility,

[2.10.1] Claim: For T sufficiently large, the pseudo-Eisenstein series Ψ(cTP f) is a locally finite sum, hence,
uniformly convergent on compacts.
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Proof: The tail cTP f is left NA-invariant. The reduction theory of [2.2] shows that a set {nmk : ν(m) ≥ to}
does not meet γ · {nmk : ν(m)y ≥ t} for γ ∈ Gk unless γ ∈ Pk, for large-enough t depending on to. Thus,
for large-enough T , the set S = {nmk : ν(m) ≥ T} does not meet its translate γ · S unless γ ∈ Pk. Thus,
γ1 · S does not meet γ2 · S unless γ1Pk = γ2Pk. ///

Similarly,

[2.10.2] Claim: On a standard Siegel set St,C , Ψ(cTP f) = cTP f for all T sufficiently large depending on t.

Proof: By reduction theory [2.2], for large-enough T depending on to, a set {nmk : ν(m) > to} does not
meet γ · {nmk : ν(m) > T} unless γ ∈ Pk. Thus, for large-enough T , {namk : ν(m) > T} does not meet
Sto,C unless γ ∈ Pk, and the sole non-zero summand is cTP f . ///

A proper definition of the truncation operator ∧T is

∧T f = f −Ψ(cTP f)

The critical effect of the truncation procedure is to have

[2.10.3] Corollary: For KA-finite f ∈ Is,χ, for s away from poles, the truncated Eisenstein series ∧TEf is
of rapid decay in all Siegel sets.

Proof: By the previous claim and by the theory of the constant term [8.2], Ef − cPEf is of rapid decay in
standard Siegel sets. (Meromorphic continuation uses KA-finiteness.). ///

Surprisingly, inner products of truncated Eisenstein series have a useful explication. Let

X− = {g ∈ Z+NAMk\GA : η(g) < T} X+ = {g ∈ Z+NAMk\GA : η(g) ≥ T}

[2.10.4] Theorem: (Maaß-Selberg relation) Given χ, χ′ characters of Mk\MA and f ∈ Is,χ and f ′ ∈ Ir,χ′∫
Z+Gk\GA

∧TEf · ∧TEf ′ =

∫
X−

f · f ′ +

∫
X−

f · Cr,χ′(f ′) −
∫
X+

Cs,χ(f) · f ′ −
∫
X+

Cs,χ(f) · Cr,χ′(f ′)

=
T s+r−1

s+ r − 1

∫
Mk\M1

χχ′
∫
KA

f · f ′ +
T (1−s)+r−1

(1− s) + r − 1

∫
Mk\M1

χwχ′
∫
KA

Cs,χ(f) · f ′

+
T s+(1−r)−1

s+ (1− r)− 1

∫
Mk\M1

χχ′w
∫
KA

f · Cr,χ′(f ′) +
T (1−s)+(1−r)−1

(1− s) + (1− r)− 1

∫
Mk\M1

χwχ′w
∫
KA

Cs,χ(f) · Cr,χ′(f ′)

[2.10.5] Remark: The integrals over Mk\M1 are 0 unless the integrand is the trivial character on M1.

Proof: Because the tail of the constant term of Ef ′ is orthogonal to the truncation ∧TEf of Ef ,

∫
Z+Gk\GA

∧TEf · ∧TEf ′ =

∫
Z+Gk\GA

∧TEf · Ef ′

This is

∫
Z+Gk\GA

(
Ef −Ψ

 0 (for η < T )

f + Cs,χ(f) (for η ≥ T )

) · Ef ′ =

∫
Z+Gk\GA

Ψ

 f (for η < T )

−Cs,χ(f) (for η ≥ T )

 · Ef ′
Unwinding the awkward pseudo-Eisenstein series gives
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∫
Z+NAMk\GA

∫
Nk\NA

 f (for η < T )

−Cs,χ(f) (for η ≥ T )
· Ef ′

=

∫
Z+NAMk\GA

 f (for η < T )

−Cs,χ(f) (for η ≥ T )
·
(∫

Nk\NA
Ef ′(ng) dn

)
dg

=

∫
Z+NAMk\GA

 f (for η < T )

−Cs,χ(f) (for η ≥ T )
· (f ′ + Cr,χ′(f ′))

=

∫
X−

f · f ′ +

∫
X−

f · Cr,χ′(f ′) −
∫
X+

Cs,χ(f) · f ′ −
∫
X+

Cs,χ(f) · Cr,χ′(f ′)

The sets X± are stable under the left action of Mk\M1. Since f is left χ-equivariant for Mk\M1 and f ′ is
left χ′-equivariant, via the Iwasawa decomposition, noting that ν(m)−1 dn dm is left Haar measure on PA,∫

X−
f · f ′ =

∫
Z+Mk\MA : ν<T

∫
KA

f(mk) · f ′(mk) ν−1(m) dm dk

=

∫
Z+Mk\MA : ν<T

(νsχ)(m) · (νrχ)(m) ν−1(m) dm ·
∫
KA

f(k) · f ′(k) dk

The left-most integral is left Mk\M1-equivariant by χχ′. When this is a non-trivial character the integral is
0, by the usual cancellation trick: with mo ∈M1 such that χ(mo) 6= χ′(mo), by replacing m by mom in the
integral, ∫

Z+Mk\MA : ν<T

(νsχ)(m) · χ′(m) dm =

∫
Z+Mk\MA : ν<T

(νsχ)(mom) · χ′(mom) dm

= χχ′(mo)

∫
Z+Mk\MA : ν<T

(νsχ)(m) · χ′(m) dm

For χ′ = χ, the integral over Mk\M1 gives a volume. What remains is the integral over the image of the
fragment (0, T ) of the ray (0,∞), giving∫ T

0

ys+r−1 dy

y
=

T s+r−1

s+ r − 1

The other three summands are similarly evaluated. ///

[2.10.6] Corollary: Unless χ′ = χ or χ′ = χw, for f ∈ Is,χ and f ′ ∈ Ir,χ′ , the corresponding truncated
Eisenstein series ∧TEf and ∧TEf ′ are orthogonal.

Proof: For χ′ 6= χ and χ′ 6= χw, all four integrals over Mk\M1 vanish. ///

The situation χw = χ can be adjusted, by multiplying by χ1(det g)−1, to have trivial central character.
Thus, the following corollary refers essentially to the case of trivial central character:

[2.10.7] Corollary: For characters χ′ = χ = χw of Mk\MA, and simplest Eisenstein series Es,χ, Er,χ
attached to the everywhere-spherical elements of Is,χ and Ir,χ,∫

Z+Gk\GA

∧TEs,χ ∧TEr,χ =
T s+r−1

s+ r − 1
+
cs,χ T

(1−s)+r−1

(1− s) + r − 1
+
cr,χ T

s+(1−r)−1

s+ (1− r)− 1
+
cs,χcr,χ T

(1−s)+(1−r)−1

(1− s) + (1− r)− 1
///
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The following result has a special, more direct argument, but the proof mechanism used here is more
broadly applicable.

[2.10.8] Corollary: For f ∈ Is,χ of the form f(nmk) = (νsχ)(m) · f(k) for n ∈ NA, m ∈MA, and k ∈ KA,
with f |KA independent of s, neither the Eisenstein series Ef nor the scattering operator Cs,χ has any poles

in Re(s) ≥ 1
2 off the interval ( 1

2 , 1]. The poles on ( 1
2 , 1], if any, are simple. When χ 6= χw, there are no poles

on ( 1
2 , 1]. Any residues in Re(s) > 1

2 are square-integrable.

Proof: Suppose Ef has a pole so = σo + ito of order ` > 0 with to 6= 0 and σo >
1
2 . Certainly the order of

pole of the constant term can be no greater than that of Ef , so the second summand Cs,χ(f) has a pole of
order at most ` at s = so. The first summand, f itself, as a function of s is entire, by the assumptions about
the dependence of f on s. Take r = s = σo + it in the theorem, giving an equality of the form∫

Z+Gk\GA
| ∧T Ef |2 =

T 2σo−1

2σo − 1
A1 +

T−2it

−2it
A2 +

T 2it

2it
A3 +

T 1−2σo

1− 2σo
A4

The left-hand side of the Maaß-Selberg relation blows up like (t − to)−2` as t → to on R. The second and
third terms blow up at most like Cs,χ(f) does, which is at worst (t − to)

−`. The fourth term blows up
at worst like |Cs,χ(f)|2, which is at worst (t − to)−2`. Thus, as t → to, the left-hand side and the fourth
term on the right dominate. However, the left-hand side is positive, while the fourth term is negatrive, since
1− 2σ < 0. That is, there can be no such pole.

Next, let so = σo be a pole of Ef of order ` ≥ 1 on ( 1
2 , 1]. Looking at the same expression, again, A1

does not blow up as t → to = 0, unlike the previous case the second and third terms blow up at most like
t−(`+1) since to = 0, and the fourth again at most like t−2`. Again, the fourth term is negative, and if ` > 1
dominates the right-hand side as t → 0, contradicting the positivity of the left-hand side. Thus, ` = 1, in
which case the second and third terms’ blow-up may be the same order as the left-hand side, and as the
fourth term on the right-hand side. This proves that any pole on (1

2 , 1] is simple. Further, when χ 6= χw,
the second and third terms are identically 0, so there can be no pole on ( 1

2 , 1] in that case.
To prove square-integrability of a residue at σo ∈ ( 1

2 , 1], treat the Eisenstein series as a meromorphic
function-valued function, as in [15.2]. Its Laurent coefficients coefficients are functions in the same topological
vector space, by the vector-valued form of Cauchy’s formulas [15.2]. From the Maaß-Selberg expression
again, at r = s = σo + it, multiplying through by t2 and letting t→ 0, the first term on the right-hand side
disappears, the powers of T in the second and third terms become T 0, giving∫

Z+Gk\GA
|ResσoE

T
f |2 =

ResσoA2

2
+

ResσoA3

2
+
T 1−2σo

1− 2σo
lim
t→to

t2A4

Since 1− 2σo < 0, the limit of the last term is 0 as T → +∞, given the square-integrability of the residue.
Properties of meromorphic vector-valued functions [15.2] and Gelfand-Pettis integrals [14.1] assure that
taking residues commutes with taking the limit as T → ∞. The two remaining terms are equal, since the
pole is on the real line.

Suppose so = 1
2 + ito is a pole of Ef of order ` ≥ 1 with to 6= 0. Take r = s = σ + ito with σ > 1

2 in the
theorem, giving an equality of the form∫

Z+Gk\GA
| ∧T Ef |2 =

T 2σ−1

2σ − 1
A1 +

T−2ito

−2ito
A2 +

T 2ito

2ito
A3 +

T 1−2σ

1− 2σ
A4

The left-hand side is positive, and blows up like (σ − 1
2 )−2` as σ → 1

2

+
, while the first three terms on the

right blow up with orders at most 1, and the fourth term is negative, impossible.
For a possible pole at so = 1

2 , take r = s = 1
2 + ε

2 (1 + i) with ε > 0, giving an equality of the form∫
Z+Gk\GA

| ∧T Ef |2 =
T ε

ε
A1 +

T−iε

−iε
A2 +

T iε

iε
A3 +

T−ε

−ε
A4

with the second and third terms absent unless χw = χ. Thus, for χw 6= χ, the left-hand side is positive
and blows up like ε−2` as ε → 0+, while the first term on the right blows up like ε−1, and the fourth term
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is negative, so this is impossible. For χw = χ, for Re(s) = 1
2 , the functional equation 1 = Cfin

s,χ ◦ Cfin
1−s,χw

becomes
1 = Cfin

s,χ ◦ Cfin
1−s,χw = Cfin

s,χ ◦ Cfin
s,χ

Thus, (Cfin
1
2 ,χ

)2 = 1, so Cfin
s,χ has neither pole nor zero at s = 1

2 . Thus, the first three terms on the right blow

up like ε−1, while the last is negative, impossible. ///

2.11 Decomposition of pseudo-Eisenstein series: level one

From [2.7], the pseudo-Eisenstein series Ψϕ with ϕ ∈ Jχ and varying χ generate the orthogonal complement
to cuspforms in L2(Z+Gk\GA). Thus, the orthogonal complement to cuspforms is the L2-closure of the set
of these pseudo-Eisenstein series. For this section, we take trivial central character, and consider only the
simplest case, right KA-invariant pseudo-Eisenstein series. These are everywhere spherical case, or level one.
As earlier,

χ

(
m1 0
0 m2

)
= χ1(m1) · χ2(m2) (for m1,m2 ∈ J1)

so χ2 = χ−1
1 , and χw = χ−1. Since Mk\M1 is compact, χ = χ−1. Thus, χ = χ−1 = χw. The potential

ambiguity in the decomposition g = nmk must be accommodated in χ, or else f = 0, so χ is unramified
everywhere locally. Thus, for genuine Eisenstein series Ef , we take f ∈ Is,χ right KA-invariant, so necessarily
of the form f(nmk) = (νsχ)(m) for n ∈ NA, m ∈M1, and k ∈ KA, up to a constant multiple. In principle,
the constant multiple could depend on s, but we want f |KA to be independent of s, for meromorphic

continuation. Thus, take f |KA = 1.
The essential harmonic analysis is Fourier transform on the real line, as Mellin transform on functions on

the ray (0,+∞).
From [2.7], pseudo-Eisenstein series Ψϕ are in C∞c (Z+Gk\GA), so their integrals against genuine Eisenstein

series Ef converge absolutely, since Ef is continuous, even after meromorphic continuation. Thus, even
though this 〈, 〉 cannot be the L2 pairing, since Ef 6∈ L2(Z+Gk\GA), write

〈Ψϕ, Es〉 =

∫
Z+Gk\GA

Ψϕ · Ef

First consider χw = χ.

[2.11.1] Theorem: Fix unramified χ with χw = χ. Let ϕ ∈ Jχ be right KA-invariant, with trivial central
character. Let so run over poles of Es,χ in Re(s) ≥ 1

2 . The pseudo-Eisenstein series Ψϕ is expressible in
terms of genuine Eisenstein series Es,χ by an integral converging absolutely and uniformly on compacts in
Z+Gk\GA: pointwise, uniformly on compacts,

Ψϕ =
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉 · Es,χ ds +
∑

Re(so)≥ 1
2

〈Ψϕ,RessoEs,χ〉 · RessoEs,χ(g)

=
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉 · Es,χ ds + 〈Ψϕ, χ1 ◦ det〉 · χ1 ◦ det

|χ1 ◦ det |2L2

[2.11.2] Remark: By various devices, for example the Poisson summation argument of [2.B], the only
possible pole in Re(s) ≥ 1

2 is at so = 1, with residue a constant multiple of χ1 ◦ det. However, the general
pattern of argument does not depend on our fortuitous knowledge of these further details.

Proof: By an easy part of the Paley-Wiener theorem, the Mellin transform of ϕ∞ ∈ C∞c (0,∞) is entire, and
has rapid decay vertically, and Mellin inversion is

ϕ∞(y) =
1

2πi

∫ σ+i∞

σ−i∞

(∫ ∞
0

ϕ∞(r) r−s
dr

r

)
ys ds (for any real σ)
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With

ϕ(zaynmk) = ϕ∞(y)χ(m) (for z ∈ Z+, ay =

(
δ(y) 0

0 1

)
, y > 0, n ∈ NA, m ∈M1, k ∈ KA)

define a kind of Mellin transform Jχ → Is,χ by

Mϕ(s)(g) =

∫ ∞
0

r−s ϕ(arg)
dr

r
(with ar =

(
δ(r) 0

0 1

)
with r > 0)

We decompose the pseudo-Eisenstein series Ψϕ along the ray (0,∞):

Ψϕ(g)=
∑

γ∈Pk\Gk

ϕ(γg) =
1

2πi

∑
γ∈Pk\Gk

σ+i∞∫
σ−i∞

Mϕ(s)(γg) ds

Since χ is specified, and ϕ is right KA-invariant, in fact

Mϕ(s)(zaynmk) = Mϕ(s)(1) · ys χ(m)

Thus, although Mϕ(s) is a function on GA for each s, it is simply a scalar multiple of the everywhere-
spherical function in Is,χ. Thus, for subsequent computations, suppress the argument g ∈ GA, and just
write

Mϕ(s) =

∫ ∞
0

r−s ϕ(ar)
dr

r
(with ar =

(
δ(r) 0

0 1

)
with r > 0)

and, commensurately,

Ψϕ(g)=
∑

γ∈Pk\Gk

ϕ(γg) =
1

2πi

∑
γ∈Pk\Gk

σ+i∞∫
σ−i∞

Mϕ(s) · ysγg χ(mγg) ds

Taking σ = 0 would be natural, but with σ = 0 the double integral (sum and integral) is not absolutely
convergent, and the two integrals cannot be interchanged. For σ > 1, the Eisenstein series is absolutely
convergent, so the rapid vertical decrease of Mϕ in s makes the double integral absolutely convergent, and
by Fubini the two integrals can be interchanged:

Ψϕ(g) =
1

2πi

∫ σ+i∞

σ−i∞
Mϕ(s) ·

( ∑
γ∈Pk\Gk

ysγg χ(mγg)
)
ds (with σ > 1)

The inner sum is the everywhere spherical Eisenstein series Es,χ, so, pointwise in g ∈ GA,

Ψϕ =
1

2πi

∫ σ+i∞

σ−i∞
Mϕ(s) · Es,χ ds (for σ > 1)

Although this does express Ψϕ as a superposition of eigenfunctions Es,χ for invariant Laplacians and for
spherical Hecke operators, it is unsatisfactory, because it should not refer to Mϕ, but to Ψϕ, to have an
intrinsic integral formula. Elimination of this issue is the remainder of the argument.

We move the line of integration in

Ψϕ =
1

2πi

∫ σ+i∞

σ−i∞
Mϕ(s) · Es,χ ds (for σ > 1)

to the left, to σ = 1/2, which is stabilized by the functional equation of Es,χ. From the corollary [2.10.8]
to the Maaß-Selberg relations, there are only finitely-many poles of Es in Re(s) ≥ 1

2 , removing one possible
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obstacle to the contour move. From the theorem [2.B], [11.5] on meromorphic continuation, we know that
even the meromorphically continued Es,χ is of polynomial growth vertically in s, uniformly in bounded strips
in s, uniformly for g in compacts. Thus, we may move the contour, picking up finitely-many residues:

Ψϕ =
1

2πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s) · Es,χ ds +
∑
so

Mϕ(so) · RessoEs,χ

since the poles of Es,χ in Re(s) > 1
2 are simple and Mϕ(s) is entire in s. The 1/2πi from inversion cancels

the 2πi in the residue formula. The integral in the expression of Ψϕ in terms of Es,χ can be folded in half,
integrating from 1

2 + i0 to 1
2 + i∞ rather than from 1

2 − i∞ to 1
2 + i∞:

Ψϕ − (residual part) =
1

2πi

1
2 +i∞∫

1
2−i∞

Mϕ(s) · Es,χ(g) ds =
1

2πi

1
2 +i∞∫

1
2 +i0

Mϕ(s)Es,χ +Mϕ(1− s)E1−s,χ ds

The functional equation is E1−s,χ = c1−s,χEs,χw , and we are assuming χw = χ, so

Ψϕ − (residual) =
1

2πi

1
2 +i∞∫

1
2 +i0

Mϕ(s)Es,χ +Mϕ(1− s) c1−s,χEs,χ ds

To rewrite this in terms of Ψϕ, use the adjunction/unwinding property of Ψϕ:

〈Ψϕ, Es,χ〉 =

∫
Z+NAMk\GA

ϕ · cPEs,χ =

∫
Z+NAMk\GA

ϕ(g) · (ysgχ(mg) + cs,χy
1−s
g χw(mg)) dg

=

∫
Z+NAMk\PA

∫
KA

ϕ(pk) · (yspkχ(mpk + cs,χy
1−s
pk χw(mpk)) dp dk

=

∫
KA

1 dk ·
∫ ∞

0

∫
Mk\M1

ϕ(ay)χ(m) · (ysχ(m) + cs,χy1−sχw(m)) dm
dy

y2

=

∫ ∞
0

∫
Mk\M1

ϕ(ay)χ(m) · (ysχ(m) + cs,χy1−sχw(m)) dm
dy

y2
=

∫ ∞
0

ϕ(ay) · (ys + cs,χy1−s)
dy

y2

by using the Iwasawa decomposition, the right KA-invariance, and χw = χ. On Re(s) = 1
2 , this is∫ ∞

0

ϕ(ay) · (y1−s + c1−s,χ y
s)
dy

y2
=

∫ ∞
0

ϕ(ay) · (y−s + c1−s,χ y
−(1−s))

dy

y
= Mϕ(s) + c1−s,χMϕ(1− s)

Using χ = χ,
〈Ψϕ, Es,χ〉 = Mϕ(s) + c1−s,χMϕ(1− s)

Thus,

Ψϕ − (residual) =
1

2πi

1
2 +i∞∫

1
2 +i0

〈Ψϕ, Es,χ〉 · Es,χ ds

The integral can be restored to be over the whole line Re(s) = 1
2 , since the integrand is invariant under

s→ 1− s: by the functional equations of Es,χ and cs,χ,

〈Ψϕ, E1−s,χ〉 · E1−s,χ = 〈Ψϕ, c1−s,χEs,χ〉 · c1−s,χEs,χ = c1−s,χc1−s,χ〈Ψϕ, Es,χ〉 · Es,χ = 〈Ψϕ, Es,χ〉 · Es,χ
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Thus, dividing by 2,

Ψϕ − (residual part) =
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉 · Es,χ ds

It remains to explicate the finitely-many residual contributionsMϕ(so) ·RessoEs,χ. In fact, by [2.10.8] or
[2.B], there are no poles unless χ1/χ2 = 1 on J1, and then the only pole in that region is at so = 1, with
residue χ1 ◦ det. However, we want to illustrate more widely applicable methods, as follows.

As do the pseudo-Eisenstein series, Es,χ fits into an adjunction∫
Z+Gk\GA

f · Es,χ =

∫
Z+NAMk\GA

cP f(g) · ysg χ(mg) dg (for f on Z+Gk\GA)

whenever the implied integrals converge absolutely. By the identity principle from complex analysis, the
same formula holds for the meromorphic continuation of Es,χ for s away from poles. For right KA-invariant
f , via Iwasawa decomposition,∫

Z+NAMk\GA

cP f(g) · ysg χ(mg) dg =

∫ ∞
0

∫
Mk\M1

cP f(aym) · ys χ(m)
dy

y2

even though PA ∩ KA is not simply {1}. The integration over the compact group Mk\M1 computes the
χ-component (cP f)χ of cP f with respect to the left action of M1:∫ ∞

0

∫
Mk\M1

cP f(aym) · ys χ(m)
dy

y2
=

∫ ∞
0

(cP f)χ(ay) · ys−1 dy

y
= M(cP f)χ(1− s)

On Re(s) = 1
2 , where s = 1− s, using 1− (1− s) = s,

〈f,Es,χ〉 =

∫
Z+Gk\GA

f · Es,χ =

∫
Z+Gk\GA

f · Es,χ =

∫
Z+Gk\GA

f · E1−s,χ = M(cP f)χ(s)

Taking f to be the pseudo-Eisenstein series Ψϕ,

〈Ψϕ, Es,χ〉 = M(cPΨϕ)χ(s) (on Re(s) = 1
2 )

At a pole so of Es,χ in Re(s) ≥ 1
2 , cs,χ also has a pole of the same order. Since cs,χ · c1−s,χ = 1 for χw = χ,

necessarily c1−s,χ has a zero at so. Thus, from

McPΨϕ(s) = 〈Ψϕ, Es,χ〉 = Mϕ(s) + c1−s,χMϕ(1− s)

at a pole so of Es

McPΨϕ(so) = Mϕ(so) + c1−so,χMϕ(1− so) = Mϕ(so) + 0 · Mϕ(1− so) = Mϕ(so)

That is, the value McPΨϕ at so is just the value of Mϕ there, so the coefficients appearing in the
decomposition of Ψϕ are intrinsic. Thus, the decomposition above has an intrinsic form as in the statement
of the theorem. This completes the argument for the decomposition of right KA-invariant pseudo-Eisenstein
series Ψϕ with ϕ ∈ Jχ, with trivial central character, and χw 6= χ. In fact, the residues at poles are constant
multiples of χ1(det g), from [2.B]. ///

Still with trivial central character and right KA-invariance, consider χw 6= χ:

[2.11.3] Theorem: Fix unramified χ with χw 6= χ. Let ϕ ∈ Jχ be right KA-invariant, with trivial central
character. The pseudo-Eisenstein series Ψϕ is expressible in terms of genuine Eisenstein series Es,χ by an
integral converging absolutely and uniformly on compacts in Z+Gk\GA:

Ψϕ(g) =
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉 · Es,χ ds
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[2.11.4] Remark: As in the corollary [2.10.8] to the Maaß-Selberg relation, there is no pole at all unless
χ1/χ2 = 1 on J1. This absence of poles is also visible by the Poisson summation argument [2.B].

Proof: As in the situation of the previous theorem, pointwise in g ∈ GA,

Ψϕ =
1

2πi

∫ σ+i∞

σ−i∞
Mϕ(s) · Es,χ ds (for σ > 1)

Move the line of integration to the left, to σ = 1/2, using the lack of poles for these Eisenstein series in
Re(s),

Ψϕ =
1

2πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s) · Es,χ ds

To rewrite this in terms of Ψϕ, by the adjunction/unwinding property of Ψϕ,

〈Ψϕ, Es,χ〉 =

∫
Z+NAMk\GA

ϕ · cPEs,χ =

∫
Z+NAMk\GA

ϕ(g) · (ysgχ(mg) + cs,χy
1−s
g χw(mg)) dg

=

∫ ∞
0

∫
Mk\M1

ϕ(ay)χ(m) · (ysχ(m) + cs,χy1−sχw(m)) dm
dy

y2
=

∫ ∞
0

ϕ(ay) · ys dy
y2

by using the Iwasawa decomposition and the right KA-invariance, since ϕ is left χ-equivariant under M1

and χw 6= χ. On Re(s) = 1
2 , this is

〈Ψϕ, Es,χ〉 =

∫ ∞
0

ϕ(ay) · y1−s dy

y2
=

∫ ∞
0

ϕ(ay) · y−s dy
y

= Mϕ(s)

Since the functional equation E1−s,χ = c1−s,χEs,χw involves Es,χw and χw 6= χ, we anticipate needing the
complementary computation

〈Ψϕ, Es,χw〉 =

∫
Z+NAMk\GA

ϕ · cPEs,χw =

∫
Z+NAMk\GA

ϕ(g) · (ysgχw(mg) + cs,χwy
1−s
g χ(mg))

=

∫ ∞
0

∫
Mk\M1

ϕ(ay)χ(m) · (ysχw(m) + cs,χwy1−sχ(m)) dm
dy

y2
=

∫ ∞
0

ϕ(ay) · cs,χwy1−s dy

y2

using the Iwasawa decomposition and the right KA-invariance, since ϕ is left χ-equivariant under M1 and
χw 6= χ. On Re(s) = 1

2 , using χw = χ due to the trivial central character, this is

〈Ψϕ, Es,χw〉 =

∫ ∞
0

ϕ(ay) · c1−s,χys
dy

y2
=

∫ ∞
0

ϕ(ay) · c1−s,χy−(1−s) dy

y
= c1−s,χMϕ(1− s)

The integral in the expression of Ψϕ in terms of Es,χ can be folded in half, integrating from 1
2 + i0 to

1
2 + i∞ rather than from 1

2 − i∞ to 1
2 + i∞:

Ψϕ =
1

2πi

1
2 +i∞∫

1
2−i∞

Mϕ(s) · Es,χ(g) ds =
1

2πi

1
2 +i∞∫

1
2 +i0

Mϕ(s)Es,χ +Mϕ(1− s)E1−s,χ ds

The functional equation is E1−s,χ = c1−s,χEs,χw , and χw 6= χ, so

Ψϕ =
1

2πi

1
2 +i∞∫

1
2 +i0

Mϕ(s)Es,χ +Mϕ(1− s) c1−s,χEs,χw ds
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=
1

2πi

1
2 +i∞∫

1
2 +i0

〈Ψϕ, Es,χ〉 · Es,χ ds+
1

2πi

1
2 +i∞∫

1
2 +i0

〈Ψϕ, Es,χw〉 · Es,χw ds

using 〈Ψϕ, Es,χ〉 = Mϕ(s) and 〈Ψϕ, Es,χw〉 = c1−s,χMϕ(1 − s). The integrals can be restored to be over
the whole line Re(s) = 1

2 , since the two integrals are interchanged under s→ 1− s:

〈Ψϕ, E1−s,χ〉 · E1−s,χ = 〈Ψϕ, c1−s,χEs,χw〉 · c1−s,χEs,χw = c1−s,χc1−s,χ〈Ψϕ, Es,χw〉 · Es,χw

= cs,χwc1−s,χ〈Ψϕ, Es,χw〉 · Es,χw = 1 · 〈Ψϕ, Es,χw〉 · Es,χw

and similarly for Es,χw . Dividing by 2,

Ψϕ =
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉 · Es,χ ds+
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χw〉 · Es,χw ds

This completes the argument for the decomposition of right KA-invariant pseudo-Eisenstein series Ψϕ with
ϕ ∈ Jχ, with trivial central character, and χw 6= χ. ///

2.12 Decomposition of pseudo-Eisenstein series: higher level

A similar argument applies to decomposition of pseudo-Eisenstein series without the everywhere-spherical
constraint, necessarily tracking the additional information about the restriction of f ∈ Is,χ to (PA∩KA)\KA.
We retain the trivial central character condition, for simplicity. For meromorphic continuation and analytical
properties of Eisenstein series, f |KA should be KA-finite and fKA should not depend on s. For simplicity,

still require invariance under K∞ =
∏
v|∞Kv, so the relaxation of conditions will be at non-archimedean

places. Putting Kfin =
∏
v<∞Kv, we require Kfin-finiteness.

Let Θv = Pv ∩ Kv, and Θfin =
∏
v<∞Θv. With fixed χ, restrictions of ϕ ∈ Jχ or f ∈ Is,χ to Kfin

necessarily lie in [24]

Φ = {u ∈ C∞(Kfin) : u(θk) = χ(θ) · u(k), for θ ∈ Θfin, k ∈ Kfin}

where smooth in this context means means locally constant. There is a natural right Kfin-invariant inner
product on Φ by

〈u1, u2〉 =

∫
KA

u1 · u2

For each irreducible representation ρ of the compact group Kfin, let Φρ be the ρ isotypic component in Φ,
namely, the sum of all isomorphic copies of ρ inside Φ [9.D.14]. The dimension of the space HomKfin

(ρ,Φ)
of Kfin-homomorphisms of ρ to Φ is the multiplicity of ρ in Φfin. It is not obvious that the following claim
is true, nor that it will be needed in the proof:

[2.12.1] Claim: Φ is a direct sum of irreducible representations of Kfin, and is multiplicity-free, in the sense
that multiplicity of any irreducible ρ in Φ is at most 1. (Proof after proof of the theorem.)

Similarly, let Jρχ be the elements of Jχ which restrict to Φρfin on Kfin, and are right K∞-invariant. Let Iρs,χ
be the collection of elements in Is,χ which restrict to Φρfin on Kfin, and are right K∞-invariant. Indeed, for
each fixed s, Iρs,χ is in bijection with the space Φρfin by extending u ∈ Φρfin by

us,χ(zaymk) = ysχ(m)u(kfin) (for z ∈ Z+, n ∈ NA, y > 0, m ∈M1, ko ∈ Kfin, k∞ ∈ K∞)

with corresponding Eisenstein series

E(s, χ, u)(g) =
∑

γ∈Pk\Gk

us,χ(γ · g)

[24] Again, this Φ is an induced representation, but we do not immediately need any properties of such.
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Let u1, . . . , u` be an orthonormal basis for Φρ, and let uj,s,χ ∈ Iρs,χ be the corresponding extensions. We
use the fact from [2.B] that the only poles of Eisenstein series are at s = 1, and the residues are constant
multiples of χ1 ◦ det.

[2.12.2] Theorem: For ϕ ∈ Jρχ and χw = χ, the pseudo-Eisenstein series Ψϕ is expressible in terms of
genuine Eisenstein series E(s, χ, uj) by an integral converging absolutely and uniformly on compacts in
Z+Gk\GA: pointwise, uniformly on compacts,

Ψϕ =
∑
j

1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, E(s, χ, uj)〉 · E(s, χ, uj) ds + 〈Ψϕ, χ1 ◦ det〉 · χ1 ◦ det

|χ1 ◦ det |2L2

Proof: To track the dependence on u ∈ Φ, modify the earlier notation slightly: let

Msϕ(g) =

∫ ∞
0

r−s ϕ(arg)
dr

r
(with ar =

(
δ(r) 0

0 1

)
with r > 0)

Thus, Ms is a map Jρχ → Iρs,χ. By Mellin inversion,

ϕ(g) =
1

2πi

σ+i∞∫
σ−i∞

Msϕ(s)(g) ds (for ϕ ∈ Jρχ)

Further, Msϕ =
∑`
j=1

〈
Msϕ|KA , uj

〉
· uj,s,χ, so

Ψϕ(g) =
∑

γ∈Pk\Gk

ϕ(γ · g) =
∑

γ∈Pk\Gk

1

2πi

σ+i∞∫
σ−i∞

Msϕ(γg) ds

=
∑

γ∈Pk\Gk

∑̀
j=1

1

2πi

σ+i∞∫
σ−i∞

〈
Msϕ|KA , uj

〉
· uj,s,χ(γg) ds

For σ > 1, the integral and the infinite sum can be interchanged, giving

∑̀
j=1

1

2πi

σ+i∞∫
σ−i∞

〈
Mϕ(s)|KA , uj

〉
·
( ∑
γ∈Pk\Gk

uj,s,χ(γg)
)
ds =

∑̀
j=1

1

2πi

σ+i∞∫
σ−i∞

〈
Msϕ|KA , uj

〉
· E(s, χ, uj) ds

As in the simpler cases, fold up the integral:

σ+i∞∫
σ+i0

〈
Mϕ(s)|KA , uj

〉
E(s, χ, uj) +

〈
Mϕ(1− s)|KA , uj

〉
E(1− s, χ, uj) ds

The functional equations of such Eisenstein series can be written

E(1− s, χ, u) = E
(
s, χw, C1−s,χ(u1−s,χ)

∣∣
KA

)
so

Ψϕ =
∑
j

σ+i∞∫
σ+i0

〈
Msϕ|KA , uj

〉
· E(s, χ, uj) +

〈
M1−sϕ|KA , uj

〉
· E
(
s, χw, C1−s,χ(uj,1−s,χ)

∣∣
KA

)
ds
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Here χw = χ, but it is not obvious that C1−s,χ(uj,1−s,χ)
∣∣
KA

is simply related to uj , unlike the simple case

of right KA-invariant functions. The maps

u −→ u1−s,χ −→ C1−s,χ(u1−s,χ) −→ C1−s,χ(u1−s,χ)
∣∣
KA
∈ Φ (for u ∈ Φρ)

all respect the right translation action of KA, so the image is again in Φρ. Now we use the claim: Φρ consists
of a single copy of ρ, so the composition of these maps is an automorphism of ρ respecting the action of Kfin.
Irreducible Hilbert-space representations of compact groups are finite-dimensional [9.C.7], so by a suitable
form [9.D.12] of Schur’s lemma, u→ C1−s,χ(u1−s,χ)

∣∣
Kfin

is a scalar cρ1−s,χ depending on s, χ, and ρ, but not
on u ∈ Φρ:

Ψϕ =
∑
j

σ+i∞∫
σ+i0

(〈
Msϕ|KA , uj

〉
+
〈
M1−sϕ|KA , uj

〉
cρ1−s,χ

)
· E(s, χ, uj) ds

As in the simpler cases, to express this in terms of Ψϕ itself, not ϕ, unwind and use the Iwasawa
decomposition:

〈Ψϕ, E(s, χ, u)〉 =

∫
Z+NAMk\GA

ϕ · cPE(s, χ, u) =

∫
Z+NAMk\GA

ϕ · (us,χ + Cs,χus,χ)

=

∫
Z+Mk\MA

∫
KA

ϕ(pk) · (us,χ(pk) + Cs,χus,χ(pk) dp dk

=

∫ ∞
0

∫
Mk\M1

∫
KA

χ(m)ϕ(ayk) ·
(
ysχ(m)us,χ(k) + y1−sχw(m)Cs,χ(us,χ)(k)

) dy
y2
dmdk

On Re(s) = 1
2 , and with χw = χ = χ, we have Cs,χ = C1−s,χ = C1−s,χ, and us,χ = u1−s,χ = u1−s,χ. Also,

of course, us,χ is just u itself on KA. Again use the fact that u → C1−s,χ(u1−s,χ)
∣∣
Kfin

is a scalar cρ1−s,χ, so

this is ∫ ∞
0

∫
KA

ϕ(ayk) · y−su(k) + ϕ(ayk) · y−(1−s)C1−s,χ(u1−s,χ)(k)
dy

y
dk

=

∫
KA
Msϕ(k) · u(k) dk +

∫
KA
M1−sϕ · C1−s,χ(u1−s,χ)(k) dk

=

∫
KA
Msϕ(k) · u(k) dk +

∫
KA
M1−sϕ(k) · cρ1−s,χ · u(k) dk =

〈
Msϕ|KA +M1−sϕ|KA · c

ρ
1−s,χ, u

〉
Thus, the coefficients in the expression for Ψϕ are these inner products, apart from the residue picked up by
moving the contour from σ > 1 to σ = 1

2 . Regardless of choice of the basis uj , the residues are all constant
multiples of χ1 ◦ det, so their sum must be as indicated. ///

[2.12.3] Theorem: For ϕ ∈ Jρχ and χw 6= χ, the pseudo-Eisenstein series Ψϕ is expressible in terms of
genuine Eisenstein series E(s, χ, uj) by an integral converging absolutely and uniformly on compacts in
Z+Gk\GA: pointwise, uniformly on compacts,

Ψϕ =
∑
j

1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, E(s, χ, uj)〉 · E(s, χ, uj) ds + 〈Ψϕ, E(s, χw, uj)〉 · E(s, χw, uj) ds

(The proof combines the argument from the level-one analogue with the multiplicity-free claim. ///

Now we prove the multiplicity-free property dimC HomKfin
(ρ,Φ) ≤ 1: First, continuity of ρ requires that

it restricts to 1 on all but finitely-many Kv. Irreducibles of finite products of compact groups are (external)
tensor products of irreducibles of the factors [9.C.8]. Thus, it suffices to prove a local fact, that

Φv = {u ∈ C∞(Kv) : u(θk) = χ(θ) · u(k), for θ ∈ Θv, k ∈ Kv}
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is multiplicity-free. By the Gelfand-Kazhdan criterion [6.11], it suffices to find an involutive anti-
automorphism σ of Kv such that every left and right Θv-invariant distribution u on Kv is invariant under σ,
uσ = u, where uσ(ϕ) = u(ϕσ), for all ϕ ∈ C∞c (Kv), where (ϕ ◦ σ)(k) = u(kσ). We will use gσ = w(g>)w−1

with w the Weyl element, which stabilizes Θv. We find representatives for Θv\Kv/Θv, for v non-archimedean.
Suppress the subscript v in what follows.

Given g =

(
a b
c d

)
∈ K, for c = 0, we have representative 1. For c ∈ o×, left multiplication by Θ can

make c = 1, and also a = 0 by subtracting an integer multiple of the lower row from the upper. Then (the
modifed version of) b is in o×, so can be made 1, and right multiplication by Θ makes d = 0, by subtracting
an integer multiple of the left column from the right. This gives representatives w. For the intermediate
cases 0 < ordc = ` < ∞, both a, d must be units for the determinant to be a unit. Right multiplication
by Θ makes b = 0, by subtracting an integer of the left column from the right, and then a = d = 1 by left

or right multiplication by Θ. Then left and right multiplication by

(
u 0
0 1

)
with u ∈ o× does not disturb

a = d = 1, and makes c = $` with chosen local parameter $. Thus, there are representatives

r∞ =

(
1 0
0 1

)
, ro =

(
0 1
1 0

)
, r1 =

(
1 0
$ 1

)
, r2 =

(
1 0
$2 1

)
, r3 =

(
1 0
$3 1

)
, . . .

Each representative is fixed under σ, so the double cosets are stabilized by σ. Every double coset ΘrΘ is
closed, being continuous images of compacts. The double coset Θr∞Θ = Θ is not open, but all other double
cosets Θr`Θ are open, being defined by the open condition |$`+1| < |c| < |$`−1|. The characteristic function
ϕ` of Θr`Θ is a test function for ` <∞. The integrations

u∞(ϕ) =

∫
Θ

ϕ uo(ϕ) =

∫
ΘroΘ

ϕ u1(ϕ) =

∫
Θr1Θ

ϕ . . . (for ϕ ∈ C∞c (K))

are left and right Θ-invariant, and σ-invariant.
The uniqueness of invariant functionals [14.4] shows that u` is the unique Θ × Θ-invariant distribution

on K supported on the compact, open set Θr`Θ for ` < ∞, up to constants. Left and right Θ-invariant
distributions factor through the two-sided averaging map ϕ→

∫
Θ×Θ

ϕ(θkθ′) dθ dθ′. The space D = C∞c (K)

is the colimit over compact open subgroups H of the finite-dimensional spaces DH of test functions left
and right H-invariant: indeed, by smoothness, u ∈ D is left H1-invariant and right H2-invariant for some
compact-open subgroups Hi, and take H = H1 ∩ H2. For ϕ ∈ DH , the Θ × Θ-averaged ϕ is constant on
ΘHΘ. The representatives r` approach r∞ = 12 ∈ K. Thus, Θr`Θ for every ` ≥ `o with `o = `o(H)
depending on H. Letting chΘHΘ be the characteristic function of ΘHΘ,

u(ϕ) = u(ϕ− ϕ(0) · chΘHΘ) + ϕ(0) · u(chΘHΘ) = u(ϕ− ϕ(0) · chΘHΘ) + u∞(ϕ) · u(chΘHΘ)

The test function ϕ−ϕ(0)·chΘHΘ) is supported on the finitely-many double cosets Θr`Θ with 0 ≤ ` < `o(H).
The restriction of u to test functions supported on this finite union of compact, open double cosets is a linear
combination of u0, u1, . . . , u`o−1, and the constant u(chΘHΘ) does not depend on the individual ϕ ∈ DH .
Thus, the restriction of u to DH is σ-invariant. Thus, u is σ-invariant on colimHDH , the ascending union
of the spaces DH . This verifies the hypothesis for application of the Gelfand-Kazhdan criterion, so Φv is
multiplicity-free. ///
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2.13 Plancherel for pseudo-Eisenstein series: level one

The previous decompositions can be refined to prove convergence of the integral as a C∞(Z+Gk\GA)-
valued integral, from a corresponding result for behavior of Fourier inversion integrals. This refinement gives
a Plancherel theorem for pseudo-Eisenstein series. For simplicity, we treat trivial central character. This
entails χ2 = χ−1

1 , so χw = χ = χ−1. More significantly, we restrict our attention to level one, that is, right
KA-invariant, pseudo-Eisenstein series Ψϕ in this section. One corollary, awkward to obtain otherwise, is
the mutual orthogonality of pairs of pseudo-Eisenstein series made from data in Jχ and Jχ′ with χ′ 6= χ and
χ′ 6= χw on Mk\M1.

[2.13.1] Claim: With χw = χ, the integral in

Ψϕ =
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉 · Es,χ ds + 〈Ψϕ, χ1 ◦ det〉 · χ1 ◦ det

|χ1 ◦ det |2L2

converges as a vector-valued integral, taking values in the Fréchet space Co(Z+Gk\GA) of continuous
functions on Z+Gk\GA.

Proof: Let ψξ(x) = eiξx on R. From [14.3], and as already applied in [1.13], the integral expressing Fourier
inversion for Schwartz functions f on the real line

f(x) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(u) ψξ(u) du
)
ψξ(x) dξ =

1

2π

∫ ∞
−∞

ψξ(x) · f̂(ξ) dξ

converges as a Gelfand-Pettis integral with values in the Fréchet space Co(R). Changing coordinates, Mellin
inversion gives convergence as Gelfand-Pettis integral with values in smooth functions Co(0,+∞). With

ϕ(zaynmk) = ϕ∞(y)χ(m) (for z ∈ Z+, ay =

(
δ(y) 0

0 1

)
, y > 0, n ∈ NA, m ∈M1, k ∈ KA)

define a transform Jχ → Is,χ by

Mϕ(s)(g) =

∫ ∞
0

r−s ϕ(arg)
dr

r
(with ar =

(
δ(r) 0

0 1

)
with r > 0)

Because ϕ is completely determined except as a function on the ray (0,+∞), the inversion integral

ϕ(g) =
1

2πi

σ+i∞∫
σ−i∞

Mϕ(s)(g) ds

converges as a vector-valued integral with values in the Fréchet space Co(GA). From [6.1], left and right
translation by GA are continuous maps on Co(GA), so the linear operators of left translation by Gk commute
with the integral, and in the region of convergence, the expression of the pseudo-Eisenstein series Ψϕ

Ψϕ(g) =
∑

γ∈Pk\Gk

ϕ(γg) =
1

2πi

∑
γ∈Pk\Gk

σ+i∞∫
σ−i∞

Mϕ(s)(γg) ds

converges as a vector-valued integral with values in that Fréchet space. By the same steps as in the proof of
the numerical form of the theorem,

Ψϕ =
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉Es,χ ds + 〈Ψϕ, χ1 ◦ det〉 · χ1 ◦ det

|χ1 ◦ det |2L2
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as a Co(GA)-valued Gelfand-Pettis integral. Since the integrand is in Co(Z+Gk\GA)-valued and the topology
on this subspace is the restriction of that from Co(GA), the integral converges in Co(Z+Gk\GA). ///

[2.13.2] Corollary: For ϕ,ψ right KA-invariant functions in Jχ with χw = χ,

〈Ψϕ,Ψψ〉 =
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉 〈Ψψ, Es,χ〉 ds +
〈Ψϕ, χ1 ◦ det〉 · 〈Ψψ, χ1 ◦ det〉

|χ1 ◦ det |2L2

Proof: For f ∈ Coc (Z+Gk\GA), the map F →
∫
Z+Gk\GA

F · f is a continuous linear functional on

F ∈ Co(Z+Gk\GA), so the Gelfand-Pettis property legitimizes the obvious interchange:

〈Ψϕ, f〉 =
〈 1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉Es,χ ds+ 〈Ψϕ, χ1 ◦ det〉 · χ1 ◦ det

|χ1 ◦ det |2L2

, f
〉

=
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉 〈Es,χ, f〉 ds +
〈Ψϕ, χ1 ◦ det〉 · 〈χ1 ◦ det, f〉

|χ1 ◦ det |2L2

where 〈Es,χ, f〉 converges because f ∈ Coc (Z+Gk\GA). Taking f = Eψ for ψ right KA-invariant in Jχ, this
gives the asserted isometry. ///

The discussion for trivial central character, χw 6= χ, and right KA-invariance proceeds along similar lines:

[2.13.3] Claim: With χw 6= χ, the integral

Ψϕ =
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉 · Es,χ + 〈Ψϕ, Es,χw〉 · Es,χw ds

converges as a vector-valued integral, taking values in the Fréchet space Co(Z+Gk\GA) of continuous
functions on Z+Gk\GA. ///

[2.13.4] Corollary: For ϕ,ψ right KA-invariant functions in Jχ with χw 6= χ,

〈Ψϕ,Ψψ〉 =
1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉 〈Ψψ, Es,χ〉 + 〈Ψϕ, Es,χw〉 〈Ψψ, Es,χw〉 ds
///

These decomposition formulas facilitate comparison of pseudo-Eisenstein series:

[2.13.5] Corollary: For χ′ 6= χ and χ′ 6= χw, pseudo-Eisenstein series made from Jχ are orthogonal to those
made from Jχ′ .

Proof: For ϕ ∈ Jχ, for χw = χ or not, we have a convergent C∞(Z+Gk\GA)-valued integral

Ψϕ =
1

2πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s) · Es,χ ds +
∑
so

Mϕ(so) · RessoEs,χ

where so runs over poles of Es,χ in Re(s) ≥ 1
2 . Inner product with the compactly-supported Ψψ is a

continuous functional, so this inner product passes inside the integral by [14.1], giving

〈Ψϕ,Ψψ〉 =
1

2πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s) · 〈Es,χ,Ψψ〉 ds +
∑
so

Mϕ(so) · 〈RessoEs,χ, Ψψ〉

Similarly, from [15.2], taking residues commutes with application of the functional. Unwinding,

〈Es,χ,Ψψ〉 =

∫
Z+NAMk\GA

cPEs,χ · ψ =

∫
Z+NAMk\GA

(ϕs,χ + cs,χϕ1−s,χw) · ψ
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Under left multiplication by M1, the function ϕs,χ is equivariant by χ, and ϕ1−s,χw by χw, while ψ is left
equivariant by χ′. Thus, the integral is 0. ///

As in [1.13], these decomposition formulas suggest the form of a Plancherel theorem for the χth fragment
of the complement to cuspforms. As in [1.13], for each fixed χ we must identify the closure of the image of

Ψϕ −→

 〈Ψϕ, Es,χ〉 ⊕ 〈Ψϕ, Ress=1Es,χ〉 (when χw = χ, with KA-invariant ϕ ∈ Jχ)

〈Ψϕ, Es,χ〉 ⊕ 〈Ψϕ, Es,χw〉 (when χw 6= χ, with KA-invariant ϕ ∈ Jχ)

and certify that residues behave compatibly with the simplest outcome. The functional equation of Es,χ
constrains the functions s→ 〈Ψϕ, Es,χ〉 and s→ 〈Ψϕ, Es,χw〉:

〈Ψϕ, E1−s,χ〉 = 〈Ψϕ, c1−s,χEs,χ〉 = c1−s,χ · 〈Ψϕ, Es,χ〉 = cs,χw · 〈Ψϕ, Es,χw〉

We wil show that the L2 closure of the set of images is as large as possible, given these obvious constraints. In
both cases, the map ϕ→Mϕ is essentially Fourier transform, so maps test functions to a space of functions
dense in the Schwartz functions on L2( 1

2 + iR). Then we proceed differently depending on whether χw = χ
or not. The case χw = χ is much like [1.13]: for χw = χ, let Vχ be the subspace of L2( 1

2 + iR) functions
meeting f(1− s) = cs,χ · f(s).

[2.13.6] Claim: With fixed χw = χ, the map

Ψϕ −→ 〈Ψϕ, Es,χ〉 ⊕ 〈Ψϕ, Ress=1Es,χ〉

has dense image in V ⊕ C, and is an L2-isometry.

Proof: In this case, 〈Ψϕ, Es,χ〉 =McPΨϕ(s) =Mη(s) + c1−s,χMη(1− s). For F in the Schwartz space on
1
2 + iR, the averaging F (s) + c1−s,χF (1 − s) maps to a dense subspace of V . Thus, ignoring for a moment
the residual summand, the images 〈Ψϕ, Es,χ〉 are dense in V , as desired.

The residue is χ1 ◦det, and this should be orthogonal to Ψψ with ϕ′ ∈ Jχ′ and χ′ 6= χ. Indeed, unwinding
the pseudo-Eisenstein series and using Iwasawa,

〈Ψψ, χ1 ◦ det〉 =

∫
Z+NAMk\GA

ψ(g) · cPχ1(det(g)) dg =

∫
Z+Mk\MA

ψ(m) · χ1(det(m))
dm

δ(m)

where δ is the modular function of PA. Let r be the number of isomorphism classes of archimedean
completions of k, and let

A+ = {
(
t1/r 0

0 1

)
: t > 0} (on the diagonal in M∞ =

∏
v|∞Mv)

Using Z+Mk\MA ≈ A+ ×Mk\M1, the integrand is equivariant by a non-trivial character of Mk\M1, so is
0. Even more simply, the various functions χ1 ◦ det are mutually orthogonal.

Since χ1 ◦ det is in the orthogonal complement to cuspforms, it is in the closure of the space generated
by pseudo-Eisenstein series. We have just shown that it is orthogonal to all of these except those with data
from Jχ, so it must be in the closure of the images from Jχ alone. By subtraction, the integral part of the
decomposition is also in the closure of the pseudo-Eisenstein series, so the images are L2 dense in V ⊕C, as
claimed.

Then the spectral-coefficient map extends by continuity, to give an L2 isometry, the statement of a
Plancherel theorem for this fragment of L2. ///

For the χw 6= χ case, let

V = {f = f1 ⊕ f2 ∈ L2( 1
2 + iR)⊕ L2( 1

2 + iR) : f1(1− s) = f2(s)} ⊂ L2( 1
2 + iR)⊕ L2( 1

2 + iR)

[2.13.7] Claim: With fixed χw 6= χ, the map

Ψϕ −→ 〈Ψϕ, Es,χ〉 ⊕ 〈Ψϕ, Es,χw〉
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has dense image in V , and is an L2-isometry.

Proof: In this case, 〈Ψϕ, Es,χ〉 = McPΨϕ = Mη(s), and this is in the Schwartz space on 1
2 + iR, which is

dense in L2. The functional equation relating Es,χ determines 〈Ψϕ, E1−s,χw〉. Thus, the images are dense in
V , as desired. Then the spectral-coefficient map extends by continuity, to give an L2 isometry, the statement
of a Plancherel theorem for this fragment of L2. ///

2.14 Spectral expansion, Plancherel theorem: level one

From [2.7], the collection of right KA-invariant pseudo-Eisenstein series Ψϕ with ϕ ∈ Jχ and χ running
over pairs χ of unramified characters χ1, χ2 with χ2 = χ−1 (due to trivial central character) is dense in the
orthogonal complement in L2(Z+Gk\GA) to right KA-invariant cuspforms.

For unramified χ1 on J, let χ

(
m1 0
0 m2

)
= χ1(m1/m2). For χ′1 6= χ±1

1 , the adjunctions [2.7] satisfied by

pseudo-Eisenstein series show that 〈Ψϕ, Eϕ′〉 = 0 for ϕ ∈ Jχ and ϕ′ ∈ Jχ′ . Lettin F run over an orthonormal
basis for the space of cuspforms on Z+Gk\GA/KA with trivial central character, we have an automorphic
Plancherel theorem at level one:

[2.14.1] Theorem: With trivial central character, for f ∈ L2(Z+Gk\GA/KA),

f =
∑

cfm F

〈f, F 〉 · F +
∑
χ1

( 1

4πi

∫ 1
2 +i∞

1
2−i∞

〈f,Es,χ〉 · Es,χ ds +
〈f, χ1 ◦ det〉 · χ1 ◦ det

|χ1 ◦ det |2L2

)

+
∑

χ:χw 6=χ

( 1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉·Es,χ+〈Ψϕ, Es,χw〉·Es,χw ds
)

(in an L2 sense)

and

|f |2L2 =
∑

cfm F

|〈f, F 〉|2 +
∑

χ:χw=χ

( 1

4π

∫ ∞
−∞
|〈f,E 1

2 +it,χ〉|2 dt +
|〈f, χ1 ◦ det〉|2

|χ1 ◦ det |2L2

)

+
∑

χ:χw 6=χ

( 1

4π

∫ ∞
−∞
|〈Ψϕ, E 1

2 +it,χ〉|2 + |〈Ψϕ, E 1
2 +it,χw〉|2 dt

)
The integrals suggested by the notation are not literal integrals, but are the extension-by-continuity of the
corresponding literal integrals, as with Fourier transform and Fourier inversion on L2(R). ///

Combining the decomposition of right KA-invariant L2 cuspforms (with trivial central character) and the
decomposition of their orthogonal complement:

[2.14.2] Corollary: Functions f ∈ L2(Z+Gk\GA/KA) with trivial central character have L2 expansions

f =
∑

cfm F

〈f, F 〉 · F +
∑

χ:χw=χ

( 1

4πi

∫ 1
2 +i∞

1
2−i∞

〈f,Es,χ〉 · Es,χ ds +
〈f, χ1 ◦ det〉 · χ1 ◦ det

|χ1 ◦ det |2L2

)

+
∑

χ:χw 6=χ

( 1

4πi

∫ 1
2 +i∞

1
2−i∞

〈Ψϕ, Es,χ〉·Es,χ+〈Ψϕ, Es,χw〉·Es,χw ds
)

(in an L2 sense)

with corresponding equality of L2 norms, where integrals involving Eisenstein series are isometric extensions,
as in the previous section ///
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2.15 Exotic eigenfunctions, discreteness of pseudo-cuspforms

An important variant approach both to the discrete decomposition of the space of cuspforms [1.7] and
[2.6], and to the meromorphic continuation of Eisenstein series as in [11.5], is the notion of pseudo-cuspform.
The largest space of pseudo-cuspforms with cut-off height b ≥ 0 is

L2
b(Z

+Gk\GA) = {f ∈ L2(Z+Gk\GA) : cP f(m′ayk) = 0 for m′ ∈M1, b < y ∈ R, k ∈ K}

The idea is that the constant terms vanish above height b. With b = 0, this is the space of square-
integrable cuspforms. More precisely, via the adjunction [1.7.3], L2

b(Z
+Gk\GA) is the orthogonal complement

in L2(Z+Gk\GA) to all pseudo-Eisenstein series Ψϕ with data ϕ ∈ C∞c (Z+NAMk\GA) supported on

Z+NAMk \ {znmayk : z ∈ Z+, n ∈ NA, m ∈M1, b < y ∈ R, k ∈ KA}

That is, these are pseudo-Eisenstein series Ψϕ with data ϕ supported above height y = b.
However, as throughout this chapter, right KA-finiteness assumptions avoid some relatively uninteresting

secondary complications. Thus, for simplicity, we consider only right K∞K
′-fixed functions for K ′ a fixed

open subgroup of Kfin.
The pseudo-Laplacian ∆̃b is the Friedrichs self-adjoint extension [9.2] of the sum ∆ =

∑
v|∞∆v of the

invariant Laplacians on the archimedean quotients Gv/Kv, restricted to the test functions in the space
L2
b(Z

+Gk\GA/K +∞K ′) of pseudo-cuspforms. For any b > 0, the corresponding space of square-integrable
pseudo-cuspforms contains the space of genuine cuspforms L2

o(Z
+Gk\GA). The basic, unexpected result is

[2.15.1] Theorem: L2
b(Z

+Gk\GA) is a direct sum of eigenspaces for ∆̃b, each of finite dimension. In

particular, ∆̃b has compact resolvent. (Proof in [10.3].)
Without further information, this does not immediately prove that the subspace consisting of genuine

cuspforms decomposes discretely for ∆̃b, because the description [9.2] of ∆̃b imposes technical conditions
on possible eigenfunctions, and one should check that the smooth cuspforms are dense in the space of L2

cuspforms.
In any case, for b � 1, the space L2

b(Z
+Gk\GA) contains many functions not in the space of genuine

cuspforms, for example, pseudo-Eisenstein series Ψϕ with data ϕ supported in the interval [1, b]. As in [2.11]
and [2.12], these are expressible as integrals of genuine Eisenstein series. However, by the theorem, apparently

these pseudo-Eisenstein series are (infinite) sums of L2-eigenfunctions for ∆̃b orthogonal. Similarly, by [2.10.3]
and [2.10.4], truncated Eisenstein series ∧bEf are in L2

b(Z
+Gk\GA). Because they are in the span of pseudo-

Eisenstein series with compactly supported data, by [2.11] and [2.12] they are integrals of genuine Eisenstein

series. Again, however, by the theorem, they are also (infinite) sums of ∆̃b-eigenfunctions. Evidently, there

are many exotic eigenfunctions for ∆̃b. Indeed,

[2.15.2] Corollary: The eigenfunctions for ∆̃b in L2
b(Z

+Gk\GA/KfinK
′) with eigenvalues λ = s(s − 1) <

−1/4 are exactly the truncated Eisenstein series ∧bEf with cPEf (ab) = 0, for right K∞-invariant right
K ′-right-invariant f ∈ Is,χ, for s(s− 1) < 0 and character χ on Mk\M1/(M1 ∩K∞K ′). (Proof in [10.4].)

These truncated Eisenstein series are not smooth. The slightly non-intuitive nature of the operator ∆̃b

explains the situation, in [10.4]. For example, in addition to meeting the Gelfand condition of constant-term

vanishing about height b, eigenfunctions of the pseudo-Laplacian ∆̃b are pseudo-cuspforms in a stronger
sense:

[2.15.3] Corollary: An L2-eigenfunction u for ∆̃b with eigenvalue λ satisfies (∆̃b−λ)u = 0 locally at heights
above b. ///
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2.A Appendix: compactness of J1/k×

The following compactness result has both finiteness of class numbers and Dirichlet’s units theorem as
corollaries. Indeed, the compactness can be proven as a consequence of these two results. However, the
compactness can be proven directly, and is what proves useful here.

[2.A.1] Theorem: J1/k× is compact.

Proof: As in [5.2], Haar measure on A = Ak and Haar measure on the (topological group) quotient A/k are
inter-related in the sense that choice of one uniquely determines the other by the relation∫

A
f(x) dx =

∫
A/k

∑
γ∈k

f(γ + x) dx (for f ∈ Coc (A))

Normalize the measure on A so that, mediated by this relation, A/k has measure 1. We have a Minkowski-
like claim, a measure-theoretic pigeon-hole principle, that a compact subset C of A with measure greater
than 1 cannot inject to the quotient A/k. Suppose, to the contrary, that C injects to the quotient. With f
the characteristic function of C,

1 <

∫
A
f(x) dx =

∫
A/k

∑
γ∈k

f(γ + x) dx ≤
∫
A/k

1 dx = 1

with the last inequality by injectivity. Contradiction. For idele α, the change-of-measure on A is given
conveniently by

meas (αE)

meas (E)
= |α| (for measurable E ⊂ A)

Given α ∈ J1, we will adjust α by k× to lie in a compact subset of J1. Fix compact C ⊂ A with measure
> 1. The topology on J is strictly finer than the subspace topology with J ⊂ A: the genuine topology is by
imbedding J → A× A by α → (α, α−1). For α ∈ J1, both αC and α−1C have measure > 1, neither injects
to the quotient k\A. So there are x 6= y in k so that x+ αC = y + αC. Subtracting,

0 6= a = x− y ∈ α(C − C) ∩ k

That is, a · α−1 ∈ C −C. Likewise, there is 0 6= b ∈ α−1(C −C)∩ k, and b · α ∈ C −C. There is an obvious
constraint

ab = (a · α)(b · α−1) ∈ (C − C)2 ∩ k× = compact ∩ (discrete subgroup) = finite

as in [1.5.3]. Let Ξ = (C − C)2 ∩ k× be this finite set. Paraphrasing: given α ∈ J1, there are a ∈ k× and
ξ ∈ Ξ (ξ = ab above) such that (a · α−1, (a · α−1)−1) ∈ (C − C) × ξ−1(C − C). That is, α−1 can be
adjusted by a ∈ k× to be in the compact C − C, and, simultaneously, for one of the finitely-many ξ ∈ Ξ,
(a · α−1)−1 ∈ ξ · (C − C). In the topology on J, for each ξ ∈ Ξ,(

(C − C)× ξ−1(C − C)
)
∩ J = compact in J

The continuous image in J/k× of each of these finitely-many compacts is compact. Their union covers the
closed subset J1/k×, so the latter is compact. ///
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2.B Appendix: meromorphic continuation

A somewhat special argument gives precise information about the meromorphic continuation of certain
Eisenstein series for GL2, in particular about possible poles. Analogous arguments are possible in a few
other situations. As above, with χ denoting a pair of characters χ1, χ2 on J1 as above, take

f(znarm · k) = |r|s · χ1(m1)χ2(m2) · fo(k) (with m =

(
m1 0
0 m2

)
∈M1)

with fo independent of s. In particular, this argument for meromorphic continuation uses the following
expression for f .

With diagonal map δ : (0,+∞) → J as earlier, abuse notation by extending χ1, χ2 to characters on J by
extending trivially on δ(0,+∞):

χj(δ(r) · θ) = χj(θ) (for r > 0 and θ ∈ J1, j = 1, 2)

By changing variables in the integral, one finds that any function f expressed as

f(g) =
|det g|sχ1(det g)

ζ(2s, χ1

χ2
,Φ(0,−))

∫
J
|t|2sχ1

χ2
(t) · Φ(t · e · g) dt (with e = (0 1))

with Schwartz function Φ on A2 and global Iwasawa-Tate zeta integral

ζ(2s,
χ1

χ2
,Φ(0,−)) =

∫
J
|t|2sχ1

χ2
(t) Φ(0, t) dt

is in Is,χ. The division by ζ(2s, χ1

χ2
,Φ(0,−)) normalizes f(1) = 1. We do not consider the issue of exactly

which f ∈ Is,χ can be expressed in this form.
Every Schwartz function Φ is a finite sum of monomial functions Φ =

⊗
v Φv, so permissible functions f

are finite sums of monomial functions f =
⊗

v fv with the local functions fv on Gv expressible as

fv(g) =
|det g|sχ1(det g)

ζv(2s,
χ1

χ2
,Φv(0,−))

∫
k×v

|t|2sv
χ1

χ2
(t) · Φv(t · e · g) dt (with e = (0 1))

The product formula makes f left Pk-invariant. The corresponding Eisenstein series is

Ef (g) = E(s, χ,Φ)(g) =
∑

γ∈Pk\Gk

f(γ · g)

Let w =

(
0 −1
1 0

)
.

[2.B.1] Theorem: These Eisenstein series admit meromorphic continuations to C, and have no poles in
Re(s) ≥ 1

2 unless χ1/χ2 = 1, in which case there is a unique pole in Re(s) ≥ 1
2 , at s = 1, with residue a

constant multiple of χ1(det g). The functional equation is

ζ(2s, ρ,Φ(0,−))

χ1 ◦ det
· E(s, χ,Φ) =

ζ(2− 2s, ρ−1, (Φ̂ ◦ w)(0,−))

χ2 ◦ det
· E(1− s, χw, Φ̂ ◦ w)

[2.B.2] Corollary: For trivial central character ω, these Eisenstein series Ef have no poles in Re(s) ≥ 1
2

unless χ2
1 = 1, in which case there is a unique pole in Re(s) ≥ 1

2 , at s = 1, with residue a constant multiple
of χ1(det g).

Proof: (of Corollary) With trivial central character, χ2 = χ−1
1 . ///
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Proof: To isolate the Poisson summation effect, for unitary character ρ = χ1/χ2 on J/k×, let

E(s, ρ,Φ)(g) =
ζ(2s, ρ,Φ(0,−))

|det g|sχ1(det g)
· E(s, χ,Φ)(g) =

∫
J
|t|2sρ(t)

∑
06=x∈k2

Φ(t · x · g) dt

With J+ = {t ∈ J : |t| ≥ 1} and J− = {t ∈ J : |t| ≤ 1}, we follow Riemann, Hecke, Iwasawa, and Tate, and
break the integral into two pieces:

E(s, ρ,Φ)(g) =

∫
J+

|t|2sρ(t)
∑

06=x∈k2

Φ(t · x · g) dt+

∫
J−
|t|2sρ(t)

∑
0 6=x∈k2

Φ(t · x · g) dt

By the first lemma below, the integral over J+ is absolutely convergent for all s ∈ C, so is entire. Adelic
Poisson summation converts the integral over J− to an integral over J+, plus two elementary terms: first,∑

06=x∈k2

Φ(txg) =
∑
x∈k2

Φ(txg)− Φ(0) = |t|−2|det g|−1
∑
x∈k2

Φ̂(t−1x(g>)−1)− Φ(0)

= |t|−2|det g|−1 ·
∑

0 6=x∈k2

Φ̂(t−1x(g>)−1)− Φ(0) + |t|−2|det g|−1 · Φ̂(0)

Thus, inverting t to replace the integral over J− by one over J+,∫
J−
|t|2sρ(t)

∑
06=x∈k2

Φ(txg) dt

=

∫
J−
|t|2sρ(t)

(
|t|−2|det g|−1

∑
06=x∈k2

Φ̂(t−1x(g>)−1)− Φ(0) + |t|−2|det g|−1 · Φ̂(0)
)
dt

= |det g|−1
(∫

J+

|t|2−2sρ(t)
∑

06=x∈k2

Φ̂(tx(g>)−1) dt+ Φ̂(0)

∫
J−
|t|2sρ−1(t) |t|−2 dt

)
− Φ(0)

∫
J−
|t|2sρ(t) dt

Altogether,

E(s, ρ,Φ)(g) =

∫
J+

|t|2sρ(t)
∑

06=x∈k2

Φ(t · x · g) dt− Φ(0)

∫
J−
|t|2sρ(t) dt

+ |det g|−1
(∫

J+

|t|2−2sρ−1(t)
∑

0 6=x∈k2

Φ̂(tx(g>)−1) dt+ Φ̂(0)

∫
J−
|t|2sρ(t) |t|−2 dt

)
Multiplying through by |det g| 12 symmetrizes this:

|det g| 12 · E(s, ρ,Φ)(g) = |det g| 12 ·
∫
J+

|t|2sρ(t)
∑

06=x∈k2

Φ(t · x · g) dt− | det g| 12 · Φ(0)

∫
J−
|t|2sρ(t) dt

+ |det(g>)
1
2

(∫
J+

|t|2−2sρ−1(t)
∑

06=x∈k2

Φ̂(tx(g>)−1) dt+ |det(g>)
1
2 Φ̂(0)

∫
J−
|t|2sρ(t) |t|−2 dt

)
= |det(g>)−1| 12 · E(1− s, ρ−1, Φ̂)((g>)−1)

We examine the two elementary integrals which, if non-zero, give the poles. If ρ(τ) 6= 1 for some τ ∈ J1,
then by changing variables,∫

J−
|t|2sρ(t) dt =

∫
J−
|τt|2sρ(τt) dt = ρ(τ)

∫
J−
|t|2sρ(t) dt
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so the integral must vanish. On the other hand, when ρ(τ) = 1 on J1, we give the compact group J1/k×

measure 1, and∫
J−
|t|2s dt =

∫ 1

0

y2s dy

y
=

1

2s
and

∫
J−
|t|2s−2 dt =

∫ 1

0

y2s−2 dy

y
=

1

2s− 2

Thus, when χ1/χ2 is not identically 1 on J1, there are no poles. When ρ = χ1/χ2 is identically 1 on J1,

there are polar terms in |det g| 12 · E(s, χ,Φ)(g), and they are symmetrical:

−Φ(0) · | det g| 12
2s

− Φ̂(0) · | det(gT )−1| 12
2(1− s)

Thus, the preliminary form of the functional equation:

|det g| 12 · E(s, χ,Φ)(g) = |det(g>)−1| 12 · E(1− s, χw, Φ̂)((g>)−1)

We would prefer not to have a relationship involving (g>)−1. Fortunately, w−1(g>)−1w = g/(det g). Thus,

replacing x by xw−1 in the sum, replacing Φ̂ by Φ̂◦w, and replacing t by t·det g, in the region for Re(1−s) > 1
for convergence,

|det(g>)−1| 12 · E(1− s, χw, Φ̂)((g>)−1) = |det g|− 1
2 · | det g|2−2sχ2

χ1
(det g) · E(1− s, χw, Φ̂ ◦ w)(g)

Thus, by the identity principle,

|det g| 12 · E(s, χ,Φ)(g) = |det g|− 1
2 · | det g|2−2sχ2

χ1
(det g) · E(1− s, χw, Φ̂ ◦ w)(g)

and

|det g| 12 · ζ(2s, ρ,Φ(0,−))

|det g|sχ1(det g)
· E(s, χ,Φ)(g)

= |det g|− 1
2 · | det g|2−2sχ2

χ1
(det g) · ζ(2− 2s, ρ−1, Φ̂ ◦ w(0,−))

|det g|1−sχ2(det g)
· E(1− s, χw, Φ̂ ◦ w)(g)

simplifying to

ζ(2s, ρ,Φ(0,−))

χ1(det g)
· E(s, χ,Φ)(g) =

ζ(2− 2s, ρ−1, Φ̂ ◦ w(0,−))

χ2(det g)
· E(1− s, χw, Φ̂ ◦ w)(g)

///

[2.B.3] Lemma: Half-zeta integrals over J+ are absolutely convergent for all s ∈ C.

Proof: Fix g ∈ GA, let ϕ(t) = Φ(teg) and ϕv(t) = Φv(teg). By the lemma below,

|ϕ(t)| �N

∏
v

sup(|tv|v, 1)−2N (for adele t = {tv}, for all N)

For idele t let ν(t) =
∏
v sup(|tv|v, |tv|−1

v ). Almost all factors on the right-hand side are 1, so there is no
problem with convergence. Apply

(
sup(a, 1)

)2
= sup(a2, 1) = a · sup(a,

1

a
) (for a > 0)

to every factor: ∏
v

sup(|tv|v, 1)−2N = |t|−N
∏
v

sup(|tv|v, |t−1
v |v)−N = |t|−Nν(t)−N
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Thus, on J+, ∏
v

sup(|tv|v, 1)−2N = |t|−Nν(t)−N ≤ ν(t)−N (when t ∈ J+, N ≥ 0)

With σ = Res, for every N ≥ 0∣∣∣ ∫
J1

|y|s ϕ(t) dt
∣∣∣ � ∫

J1

|t|σ ν(t)−N dt �
∫
J
|t|σ ν(t)−N dt =

∏
v

(∫
k×v

|t|σ sup(|t|, 1

|t|
)−N dt

)
For N > |σ|, the non-archimedean local integrals are absolutely convergent:∫
k×v

|t|σ sup(|t|, 1

|t|
)−N dt =

∞∑
`=0

q−σ−Nv +

∞∑
`=1

qσ−Nv =
1

1− q−σ−N
+

qσ−N

1− qσ−N
=

1− q−2N

(1− q−σ−N ) (1− qσ−N )

The archimedean local integrals are convergent for similar reasons. For 2N > 1 and N > |σ|+ 1, the Euler
product is dominated by the Euler product for the expression ζk(N + σ)ζk(N − σ)/ζk(2N) in terms of the
zeta function ζk(s) of k, which converges absolutely. ///

[2.B.4] Lemma: For all N , a Schwartz function ϕ on A satisfies

|ϕ(t)| �ϕ,N

∏
v

sup(|tv|v, 1)−2N (for t ∈ A)

Proof: By definition, a Schwartz function ϕ on A is a finite sum of monomials ϕ =
⊗

v ϕv. Thus, it suffices
to consider monomial ϕ, and to prove the local assertion that for ϕv ∈ S (kv)

|ϕv(t)| �N sup(|tv|v, 1)−2N (for t ∈ kv)

At archimedean places, the definition of the Schwartz space requires that

sup
t∈kv

(1 + |t|v)N · |ϕv(t)| < ∞ (archimedean kv, for all N)

so
|ϕv(t)| �N (1 + |t|v)−2N ≤ sup(|t|v, 1)−2N

Almost everywhere, ϕv is the characteristic function of the local integers. At such places,

|ϕv(t)| =

 1 (for |t|v ≤ 1)

0 (for |t|v > 1)

 ≤ sup(|t|v, 1)−2N (for all N)

At the remaining bad finite primes, ϕv ∈ S (kv) is compactly supported and locally compact. Then, similar
to the good prime case,

|ϕv(t)| �ϕv

 1 (t ∈ sptϕv)

0 (t 6∈ sptϕv)

�ϕv,N sup(|t|v, 1)−2N (for all N)

This proves the lemma. ///
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2.C Appendix: Hecke-Maaß periods of Eisenstein series

These examples, essentially due to Hecke and Maaß, include as special cases both sums of values at
Heegner points, and integrals over hyperbolic geodesics. The set-up of the previous appendix allows a simple
computation for GL2 over a number field k.

Let ` be a quadratic field extension of a number field k. Let G = GL2(k), and H ⊂ G a copy of `× inside
G, by specifying the isomorphism in

`× ⊂ Autk(`) ≈ Autk(k2) = GL2(k)

Let P be the standard parabolic of upper-triangular elements in G. Factor the idele class group J`/`× =
(0,∞) × J1

`/`
× where the ray (0,∞) is imbedded on the diagonal in the archimedean factors. Let χ be a

character on Jk/k× trivial on the ray (0,∞), and define a character on PA by

χs

(
a ∗
0 d

)
=
∣∣∣a
d

∣∣∣s · χ(a) · χ−1(d)

Let ϕs,χ be a left χs-equivariant function on GA: ϕs,χh(pg) = χs(p) · ϕs,χ(g) for all p ∈ PA and g ∈ GA. At
places v where χ is unramified, we may as well take ϕs,χ to be right Kv-invariant, where Kv is the standard
maximal compact in Gv. This function has trivial central character. Ignoring the ambiguity at bad primes,
put

Es,χ(g) =
∑

γ∈Pk\Gk

ϕs,χ(γ · g)

Let Z be the center of G, and ω the quadratic character of `/k. Let S be a (finite) set of places including
those ramified in `/k or ramified for χ.

[2.C.1] Theorem: ∫
ZAHk\HA

Es,χ =
LS(s, χ) · LS(s, χ · ω)

LS(2s, χ2)
× (bad prime factors)

where LS(s, α) denotes the L-function attached to a Hecke character α over k dropping the local factors
attached to places v ∈ S.

[2.C.2] Remark: In fact, as in the proof, the numerator arises as an L-function over the quadratic extension `,
namely LS` (s, χ◦N), where N is the norm `→ k. Then quadratic reciprocity gives the indicated factorization
into L-functions over the base field k.

Proof: The subgroup Pk is the isotropy group of a k-line k · e for a fixed non-zero e ∈ k2 ≈ `. The group Gk
is transitive on these k-lines, so Pk\Gk ≈ {k − lines}. The critical-but-trivial point is that the action of `×

on ` is transitive on non-zero elements. Thus, Pk ·Hk = GL2(k). That is, the period integral unwinds∫
ZAHk\HA

Es,χ =

∫
ZA(Pk∩Hk)\HA

ϕs,χ =

∫
ZA\HA

ϕs,χ

since H ∩ P = Z. With ϕs,χ chosen to factor over primes ϕs,χ =
⊗

v ϕs,χ,v, the unwound period integral
likewise factors over primes∫

ZAHk\HA
Es,χ =

∫
ZA\HA

ϕs,χ =
∏
v

∫
Zv\Hv

ϕs,χ,v

A graceful way to evaluate the local integrals is to use an integral representation of the local vectors ϕs,χ,v
akin to well-known archimedean devices involving the Gamma function. That is, express ϕv in terms of
Iwasawa-Tate local zeta integrals

Lk,v(2s, χ
2) =

∫
k×v

|t|2sv χ2(t) Φv(t e) dt
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as

ϕs,χ,v(g) =
1

Lk,v(2s, χ2
v)
· | det g|sv χv(det g) ·

∫
k×v

|t|2sv χ2
v(t) · Φv(t · e · g) dt

for suitable Schwartz functions Φv on k2
v ≈ `v = ` ⊗k kv. The leading local zeta integral factor gives the

normalization ϕv(1) = 1 at g = 1. Then∫
Zv\Hv

ϕs,χ,v =
1

Lk,v(2s, χ2
v)
·
∫
k×v \`×v

|deth|svχ2
v(deth) ·

∫
k×v

|t|2sv χ2
v(t) · Φv(t · e · h) dt dh

Let Nv be the kv-extension `⊗k kv → kv of the norm map `→ k. Since

|deth|kv = |Nh|kv = |h|`v

and since χv(deth) = χv(Nh), the local factor of the period becomes

1

Lk,v(2s)
·
∫
k×v \`×v

|h|s`vχv(Nh) ·
∫
k×v

|t|s`vχ
2
v(t) · Φv(t · e · h) dt dh

=
1

Lk,v(2s, χ2
v)
·
∫
k×v \`×v

∫
k×v

|t · h|s`vχv(N(th)) · Φv(t · e · h) dt dh

=
1

Lk,v(2s)
·
∫
`×v

|h|s`vχv(Nh) · Φv(e · h) dt dh =
1

Lk,v(2s, χ2
v)
· L`,v(s, χv ◦N)

where the local L-function L`,v is the product of the finitely-many local factors L`,w for places w of ` lying
over v.

Let S be the collection of ramified primes for χ and primes ramified in `/k. Let ω be the quadratic
character attached to `/k, with local characters ωv: at finite primes v splitting in `/k, the character is trivial.
Let qv be the residue field cardinality at a finite place v 6∈ S, and $v a local parameter.

At a finite place v of k splitting in `/k, we immediately have

L`,v(s, χv ◦N) =
1

1− χv($v)q
−s
v
· 1

1− χv($v)q
−s
v

= Lk,v(s, χv)
2

Since local L-functions of unramified local characters are determined by their values on local parameters, at
a finite place v of k inert in `/k, in which case N : ` ⊗k kv → kv is the local field norm and $v remains
prime in `⊗k kv, we similarly have

L`,v(s, χv ◦N) =
1

1− χv(N$v)(q2
v)−s

=
1

1− χv($2
v)(q

2
v)−s

=
1

1− χv($v)q
−s
v
· 1

1 + χv($v)q
−s
v

=
1

1− χv($v)q
−s
v
· 1

1− χvωv($v)q
−s
v

= Lk,v(s, χv) · Lk,v(s, χv · ωv)

Thus, the good-prime part of the global L-function is

LS` (s, χ ◦N) =
∏
v 6∈S

L`,v(s, χv ◦N) =
∏
v 6∈S

Lk,v(s, χv) · Lk,v(s, χv · ωv)

Thus, ∫
ZAHk\HA

Es,χ =
LSk (s, χ) · LSk (s, χ · ω)·

LSk (2s, χ2)
× (bad prime factors)

as claimed. ///
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[2.C.3] Remark: In this normalization, the unitary line is Re(s) = 1
2 , and∫

ZAHk\HA
E 1

2 +it,χ =
LS( 1

2 + it, χ) · LS( 1
2 + it, χ · ω)

LS(1 + 2it, χ2)
× (bad prime factors)

[2.C.4] Remark: The basic remaining issue about the finitely-many bad-prime local integrals is to be
sure that we can choose local data ϕs,χ,v so that the local inegrals do not vanish identically. This can
be accomplished, for example, by taking the bad-prime local functions ϕs,χ,v to be 0 off a very small
neighborhood of the local points Pv of the parabolic P .
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3. SL3(Z), SL4(Z), SL5(Z), . . .

1. Parabolic subgroups of GLr
2. Groups Kv = GLr(ov) ⊂ Gv = GLr(kv)
3. Discrete subgroup GLr(k), reduction theory
4. Invariant differential operators and integral operators
5. Hecke operators and integral operators
6. Decomposition by central characters
7. Discrete decomposition of cuspforms
8. Pseudo-Eisenstein series
9. Cuspidal-data pseudo-Eisenstein series
10. Minimal-parabolic Eisenstein series
11. Cuspidal-data Eisenstein series
12. Continuation of minimal-parabolic Eisenstein series
13. Continuation of cuspidal-data Eisenstein series
14. Truncation and Maaß-Selberg relations
15. Minimal-parabolic decomposition
16. Cuspidal-data decomposition
17. Plancherel for pseudo-Eisenstein series
18. Automorphic spectral expansions
Appendix A: Bochner’s lemma
Appendix B: Phragment-Lindelöf theorem

We keep most of the conventions and context of the previous chapter, except now G is the group GLr
of r-by-r matrices. The novelties originate in the greater variety of parabolic subgroups in GLr, the latter
explicated in the first section. This variety increases the subtlety of the Gelfand condition defining the
space of cuspforms, with pursuant proliferation of types of pseudo-Eisenstein series and Eisenstein series on
GLr corresponding to the various parabolic subgroups. One new phenomenon is the necessary formation of
pseudo-Eisenstein series and Eisenstein series using cuspforms on smaller groups GLr′ .

To narrow somewhat the scope of complications, later in the chapter we mostly treat level one automorphic
forms, that is, right KA-invariant ones, for KA a maximal compact subgroup of GLr(A). This specializes to
automorphic forms for GLr(Z) when the ground field is Q.

3.1 Parabolic subgroups of GLr

It is perhaps impossible to anticipate the significance of these subgroups. Nevertheless, they subsequently
prove their importance. [25] Let G = GLr(k) with an arbitrary field k, acting on kr by matrix multiplication.
A flag F in kn is a nested sequence of one or more non-zero k-subspaces (with proper containments)
V1 ⊂ . . . ⊂ V` ⊂ kr. The corresponding parabolic subgroup P = PF is the stabilizer of the flag F . The
whole group G stabilizes the improper flag kr, so is a parabolic subgroup of itself. The proper parabolics are
stabilizers of flags V1 ⊂ . . . ⊂ V` ⊂ kr with ` ≥ 1.

The maximal proper parabolic subgroups are stabilizers PV⊂k
r

of flags consisting of single proper subspaces
V ⊂ kr. Every proper parabolic subgroup PF for flag F = (V1 ⊂ . . . ⊂ V` ⊂ kr) is the intersection of the
maximal proper parabolics PVi⊂k

r

. A minimal parabolic, stabilizing a maximal flag, is a Borel subgroup.
With e1, e2, . . . , er the standard basis for kr, identify kd = ke1 + . . .+ked. By transitivity of G on ordered

bases of kr, every orbit in the action of G on flags has a unique representative among the standard flags,
namely, for some ordered partition d1 + d2 + . . .+ d` = r with 0 < dj ∈ Z, the corresponding standard flag is

F d1,...,d` =
(
kd1 ⊂ kd1+d2 ⊂ kd1+d2+d3 ⊂ . . . ⊂ kd1+...+d`

)
[25] Also, the terminology itself has a long and complicated history, and admits a much larger context, inessential to

the present illustrative discussion.
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The stabilizer of F d1,...,d` is the standard (proper) parabolic subgroup P d1,...,d` of G, and is the intersection
of the maximal proper parabolics containing it, namely

P d1,...,d` =
⋂

1≤i≤`−1

P (d1+...+di), (di+1+...+d`)

Two standard parabolics P d1,...,d` and P d
′
1,...,d

′
`′ are associate when ` = `′ and the lists d1, . . . , d` and

d′1, . . . , d
′
` merely differ by being permutations of each other. A parabolic P d1,...,d` is self-associate when

di = dj for some i 6= j. These notions are important for discussion of constant terms of Eisenstein series,
meromorphic continuations, and functional equations. The standard maximal proper parabolics are block-
upper-triangular, in the sense

P r
′,r−r′ =

{(
a b
0 d

)
: a ∈ GLr′ , b = r′ × (r − r′), d ∈ GLr−r′

}
That is, the diagonal blocks are r′ × r′ and (r − r′) × (r − r′), and the off-diagonal blocks are sized to fit.
Next-to-maximal proper parabolics have the shape

P r1,r2,r3 =
{m1 ∗ ∗

0 m2 ∗
0 0 m3

 : m1 ∈ GLr1 , m2 ∈ GLr2 , m3 ∈ GLr3
}

(for r1 + r2 + r3 = r)

with off-diagonal blocks to fit. The general standard proper parabolic P d1,...,d` consists of block-upper-
triangular matrices with diagonal blocks of sizes d1 × d1, d2 × d2, . . ., d` × d`. The standard Borel subgroup
is the subgroup of upper triangular matrices.

The unipotent radical NP of a parabolic P stabilizing a flag F = (V1 ⊂ . . . ⊂ V` ⊂ kr) is the subgroup
that fixes the quotients V`/V`−1 pointwise. This characterization shows that NP is a normal subgroup of P .
For the standard maximal parabolic P = P r

′,r−r′ , the unipotent radical is

N = NP = Nr′,r−r′ =
{(

1r′ b
0 1r−r′

)
: b = r′ × (r − r′)

}
Containment of parabolics reverses the containment of unipotent radicals: P ⊂ Q implies NP ⊃ NQ. For
example, for next-to-maximal standard proper parabolic P = P r1,r2,r3 , the unipotent radical is

N = NP = Nr1,r2,r3 =
{ 1r1 ∗ ∗

0 1r2 ∗
0 0 1r3

}
The standard Levi component (or standard Levi-Malcev component) M = MP = Md1,...,d` of the standard
parabolic P = P d1,...,d` is the subgroup of P = P d1,...,d` with all the blocks above the diagonal 0, namely,

M = MP = Md1,...,d` =
{

m1 0 0 . . . 0
0 m2 0 . . . 0
... 0

. . .
...

. . . 0
0 . . . 0 m`

 : mj ∈ GLdj
}

Unlike the unipotent radical, the standard Levi component is not normal in the standard parabolic.
Nevertheless, we have the Levi-Malcev decomposition P = NP ·MP for matrices with entries in any field.
For the standard parabolics and standard Levi components, this is simply an expression of the behavior of
matrix multiplication in block decompositions. For example,(

a b
0 d

)
=

(
1r′ bd−1

0 1r−r′

)(
a 0
0 d

)
(in blocks)
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The standard maximal split torus in G is the subgroup of diagonal matrices, which is also the Levi component
Mmin of the standard minimal parabolic Pmin = P 1,1,...,1. The standard Weyl group W can be identified
with permutation matrices in G, namely, matrices with exactly one non-zero entry in each row and column,
and that entry is 1. The Weyl group normalizes Mmin . [26] The simplest Bruhat decomposition is

[3.1.1] Claim: With Pmin the standard minimal parabolic and Nmin its unipotent radical, we have a disjoint
union

GLr(k) =
⊔
w∈W

PminwPmin =
⊔
w∈W

PminwNmin

Proof: The second equality follows from the first, by the Levi decomposition: letting P = Pmin and N = NP

and M = MP ,
PwP = Pw(MN) = P · wMm−1 · wN = PM · wN = P · wN

For the first equality, given g ∈ GLr(k), left multiplication by N can add or subtract multiples of a row of
g to or from any higher row. Similarly, right multiplication by N adds or subtracts multiples of a column
of g to or from any column farther to the right. Thus, letting gi1,1 be the lowest non-zero entry in the first
column (maximal index i1), left multiplication by N makes all other entries in the first column 0. Right
multiplication by N makes all other entries in the ith1 row 0. Next, let gi2,2 be the lowest (maximal index i2)
non-zero entry in the (new) second column. Without disturbing the effects of the previous step, all higher
entries in the second column, and all entries in the ith2 row to the right, can be made 0 by left and right
action of N . An induction produces a monomial matrix, that is, one with a single non-zero entry in each
row and column. Then left multiplication by M normalizes all non-zero entries to 1. Thus, MNgN ∈W .

In fact, the positions of the lowest non-zero entries gij ,j in each column are completely determined by this
procedure, and there is no other way to reach a monomial matrix by left and right multiplication by N . This
explains the disjointness of the decomposition.

Rather than set up notation for the general case, the induction is better illustrated by an example: writing
∗ for unknown entries and × for non-zero entries, with suitable values in the elements of N , the first stage,
using the non-zero 2, 1 entry, is ∗ ∗ ∗
× ∗ ∗
0 × ∗

→
 1 ∗ 0

0 1 0
0 0 1

 ∗ ∗ ∗
× ∗ ∗
0 × ∗

=

 0 ∗ ∗
× ∗ ∗
0 × ∗

→
 0 ∗ ∗
× ∗ ∗
0 × ∗

 1 ∗ ∗
0 1 0
0 0 1

=

 0 ∗ ∗
× 0 0
0 × ∗


The second stage, using the non-zero 3, 2 entry, is 0 ∗ ∗
× 0 0
0 × ∗

→
 1 0 ∗

0 1 0
0 0 1

 0 ∗ ∗
× 0 0
0 × ∗

=

 0 0 ∗
× 0 0
0 × ∗

→
 0 0 ∗
× 0 0
0 × ∗

 1 0 0
0 1 ∗
0 0 1

=

 0 0 ∗
× 0 0
0 × 0


The upper-right entry must be invertible, since the original matrix is. ///

[3.1.2] Corollary: G =
⋃
w∈W PwQ for any standard parabolics P,Q. ///

[3.1.3] Remark: Letting WP = W∩P and WQ = W∩Q, we have a disjoint union G =
⊔
w∈WP \W/WQ PwQ.

However, except for minimal or maximal-proper parabolics, this requires a subtler proof. Our subsequent
examples will not need this precise form of the general case, although it would become relevant in other
examples.

Below, to distinguish matrices with entries in k from entries in kv, we will write Pk, Mk, and Nk in place
of the unadorned P,M,N above.

[26] A more extensible form of the definition of Weyl group is as the normalizer of Mmin modulo the centralizer of

Mmin , that is, monomial matrices (with one non-zero entry in each row and column) modulo diagonal matrices.

However, for G = GLr, it is very often convenient to fix a set of representatives in G.
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3.2 Groups Kv = GLr(ov) ⊂ Gv = GLr(kv)

Now k is again a number field with integers o, completions kv, and local rings of integers ov at non-
archimedean places. Let Gv = GLr(kv), and let Zv be the center of Gv. At non-archimedean places v, let
Kv = GLr(ov). At real v, let Kv be the standard orthogonal group On(R) = {g ∈ GLn(R) : g>g = 1r}, and
at complex v let Kv be the standard unitary group Un = {g ∈ GLn(C) : g∗g = 1r}.

Temporarily, let ` be the number of non-isomorphic archimedean completions of k, thus not counting a
complex completion and its conjugate as 2, but just 1. That is, [k : Q] = `1 + 2`2 where `1 is the number of
real completions, and `2 the number of complex, and ` = `1 + `2. Let Z+ be the positive real scalar matrices
diagonally imbedded across all archimedean v, by the map

t −→ (. . . , t1/`, . . .) (for t > 0)

This map δ gives a section of the idele norm map |t| =
∏
v |tv|v, in that |δ(t)| = t.

The group Pv of v-adic points of a standard parabolic P = PF = P d1,...,d` is the stabilizer in Gv with the
same shape as the k-rational points Pk in the previous section, but with entries in kv rather than k. That is,
the v-adic version of the flag F = (kd1 ⊂ kd1+d2 ⊂ . . . ⊂ kr) is the natural Fv = kd1

v ⊂ kd1+d2
v ⊂ . . . ⊂ krv),

and Pv = P d1,...,d`
v is its stabilizer. [27] Similarly, Nv = NP

v is the v-adic points of the unipotent radical
N = NP of P , and Mv = MP

v is the v-adic points of the standard Levi component of a standard parabolic
P . That is, again, the shapes of the matrices are the same as in the previous section, but with entries in kv
rather than k.

Iwasawa decompositions are analogous to the previous chapter’s, with proofs merely iterations of the
arguments there:

[3.2.1] Claim: Gv = Pv ·Kv for standard minimal parabolic P .

Proof: For archimedean v, the right action of Kv rotates the rows of given g ∈ Gv. The bottom row can be
rotated to be of the form (0, 0, . . . , 0, 0, ∗). Without disturbing this effect, the second-to-bottom row can be
rotated to be of the form (0, 0, . . . , 0, ∗, ∗). Continuing with higher rows puts the result in Pmin

v .
For non-archimedean v, right multiplication by Kv can subtract local-integer multiples of the largest entry

in the bottom row from all others, to put the bottom row into the form (0, 0, . . . , 0, ∗, 0, . . . 0) with a non-zero
entry at just one position. Then a permutation matrix (in Kv) can move the non-zero entry to the far right.
Without disturbing this effect, the first r−1 entries of the second-to-bottom row can be dealt with similarly,
putting it into the form (0, 0, . . . , 0, ∗, ∗). Because the determinant is non-zero, the second-to-right entry in
the new second-to-bottom row is non-zero. Continuing to modify higher rows puts the result in Pv. ///

As in [1.2] and [2.1], Cartan decompositions follow from the spectral theorem for symmetric or hermitian
operators at archimedean places, and from the structure theorem for finitely-generated modules at finite
places:

[3.2.2] Claim: Gv = KvMvKv with M = Mmin the standard Levi component of the minimal parabolic.

Proof: For archimedean v, letting g → g∗ be either transpose for kv ≈ R, or conjugate-transpose for
kv ≈ C, the matrix gg∗ is positive-definite symmetric or hermitian-symmetric. The spectral theorem for
such operators gives an orthogonal or unitary matrix k such that k(gg∗)k∗ = δ is diagonal with strictly
positive real diagonal entries. Let

√
δ be the positive-definite diagonal square root of δ. Then h = k∗

√
δk is

a positive-definite hermitian/symmetric square root of gg∗. Then

(h−1 · g) · (h−1 · g)∗ = h−1 · gg∗ · h−1 = h−1 · h2 · h−1 = 1r

Inverting k∗k = 1r gives k−1(k∗)−1 = 1r, and then 1r = kk∗, so the latter condition also defines Kv. That
is, h−1g ∈ Kv, and g ∈ k∗

√
δk ·Kv ⊂ Kv

√
δKv.

For non-archimedean v, multiply through by scalar matrix c · 1r so that all entries of cg are in ov, though
of course the determinant may fail to be a local unit. The rows of R1, . . . , Rr of g ∈ Gv are linearly

[27] The kv-vectorspace krv has many subspaces and flags not obtained by extending scalars from subspaces and flags

in kr, but these will play no role here.
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independent, and generate a free ov-module F of rank r inside orv. Observe that Kv = GLr(ov) is the
stabilizer of orv. Since ov has a unique non-zero prime ideal, the applicable form of the structure theorem for
finitely-generated modules over principal ideal domains is even simpler, and produces an ov-basis f1, . . . , fr
of orv and elementary divisors d1| . . . |dr such that {difi} is an ov-basis of F . Let k1 ∈ Kv be the change-
of-basis element such that the jth row of k1 · g is djfj . Let {ei} be the standard basis of orv, and k2 ∈ Kv

such that fj · g = ej for all j. Then δ = k1gk2 is diagonal with entries d1, . . . , dr. We can undo the initial
multiplication to get g ∈ k−1

1 c−1δk−1
2 ∈ KvMvKv. ///

As in GL2, unlike the archimedean situation, for non-archimedean v the compact Kv has substantial
intersections with NP

v and MP
v for every standard parabolic P . As for GL2, unipotent radicals NP

v of
standard parabolics P are ascending unions of compact, open subgroups:

NP
v =

⋃
`≥0

{n ∈ NP
v : n = 1r mod $`}

Again, unlike the archimedean situation, Kv has a basis at 1 consisting of compact, open subgroups, namely,
the (local) principal congruence subgroups

Kv,` = {g ∈ Kv = GLr(ov) : g = 1r mod $`}

The corresponding adele group is GA = GLr(A), meaning r-by-r matrices with entries in A, with determinant
in the ideles J. This group is also an ascending union (colimit) of products

GS =
∏
v∈S

Gv ×
∏
v 6∈S

Kv (for S a finite set of places v, including archimedean places)

ordering the finite sets S by containment. Similarly, PA, MP
A , NP

A , and ZA are the adelic forms of those
groups. Let KA =

∏
vKv ⊂ GA. With the usual one-sided inverse to δ : (0,∞) → J the idele norm

| · | : J→ (0,∞),
ZA/Z

+Zk ≈ J/δ(0,∞) · k× ≈ J1/k× = compact

where Zk is the invertible scalar matrices with entries in k, with compactness demonstrated in [2.15].

3.3 Discrete subgroup Gk = GLr(k), reduction theory

As expected, Gk = GLr(k), and Pk, MP
k , NP

k are the corresponding groups with entries in k. Proof of
the discreteness of Gk in GA is essentially identical to that for GL2 in [2.2], and we will not repeat it. Let

G1 = {g ∈ GA : |det g| = 1}

and GA = Z+ ×G1. The product formula
∏
v≤∞ |t|v = 1 for t ∈ k× shows that Gk ⊂ G1. In particular, Gk

is still discrete in Z+\GA ≈ G1. As in the simpler cases [1.5] and [2.2], reduction theory should show that
the quotient Gk\GA is covered by a suitable notion of Siegel set, and that these Siegel sets interact well with
each other. We prove that a single Siegel set covers the quotient, but omit the discussion of their interaction.

The notion of (standard) Siegel set becomes somewhat more complicated. The notion of a single numerical

height as in [1.5] and [2.2] is replaced by a family: the standard positive simple roots [28] are characters on
M = MP = Mmin with P = P 1,...,1 = Pmin the standard minimal parabolic:

αi

m1

. . .

mr

 =
mi

mi+1
(for 1 ≤ i < r)

[28] As with nomenclature for other objects, the terminology simple root is the correct name, but the origins, general

definitions, and abstracted properties of simple roots would not help us here.
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These simple roots make sense on Mk or Mv or MA, taking values in k×, k×v , and J. A standard Siegel set
adapted to or aligned with P = Pmin is a set of the form

SP = SP
t,C = {g = nmk : n ∈ C, m ∈MA, k ∈ KA, and |αi(m)| ≥ t for 1 ≤ i < r}

with idele norm | · |, for 0 < t ∈ R and compact C ⊂ NP
A . Let Nmin = NP with P = Pmin .

[3.3.1] Theorem: For given k, there is t > 0 and a compact subgroup C ⊂ Nmin
A such that Gk ·SP

t,C = GA.
That is, Gk\GA is covered by a single, sufficiently large Siegel set.

Proof: We need a notion of height on Ar as in [2.2] for r = 2. Let GA act on the right on Ar by
matrix multiplication. For real primes v of k the local height function hv on x = (x1, . . . , xr) ∈ krv is
hv(x) =

√
x2

1 + . . .+ x2
n. For complex v, take hv(x) = |x1|C + . . .+ |xr|C with |z|C = |NC

R z|R to not disturb
the product formula. For non-archimedean v, hv(x) = supi |xi|v.

A vector x ∈ Ar is primitive when it is of the form xog for g ∈ GA and xo ∈ kr. For x = (x1, . . . , xr) ∈ kr,
at almost all non-archimedean primes v the xi’s are in ov and have local greatest common divisor 1. Elements
of the adele group g ∈ GA are in Kv almost everywhere, so this is not changed by multiplication by g. That
is, a primitive vector x has the property that at almost all v the components of x are locally integral and have
local greatest common divisor 1. For primitive x the global height is h(x) =

∏
v hv(xv). Since x is primitive,

at almost all finite primes the local height is 1, so this product has only finitely many non-1 factors. The
proof of the following is mostly identical to the r = 2 case [2.2.2]:

[3.3.2] Claim: For fixed g ∈ GLr(A) and for fixed c > 0,

card
(
k×
∖{

x ∈ kr − {0} : h(x · g) < c
})

< ∞

For compact C ⊂ GA there are positive implied constants such that

h(x) �C h(x · g) �C h(x) (for all g ∈ C, for all primitive x)

Proof: Fix g ∈ GA. Since K = KA =
∏
vKv preserves heights, via Iwasawa decompositions locally

everywhere, we may suppose that g is in the group PA of upper triangular matrices in GA. Let gij be
the (i, j)th entry of g. Choose representatives x = (x1, . . . , xr) for non-zero vectors in kr modulo k× such
that, with µ the first index with xµ 6= 0, xµ = 1. That is, x is of the form x = (0, . . . , 0, 1, xµ+1, . . . , xr).

The more easily written-out case r = 2 of the first assertion was treated in [2.2.2]. For x ∈ kr − {0} such
that h(xg) < c, let µ− 1 be the least index such that xµ 6= 0. Adjust by k× such that xµ = 1. For each v,
from h(xg) < c,

|gµ−1,µ + xµgµ,µ|v
∏
w 6=v

|gµ−1,µ−1|w ≤ h(gx) < c

For almost all v we have |gµ−1,µ−1|v = 1, so there is a uniform c′ such that

|gµ−1,µ + xµgµ,µ|v < c′ (for all v)

For almost all v the residue field cardinality qv is strictly greater than c′, so for almost all v

|gµ−1,µ + xµgµ,µ|v ≤ 1

Therefore, gµ−1,µ + xµgµ,µ lies in a compact subset C of A. Since k is discrete, the collection of xµ is finite.
Continuing, there are only finitely many choices for the other entries of x. Inductively, suppose xi = 0 for

i < µ− 1, and xµ, . . . , xν−1 fixed, and show that xν has only finitely many possibilities. Looking at the νth

component (xg)ν of xg,

|gµ−1,ν + xµgµ,ν + . . .+ xν−1gν−1,ν + xνgν,ν |v
∏
w 6=v

|gµ−1,µ−1|w ≤ h(xg) ≤ c
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For almost all places v we have |gµ−1,µ−1|w = 1, so there is a uniform c′ such that for all v

|(xg)ν |v = |gµ−1,ν + xµgµ,ν + . . .+ xν−1gν−1,ν + xνgν,ν |v < c′

For almost all v the residue field cardinality qv is strictly greater than c′, so for almost all v

|gµ−1,ν + xµgµ,ν + . . .+ xν−1gν−1,ν + xνgν,ν |v ≤ 1

Therefore,
gµ−1,ν + xµgµ,ν + . . .+ xν−1gν−1,ν + xνgν,ν

lies in the intersection of a compact subset C of A with a closed discrete set, so lies in a finite set. Thus, the
number of possibilities for xν is finite. Induction gives the first assertion of the claim.

For the second assertion of the claim, let E be a compact subset of GA, and let K =
∏
v Kv. Then

K · E ·K is compact, being the continuous image of a compact set. So without loss of generality E is left
and right K-stable. By Cartan decompositions the compact set E of GA is contained in a set KCK where
C ⊂MA is compact. Let g = θ1mθ2 with θi ∈ K, m ∈ C, and x a primitive vector. By the K-invariance of
the height,

h(xg)

h(x)
=

h(xθ1mθ2)

h(x)
=

h(xθ1m)

θ(x)
=

h((xθ1)m)

h((xθ))

Thus, the set of ratios h(xg)/h(x) for g in a compact set and x ranging over primitive vectors is exactly the
set of values h(xm)/h(x) where m ranges over a compact set and x varies over primitives. With diagonal
entries mi of m, by compactness of C,

0 < inf
m∈C

inf
i
|mi| ≤

h(xm)

h(x)
≤ sup

m∈C
sup
i
|mi| <∞ (for all primitive x)

This proves the second assertion of the claim.
Analogous to [2.2] for r = 2, we could put η(g) = |det g| · h(er · g)−r, where {ei} is the standard basis for

kr. The parabolic Q = P r−1,1 is the stabilizer of the line k · er. This modification makes η invariant under
ZA, as well as left Qk-invariant and right KA-invariant.

[3.3.3] Corollary: (of claim) Given g ∈ GA, there are finitely-many γ ∈ Qk\Gk such that η(γ · g) > η(g).
Thus, the supremum supγ η(γ · g) is attained, and is finite.

Proof: There is a natural bijection Qk\Gk ←→ k×\(kr−{0}) mapping a matrix to its bottom row. The claim
shows that there are finitely-many x ∈ k×\(kr −{0}) such that h(xg) < c, that is, such that h(xg)−1 > c−1.
Since |det g| is Gk-invariant, the bijection gives the assertion. ///

Now we prove the theorem by induction on r. Given g ∈ GA, by the corollary there is x ∈ kr − {0} such
that h(xg) > 0 is minimal among values h(x′g) with x′ ∈ kr − {0}. Take γo ∈ Gk so that erγo = x, so
h(xg) = h(erγog) is minimal, and η(γog) is maximal among all values η(γ · γog) for γ ∈ Gk. By Iwasawa,
there is θ ∈ K such that q = γogθ ∈ QA. Then h(γgθ) = |qrr| where qij is the ijth entry of q, and η(q) is
maximal among all values η(γ · q) for γ ∈ Gk. Let H ⊂MQ be the subgroup of GA fixing er and stabilizing
the subspace spanned by e1, . . . , er−1, so H ≈ GLr−1(A). By induction on r, beginning at r = 2 in [2.2],
by acting on q = γgθ on the left by Hk and on the right by HA ∩KA, we can suppose that q ∈ Pmin

A and
|qii/qi+1,i+1| ≥ t for i < r − 1, without altering η(q). The induction step reduces to the case r = 2. The
extremal property h(erq) ≤ h(x′ · q) for all x′ ∈ kr − {0} certainly implies h(erq) ≤ h(x′ · q) with x′ ranging
over the smaller set of vectors of the form x′ = (0 . . . 0 xr−1 xr). Thus, the lower right 2-by-2 block q′ of q is
reduced as an element of GL2(A). This reduces to the r = 2 case treated in [2.2.7], giving |qr−1,r−1|/|qrr| ≥ t
for sufficiently small t and proving the theorem. ///
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3.4 Invariant differential operators and integral operators

For archimedean Gv, for some purposes, such as meromorphic continuation of Eisenstein series [11.5],

[11.10], [11.12], the Casimir operator or Laplacian as in [4.2], [4.4] suffices. [29] Beyond that, the tractability
of integral operators, as in the rewriting of non-archimedean Hecke operators as such, suggests using integral
operators at archimedean places, as well, especially in light of the commutativity result [3.4.3].

As usual, for a continuous action Gv×V → V on a quasi-complete, locally convex topological vectorspace
V , the corresponding integral operators are

ϕ · f =

∫
Gv

ϕ(g) g · f dg (for ϕ ∈ Coc (Gv) and f ∈ V )

The integrand is a continuous, compactly-supported V -valued function, so has a Gelfand-Pettis integral
[14.1]. Thus, for f ∈ V = L2(Z+Gk\GA), with Gv acting by right translation, pointwise

(ϕ · f)(x) =

∫
Gv

ϕ(g) (g · f)(x) dg =

∫
Gv

ϕ(g) f(xg) dg (for ϕ ∈ Coc (Gv) and f ∈ V )

In fact, for general reasons [6.1] the right-translation action Gv × L2(Z+Gk\GA) → L2(Z+Gk\GA) is
continuous, so the integral converges as an L2(Z+Gk\GA)-valued integral, obviating concern about pointwise
values. The composition of two such operators is the operator attached to the convolution: for ϕ,ψ ∈ Coc (GA),
by the same computation as in [2.4] and [3.4],

ϕ · (ψ · f) =

∫
Gv

ϕ(g) g ·
(∫

Gv

ψ(h)h · f dh
)
dg =

∫
Gv

∫
Gv

ϕ(g)ψ(h)(gh · f) dh dg

because the operation of ϕ moves inside the Gelfand-Pettis integral. Replacing h by g−1h gives∫
Gv

∫
Gv

ϕ(g)ψ(g−1h) h · f dh dg =

∫
Gv

(∫
Gv

ϕ(g)ψ(g−1h) dg
)
h · f dh

by changing the order of integration.

[3.4.1] Lemma: The adjoint to the action of ϕ ∈ Coc (Gv) on L2(Z+Gk\GA) is the action of ϕ̌ ∈ Coc (Gv),
where ϕ̌(g) = ϕ(g−1). (Proof identical to [2.4.1].) ///

For simplicity of discussion, we restrict attention to functions on Z+Gk\GA right Kv-invariant for
archimedean v. In that situation, for archimedean v, the integral operators given by left-and-right Kv-
invariant ϕ ∈ Coc (Gv), also denoted Coc (Kv\Gv/Kv), act on right Kv-invariant functions on Z+Gk\GA.

[3.4.2] Claim: The action of integral operators attached to ϕ ∈ Coc (Kv\Gv/Kv) stabilizes Kv-invariant
vectors f in any continuous group action Gv×V → V for quasi-complete, locally convex V . (Proof identical
to [2.4.3].) ///

Invoking Gelfand’s trick [2.4.5],

[3.4.3] Claim: The action of integral operators attached to ϕ ∈ Coc (Kv\Gv/Kv) with convolution is
commutative, for both non-archimedean and archimedean v.

Proof: To apply [2.4.5], we need an involutive anti-automorphism σ of Gv, that is, g → gσ such that
(gh)σ = hσgσ and (gσ)σ = g, stabilizing Kv and acting trivially on representatives for double cosets
Kv\Gv/Kv. Use the Cartan decomposition [3.2] Gv = KvMvKv and use transpose gσ = g>. Transpose
stabilizes Kv, and acts trivially on Mv. ///

As in other cases, the algebra of integral operators attached to ϕ ∈ Coc (Kv\Gv/Kv) is stable under adjoints.
Thus, it is plausible to ask for simultaneous eigenvectors for this commutative algebra of integral operators.

[29] For SLr(R) or SLr(C), with r ≥ 3, the center of the universal enveloping algebra Ug of the corresponding algebra

g is generated by r − 1 commuting operators.
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3.5 Hecke operators and integral operators

For non-archimedean Gv, for any continuous action Gv × V → V on a quasi-complete, locally convex
topological vectorspace V , the corresponding integral operators are

ϕ · f =

∫
Gv

ϕ(g) g · f dg (for ϕ ∈ Coc (Gv) and f ∈ V )

The integrand is a continuous, compactly-supported V -valued function, so has a Gelfand-Pettis integral
[14.1]. Thus, for f ∈ V = L2(Z+Gk\GA), with Gv acting by right translation,

(ϕ · f)(x) =

∫
Gv

ϕ(g) (g · f)(x) dg =

∫
Gv

ϕ(g) f(xg) dg (for ϕ ∈ Coc (Gv) and f ∈ V )

and for general reasons [6.1] the right-translation action Gv×L2(Z+Gk\GA)→ L2(Z+Gk\GA) is continuous,
so the integral converges as an L2(Z+Gk\GA)-valued integral. The composition of two such operators is the
operator attached to the convolution: as in [2.4] and [3.5], for ϕ,ψ ∈ Coc (GA),

ϕ · (ψ · f) =

∫
Gv

(∫
Gv

ϕ(g)ψ(g−1h) dg
)
h · f dh

[3.5.1] Lemma: The adjoint to the action of ϕ ∈ Coc (Gv) on L2(Z+Gk\GA) is the action of ϕ̌ ∈ Coc (Gv),
where ϕ̌(g) = ϕ(g−1). (Proof identical to [2.4.1].) ///

It is reasonable to restrict attention to functions on Z+Gk\GA right Kv-invariant for all v. But it is
also reasonable to relax this condition to requiring right Kv-invariance almost everywhere, that is, at all
but finitely-many places. A variant of KA-invariance, to cope with the finitely-many places where right
Kv-invariance is not required, is KA-finiteness of a function f on GA or Z+Gk\GA or other quotients of
GA, namely, the requirement that the vectorspace of functions spanned by {x → f(xh) : h ∈ KA} is
finite-dimensional. At the extreme of KA-invariant f , this space is one-dimensional.

[3.5.2] Lemma: For v non-archimedean, Kv-finiteness is equivalent to invariance under some finite-index
subgroup K ′ ⊂ Kv. (Proof identical to [2.4.3].) ///

Unsurprisingly, it turns out that KA-finite functions on Z+Gk\GA are better behaved than arbitrary
functions. Of course, most f ∈ L2(Z+Gk\GA) are not KA-finite.

For non-archimedean v, the spherical Hecke operators for Gv are the integral operators given by left-and-
right Kv-invariant ϕ ∈ Coc (Gv), also denoted Coc (Kv\Gv/Kv). Since Kv is open, such functions are locally
constant: given x ∈ Gv, ϕ(xh) = ϕ(x) for all h ∈ Kv, but xKv is a neighborhood of x. Then the compact
support implies that such ϕ takes only finitely-many distinct values. Thus, the associated integral operator
is really a finite sum. Nevertheless, expression as integral operators explains the behavior well.

[3.5.3] Claim: The action of spherical Hecke operators attached to ϕ ∈ Gv stabilizes Kv-invariant vectors
f in any continuous group action Gv × V → V for quasi-complete, locally convex V . (Proof identical to
[2.4.3].) ///

[3.5.4] Claim: For non-archimedean v, the spherical Hecke algebra Coc (Kv\Gv/Kv) with convolution is
commutative. (Again, Gelfand’s trick [2.4.5].) ///

It is easy to see that the spherical Hecke algebra is stable under adjoints. Thus, it is plausible to ask for
simultaneous eigenvectors for the spherical Hecke algebra. That is, for f ∈ L2(Z+Gk\GA), we might try to
require that f be a spherical Hecke eigenfunction at almost all non-archimedean v, in addition to conditions
at archimedean places. However, it bears repeating that, in infinite-dimensional Hilbert spaces, there is no
general promise of existence of such simultaneous eigenvectors.
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3.6 Decomposition by central characters

While Z+Gk\GA has finite invariant volume, Gk\GA does not. The further quotient ZAGk\GA certainly
has finite invariant volume. Functions on ZAGk\GA are automorphic forms (or automorphic functions) with
trivial central character, since they are invariant under the center ZA of GA. We can treat a larger class with
little further effort. Namely, the compact abelian group ZA/Z

+Zk ≈ J1/k×, being a quotient of the center
ZA of GA, acts on functions on ZAGk\GA and commutes with right translation by GA. In particular, the
action of ZA/Z

+Zk commutes with the integral operators on Gv for v <∞, and with differential operators
coming from the Lie algebra gv of Gv at archimedean places. Thus, for this chapter, an automorphic
form or automorphic function is a function on Z+Gk\GA. For each character ω of ZA/Z

+Zk, the space
L2(Z+Gk\GA, ω) of all left Z+Gk-invariant f on GA such that |f | ∈ L2(ZAGk\GA) and f(zg) = ω(a) · f(g)
for all z ∈ ZA is the space of L2 automorphic forms with central character ω.

[3.6.1] Claim: L2(Z+Gk\GA) decomposes by central characters:

L2(Z+Gk\GA) = completion of
⊕
ω

L2(Z+Gk\GA, ω)

(Proof identical to that in [2.5].) ///

3.7 Discrete decomposition of cuspforms

For a standard parabolic subgroup P of G with unipotent radical N = NP , the constant term of an
automorphic form f along P is

cP f(g) =

∫
Nk\NA

f(ng) dn

For general reasons [6.1], the group NA acts continuously on the Fréchet space Co(Z+Nk\GA), and Nk\NA
is compact, so for f ∈ Co(Z+Nk\GA) the constant-term integral exists as a Gelfand-Pettis integral, and is
a continuous function.

[3.7.1] Claim: Constant terms are functions on Z+NAMk\GA.

Proof: By changing variables, g → cP f(g) is a left NA-invariant function on GA:

cP f(n′x) =

∫
Nk\NA

f(n · n′x) dn =

∫
Nk\NA

f((nn′) · x) dn =

∫
Nk\NA

f(n · x) dn (for n′ ∈ NA)

Similarly, for m ∈Mk,

cP f(mx) =

∫
Nk\NA

f(n ·mx) dn =

∫
Nk\NA

f(m ·m−1nm · x) dn =

∫
Nk\NA

f(m−1nm · x) dn

since f itself is left Mk-invariant. Replacing n by mnm−1 gives the expression for cP f(g), noting that
conjugation by m ∈ Mk stabilizes Nk, and by the product formula the change of measure on NA is trivial.
Invariance under Z+ is even easier. ///

A cuspform is a function f on Z+Gk\GA meeting Gelfand’s condition cP f = 0 for every standard parabolic
P . When f is merely measurable, so does not have well-defined pointwise values everywhere, this condition
is best interpreted distributionally, as in [2.7] for GL2, and addressed below in [3.8], in terms of pseudo-
Eisenstein series. The space of square-integrable cuspforms is

L2
o(Z

+Gk\GA) = {f ∈ L2(Z+Gk\GA) : cP f = 0, for all P}

The fundamental theorem proven in [7.1-7.7] is the discrete decomposition of spaces of cuspforms. A simple
version addresses the space

L2
o(Z

+Gk\GA/KA, ω) = {right-KA-invariant square-integrable cuspforms with central character ω}
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where KA =
∏
v≤∞Kv. This space is {0} unless ω is unramified, that is, is trivial on ZA ∩ KA, since

KA-invariance implies ZA ∩KA-invariance, and we also require ZA, ω-equivariance.
The spherical Hecke algebras Coc (Kv\Gv/Kv) act by right translation, and the Gelfand condition is an

integral on the left, so spaces of cuspforms are stable under all these integral operators. The everywhere-
spherical form of the decomposition result is

[3.7.2] Theorem: L2
o(Z

+Gk\GA/KA, ω) has an orthonormal basis of simultaneous eigenfunctions for
spherical Hecke algebras Coc (Kv\Gv/Kv). Each simultaneous eigenspace occurs with finite multiplicity,
that is, is finite-dimensional. (Proof in [7.1-7.7].)

In contrast, the full spaces L2(Z+Gk\GA/KA, ω) do not have bases of simultaneous L2-eigenfunctions.
Instead, as in [2.11-2.12] and [3.15-3.16], the orthogonal complement of cuspforms in L2(Z+Gk\GA/KA, ω)
mostly consists of integrals of non- L2 eigenfunctions for the Laplacians and Hecke operators, the Eisenstein
series introduced below in [3.9].

For spaces of automorphic forms more complicated than being right Kv-invariant for every place v,
there is generally no decomposition in terms of simultaneous eigenspaces for commuting operators. The
decomposition argument in [7.7] directly uses the larger non-commutative algebras of test functions on the
groups Gv:

C∞c (Gv) =

 compactly-supported smooth functions for v archimedean

compactly-supported locally constant functions for v non-archimedean

Both cases are called smooth. With right translation Rgf(x) = f(xg) for x, g ∈ GA, the action of ϕ ∈ C∞c (Gv)
on functions f on Gk\GA is

ϕ · f =

∫
Gv

ϕ(g)Rgf dg

This makes sense not just as a pointwise-value integral, but as a Gelfand-Pettis integral [14.1] when f lies
in any quasi-complete, locally convex topological vectorspace V on which Gv acts so that Gv × V → V is
continuous. Such V is a representation of Gv. The multiplication in C∞c (Gv) compatible with such actions
is convolution: associativity ϕ · (ψ · f) = (ϕ ∗ ψ) · f .

Here, we are mostly interested in actions Gv × X → X on Hilbert-spaces X. Such a representation is
(topologically) irreducible when X has no closed, Gv-stable subspace. The convolution algebras C∞c (Gv) are
not commutative, so, unlike the commutative case, few irreducible representations are one-dimensional. In
fact, typical irreducible representations of C∞c (Gv) turn out to be infinite-dimensional. There is no mandate
to attempt to classify these irreducibles. Indeed, the spectral theory of compact self-adjoint operators still
proves [7.7] discrete decomposition with finite multiplicities, for example, formulated as follows.

For every place v, let K ′v be a compact subgroup of Gv, and for all but a finite set S of places require that
K ′v = Kv, the standard compact subgroup. For simplicity, we still assume K ′v = Kv at archimedean places.
Put K ′ =

∏
vK
′
v. Let ω be a central character trivial on ZA ∩K ′, so that the space L2

o(Z
+Gk\GA/K

′, ω)
of right K ′-invariant cuspforms with central character ω is not {0} for trivial reasons. For v ∈ S, we have a
subalgebra C∞c (K ′v\Gv/K ′v) of the convolution algebra of test functions at v, stabilizing L2

o(Z
+Gk\GA/K

′, ω).

[3.7.3] Theorem: L2
o(Z

+Gk\GA/K
′, ω) is the completion of the orthogonal direct sum of subspaces, each

consisting of simultaneous eigenfunctions for spherical algebras Coc (Kv\Gv/Kv) at v 6∈ S, and irreducible
C∞c (K ′v\Gv/K ′v)-representations at v ∈ S. Each occurs with finite multiplicity. (Proof in [7.1-7.7].)

The technical features of decomposition with respect to non-commutative rings of operators certainly bear
amplification, postponed to [7.7]. In anticipation,

[3.7.4] Theorem: (Gelfand and Piatetski-Shapiro) L2
o(Z

+Gk\GA/KA, ω) is the completion of the orthogonal
direct sum of irreducibles V for the simultaneous action of all algebras C∞c (Gv). Each irreducible occurs
with finite multiplicity. (Proof in [7.7].)

Again, the various sorts of orthogonal complements to spaces of cuspforms are mostly not direct sums
of irreducibles, but are integrals of Eisenstein series, as below, with a relatively small number of square-
integrable residues of Eisenstein series. For GL2 or GL3 the square-integrable residues of Eisenstein series
are relatively boring, but for GL4 and larger there are highly non-trivial square-integrable residues, namely,
the Speh forms, since for GL4(R) the relevant unitary representations appear in [Speh 1981/2]. The
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general pattern for residual spectrum for GLn was conjectured in [Jacquet 1982/3] and proven in [Moeglin-
Waldspurger 1989].

3.8 Pseudo-Eisenstein series

We want to express the orthogonal complement of cuspforms in the larger spaces L2(Z+Gk\GA/KA)
or L2(Z+Gk\GA/KA, ω) or L2(Z+Gk\GA/K

′, ω) in terms of simultaneous eigenfunctions for spherical
Hecke algebras almost everywhere. Therefore, we emphasize the commutative algebras of integral operators
attached to left-and-right Kv-invariant test functions on Gv. To exhibit explicit L2 functions demonstrably
spanning the orthogonal complement to cuspforms, recast the Gelfand condition that all constant terms
cP f vanish as a requirement that cP f vanishes as a distribution on Z+NAMk\GA, and give an equivalent
distributional vanishing condition on Z+Gk\GA.

For each standard parabolic P , with N = NP , the condition that cP f vanishes as a distribution is that∫
Z+NAMk\GA

ϕ · cP f = 0 (for all ϕ ∈ C∞c (NAMk\GA))

where, again, C∞c (NAMk\GA) is compactly-supported functions on that quotient, smooth in the archimedean
coordinates and locally constant in the non-archimedean coordinates. Smoothness for archimedean places
should mean indefinite differentiability on the right with respect to the differential operators coming from
the Lie algebra, as in [4.1]. Given the compact support, (uniform) smoothness for non-archimedean places
should mean that there exists a compact, open subgroup K ′ of

∏
v<∞Kv under which ϕ is right invariant.

Beyond perhaps having pointwise values almost everywhere, the nature of cP f for f merely L2 is potentially
obscure. For example, it is not likely that cP f ∈ L2(Z+NAMk\GA). Instead, for general reasons [6.1],
Coc (Z+Gk\GA) is dense in L2(Z+Gk\GA) in the L2 topology, and for general reasons [6.1] the left action
of Nk\NA on Co(Z+Pk\GA) is a continuous map Nk × Co(Z+Pk\GA) → Co(Z+NAMk\GA), so cP f
exists as a Co(Z+NAMk\GA)-valued Gelfand-Pettis integral [14.1]. For such f , the integral of cP f against
ϕ ∈ C∞c (Z+NAMk\GA) is the integral of a compactly-supported, continuous function.

The simplest type of pseudo-Eisenstein series is

Ψϕ(g) = ΨP
ϕ (g) =

∑
γ∈Pk\Gk

ϕ(γ · g) (for ϕ ∈ C∞c (Z+NAMk\GA))

Convergence is good:

[3.8.1] Claim: The series for a pseudo-Eisenstein series Ψϕ with ϕ ∈ C∞c (Z+NAMk\GA) is locally
finite, meaning that for g in a fixed compact in GA, there are only finitely-many non-zero summands in
Ψϕ(g) =

∑
γ ϕ(γg). Further, Ψϕ ∈ C∞c (Z+Gk\GA), so these pseudo-Eisenstein series are in L2(Z+Gk\GQ).

(Proof identical to [2.7.1].) ///

[3.8.2] Claim: For f ∈ L2
o(Z

+Gk\GA), for a standard parabolic P , pseudo-Eisenstein series Ψϕ = ΨP
ϕ with

ϕ ∈ C∞c (Z+NAMk\GA) fit into an adjunction∫
Z+NAMk\GA

ϕ · cP f =

∫
Z+Gk\GA

Ψϕ · f (for f ∈ L2(Z+Gk\GA))

In particular, cP f = 0 if and only if
∫
Z+Gk\GA

Ψϕ · f = 0 for all ϕ ∈ C∞c (Z+NAMk\GA).

Proof: The mechanism of the proof is that of [2.7.2]. For general reasons [6.1] Coc (Z+Gk\GA) is dense in
L2(Z+Gk\GA), and we consider f ∈ Coc (Z+Gk\GA). This allows unwinding as in [5.2]:∫

Z+NAMk\GA
ϕ · cP f =

∫
Z+NAMk\GA

ϕ(g)
(∫

Nk\NA
f(ng) dn

)
dg =

∫
Z+NkMk\GA

ϕ(g) f(g) dg

Winding up, using the left Gk-invariance of f and NkMk = Pk,∫
Z+Pk\GA

f(g)ϕ(g) dg =

∫
Z+Gk\GA

∑
γ∈Pk\Gk

f(γ · g)ϕ(γ · g) dg =

∫
Z+Gk\GA

f(g)
( ∑
γ∈Pk\Gk

ϕ(γg)
)
dg
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The inner sum in the last integral is the pseudo-Eisenstein series attached to ϕ. By Cauchy-Schwarz-
Bunyakowsky, ∣∣ ∫

Z+Pk\GA
f ϕ
∣∣ =

∣∣ ∫
Z+Gk\GA

f Ψϕ

∣∣ ≤ |f |L2 · |Ψϕ|L2

which proves that the functional f →
∫
Z+Pk\GA

f ϕ on C∞c (Z+Gk\GA) is continuous in the L2 topology,

so extends by continuity to a continuous linear functional on L2(Z+Gk\GA). Indeed, this inequality asserts
continuity of f → cP f as a linear map from L2(Z+Gk\GA) to distributions on Z+NAMk\GA with the weak
dual topology as in [13.14]. ///

Similarly, with

C∞c (Z+NAMk\GA, ω) = {ϕ ∈ C∞c (NAMk\GA) : ϕ(zg) = ω(z) · ϕ(g), for all z ∈ ZA, g ∈ G}

analogously, keeping track of complex conjugations:

[3.8.3] Claim: Let N = NP . For f ∈ L2(Z+Gk\GA, ω), with ϕ in C∞c (NAMk\GA, ω),∫
Z+NAMk\GA

ϕ · cP f =

∫
Z+Gk\GA

Ψϕ · f

Thus, cP f = 0 if and only if
∫
Z+Gk\GA

Ψϕ · f = 0 for all ϕ ∈ C∞c (NAMk\GA, ω). ///

For P = Pmin the minimal standard parabolic, especially for right KA-invariant functions, as in [2.7.4] for
GL2, minimal-parabolic pseudo-Eisenstein series with test-function data can be broken up into sub-families
parametrized by (tuples of) Hecke characters, as follows. With P = Pmin , let

M1
P = {

m1

. . .

mr

 : m1, . . . ,mr ∈ J, |m1| = . . . = |mr| = 1}

The group Mk\M1 is compact, because J1/k× is compact [2.A]. Certainly C∞c (Z+NAMk\GA) is inside
L2(Z+NAMk\GA), so such functions ϕ admit decompositions in L2(Z+NAMk\GA) by characters χ of the
compact abelian group Mk\M1 acting on the left, as in [6.11]. The integral expressing the χth component

ϕχ(g) =

∫
Mk\M1

χ(m)−1 ϕ(mg) dm

is a Gelfand-Pettis integral converging in C∞c (Z+NAMk\GA) for any quasi-complete [14.7] locally convex
[13.11] topology on this space. That is, the Fourier components ϕχ of a compactly-supported smooth
function along Mk\M1 are again compactly-supported smooth, and their sum converges to the original in
L2(Z+NAMk\GA), at least. The support of ϕχ is worst (Mk\M1)× sptϕ.

[3.8.4] Lemma: A function f ∈ L2(Z+Gk\GA) has constant term cP f integrating to 0 against ϕ in
C∞c (Z+NAMk\GA) if and only if cP f integrates to 0 against every Mk\M1-component ϕχ of ϕ.

Proof: The potential pitfall is that there is no claim that constant terms of functions in L2(Z+Gk\GA) are in
L2(Z+NAMk\GA). Fortunately, this is not an obstacle: as earlier, it suffices to consider f ∈ Coc (Z+Gk\GA),
so cP f ∈ Co(Z+NAMk\GA). With u the characteristic function of (Mk\M1)× sptϕ, the truncation u · cP f
is in L2(Z+NAMk\GA), and truncation does not alter the integrals against ϕχ or ϕ. Letting 〈, 〉 be the inner
product in L2(Z+NAMk\GA), since ϕ =

∑
χ ϕ

χ in L2(Z+NAMk\GA),

〈cP f, ϕ〉 = 〈u · cP f, ϕ〉 =
∑
χ

〈u · cP f, ϕχ〉 =
∑
χ

〈cP f, ϕχ〉

giving the assertion. ///
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[3.8.5] Corollary: With P = Pmin and M = MP , to know cP f = 0 it suffices to know orthogonality to Ψϕ

for ϕ in
{ϕ ∈ C∞c (Z+NAMk\GA) : ϕ(mg) = χ(m) · ϕ(g) for all m ∈M1}

with χ ranging over characters of the compact group Mk\M1. ///

3.9 Cuspidal-data pseudo-Eisenstein series

The simplest pseudo-Eisenstein series ΨP
ϕ , with ϕ ∈ C∞c (Z+NAMk\GQ) having compact support on the

relevant quotient, behave well, as in [3.8.1]. For minimal-parabolic P , such pseudo-Eisenstein series suffice
for the corresponding part of spectral theory, as they have good decompositions in terms of corresponding
genuine Eisenstein series, much as in [2.11] and [2.12], as below in [3.15]. However, for r ≥ 3 and for
non-minimal P , genuine Eisenstein series with best behavior involve cuspforms on the Levi component
MP . Anticipating this, we want pseudo-Eisenstein series ΨP

ϕ that facilitate this part [3.16] of the spectral
decomposition. This entails minor analytical complications, since the data ϕ can no longer have compact
support.

Let δ : (0,+∞) → J be the usual imbedding of the ray in the archimedean factors of the ideles, so that
|δ(t)| = t for t > 0. The centers of the factors GLdi(A) of the standard Levi component MP are copies of J.
The standard archimedean split component A+

P of a parabolic P = P d1,...,d` is the product of the copies of
δ(0,∞) in the product of the centers of the factors of MP (A). Another important subgroup of MP

A is

M1
P = {

m1

. . .

m`

 : |detm1| = . . . = |detm`| = 1, mi ∈ GLdi(A)}

By design, MP
A = A+

P ·M1
P , and MP

k ⊂M1
P . As already in GL2, the center of MP is larger than the center of

G, so ZAMk\MA is not quite a product of quotients of the form Z+Gk\GA or ZAGk\GA. This discrepancy
necessitates looking at test functions on the archimedean split components A+

P or their quotients Z+\A+
P ,

in addition to automorphic data on Mk\M1
P .

In brief, the data ϕ on Z+NAMk\GA appropriate for spectral decompositions of pseudo-Eisenstein series
ΨP
ϕ in terms of genuine Eisenstein series with good behavior, must specify test function data on the split

component A+
P , and cuspforms on the Mk\M1

P . For the minimal parabolic, the cuspidal data is vacuous,
since the Levi component is a product of copies of GL1, and test function data and specification of character
on the compact abelian group Mk\M1

P ≈ (k×\J1)r suffices for the spectral decomposition [3.15] of minimal
parabolic pseudo-Eisenstein series in terms of genuine Eisenstein series with analytic continuations and
functional equations. In contrast, for a non-minimal parabolic, some factor of the Levi component is GLr′

with r′ > 1, and the cuspform condition is non-vacuous.
Further, we only consider everywhere spherical automorphic forms, that is, right KA-invariant and left

ZA-invariant functions. This has the convenient simplification, via Iwasawa decomposition, that constant
terms cP f are identifiable with functions on the quotient of the Levi component of P :

ZANAMk\GA/KA = ZANAMk\NAMAKA/KA ≈ ZAMk\MA/(MA ∩ /KA) ←− ZAMk\MA

This allows easier description of the cuspidal data, as follows. Let f1, f2 be cuspforms on GLr1(A) and
GLr2(A), right invariant by the standard maximal compacts everywhere, with central characters ω1 and
ω2, necessarily unramified. Anticipating the behavior of corresponding genuine Eisenstein series, we require
that f1 and f2 be eigenfunctions for all the spherical Hecke algebras, including the archimedean places.
This includes an eigenfunction condition for invariant Laplacians. That is, f1 and f2 are cuspforms in the
strong sense, beyond satisfaction of the Gelfand condition on vanishing of constant terms. The theory of
the constant term [8.3] shows that cuspforms in this strong sense are of rapid decay. Then f = f1 ⊗ f2

is a function on GLr1(A) × GLr2(A) ≈ MP
A . In the extreme cases where r1 = 1 or r2 = 1, the situation

degenerates a little: there is no corresponding fj , that is, the corresponding fj is simply the identically-1
function. For a test function η on the ray (0,∞), define

ϕ(znmk) = ϕη,f (znmk) = η

(
|detm1|r2
|detm2|r1

)
· f1(m1) · f2(m2)
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with m =

(
m1 0
0 m2

)
∈ MP

A , z ∈ Z+, n ∈ NA, k ∈ KA. The possibly counter-intuitive exponents on the

idele norms of the determinants make ϕ invariant under ZA. The corresponding pseudo-Eisenstein series is
formed as expected,

ΨP
ϕ (g) =

∑
γ∈Pk\Gk

ϕ(γ · g)

However, this sum is not locally finite, so convergence is subtler, and needs properties of strong-sense-
cuspform data. Convergence will follow from comparison to similarly-formed genuine Eisenstein series in
their range of absolute convergence, in [3.11.2].

[3.9.1] Remark: The argument of [3.11.3] for orthogonality of genuine Eisenstein series with cuspidal data
attached to non-associate parabolics applies to pseudo-Eisenstein series with cuspidal data as well, showing
orthogonality of those attached to non-associate parabolics. For associate parabolics P,Q, as for GL2 in
[2.13.5], spectral decompositions of pseudo-Eisenstein series will make clear [3.17.3] that pseudo-Eisenstein

series ΨP
η,f and ΨQ

θ,f ′ with test functions η, θ and cuspidal data f, f ′, are orthogonal if P = Q but 〈f, f ′〉 = 0,

or if MP = wMQw−1 but fw 6= f ′.

3.10 Minimal-parabolic Eisenstein Series

In the often-treated example of automorphic forms on GL2, there are no Eisenstein series made from
cuspidal data, because GL2 is so small. In contrast, for GLn with n > 2, cuspidal-data Eisenstein series play
an essential role. However, the minimal-parabolic Eisenstein series for GLr involve no cupidal data, because
the Levi component is a product of groups GL1, where the cuspidal condition is vacuous. Further, especially
in the everywhere-spherical case of right KA-invariant minimal-parabolic Eisenstein series, much of the
behavior reduces to GL2 via Bochner’s lemma [3.B], as we will see. Hartogs’ lemma on separate analyticity
implying joint analyticity [15.C] removes several ambiguities and potential imprecisions in discussion of
functions of one complex variable versus several.

With δ mapping (0,∞) to the archimedean factors of J so that |δ(t)| = t, as earlier, describe Hecke
characters χ̃ as

χ̃(δ(t) · t1) = ts · χ(t1) (with t > 0, t1 ∈ J1, s ∈ C)

Given an r-tuple of Hecke characters χ̃1, . . . , χ̃r with the relation s1 + . . . + sr = 0 among the complex
parameters s = (s1, . . . , sr), the right KA-invariant, ZA-invariant minimal-parabolic Eisenstein series
Es,χ = Emin

s,χ on GLr is formed as usual:

Es,χ(g) =
∑

γ∈Pk\Gk

ϕos,χ(γ · g)

where

ϕos,χ(nmk) = χ̃(m1) · . . . · χ̃r(mr) (for n ∈ Nmin
A , m =

m1

. . .

mr

, k ∈ KA)

For Hecke characters all of the simplest form χ̃j(δ(t) · t1) = tsj , this is

ϕos(nmk) = ϕos,1(nmk) = |m1|s1 |m2|s2 . . . |mr|sr

That is, in terms of the parameter s, Es,χ is a function-valued function of r − 1 complex variables, but the
parameter space is the complex hyperplane s1 + . . .+sr = 0 in Cr, rather than Cr−1. In terms of the positive
simple roots αi(m) = mi/mi+1, using s1 + . . .+ sr = 0,

ϕos,χ(nmk) = |α1(m)|s1 · |α2(m)|s1+s2 · |α3(m)|s1+s2+s3 · . . . · |αr−1(m)|s1+...+sr−1
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[3.10.1] Claim: (In coordinates) The minimal-parabolic Eisenstein series Es,χ(g) on GLn converges

(absolutely and uniformly for g in compacts) for
σj−σj+1

2 > 1 for j = 1, . . . , r−1, where s = (s1, . . . , sr) ∈ Cr
and σ = (Re(s1), . . . ,Re(sr)). (Proof below.)

The inequalities describing the region of convergence can be rewritten in a more intrinsic form later relevant
to functional equations, as follows. Let glr(R) be the Lie algebra of GLr(R), that is, all r-by-r real matrices.
Let a be the Lie algebra of the diagonal matrices in GLr(R). The non-zero eigenvalues (roots) of a on glr(R)
are functionals a → ai − aj in the dual space a∗. For i 6= j, the corresponding eigenspace (rootspace) is
matrices with non-zero entry only at the ijth entry. The standard positive roots and rootspaces are those
with i < j. Write β > 0 for positive root β, and β < 0 when −β > 0. The standard simple positive roots
are a→ ai − ai−1 The half-sum of positive roots is

ρ(a) =
∑
i<j

(ai − aj) (for a ∈ a)

There is a sort of logarithm map MA → a by

log
∣∣∣
m1

. . .

mr

∣∣∣ =

 log |m1|
. . .

log |mr|


and then for m ∈MA and α ∈ a∗, write

mα = eα(log |m|)

This enables interpretation of the parameter s as lying in the complexification a∗ ⊗R C of the dual a∗ of a.
Using 〈x, y〉 = tr(xy) on a, we can identify a with a∗, and transport to a∗ the pairing 〈, 〉.
[3.10.2] Corollary: (Intrinsic/conceptual version) The minimal-parabolic Eisenstein series Es,χ(g) on GLr
converges (absolutely and uniformly for g in compacts) for 〈α, σ − 2ρ〉 > 0 for all positive simple roots α.
(Proof below.)

That is, the Eisenstein series Es,χ converges absolutely for σ ∈ a in the translate by 2ρ of

positive Weyl chamber = {x ∈ a∗ : 〈x, α〉 > 0, for all positive roots α} ⊂ a∗

Proof: (of claim) For convergence, it suffices to treat Hecke characters only of the form χ̃(y) = |y|s. With
number field k, let h be the standard height function on a k-vectorspace with specified basis. Let P = Pmin

be the standard minimal parabolic of G. Let e1, . . . , er be the standard basis of kr. Any exterior power
∧`(kr) has (unordered) basis of wedges of the ej , and an associated height function. Let vo = ej ∧ . . . ∧ er,
and

ηj(g) =
h(vo · ∧r−j+1g)

h(vo)
(for g ∈ GLr(A))

where ∧`g is the natural action of g on ∧`kr. The spherical vector ϕs = ϕos,1, from which the sth minimal-
parabolic Eisenstein series Es = Es,1 is made, is expressible as

ϕos = ηs11 ηs2−s12 ηs3−s1−s23 . . . ηsr−s1−s2−...−sr−1
r (where s = (s1, . . . , sr))

From reduction theory, given compact C ⊂ ZA\GA, for some implied constants depending only on C,

h(v) �C h(v · g) �C h(v) (for all 0 6= v ∈ kr and g ∈ C)

and similarly for heights on ∧`kr. Therefore, convergence of the series defining the Eisenstein series Es(go)
is equivalent to convergence of ∫

C

∑
γ∈ZAPk\Gk

ϕos(γg) dg
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Shrinking C sufficiently so that γ · C ∩ C 6= φ implies γ = 1,∫
C

∑
γ∈Pk\Gk

ϕos(γg) dg =

∫
ZAPk\Gk·C

ϕos(g) dg

From reduction theory, the infimum µ of h(v) over non-zero primitive v in ∧`(Ar) is attained, so is positive.
In particular, µ ≤ h(voγg) for all g ∈ C and γ ∈ Gk. Thus, Gk · C is contained in a set

Y = {g ∈ GA : 1�C ηj(g) for j = 1, . . . , r}

Thus, convergence of the Eisenstein series is implied by convergence of∫
ZAPk\Y

∣∣ϕos(g)
∣∣ dg

The set Y is stable by right multiplication by the maximal compact subgroup Kv ⊂ Gv at all places v, so
by Iwasawa decomposition this integral is∫

ZAPk\(Y ∩PA)

∣∣ϕos(p)∣∣ dp (left Haar measure on ZA\PA)

With ρ the half-sum of positive roots, the left Haar measure on ZAPA is d(nm) = dn dm/m2ρ, where dn is
Haar measure on the unipotent radical and dm is Haar measure on ZA\MA. Since ϕos is left NA-invariant
and Nk\NA is compact, convergence of the latter integral is equivalent to convergence of∫

ZAMk\(Y ∩MA)

∣∣ϕos(a)
∣∣ dm

m2ρ
=

∫
ZAMk\(Y ∩MA)

mσ−2ρ dm (where σ = (Res1, . . . ,Resr))

The quotient k×\J1 of norm-one ideles J1 is compact, by [2.A], and the discrepancy between ZA\GA and
SLr(A) is absorbed by MA ∩

∏
vKv. Thus, convergence of the following integral suffices.

Parametrize a subgroup H of SLn(A) by r − 1 maps from (GL1(A), namely,

hj : t −→



1
. . .

1
t

t−1

1
. . .

1


(at jth and (j + 1)th positions)

From

ηi(hj(t)) =

 |t|
−1 (for i = j + 1)

1 (otherwise)

we have
Y ∩MA ∩ SLn(A) = {

∏
j

hj(tj) : tj ∈ J and |t−1
j | � 1 }

Again using compactness of k×\J1, noting that hj(t)
2ρ = |t|2 for all j, convergence of the Eisenstein series

is implied by convergence of the archimedean integral∫ �1

0

tσj−σj+1−2 dt

t
(for j = 1, . . . , r − 1)
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These integrals are absolutely convergent for σi − σi+1 − 2 > 0 for all i. ///

Proof: (of corollary) The absolute convergence condition is 〈σ − 2ρ, α〉 > 0 for all simple roots α. ///

The general shape of the P = Pmin constant term of the simplest P Eisenstein series is easily determined:

[3.10.3] Claim: In the region of convergence, for suitable holomorphic functions s→ cw,s, with c1,s = 1, the
constant term is

cPE
P
ρ+s(m) = mρ+s +

∑
16=w∈W

cw,sm
ρ+w·s (with m ∈Mmin

A )

[3.10.4] Remark: We could explicitly compute the coefficients cw,s as part of the proof of this claim, but
essentially the same computation occurs in the proof of the functional equations [3.12.1] and the corollary
[3.12.3]. Quoting [3.12.3] and [3.12.6] to have a more complete statement here:

[3.10.5] Corollary: cτ,s = ξ〈s, α〉/ξ(1+〈s, α〉) for reflections τ , and the cocycle relation cw′,w·s ·cw,s = cww′,s
holds for w,w′ ∈W and s ∈ a∗ ⊗R C. We have

cw,s =
∏

β>0 : w·β<0

ξ〈s, β〉
ξ(〈s, β〉+ 1)

///

Proof: This begins with an archetypical unwinding argument, using the disjointness of Gk =
⊔
w PkwNk

from the Bruhat decomposition [3.1.1].

cPE
P
ρ+s(m) =

∫
Nk\NA

EPρ+s(n ·m) dn =

∫
Nk\NA

∑
γ∈Pk\Gk

ϕoρ+s(γ · nm) dn

=
∑
w

∫
Nk\NA

∑
γ∈Pk\PkwNk

ϕoρ+s(γ · nm) dn =
∑
w

∫
Nk\NA

∑
β∈(w−1Pkw∩Nk)\Nk

ϕoρ+s(wβ · nm) dn

=
∑
w

∫
(w−1Pkw∩Nk)\NA

ϕoρ+s(w · nm) dn =
∑
w

∫
(w−1Nkw∩Nk)\NA

ϕoρ+s(w · nm) dn

Since ϕoρ+s is left NA-invariant, g → ϕoρ+s(wg) is still left invariant by w−1NAw∩NA. Thus, with the volume
of (w−1Nkw ∩Nk)\(w−1NAw ∩NA) normalized to 1, the constant term is

∑
w

∫
(w−1NAw∩NA)\NA

ϕoρ+s(w · nm) dn

The case w = 1 gives ϕoρ+s(m) = mρ+s. More generally, there is a convenient complementary subgroup Nw

to w−1NAw ∩NA inside NA:

[3.10.6] Lemma: Let Nopp be lower-triangular matrices with 1’s on the diagonal, and let
Nw = N ∩ w−1Noppw. Then

Nw ∩ (w−1Nw ∩N) = {1} and Nw · (w−1Nw ∩N) = N

Proof: (of Lemma) First, of course,

w−1Noppw ∩ w−1Nw = w−1(Nopp ∩N)w = w−1{1}w = {1}

For a root α(m) = mi/mj for i 6= j and m ∈M = Mmin , the corresponding root subgroup is

Nα = {n = ex : x ∈ n, mxm−1 = α(m) · x} (n = Lie algebra of N)
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where x→ ex is the usual matrix exponential. Thus, N is generated by all the Nβ for positive roots β, and
Nopp is generated by the Nβ with negative roots β. The action of W permutes roots, so it permutes root
subgroups. Every root subgroup is inside either w−1Nw or w−1Noppw, so the intersections of these with N
generate N . ///

Then

cPE
P
ρ+s(m) =

∑
w

∫
NwA

ϕoρ+s(w · nm) dn

Each root subgroup is stable under conjugation by M , so any product that is a subgroup of N is stable by
M . Thus, in the integral, replace n by mnm−1: letting δw(m) be the change of measure d(mnm−1)/dn,

cPE
P
ρ+s(m) =

∑
w

δw(m)

∫
NwA

ϕoρ+s(wmn) dn =
∑
w

δw(m)

∫
NwA

ϕoρ+s(wmw
−1 · wn) dn

=
∑
w

δw(m) (wmw−1)ρ+s
∫
NwA

ϕoρ+s(wn) dn =
∑
w

δw(m)mw−1·(ρ+s)
∫
NwA

ϕoρ+s(wn) dn

As usual, the sign in the exponent of w in the latter expression is necessary for the action of W on a∗ ⊗R C
to be associative. Thus,

cw,s =

∫
NwA

ϕoρ+s(w
−1n) dn

Optimistically, to understand δw
−1

(m)mw·(ρ+s) = δw
−1

(m)mw·ρ ·mw·s, apparently

[3.10.7] Lemma: δw
−1

(m)mw·ρ = mρ for m ∈M .

Proof: (of Lemma) Write β > 0 or β < 0 as β is a positive or negative root. The character m → δw(m) is
the modular function of N ∩ w−1Noppw, so δw(m) = mγ where

γ =
∑

β<0 : w−1β>0

w−1 · β =
∑

β>0 : w−1β<0

w−1 · (−β) = −
∑

β>0 : w−1β<0

w−1 · β

Meanwhile,

w−1 · 2ρ =
∑
β>0

w−1 · β =
∑

β>0 : w−1·β>0

w−1 · β +
∑

β>0 : w−1·β<0

w−1 · β

=
∑

β>0 : w−1·β>0

w−1 · β −
∑

β<0 : w−1·β>0

w−1 · β

Thus, w−1 · ρ+ γ = ρ. ///

Thus, we obtain an expression for cPEs(m) of the asserted form. ///
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3.11 Cuspidal-data Eisenstein series

To keep things relatively simple, our examples of cuspidal-data Eisenstein series for non-minimal proper
parabolics will include only maximal proper parabolics. In fact, the general case is a combination of the
features of the minimal-parabolic and maximal-proper parabolic.

Let f1, f2 be cuspforms on GLr1(A) and GLr2(A), right invariant by the standard maximal compacts
everywhere, with trivial central characters. We require that f1 and f2 be eigenfunctions for all the spherical
Hecke algebras, including the archimedean places. This includes an eigenfunction condition for invariant
Laplacians. That is, f1 and f2 are cuspforms in a strong sense, beyond satisfaction of the Gelfand condition
on vanishing of constant terms.

The corollary [7.3.19] of the discrete decomposition of cuspforms shows that cuspforms in this strong sense
are of rapid decay. The cuspidal data f = f1 ⊗ f2 is a function on GLr1(A) × GLr2(A) ≈ MP

A . In the
extreme cases where r1 = 1 or r2 = 1, the situation degenerates: there is no corresponding fj , that is, the
corresponding fj is simply the identically-1 function. Let

ϕ(znmk) = ϕs,f (znmk) =

∣∣∣∣ (detm1)r2

(detm2)r1

∣∣∣∣s · f1(m1) · f2(m2)

with m =

(
m1 0
0 m2

)
∈ MP

A , z ∈ Z+, n ∈ NA, k ∈ KA. The exponents on the idele norms of the

determinants make ϕ invariant under ZA. The corresponding genuine Eisenstein series is formed as expected:

Es,f (g) =
∑

γ∈Pk\Gk

ϕs,f (γ · g)

[3.11.1] Claim: The cuspidal-data Eisenstein series Es,f (g) converges (absolutely and uniformly for g in
compacts) for Re(s) > 1.

[3.11.2] Corollary: All cuspidal-data pseudo-Eisenstein series converge (absolutely and uniformly on
compacts).

Proof: (of corollary) The genuine Eisenstein series with any Re(s) > 1 and the same cuspidal data dominates
every pseudo-Eisenstein series with that cuspidal data. ///

Proof: (of claim) As above, hypotheses on the cuspform f assure that it is bounded, so it suffices to prove
the claim with f replaced by 1. Then the argument becomes a variant of that of [3.10.1] and [3.10.2], with
ϕs,f replaced by

ϕs(nmk) =

∣∣∣∣ (detm1)r2

(detm2)r1

∣∣∣∣s
The sum

Es(g) =
∑

γ∈Pk\Gk

ϕs(γ · g)

dominates that for Es,f . This Es is a degenerate Eisenstein series when either r1 + r1 > 2, so-called because
it is missing the cuspidal data, and does not play a direct role in spectral theory.

With e1, . . . , er the standard basis of kr, let h be the standard height function on k-vectorspace ∧r2(kr)
with basis consisting of r2-fold exterior products of the ei. Put

η(g) =
h(er1+1 ∧ er1+2 ∧ . . . ∧ er · ∧r2g)

h(er1+1 ∧ er1+2 ∧ . . . ∧ er)
(with g acting on ∧r2(kr) by ∧r2g)

Note that η is right Kv-invariant at all v, left NA-invariant, and η

(
m1 ∗
0 m2

)
= |detm2|. Thus,

|ϕs(g)| =
( |det g|r2

η(g)r

)σ
(with σ = Re(s))
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From reduction theory, given compact C ⊂ ZA\GA, h(v)�C h(v · g)�C h(v) for all 0 6= v ∈ kr and g ∈ C.
Therefore, convergence of the series defining Es(go) is equivalent to convergence of∫

C

∑
γ∈Pk\Gk

ϕσ(γg) dg

Shrinking C sufficiently so that γ · C ∩ C 6= φ implies γ = 1,∫
C

∑
γ∈Pk\Gk

ϕσ(γg) dg =

∫
ZAPk\Gk·C

ϕσ(g) dg

Let µ be the infimum of h(v) over non-zero primitive v in ∧r2(Ar). From reduction theory, this infimum is
attained, so it is µ > 0, and µ� h(voγg) for all g ∈ C and γ ∈ Gk. Thus, Gk · C is contained in a set

Y = {g ∈ GA : |det g|r2/η(g)r �C 1}

and convergence of the Eisenstein series is implied by convergence of∫
ZAPk\Y

ϕσ(g) dg

The set Y is stable by right multiplication by the maximal compact subgroup Kv ⊂ Gv at all places v, so
via the Iwasawa decomposition this integral is∫

ZAPk\(Y ∩PA)

ϕσ(p) dp (left Haar measure on P )

The left Haar measure on PA is

d(nm) =
dn dm

|detm1|r2 · | detm2|−r1
(where m =

(
m1 0
0 m2

)
)

where dn is Haar measure on the unipotent radical and dm is Haar measure on MP
A . Since ϕσ is left

NP
A -invariant and NP

k \NP
A is compact, convergence of the latter integral is equivalent to convergence of

∫
ZAMk\(Y ∩MA)

ϕσ(m)
dm

|detm1|r2 · | detm2|−r1
=

∫
ZAMk\(Y ∩MA)

|detm1|r2(σ−1) |detm2|−r1(σ−1) dm

We have

Y ∩MA = {m ∈MA : |detm|r2/η(m)r �C 1} = {m ∈MA : |detm1|r2/|detm2|r1 �C 1}

By reduction theory, for example, the quotients GLri(k)\GLri(A)1 have finite total measure, and
|detm1|r2/|detm2|r1 is ZAM

1-invariant. Let M1 be the copy of GLr1(A)1 × GLr2(A)1 inside MA. It
suffices to prove convergence of∫

ZAM1\(Y ∩MA)

|detm1|r2σ · | detm2|−r1σ
dm

|detm1|r2 · | detm2|−r1

=

∫
ZAM1\(Y ∩MA)

|detm1|r2(σ−1) · | detm2|−r1(σ−1) dm
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The map

∆(t) =

(
t · 1r1 0

0 1r2

)
(for t > 0)

surjects to ZAM
1\MA, so it suffices to prove convergence of∫ �1

0

(det(t · 1r1))r2(σ−1) dt

t
=

∫ �1

0

tr1r2(σ−1) dt

t

Convergence is implied by σ > 1. ///

One benefit of cuspidal data for Eisenstein series is that many constant terms vanish for general reasons.
For maximal proper parabolics, the outcome is especially clear. Continue to assume that f1 and f2 are
everywhere spherical, for simplicity. The vanishing conclusion in the following follows without assuming
much beyond the Gelfand condition on the cuspforms f1, f2, and enough decay for convergence of the
Eisenstein series in Re(s) > 1. However, the explicit computation of constant terms in the non-vanishing
case will need more.

[3.11.3] Theorem: Let P = P r1,r2 , and f = f1 ⊗ f2 cuspform(s) on M = MP . Let Q be another parabolic.
Then cQE

P
s,f = 0 unless Q = P or Q = P r2,r1 , the associate of P .

Proof: First, since we claim that it suffices to consider maximal proper Q, the underlying reason being that
all standard parabolics are intersections of maximal proper standard parabolics, and for standard parabolics

NQ∩Q′ = NQ · NQ′ . Giving X = (NQ
k ∩ N

Q′

k )\(NQ
A ∩ N

Q′

A ) measure 1, and noting that the constant-term

integrals make sense for any left Pmin
k -invariant functions,

cQ∩Q′f(g) =

∫
NQ∩Q

′
k \NQ∩Q

′

A
f(ng) dn =

∫
NQ∩Q

′
k \NQ∩Q

′

A

∫
X

f(nxg) dx dn

=

∫
NQk \N

Q

A

∫
NQ
′

k \N
Q′

A

∫
X

f(n′ng) dx dn = cQ(cQ′f)(g)

Next, we show that cQE
P
s,f = 0 for maximal proper Q, unless Q = P or its associate. Let Q = P r

′
1,r
′
2 , and

write ϕ = ϕs,f . Take Re(s) > 1 for convergence of the series expression for EPs,f .

cQE
P
s,f (g) =

∫
NQk \N

Q

A
EPs,f (ng) dn =

∫
NQk \N

Q

A

∑
γ∈Pk\Gk

ϕ(γ · ng) dn

=

∫
NQk \N

Q

A

∑
δ∈Pk\Gk/Qk

∑
γ∈(δ−1Pkδ∩Qk)\Qk

ϕ(δγ · ng) dn

=
∑

δ∈Pk\Gk/Qk

∫
NQk \N

Q

A

∑
γ∈(δ−1Pkδ∩Qk)\Qk

ϕ(δγ · ng) dn

It certainly suffices to show that the integral vanishes for every δ. The idea is that enough of the unipotent
radical NQ

A conjugates across each δγ so that the integral vanishes because of the Gelfand property of f . We
need to understand δ−1Pkδ ∩Qk.

By the Bruhat decomposition [3.1,1], the Weyl group W gives a collection of representatives for Pk\Gk/Qk.
Indeed, letting WP = Pk ∩ W and WQ = Qk ∩ W , a set of representatives for WP \W/WQ is a set of
representatives for Pk\Gk/Qk. In fact, WP \W/WQ is in bijection with Pk\Gk/Qk by WPwWQ ←→ PkwQk,
although we only proved this for P = Q = Pmin in [3.1]. We determine representatives for WP \W/WQ.
Write a permutation matrix w ∈W in blocks corresponding to the Levi components of P,Q:

w =

(
a b
c d

)
(with a = r1 × r′1, b = r1 × r′2, c = r2 × r′1, d = r2 × r′2)
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The left action of the upper-left GLr1 part of WP inside GLr1×GLr2 ≈MP , and the action of the upper-left

GLr′1 part of WQ inside GLr′1 ×GLr′2 ≈ MQ adjust the matrix a to the form a =

(
1t1 0
0 0

)
for some size

t1, so w becomes

w =

 1t1 0 0
0 0 ∗
0 ∗ ∗


The lower-right parts of WP and WQ further adjust the lower right block of w to be of the form

(
0 0
0 1t4

)
for some t4, putting the permutation matrix w into the form

w =


1t1 0 0 0
0 0 ∗ 0
0 ∗ 0 0
0 0 0 1t4


Necessarily the remaining entries can be adjusted to be identity matrices of suitable sizes. That is,
WP \W/WQ has representatives of the form

w =


1t1 0 0 0
0 0 1t3 0
0 1t2 0 0
0 0 0 1t4


where t1 + t3 = r1, t1 + t2 = r′1, and so on. With suitable block sizes,

w−1Pw ∩Q =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ∩Q

=


∗ ∗ ∗ ∗
0 ∗ 0 ∗
∗ ∗ ∗ ∗
0 ∗ 0 ∗

 ∩Q =


∗ ∗ ∗ ∗
0 ∗ 0 ∗
0 0 ∗ ∗
0 0 0 ∗


Thus, writing the sum as an iterated sum and unwinding,∫

NQk \N
Q

A

∑
γ∈(w−1Pkw∩Qk)\Qk

ϕ(wγ · ng) dn

=

∫
NQk \N

Q

A

∑
γ∈(w−1Pkw∩MQ

k )\MQ
k

∑
ν∈((wγ)−1Pkwγ∩NQk )\NQk

ϕ(wγν · ng) dn

=
∑

γ∈(w−1Pkw∩MQ
k )\MQ

k

∫
(wγ)−1Pkwγ∩NQk )\NQA

ϕ(wγ · ng) dn

For fixed γ, replacing n by γ−1nγ gives∫
(w−1Pkw∩NQk )\NQA

ϕ(wn · γg) dn =

∫
(w−1Pkw∩NQk )\NQA

ϕ(wnw−1 · wγg) dn
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A similar computation to that above shows that

wNQw−1 ∩ P =


1t1 ∗ 0 ∗
0 1t3 0 0
0 0 1t2 ∗
0 0 0 1t4


This contains the unipotent radical N ′ of the parabolic P ′ = P t1,t3 × P t2,t4 of the Levi component
MP ≈ GLr1 × GLr2 of P . Unless (r′1, r

′
2) = (r1, r2) or (r′1, r

′
2) = (r2, r1), at least one of those parabolic

subgroups of GLrj must be a proper parabolic of the corresponding GLrj . That is, for each fixed γ the

integral over (w−1Pkw ∩NQ
k )\NQ

A has a subintegral over N ′k\N ′A, which computes the P ′ constant term of
the cuspidal data f , giving 0.

This almost gives the vanishing assertion of the theorem. One anomalous case remains, namely, P ∩ Q
when P = P r1,r2 and Q = P r2,r1 with r1 6= r2. Still, use the fact that cQ∩P = cQ ◦ cP . Compute the
constant term along P , using the fact from above that only w = 1 gives a non-zero outcome. Thus, for
non-self-associate proper maximal P and cuspidal data,

cPE
P
s,f (g) =

∫
(Pk∩NQk )\NQA

ϕ(ng) dn =

∫
NQk \N

Q

A
ϕs,f (ng) dn

=

∫
NQk \N

Q

A
ϕs,f (g) dn = ϕs,f (g) ·

∫
NQk \N

Q

A
1 dn

Because r1 6= r2, NQ ∩NP contains a unipotent radical of some proper parabolic in MP , so the cuspidality
of f means cQϕs,f = 0. Thus, cQ∩PE

P
s,f = 0. ///

[3.11.4] Remark: More generally, Eisenstein series with cuspidal data for parabolics P = P r1,...,r` have
constant term 0 along parabolics Q unless Q contains some associate of P , that is, contains some P r

′
1,...,r

′
`

with the r′i’s a permutation of the ri’s.
The same arguments and vanishing conclusions apply to constant terms of pseudo- Eisenstein series with

cuspidal data:

[3.11.5] Corollary: For maximal proper P and cuspidal data f on MP , for another parabolic Q, cQΨP
η,f = 0

unless Q is associate to P . ///

An optimist would have to hope that cuspidal-data Eisenstein series EPs,f formed from spherical Hecke
eigenfunction cuspforms f = f1 ⊗ f2 would itself be a spherical Hecke eigenfunction, and that this is so
because ϕs,f is a spherical Hecke eigenfunction for all s. Happily, this is nearly true, with a yet-stronger
notion of cuspform, as follows. Fix a non-archimedean v and square-integrable right Kv-invariant cuspform
f , and consider the space

πv = {finite linear combinations of right translates g → f(gh) with h ∈ Gv}

generated by f under the action of Gv by right translation, suitably topologized. The most direct way to
begin description of a suitable requirement [30] on f at v is that πv be isomorphic as Gv representation to a

[30] Our description of what is needed to have cuspidal-data Eisenstein series be Hecke eigenfunctions would usually

be the conclusion of a highly non-trivial chain of reasoning. That is, we have directly described what is needed to set

up the proof that Eisenstein series formed from spherical Hecke-algebra eigenfunctions on Levi components are Hecke

eigenfunctions. A more usual characterization, inherited from the chaotic historical order of developments, would

be to require that the local representation generated by the cuspform be admissible and irreducible. Admissibility

is equivalent to Kv-finiteness of every vector in πv, and irreducibility has the usual meaning of having no closed

MP
v -stable subspaces, with the representation space suitably topologized. The Borel-Casselman-Matsumoto theorem

[Borel 1976], [Casselman 1980], [Matsumoto 1977] asserts that πv is a subrepresentation of an unramified principal

series. Given that, the key point is that induction in stages is legitimate, as in [6.9]. Unitariness of the representation,

which follows from square-integrability of the cuspform, implies admissibility, from [Harish-Chandra 1970], for

example. The global result, stated in [3.7] and proven in chapter 7, on discrete decomposition of cuspforms, in fact

proves there is an orthogonal basis for everywhere-locally spherical square-integrable cuspforms generating irreducible

representations of the global spherical Hecke algebra C∞c (KA\GA/KA).
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Gv-subrepresentation of an unramified principal series attached to the standard minimal parabolic B:

IBχ = {F ∈ C∞(Gv) : F (bg) = χ(b) · F (g) for all b ∈ Bv, g ∈ Gv} (for unramified χ on MB
v )

Since f is Kv-fixed, its image in IBχ contains the subspace of Kv-fixed vectors, which is one-dimensional by
the Iwasawa decomposition Gv = Bv ·Kv. This is the right feature to prove

[3.11.6] Theorem: Fix a non-archimedean place v. With f1 and f2 as just described, that is, under right
translation by GLrj (kv) generating representations isomorphic to subrepresentations of unramified principal
series representations of GLrj (kv), with trivial central characters, the function ϕs,f is a spherical Hecke-
algebra eigenfunction for Gv. In the region of convergence, EPs,f is a spherical Hecke-algebra eigenfunction
with the same eigenvalues as ϕs,f . (Proof in [8.5].)

[3.11.7] Remark: Quantitative details about the spherical Hecke eigenvalues of ϕs,f and EPs,f for Gv in
terms of the spherical Hecke eigenvalues of f = f1 ⊗ f2 for Mv and s ∈ C are visible in the proof [8.5].

[3.11.8] Remark: In the cases of cQE
P
s,f 6= 0, the proof above shows that non-vanishing occurs only in a

few cases: w = 1r for Q = P always gives the summand ϕPs,f of the constant term, and w =

(
0 1r1

1r2 0

)
for Q = P r2,r1 for both r1 = r2 and r1 6= r2. Happily, in both these cases, w−1Pkw ∩MQ

k ) = MQ
k , so the

sum over γ ∈ (w−1Pkw ∩MQ
k )\MQ

k is trivial. Thus, for Q = P and w = 1r, that part of the constant term
is easily made explicit, as in the proof above:

cPE
P
s,f (g) = ϕs,f (g) ·

∫
NQk \N

Q

A
1 dn

The other part of the constant terms is significantly more complicated, as follows. With or without r1 = r2,

when Q = P r2,r1 and w =

(
0 1r1

1r2 0

)
, that part of the constant term is unwound completely, since

w−1Pkw ∩NQ
k = {1}, so ∫

NQk \N
Q

A
EPs,f (ng) dn =

∫
NQA

ϕs,f (ng) dn

Since we have supposed that f is right KA-invariant, the integral produces a left Z+NAM
Q
k -invariant, right

KA-invariant function, so by Iwasawa is a function on MQ
k \M

Q
A and right MA ∩KA-invariant. The behavior

under the center of MQ
A is also easy to assess by changing variables in the integer. Thus, it is reasonable

to imagine that it is of the form ϕQ1−s,f ′ for some cuspform(s) on MQ. However, we would not want f ′ to
depend on s, so the dependence on s should be somehow separate, and this integral should be expressible as
cs,f · ϕQ1−s,f ′(m) with cuspform(s) on MQ independent of s, and m ∈MQ

A .
This conclusion does hold, but only with substantial assumptions on f ≈ f1 ⊗ f2, as follows. Continue

to assume that f is a spherical Hecke algebra eigenfunction on MP for all non-archimedean MP
v . The best

further simplifying hypothesis [31] is a form of strong multiplicity one, that the only other cuspforms on
MP ≈ GLr1 × GLr2 with the same spherical Hecke eigenvalues at all finite primes are scalar multiples of
f = f1 ⊗ f2. Let fw = (f1 ⊗ f2)w = f2 ⊗ f1.

[3.11.9] Theorem: In the non-vanishing cases, with maximal proper P , and Q = P or its associate, with
the strong multiplicity one assumption above,

cPE
P
s,f = ϕPs,f (for r1 6= r2 (not self-associate))

cPE
P
s,f = ϕPs,f + cPs,fϕ

P
1−s,fw (for r1 = r2 (self-associate), meromorphic cPs,f )

cQE
P
s,f = cQs,f · ϕ

Q
1−s,fw (for r1 6= r2, Q = P r2,r1 , meromorphic cQs,f )

[31] The strong multiplicity one assumption convenient for GLr is a theorem of [Shalika 1974]. See also [Piatetski-

Shapiro 1977]. It apparently does not hold for most other groups. That is, in general, only more complicated

conclusions can be reached about unwound integrals appearing in constant term computations.
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Proof: From the proof of [3.11.3], due to the cuspidal data f , most summands of cQE
P
s,f corresponding to

double cosets PkwQk ∈ Pk\Gk/Qk are 0. In all cases, for P = Q, the small Bruhat cell P = P · 1 ·Q gives
contribution ∫

NQk \N
Q

A

∑
γ∈(w−1Pkw∩Qk)\Qk

ϕ(wγ · ng) dn =

∫
NPk \N

P

A

ϕ(ng) dn

= ϕ(g)

∫
NPk \N

P

A

1 dn (with w = 1 and P = Q)

since ϕ is left NA-invariant.
Now consider P = P r1,r2 and Q = P r2,r1 . From the end of the proof of [3.11.3], a double coset PwQ can

give a non-zero contribution to the constant term only if wNQw−1 ∩ P contains no unipotent radical of a
proper parabolic of the Levi component MP of P . As in the proof of [3.11.3], Pk\Gk/Qk ≈ WP \W/WQ

has representatives

w =


1t1 0 0 0
0 0 1t3 0
0 1t2 0 0
0 0 0 1t4


where t1 + t3 = r1, t1 + t2 = r1, and so on. The only case other than w = 1 meeting the condition is with
t1 = 0 = t4 and t3 = r1, t2 = r2. This has the effect that w−1Pw∩Q = MQ. This summand in the constant
term unwinds completely:∫

NQk \N
Q

A

∑
γ∈w−1Pkw∩Qk\Qk

ϕ(wγ · ng) dn =

∫
NQk \N

Q

A

∑
γ∈MQ

k \Qk

ϕ(wγ · ng) dn

=

∫
NQk \N

Q

A

∑
γ∈NQk

ϕ(wγ · ng) dn =

∫
NQA

ϕ(w · ng) dn

Let ϕ′(g) be the latter integral. With ϕ right Kv-invariant at all places, to understand ϕ′(g) it suffices to
take

g = m =

(
m2 0
0 m1

)
= w−1

(
m1 0
0 m2

)
w

by the Iwasawa decomposition.
Certainly ϕ′ is left NQ

A -invariant and invariant under the center. It is left MQ
k -invariant, since for γ ∈MQ

k

ϕ′(γm) =

∫
NQA

ϕ(w · nγg) dn =

∫
NQA

ϕ(w · γng) dn =

∫
NQA

ϕ(wγw−1 · wng) dn =

∫
NQA

ϕ(wng) dn = ϕ′(m)

by changing variables in the integral, and observing that the change-of-measure is 1, by the product formula.
Since the right translation action commutes with the integration along NQ

A on the left, m1×m2 → ϕ′(m) is
a spherical Hecke eigenfunction on GL(r1)×GL(r2) with the same eigenvalues as ϕ.

To see the behavior of the s parameter, it suffices to consider left translation by

h =

(
t · 1r2 0

0 1r1

)
= w−1

(
1r1 0
0 t · 1r2

)
w

with t > 0 imbedded diagonally at archimedean places. Then

ϕ′(hm) =

∫
NQA

ϕ(w ·n ·hm) dn = |det(t ·1r2)|r1
∫
NQA

ϕ(w ·h ·nm) dn = |det(t ·1r2)|r1
∫
NQA

ϕ(whw−1 ·wnm) dn
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by replacing n by hnh−1, picking up the indicated change-of-measure. The left equivariance of ϕ under
elements of the form whw−1 is

ϕ(whw−1 · wnm) =
∣∣∣1/det(t · 1r2)r1

∣∣∣s · ϕ(wnm)

Thus,

ϕ′(hm) =
∣∣∣ det(t · 1r2)/1

∣∣∣1−s · ϕ′(m)

as claimed in the assertion of the theorem.
Finally, the multiplicity-one assumption says that m1 × m2 → ϕ′(m) must be a scalar multiple cPs,f of

ϕ(m). Since s→ EPs,f is a meromorphic smooth-function-valued function of s, composition with cQ gives a

meromorphic smooth-function-valued function of s. Since it differs by the scalar cQs,f from ϕs,f , this scalar
must be meromorphic in s. ///

[3.11.10] Remark: The meromorphic functions cs,f have Euler product expansions attached to f1 and f2,

but we do not have immediate need of this fact. [32]

In parallel with the spherical Hecke algebra behavior of EPs,f at finite places, keeping the assumption that
f1, f2 have trivial central character and are right KA-invariant,

[3.11.11] Theorem: For v archimedean, for f = f1⊗f2 with f1, f2 eigenfunctions for the invariant Laplacians
on the factors GLr1(kv) and GLr2(kv) of MP

v , the function ϕPs,f is an eigenfunction for the invariant Laplacian

on Gv, and, thus, EPs,f is also an eigenfunction. In particular, letting λj be the eigenvalue of fj ,

Ω · EPs,f =
(
r1r2(r1 + r2)(s2 − s) + λ1 + λ2

)
· EPs,f

In particular, the eigenvalue is invariant under s −→ 1− s.
Proof: For simplicity, treat Gv ≈ GLr(R). Accommodations for the complex case are illustrated in [4.6].
This is a purely local issue, and it suffices to consider arbitrary functions f1⊗f2 on GLr1(R)×GLr2(R) with
trivial central character. That is, the possibility that f1, f2 are automorphic forms of any sort is irrelevant.
Similarly, we have a purely locally defined function

ϕs
(( a ∗

0 d

)
k
)

=
∣∣∣ (det a)r2

(det d)r1

∣∣∣s · f1(a) · f2(d) (for a ∈ GLr1(R), d ∈ GLr2(R), k ∈ O(r,R))

As in [4.2] and [4.4], the invariant Laplacian on Gv/Kv is Casimir Ω on Gv descended to that quotient, and
then to any further quotient. For any choice of basis {xi} of the Lie algebra g of Gv, and and dual basis
{x∗i } with respect to the pairing 〈x, y〉 = tr(xy), Casimir is expressible as an element in the (center of the)
universal enveloping algebra [4.2], [4.3] as Ω =

∑
i xix

∗
i . It is easy to exhibit a basis so that the summands

separate into three pieces: Casimir Ω1 of GLr1(R) acting only on f1, Casimir Ω2 of GLr2(R) acting only on
f2, and a leftover acting only on |(det a)r2/(det d)r1 |s.

Let hi be the diagonal matrix with 1 at the ith place 0’s otherwise. For i < j, let xij be the matrix with
a unique non-zero entry, a 1, at the ijth location, and for i > j let yij be the matrix with a unique non-zero
entry, a 1, at the ijth location. The {xij} and {yji} are dual under 〈, 〉. Thus, the Casimir operators for
GLr1(R) and GLr2(R) are

Ω1 =

r1∑
i=1

h2
i +

∑
i<j≤r1

(xijyji + yjixij) Ω2 =

r∑
i=r1+1

h2
i +

∑
r1<j≤r

(xijyji + yjixij)

and Ω = Ω1 + Ω2 + Ω′ with leftover

Ω′ =
∑

1≤i≤r1, r1<j≤r

(xijyji + yjixij)

[32] [Langlands 1971] considers consequences of the appearance of Euler products in constant terms of Eisenstein

series series. A part of that program is completed in [Shahidi 1978] and [Shahidi 1985].
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Use the fact that Casimir commutes with conjugation byGv, so we can let the associated differential operators
[4.1] act on the left on left NP

v -invariant functions such as ϕs, so that the Lie algebra n of NP annihilates
such functions. There is a sign or order-of-operations issue: for a smooth function ϕ on Gv, the effect of
Casimir acting on the right is

Ωϕ(g) =
∑
i

∂

∂t1

∂

∂t2
ϕ(g · et1xi · et2x

∗
i )

Invoking the invariance under conjugation by Gv, this is

Ωϕ(g) =
∑
i

∂

∂t1

∂

∂t2
ϕ(et1xi · et2x

∗
i g)

Thus, terms xijyji with 1 ≤ i ≤ r1 and r1 < j ≤ r annihilate ϕs, because, after conjugating, xij acts first
and is in n. For 1 ≤ i ≤ r1 and r1 < j ≤ r, we can move toward invocation of this annihilation property by
noting that xijyji − yijxij = hi − hj , so

xijyji + yjixij = 2xijyji + yjixij − xijyji = 2xijyji − [xij , yji] = 2xijyji − hi + hj

which acts just by −hi + hj on left NP
v -invariant functions:

Ω′ · ϕs =
∑

1≤i≤r1, r1<j≤r

(xijyji + yjixij) · ϕs =
∑

1≤i≤r1, r1<j≤r

(−hi + hj) · ϕs = −r2

∑
1≤i≤r1

hi · ϕs + r1

∑
r1<j≤r

hj · ϕs

Thus, with z1 =
∑

1≤i≤r1 hi and z2 =
∑
r1<j≤r hj ,

Ω · ϕs =
(

Ω1 − r2z1

)
· | detm1|r2sf1(m1) +

(
Ω2 + r1z2

)
· | detm2|r1sf2(m2)

Since z1 is in the Lie algebra of the center of the GLr1 factor of MP , and f1 has trivial central character,
z1 · f1 = 0, and(

Ω1 − r2z1

)
· | detm1|r2sf1(m1) = Ω1 ·

(
|detm1|r2sf1(m1)

)
−
(
r2z1 · | detm1|r2s

)
f1(m1)

and similarly for Ω2 + r1z2. The effect of z1 on that power of determinant is straightforward:

z1 · | detm1|r2s =
∂

∂t

∣∣∣
t=0
|det(etz1 ·m1)|r2s =

∂

∂t

∣∣∣
t=0

(et)r1r2s · | detm1|r2s = r1r2s · | detm1|r2s

Similarly, z2 · | detm2|−r1s = −r1r2s · | detm2|−r1s. Thus, the −r2z1 + r1z2 terms combine to −r1r2(r1 +
r2)s · ϕs.

The effect of Ω1 on f1(m1) adjusted by a power of determinant is only slightly more complicated, using
Leibniz’ rule. The terms xijyji and yjixij annihilate the determinant, and hi · |detm1|r2s = r2s · |detm1|r2s,
so

Ω1

(
|detm1|r2s · f1(m1)

)
=

∑
1≤i≤r1

h2
1 · (|detm1|r2s · f1(m1)) + |detm1|r2s

∑
1≤i<j≤r1

(xijyji + yjixij) · f1(m1)

=
∑

1≤i≤r1

(
h2
i |detm1|r2s · f1(m1) + 2hi|detm1|r2s · hif1(m1)

)
+ |detm1|r2sΩ1f1(m1)

= r1(r2s)
2|detm1|r2s · f1(m1) + 2r2s|detm1|r2s ·

( ∑
1≤i≤r1

hi

)
· f1(m1) + |detm1|r2sΩ1f1(m1)

= r1(r2s)
2|detm1|r2s · f1(m1) + 0 + |detm1|r2sΩ1f1(m1) = |detm1|r2s

(
r1(r2s)

2 + Ω1

)
· f1(m1)
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since
∑
i hi annihilates f1 due to the latter’s trivial central character. A similar computation applies to Ω2

and f2. Letting Ω1f1 = λ1 · f and Ω2f2 = λ2 · f2, these computations give

Ω · ϕs =
(
r1r2(r1 + r2)(s2 − s) + λ1 + λ2

)
· ϕs

That is, ϕs is an eigenfunction for Casimir on Gv, and by the invariance so is EPs,f . ///

[3.11.12] Remark: The argument can be recast as an application of induction in stages, in the archimedean

case, analogous to the corresponding non-archimedean argument [6.9]. [33]

3.12 Continuation of minimal-parabolic Eisenstein series

We show that the meromorphic continuations of some simple types of minimal-parabolic Eisenstein series
on GLr follow from the GL2 case [2.B] via Bochner’s Lemma [3.B]. That determines the r! functional
equations corresponding to elements of the Weyl group W , the latter identified with permutation matrices
in GLr. We can also use this to compute the minimal-parabolic constant terms. To illustrate the points
with minimal clutter, we consider just the simplest Eisenstein series

Es(g) =
∑

γ∈Pk\Gk

ϕos(γ · g) (where ϕos(nmk) = |m1|s1 |m2|s2 . . . |mr|sr with s1 + . . .+ sr = 0)

with P = Pmin , n ∈ NA = Nmin , m ∈ Mmin
A , and k ∈ KA. Let ξ(s) be the completed zeta function of the

underlying number field. For s ∈ a∗⊗RC, write w ·s for the action of w ∈W , that is, (wmw−1)s = mw·s. In
the following, because the fixed point in a∗⊗RC of all the functional equations turns out to be the half-sum

ρ = (ρ1, . . . , ρr) =
(r − 1

2
,
r − 3

2
,
r − 5

2
, . . . ,

3− r
2

,
1− r

2

)
of positive roots, we will express the functional equation in terms of

Eρ+s(g) =
∑

γ∈Pk\Gk

ϕoρ+s(γ · g) (where ϕoρ+s(nmk) = |m1|ρ1+s1 |m2|ρ2+s2 . . . |mr|ρr+sr )

We prove the following theorem and the corollary together.

[3.12.1] Theorem: (Selberg, Langlands, et alia) Minimal-parabolic Eisenstein series Es have meromorphic
continuations in s ∈ a∗ ⊗R C, with functional equations

Eρ+w·s = c−1
w,s · Eρ+s

[3.12.2] Corollary: The meromorphic continuation of Eρ+s is holomorphic for s off the zero-sets of
ξ(〈s, β〉+ 1), 1± 〈s, β〉, and 〈s, β〉, for positive roots β. ///

[3.12.3] Corollary: cτ,s = ξ〈s, α〉/ξ(1+〈s, α〉) for reflections τ , and the cocycle relation cw′,w·s ·cw,s = cww′,s
holds for w,w′ ∈W and s ∈ a∗ ⊗R C. ///

Proof: In brief, the idea is to view the minimal-parabolic Eisenstein series as an iterated object, variously
as an Eisenstein series for all the next-to-minimal parabolics Qi = P 1,...,1,2,1,...,1 with the 2 at the ith place,
formed from data including a suitably normalized GL2 Eisenstein series Ẽ on the Levi component factor
GL2 of Qi, rather than cuspidal data on that GL2. Phragmén-Lindelöf gives boundedness of the analytic
continuation of Ẽ in vertical strips, yielding convergence of the Qi Eisenstein series in a larger region

Ωi = {s ∈ Cn : Re(sj)− Re(sj+1) > 2 for j 6= i}

[33] The archimedean analogue of the Borel-Casselman-Matsumoto result [Borel 1976], [Casselman 1980], [Mat-

sumoto 1977] is the sharper subrepresentation theorem [Casselman Miličić 1982], considerably improving the sub-

quotient theorem of [Harish-Chandra 1954].
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That is, in Ωi there is no constraint on Re(si) − Re(si+1). This applies to all the 2-by-2 blocks along
the diagonal, giving a meromorphic continuation of Es to

⋃
i Ωi. Then Bochner’s lemma [3.B] analytically

continues the whole Eisenstein series to the convex hull of
⋃
i Ωi, namely, Cn.

Partial analytic continuation: Let P = Pmin . For each fixed index 1 ≤ i < r, there is the next-
to-minimal standard parabolic Q = Qi with standard Levi components and unipotent radicals given by
Q = NQ ·MQ with

NQ =



1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
. . . ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗
0 1 ∗ ∗ ∗

1 ∗ ∗
. . . ∗

1


MQ =



∗ 0 0 0 0 0 0 0
. . . 0 0 0 0 0 0

∗ 0 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ 0 0 0

∗ 0 0
. . . 0

∗


with the anomalous block at the (i, i), (i, i+ 1), (i+ 1, i), and (i+ 1, i+ 1) positions. The minimal-parabolic
Eisenstein series can be written as an iterated sum

Es(g) =
∑

γ∈Pk\Gk

ϕos(γg) =
∑

γ∈Qk\Gk

( ∑
δ∈Pk\Qk

ϕos(δγg)
)

The quotient Pk\Qk has representatives

MP
k \M

Q
k ≈ {δ =



1 0 0 0 0 0 0 0
. . . 0 0 0 0 0 0

1 0 0 0 0 0
a b 0 0 0
c d 0 0 0

1 0 0
. . . 0

1


:

(
a b
c d

)
∈ P 1,1

k \GL2(k)} ≈ P 1,1
k \GL2(k)

where P 1,1 is the standard upper-triangular parabolic in GL2. Further,

ϕos



a1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
. . . ∗ ∗ ∗ ∗ ∗ ∗

ai−1 ∗ ∗ ∗ ∗ ∗
ai ∗ ∗ ∗ ∗
0 ai+1 ∗ ∗ ∗

ai+2 ∗ ∗
. . . ∗

ar


= |a1|s1 . . . |ar|sr

= |a1|s1 . . . |ai−1|si−1 |ai/ai+1|
si−si+1

2 |aiai+1|
si+si+1

2 |ai+2|si+2 . . . |ar|sr

Thus, the inner sum in the expression for Es is

∑
δ∈Pk\Qk

ϕos

(
δ ·



a1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
. . . ∗ ∗ ∗ ∗ ∗ ∗

ai−1 ∗ ∗ ∗ ∗ ∗
a b ∗ ∗ ∗
c d ∗ ∗ ∗

ai+2 ∗ ∗
. . . ∗

ar


)
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= |a1|s1 . . . |ai−1|si−1 · E1,1
si−si+1

2

(
a b
c d

)
·
∣∣∣det

(
a b
c d

) ∣∣∣ si+si+1
2 · |ai+2|si+2 . . . |ar|sr

where E1,1 is the usual GL2 Eisenstein series with trivial central character. So let g = nmk be an Iwasawa
decomposition with n ∈ NQ, m ∈MQ, and k ∈

∏
vKv with m in the form just displayed, and put

Φis(g) = |a1|s1 . . . |ai=1|si−1 · E1,1
si−si+1

2

(
a b
c d

)
·
∣∣∣det

(
a b
c d

) ∣∣∣ si+si+1
2 · |ai+2|si+2 . . . |ar|sr

Then
Es(g) =

∑
γ∈Qk\Gk

Φis(γ g) (for g ∈ GLr)

This expresses the GLr minimal-parabolic Eisenstein series as Q-Eisenstein series formed from the P 1,1

Eisenstein series on the GL2 part of its Levi component.
The usual normalization of the GL2 Eisenstein series to eliminate poles, for boundededness on vertical

strips for g in compacts in GL2(A), and to be invariant under s→ 1− s, is

Ẽs(g) = s(1− s) · ξ(2s) · E1,1
s (g) (for s ∈ C)

Thus, let

Φ̃is = (
si − si+1

2
)(1− si − si+1

2
) · ξ(si − si+1) · Φis

An argument similar to [3.10.1] for convergence of the minimal-parabolic Eisenstein series Es and [3.11.1]
for maximal-proper-parabolic Eisenstein series will prove the absolute convergence of

(
si − si+1

2
)(1− si − si+1

2
) · ξ(si − si+1) · Es(g) =

∑
γ∈Pk\Gk

Φ̃is(γ g)

for
Re(sj)−Re(sj+1)

2 > 1 for j 6= i, with no condition on si − si+1, because we use the analytically-continued
Eisenstein series on GL2 rather than the expression of it as a series.

The convergence argument is as follows. For g in a fixed compact and si − si+1 in a fixed vertical strip,

Φis(g) is dominated by the function obtained by replacing Ẽ1,1 by a constant, namely, with σj = Re(sj),

θ(g) = |a1|σ1 . . . |ai−1|σi−1 ·
∣∣∣det

(
a b
c d

) ∣∣∣σi+σi+1
2 · |ai+2|σi+2 . . . |an|σn

We prove the absolute convergence of the Eisenstein series E(g) =
∑
γ∈Pk\Gk θ(γg), which is degenerate in

the same sense as the approximating Eisenstein series in the proof of [3.11.1]. As in the earlier convergence
arguments, convergence is equivalent to convergence of an integrated form, namely∫

ZA\C

∑
γ∈Pk\Gk

θ(γg) dg

Shrinking C sufficiently so that γ · C ∩ C 6= φ implies γ = 1,∫
ZA\C

∑
γ∈Pk\Gk

θ(γg) dg =

∫
ZAPk\Gk·C

θ(g) dg

As in the earlier convergence arguments, letting ηj be the norm of the determinant of the lower right n− j
minor, Gk · C is contained in

Y = {g ∈ GA : 1�C ηj(g) for j = 1, . . . , n}
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To compare with MQ with Q = Qi, drop the (i+ 1)th condition: Gk · C is contained in

Y ′ = {g ∈ GA : 1�C ηj(g) for j 6= i+ 1}

Thus, convergence of the Eisenstein series is implied by convergence of∫
ZAQk\Y ′

θ(g) dg

As Y ′ is stable by right multiplication by the maximal compact subgroup Kv ⊂ Gv at all places v, by an
Iwasawa decomposition this integral is∫

ZAQk\(Y ′∩QA)

θ(p) dp (left Haar measure on Q)

Let α = αi be the ith simple positive root, and ρ the half-sum of positive roots. The left Haar measure
on QA is d(nm) = dn dm/m2ρ−α, where dn is Haar measure on NQ and dm is Haar measure on the Levi

component MQ. Since θ is left NQ
A -invariant and NQ

k \N
Q
A is compact, convergence of the latter integral is

equivalent to convergence of ∫
ZAM

Q
k \(Y ′∩M

Q

A)

θ(m)
dm

m2ρ−α

As in the earlier convergence argument, the compactness lemma [2.A] and right action of M ∩
∏
vKv reduce

the convergence question to that of a simpler integral.
As in the proof of [3.10.1], parametrize a subgroup H of SLn(A) by r − 1 maps from (GL1(A), namely,

hj : t −→



1
. . .

1
t

t−1

1
. . .

1


(at jth and (j + 1)th positions)

with the ith replaced by the obvious map from SL2(A), namely,

h′i :

(
a b
c d

)
−→



1
. . .

1
a b
c d

1
. . .

1


(at ith and (i+ 1)th positions)

Then

Y ′ ∩MQ
A ∩ SLn(A) = {

∏
j 6=i

hj(tj) : tj ∈ J and |t−1
j | � 1 } × {h′i(T ) : T ∈ SL2(A), |detT | � 1}

Noting that hj(t)
2ρ = |t|2, convergence is implied by convergence of

∫ �1

0

tσj−σj+1−2 dt

t
(for j 6= i)

∫
SL2(k)\SL2(A)

1 dt (right invariant measure dt)
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The GL1 integrals are absolutely convergent for σj − σj+1 − 2 > 0 for j 6= i. By reduction theory [2.2] and
[3.3], for example, SL2(k)\SL2(A) has finite volume, so the SL2 integral is convergent. This is the desired
convergence conclusion: there is no constraint on σi− σi+1. Thus, the iterated expression for the Eisenstein
series analytically continues as indicated.

Functional equations for reflections: In addition to a partial analytic continuation, the previous
argument gives the functional equations for the reflections in W attached to the simple roots, as follows.
The main issue is making the functional equations understandable. In the iterated expression for Es above
in terms of a GL2 Eisenstein series, the functional equation Ẽ1,1

1−z = Ẽ1,1
z of that GL2 Eisenstein series gives

Φ̃is(g) = |a1|s1 . . . |ai=1|si−1 · Ẽ1,1
si−si+1

2

(
a b
c d

)
·
∣∣∣det

(
a b
c d

) ∣∣∣ si+si+1
2 · |ai+2|si+2 . . . |ar|sr

= |a1|s1 . . . |ai=1|si−1 · Ẽ1,1

1− si−si+1
2

(
a b
c d

)
·
∣∣∣ det

(
a b
c d

) ∣∣∣ si+si+1
2 · |ai+2|si+2 . . . |ar|sr

This is not presented immediately in terms of s = (s1, . . . , sr), but, instead, says

(s1, . . . , si−1,
si − si+1

2
,
si + si+1

2
, si+2, . . . , sr) −→ (s1, . . . , si−1, 1−

si − si+1

2
,
si + si+1

2
, si+2, . . . , sr)

We hope for clarification by identifying the simultaneous fixed point(s), if any, of all these, for i = 1, . . . , r,
together with the condition s1 + . . . + sr = 0: the ith transformation fixes all by the ith and (i + 1)th

coordinate, and in those two coordinates the fixed-point condition is

si − si+1

2
= 1− si − si+1

2
and

si + si+1

2
=

si + si+1

2

The second equation is a tautology, so the ith fixed-point condition is simply si− si+1 = 1. These conditions
for i = 1, . . . , r − 1 and s1 + . . .+ sr = 0, give a unique fixed point,

fixed point =
(n− 1

2
,
n− 3

2
,
n− 5

2
, . . . ,

3− n
2

,
1− n

2

)
This is the half-sum ρ of positive roots

ρ = (ρ1, . . . , ρr) = 1
2

∑
i<j

(0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0) (at the ith and jth places)

Replacing s by ρ + s replaces si − si+1 by (ρi + si) − (ρi+1 + si+1) = si − si+1 + 1, and the map
si−si+1

2 → 1− si−si+1

2 becomes

(ρi + si)− (ρi+1 + si+1)

2
→ 1− (ρi + si)− (ρi+1si+1)

2

which simplifies to si ←→ si+1. That is, in the ρ+ s coordinates, this functional equation is the interchange
of si and si+1:

ρ+ (s1, . . . , si−1, si, si+1, si+2, . . . , sr) ←→ ρ+ (s1, . . . , si−1, si+1, si, si+2, . . . , sr)

This is the same as the effect ms −→ (τimτ
−1
i )s with

τi =



1
. . .

1
0 1
1 0

1
. . .

1


∈ W (at ith and (i+ 1)th positions)

135



3. SL3(Z), SL4(Z), SL5(Z), . . .

This τi ∈W is usually considered to be attached to the ith simple root αi(m) = mi−mi+1 on the Lie algebra,
as it is characterized by interchanging ±αi and permuting the other positive roots βj`(m) = mj −m`: for m
in the Lie algebra of Mmin , unless j = i and ` = i+ 1,

βj`(τimτ
−1
i ) = = (τimτ

−1
i )j − (τimτ

−1
i )` = mj′ −m`′ (for some j′ < `′)

thus giving some other positive root evaluated on m. When j = i and ` = i + 1, the effect is qualitatively
different, reversing the sign, producing −αi.

To rewrite the above in more geometric terms, use the pairing 〈x, y〉 = tr(xy) on the Lie algebra g of GLr
to identify a and a∗ and give each of them a non-degenerate inner product. The Weyl group preserves this
inner product, since

〈wxw−1, wyw−1〉 = tr
(
wxw−1 · wyw−1

)
= tr

(
wxyw−1

)
= tr

(
xy
)

= 〈x, y〉

by conjugation invariance of trace. The geometric characterization of the reflection τ = τα associated to a
vector (here a simple positive root) α is that τ should fix the hyperplane orthogonal to α, and should send
α→ −α: this is expressed by

τx = x− 2 · 〈x, α〉
〈α, α〉

· α (for x ∈ a∗ ≈ diagonal matrices)

Via this pairing, αi is identified with

αi =



0
. . .

0
1 0
0 −1

0
. . .

0


(at ith and (i+ 1)th positions)

because αi(m) = 〈m,αi〉. Similarly, si − si+1 = 〈s, αi〉. It is immediate that τ · α = τατ−1 = −α, as
the reflection should. Since τ preserves 〈, 〉, it preserves the orthogonal complement to α, so truly is the
associated reflection. Since τ flips the sign on α and permutes the other positive roots, we can compute,
using τ−1 = τ ,

〈2ρ, α〉 = −〈2ρ, τ · α〉 = −〈τ · 2ρ, τ · α〉

and
τ · 2ρ = τ ·

∑
β>0

β = τ ·
( ∑
β>0, β 6=α

β
)

+ τ · α =
( ∑
β>0, β 6=α

β
)
− α = 2ρ− 2α

Thus, 〈2ρ, α〉 = −〈2ρ − 2α, α〉, from which 〈ρ, α〉 = 〈α, α〉/2 = 1. Thus, the αth functional equation,
inherited from the GL2 Eisenstein series, is

ξ〈ρ+ τ · s, α〉 · Eρ+τ ·s = ξ〈ρ+ s, α〉 · Eρ+s (reflection τ = τα)

Using 〈ρ, α〉 = 1, this is

ξ(1 + 〈τ · s, α〉) · Eρ+τ ·s = ξ(1 + 〈s, α〉) · Eρ+s (reflection τ = τα)

or, since 〈τ · s, α〉 = 〈s, τ · α〉 = 〈s,−α〉 = −〈s, α〉,

Eρ+τ ·s =
ξ(1 + 〈s, α〉)
ξ(1 + 〈τ · s, α〉)

· Eρ+s =
ξ(1 + 〈s, α〉)
ξ(1− 〈s, α〉)

· Eρ+s =
ξ(1 + 〈s, α〉)
ξ〈s, α〉

· Eρ+s (reflection τ = τα)
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using the functional equation ξ(1− z) = ξ(z).
Application of Bochner’s Lemma: The n− 1 partial analytic continuations can be organized to allow

application of Bochner’s Lemma. Above, for α = αi the ith simple root, we showed that the function

Eαρ+s = 〈ρ+ s, α〉 ·
(
1− 〈ρ+ s, α〉

)
· ξ〈ρ+ s, α〉 · Eρ+s =

(
1 + 〈s, α〉

)
·
(
1− 〈s, α〉

)
· ξ(1 + 〈s, α〉) · Eρ+s

admits an analytic continuation in which si − si+1 = 〈s, α〉 is not constrained, and this normalized version
of Eρ+s is invariant under ρ+ s→ ρ+ τα · s for the reflection τα. This might suggest adding normalization
factors for all positive roots, to obtain an eventually W -invariant expression:

Eρ+s ·
∏
β>0

(1 + 〈s, β〉) · (1− 〈s, β〉) · ξ(1 + 〈s, β〉)

The intention is that Eαρ+s is invariant under the reflection τα for each simple root α, and the remaining
factors should be permuted among themselves, since the other positive roots are permuted among themselves
by τα.

A minor technical issue arises: to be sure to cancel the pole of ξ(1 + 〈s, β〉) at 1 + 〈s, β〉 = 1, in order
to most easily justify application of Bochner’s lemma, add additional polynomial factors, squared to avoid
disturbing the sign in functional equations: let

E#
ρ+s = Eρ+s ·

∏
β>0

(1 + 〈s, β〉) · (1− 〈s, β〉) · 〈s, β〉2 · ξ(1 + 〈s, β〉)

The exponential decay of the gamma factor in ξ is more than sufficient to preserve boundedness in vertical
strips for real part s in compacts.

[3.12.4] Claim: E#
ρ+s has an analytic continuation to a holomorphic function on Cr, and is invariant under

s→ w · s for all w ∈W .

Proof: By the GL2 discussion and the above adaptations, E#
ρ+s has an analytic continuation to the tube

domain Ω = {z ∈ Cr : Re(z) ∈ Ωo} over Ωo ⊂ Rr given by

Ωo = {σ ∈ Rr : 〈ρ+ σ, α〉 > 1 for all but possibly a single simple root α}

In Ω, for Re(s) in compacts, E#
ρ+s is bounded, so certainly has sufficiently modest growth for application of

Bochner’s Lemma, and E#
ρ+s has an analytic continuation to the convex hull of Ω, which is Cr. It is invariant

under all reflections attached to simple roots, and these generate W . This proves the claim. ///

Returning to the proof of the theorem, this last claim gives the meromorphic continuation of Eρ+w, and
the first corollary.

Given the meromorphic continuation of Eρ+s, the functional equations

Eρ+τ ·s =
ξ(1 + 〈s, α〉)
ξ〈s, α〉

· Eρ+s (reflection τ = τα)

of Eρ+s proven above for reflections τ = τα attached to simple roots α can be iterated. Taking constant
terms gives, by the general form of the constant term [3.10.3],

∑
w

cw,τ ·sm
ρ+w·τ ·s = cPEρ+τ ·s =

ξ(1 + 〈s, α〉)
ξ〈s, α〉

· cPEρ+s =
ξ(1 + 〈s, α〉)
ξ〈s, α〉

∑
w

cw,sm
ρ+w·s

For generic s ∈ a∗ ⊗R C, the coefficients of the various characters of m ∈ MA must be equal, so by the
identity principle are equal for all s. In particular, equating the coefficient of mρ+τ ·s gives

1 = c1,τ ·s =
ξ(1 + 〈s, α〉)
ξ〈s, α〉

· cτ,s
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That is, cτ,s = ξ〈s, α〉/ξ(1 + 〈s, α〉), and

Eρ+τ ·s =
ξ(1 + 〈s, α〉)
ξ〈s, α〉

· Eρ+s =
1

cτ,s
· Eρ+s (for reflection τ)

Equating the coefficients of mρ+w·τ ·s gives

cw,τ ·s =
ξ(1 + 〈s, α〉)
ξ〈s, α〉

· cwτ,s =
1

cτ,s
· cwτ,s

from which cw,τ ·s · cτ,s = cwτ,s. For two reflections σ, τ ,

cwστ,s = c(wσ)τ,s = cwσ,τ ·s · cτ,s = cw,στ ·s · cσ,τ ·s · cτ,s = cw,στ ·s · cστ,s

Induction gives cww′,s = cw,w′·s · cw′,s. Then

Eρ+στ ·s = Eρ+σ·(τ ·s) =
1

cσ,τ ·s
· Eρ+τ ·s =

1

cσ,τ ·s
· 1

cτ,s
· Eρ+s =

1

cστ,s
· Eρ+s

and a similar induction on the length of w ∈ W gives the general functional equation. Qualitatively, the
number of factors in both numerator and denominator of cw(s) is the length of w. This proves the theorem
and corollary. ///

[3.12.5] Example: For G = GL3 there are two simple positive roots,

〈x, α〉 = x1 − x2 〈x, β〉 = x2 − x3 (for x ∈ a with diagonal entries xi)

The other positive root is α+ β, so ρ = 1
2 (α+ β + (αβ)) = α+ β. Let σ, τ be the reflections corresponding

to α, β, respectively. The whole Weyl group is W = {1, σ, τ, στ, τσ, στσ} and στσ = τστ . From the GL2

computation,

cσ,ρ+s =
ξ〈s, α〉

ξ(〈s, α〉+ 1)
cτ,s =

ξ〈s, β〉
ξ(〈s, β〉+ 1)

By the cocycle relation cwr,s = cw,r·s · cr,s for reflection r ∈W and w ∈W , we have

cστ,s = cσ,τ ·s · cτ,s =
ξ〈τ · s, α〉

ξ(〈τ · s, α〉+ 1)
· ξ〈s, β〉
ξ(〈s, β〉+ 1)

Since 〈τx, α〉 = 〈x, τα〉 = 〈x, α+ β〉,

cστ,s =
ξ〈s, α+ β〉

ξ(〈s, α+ β〉+ 1)
· ξ〈s, β〉
ξ(〈s, β〉+ 1)

Similarly,

cτσ,s =
ξ〈s, α+ β〉

ξ(〈s, α+ β〉+ 1)
· ξ〈s, α〉
ξ(〈s, α〉+ 1)

Finally,

cτστ,s = cστσ,s = cστ,σ·s · cσ,s =
ξ〈σ · s, α+ β〉

ξ(〈σ · s, α+ β〉+ 1)
· ξ〈σ · s, β〉
ξ(〈σ · s, β〉+ 1)

· ξ〈s, α〉
ξ(〈s, α〉+ 1)

Using σβ = α+ β and σ(α+ β) = β, this is

cτστ,s = cστσ,s =
ξ〈s, β〉

ξ(〈s, β〉+ 1)
· ξ〈s, α+ β〉
ξ(〈s, α+ β〉+ 1)

· ξ〈s, α〉
ξ(〈s, α〉+ 1)

The latter example suggests that more can be said about cw,s:
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[3.12.6] Claim:

cw,s =
∏

β>0 : w·β<0

ξ〈s, β〉
ξ(〈s, β〉+ 1)

Proof: Induction on the length of w in the generating reflections associated to simple roots. With τ = τα for
simple root α the cocycle relation gives

cwτ,s = cw,τ ·s · cτ,s =
∏

β>0 : w·β<0

ξ〈τ · s, β〉
ξ(〈τ · s, β〉+ 1)

· ξ〈s, α〉
ξ(〈s, α〉+ 1)

=
∏

β>0 : w·β<0

ξ〈s, τ · β〉
ξ(〈s, τ · β〉+ 1)

· ξ〈s, α〉
ξ(〈s, α〉+ 1)

The effect of τ = τα on roots is to interchange ±α, permute the other positive roots, and permute the other
negative roots. There are two cases.

First, if w · α < 0, then α itself appears in the product, and (wτα) · α = w(−α) = −w · α > 0. So α will
not appear in the corresponding product for wτ . Using the functional equation ξ(1− z) = ξ(z),

ξ〈s, τ · α〉
ξ(〈s, τ · α〉+ 1)

· ξ〈s, α〉
ξ(〈s, α〉+ 1)

=
ξ〈s,−α〉

ξ(〈s,−α〉+ 1)
· ξ〈s, α〉
ξ(〈s, α〉+ 1)

=
ξ(1− (〈s, α〉+ 1)

ξ(1− 〈s, α〉)
· ξ〈s, α〉
ξ(〈s, α〉+ 1)

=
ξ(〈s, α〉+ 1)

ξ〈s, α〉
· ξ〈s, α〉
ξ(〈s, α〉+ 1)

= 1

Thus, the leftover factor from the product for w cancels the new factor from the cocycle relation, and the
desired relation holds for wτα in the case that w · α < 0.

Second, similarly but oppositely, suppose w · α > 0. Then α does not appear in the product for w. But
(wτα)α = w(−α) < 0, so α should appear in the product for wτα. The extra term provides this, proving the
relation in this case. ///

3.13 Continuation of cuspidal-data Eisenstein series

The functional equations of Eisenstein series attached to non-minimal parabolics P d1,...,d` involve all the
parabolics P d

′
1,...,d

′
` with d′1, . . . , d

′
` a permutation of d1, . . . , d`, called the associates of P d1,...,d` . This is so

even with the simplifying assumption of cuspidal data, without which the situation is messier. Then, the
expression of pseudo-Eisenstein series for such parabolics in terms of genuine Eisenstein series, even with the
corresponding assumption of cuspidal data, involves all these. Thus, as in [3.11], we consider only maximal
proper parabolics P = P r1,r2 , right MP

A ∩KA-invariant cuspidal data f = f1⊗ f2 on MP
A with trivial central

character. Assume f1, f2 are spherical Hecke eigenfunctions at all finite places, so by [3.11.6] the Eisenstein
series EPs,f is a spherical Hecke eigenfunction at all finite places. Similarly, at archimedean places v, we
assume (at least) that f1 and f2 are eigenfunctions for the invariant Laplacians on the factors of the Levi
component, so by [3.11.11] EPs,f is an eigenfunction for the invariant Laplacian on Gv.

Assume strong multiplicity one for f1 ⊗ f2, as in [3.11.9], so that the constant terms of EPs,f are as simple
as possible. With P = P r1,r2 , let Q = P r2,r1 , so Q = P for self-associate P and otherwise is the unique
other associate of P . Thus, the following is special, but perhaps more palatable than the general case. Write
fw = (f1 ⊗ f2)w = f2 ⊗ f1.

[3.13.1] Theorem: (Langlands, Bernstein, Wong, et alia) With the constant-term conventions as in [3.11.9]
such Eisenstein series EPs,f have meromorphic continuations in s, with functional equation

EP1−s,f = (cPs,fw)−1 · EQs,fw and cQ1−s,f · c
P
s,fw = 1

(Proofs in [11.10], [11.12].) ///
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Although the proof of meromorphic continuation is postponed to [11.10], [11.12], if we grant meromorphic
continuation then the form of the functional equation is determined by the constant term, using the theory
of the constant term [8.3], as follows. As in [3.11.9], the constant terms of EPs,f and EQ1−s,fw are explicit.
First, for P self-associate,

cPE
P
s,fw = ϕPs,fw + cs,fwϕ

P
1−s,f and cPE

P
1−s,f = ϕP1−s,f + c1−s,fϕ

P
s,fw

and all other constant terms are 0. Thus,

cP

(
EP1−s,f − c−1

s,fw · E
P
s,fw

)
=
(
c1−s,f − c−1

s,fw

)
· ϕPs,fw

and all other constant terms are 0. The functions f1 and f2 are cuspforms in a strong sense, so by [8.2] are
bounded. Thus,

|ϕPs,f (nmk)| ≤
∣∣∣ (detm1)r2

(detm2)r1

∣∣∣Re(s)

is bounded in standard Siegel sets for Re(s) sufficiently negative. By the theory of the constant term [8.3],
EP1−s,fw − c

−1
s,fw · EPs,f is bounded in Siegel sets. Thus, this difference is in L2(Z+Gk\GA). However, from

[3.11.11], both EP1−s,fw and EPs,f have the same eigenvalues for invariant Laplacians at archimedean places,

namely, r1r2(r1 + r2)(s2 − s) + λ1 + λ2 where λj is the eigenvalue for fj on the corresponding archimedean
factor GLrj of MP . Thus, the difference has that eigenvalue. There are many choices of s with Re(s) < 0
which make this eigenvalue non-real, however, which is impossible for an L2 eigenfunction other than 0, as
in the proof of [1.10.5]. Thus, this difference must be 0, and have constant term 0. This gives the functional
equation, assuming the meromorphic continuation, in the self-associate case.

For the non-self-associate case, for P and its other associate Q, both constant terms must be considered
to invoke the theory of the constant term. Starting from

cPE
P
1−s,f = ϕP1−s,f cQE

P
1−s,f = cQ1−s,fϕ

Q
s,fw cPE

Q
s,fw = cPs,fwϕ

P
1−s,f cQEQs,fw = ϕQs,fw

we have 
cP
(
EP1−s,f − (cPs,fw)−1 · EQs,fw

)
= 0

cQ
(
EP1−s,f − (cPs,fw)−1 · EQs,fw

)
=

(
cQ1−s,f − (cPs,fw)−1

)
· ϕQs,fw

and all other constant terms are 0. As usual, the cuspforms are bounded by [8.3], so, for Re(s) sufficiently
negative, the constant term along Q is square-integrable on Siegel sets. By the theory of the constant term
[8.3], the difference EP1−s,f−(cPs,fw)−1 ·EQs,fw is square-integrable. However, again by [3.11.11], this difference
is an eigenfunction for invariant Laplacians at archimedean places, with non-real eigenvalues for many choices
of s. Thus, it is identically 0. ///

3.14 Truncation and Maaß-Selberg relations

First, we make precise a notion of truncation of automorphic forms, relative to a choice of parabolic
subgroup, especially maximal proper parabolics. For the self-associate maximal proper parabolic P r,r in
GL2r, the computation of inner products of truncations of P r,r Eisenstein series with cuspidal data is
parallel to the computation for GL2. As in [1.11] and [2.10], corollaries give information about possible poles
of Eisenstein series, and square-integrability of residues of Eisenstein series.

This bears upon the occurrence of non-trivial residual square-integrable automorphic forms coming from
cuspforms on smaller groups, anticipating that such automorphic forms occur as residues of Eisenstein series.
For example, there is no non-constant non-cuspidal discrete spectrum for GL2(Z) nor for GL3(Z), but only
for GL4(Z) and larger. Namely, the Eisenstein series on GL3 with GL2 cuspidal data have no poles in the
right half-plane, as follows immediately from the Maaß-Selberg relations below.

The simplest non-trivial examples of Maaß-Selberg relations and corollaries concern spherical Eisenstein
series on GLn associated to cuspidal data on the Levi component of maximal (proper) parabolics P = P r1,r2 .
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For simplicity, we continue to consider only right KA-invariant Eisenstein series EPs,f1⊗f2
, where f1, f2

are cuspforms in the strong sense of being spherical Hecke eigenfunctions everywhere, with trivial central
characters, allowing the simple outcomes of computations of constant terms as in [3.11.8] and [3.11.9]. When
r1 6= r2, that is, when P is not self-associate, let Q = P r2,r1 be its other associate parabolic.

Let δP be the modular function of PA

δ

(
m1 0
0 m2

)
=
∣∣∣ (detm1)r2

(detm2)r1

∣∣∣
and extend this to a height function aligned with P , by making it right KA-invariant: hP (nmk) = δP (nm) =
δP (m) for n ∈ NP

A , m ∈ MP
A , and k ∈ KA. For fixed large real T , the T -tail of the P -constant term of an

automorphic form F is

cTPF (g) =

 cPF (g) (for hP (g) ≥ T )

0 (for hP (g) < T )

Similarly, the T -tail of the Q-constant term is

cTQF (g) =

 cQF (g) (for hQ(g) ≥ T )

0 (for hQ(g) < T )

Suitable truncations of these cuspidal-data Eisenstein series should be square integrable (potentially
accomplished a number of ways), and their inner products calculable in explicit, straightforward terms.
There should be no obstacle to meromorphic continuation of the tail in the truncation. These requirements
are at odds with each other. Writing ΨP (ϕ) = ΨP

ϕ for the pseudo-Eisenstein series attached to data ϕ, the
truncation at height T of the Eisenstein series is

∧TEPs,f =

EPs,f −ΨP (cTPE
P
s,f ) (for n1 = n2, i.e., for P self-associate)

EPs,f −ΨP (cTPE
P
s,f )−ΨQ(cTQE

P
s,f ) (for n1 6= n2, i.e., for P not self-associate)

[3.14.1] Proposition: The truncated Eisenstein series ∧TEPs,f is of rapid decay in Siegel sets.

Proof: The argument is simpler in the self-associate case, which we carry out first. From the computations in
[3.11.8] and [3.11.9] of constant terms of such Eisenstein series, for self-associate maximal proper P in GLr
all such constant terms are 0 except that along P itself. By the theory of the constant term, on standard
Siegel sets EPs,f − cPEPs,f is of rapid decay. Thus, EPs,f − cTPEPs,f is of rapid decay on standard Siegel sets,
and then the automorphic form

∧TEPs,f = EPs,f −ΨP (cTPE
P
s,f )

is of rapid decay on all Siegel sets.
As in the discussion immediately prior to [3.10.2], for a root α of G, for a ∈ Mmin

A , let aα = eα(log |a|).
For g ∈ GA, in an Iwasawa decomposition let g ∈ Nmin · ag ·KA with ag ∈ Mmin

A , so we can consider the
functions g −→ aαg . The ambiguity of a by Mmin

A ∩ KA does not affect the value of this function. In the

non-self-associate case, let α, β be the simple positive roots corresponding to P and Q, in the sense that NP

contains the α root subgroup

Nα = {n = ex : x ∈ n, axa−1 = aα · x} (n = Lie algebra of Nmin )

and NQ contains the β root subgroup Nβ . Because f is a cuspform and P is not self-associate, only a single
Bruhat cell contributes to cPE

P
s,f , and cPE

P
s,f = ϕPs,f , which is rapidly decreasing on standard Siegel sets

as aγg → +∞ for any simple positive root γ 6= α, because f is a cuspform in a strong sense. Similarly, only

a single Bruhat cell (corresponding to the longest Weyl element) contributes to the constant term cQE
P
s,f ,

which similarly is rapidly decreasing on standard Siegel sets as aγg → +∞ for any simple (positive) root
γ 6= β. Thus, the truncation

∧TEPϕ = EPϕ −ΨP (cTPE
P
ϕ )−ΨQ(cTQE

P
ϕ )
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has decay properties as follows. If aγg → +∞ for γ other than α, β, then all three terms on the right-hand side

are of rapid decay in standard Siegel sets. If α→ +∞, then each of the two expressions EPϕ −ΨP (cTPE
P
ϕ ) and

ΨQ(cTQE
P
ϕ ) is of rapid decay. If β → +∞, then each of the two expressions EPϕ −ΨQ(cTQE

P
ϕ ) and ΨP (cTPE

P
ϕ )

is of rapid decay. Thus, as the value of any simple positive root goes to +∞ in a standard Siegel set, the
truncation goes rapidly to zero. ///

Let h = h1 ⊗ h2 be a another cuspform on M = MP . Let 〈f, h〉MP be the inner product on the quotient
ZMA Mk\MA. For brevity, write fw = (f1 ⊗ f2)w = f2 ⊗ f1.

[3.14.2] Theorem: (Maaß-Selberg relations) The hermitian inner product 〈∧TEPs,f ,∧TEPr,h〉 of truncations
of two cuspidal-data Eisenstein series for maximal proper parabolic P is given as follows. For P self-associate,

〈∧TEPs,f ,∧TEPr,h〉 = 〈f, h〉M ·
T s+r−1

s+ r − 1
+ 〈f, hw〉M · cr,h

T s+(1−r)−1

s+ (1− r)− 1

+ 〈fw, h〉M · cs,f
T (1−s)+r−1

(1− s) + r − 1
+ 〈fw, hw〉M · cs,fcr,h

T (1−s)+(1−r)−1

(1− s) + (1− r)− 1

For P not self-associate, that is, for r1 6= r2,

〈∧TEPs,f ,∧TEPr,h〉 = 〈f, h〉MP · T
s+r−1

s+ r − 1
+ 〈fw, hw〉MQ · cQs,fc

Q
r,h

T (1−s)+(1−r)−1

(1− s) + (1− r)− 1

[3.14.3] Remark: The expression for the not-self-associate case is that of the self-associate case with the
middle two terms missing. In the non-self-associate case the inner products 〈fw, h〉 and 〈f, hw〉 would not
make sense, because in that case wMPw−1 6= MP , so the two functions live on different groups.

[3.14.4] Corollary: For maximal proper parabolics P in GLr, on the half-plane Re(s) ≥ 1/2 an Eisenstein
series EPs,f with cuspidal data f has no poles if P is not self-associate. If P is self-associate, the only possible
poles are on the real line, and only occur if 〈f, fw〉M 6= 0. In that case, any pole is simple, and the residue
is square-integrable. In particular, taking f = fo ⊗ fo

〈Resso E
P
s,f ,Resso E

P
s,f 〉 = 〈fo, fo〉2M · Resso cs,f

Proof: (of theorem) The self-associate case admits a simpler argument, because in this case the truncated
Eisenstein series ∧TEPs,f is itself a pseudo-Eisenstein series

∧TEPs,f = ΨP (ϕs,f )−ΨP (cTPE
P
s,f ) = ΨP (ϕs,f − cTPEPs,f )

As in smaller cases [1.11], [2.10], the pseudo-Eisenstein series made from the tail of the constant term
integrates to zero against the truncated Eisenstein series: fortunately, for cuspidal-data Eisenstein series this
fact need not refer to subtle reduction theory, but only needs the r1 = r2 instance of the following:

[3.14.5] Lemma: With P = P r1,r2 , Q = P r2,r2 , and w =

(
0 1r2

1r1 0

)
,

hQ(wn ·m) ≤ hP (m)−1 (for all n ∈ NP
A , m ∈MP

A )

Proof: This lemma observes a qualitative aspect of Iwasawa decompositions of special elements. First,

hQ(wnm) = hQ(wmw−1 · wm−1nm) = δQ(wmw−1) · hQ(wm−1nm) = δP (m)−1 · hQ(wm−1nm)

since w conjugates MP to MQ, and inverts the modular function. Since MP normalizes NQ, it suffices to
prove hQ(wn) ≤ 1 for all n ∈ NP

A . Because hQ is right KA-invariant, this is equivalent to

1 ≥ hQ(wnw−1) = hQ
(

1r2 0
x 1r1

)
(with x r1-by-r2)
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In fact, we claim that the same inequality holds locally at every place v with the local analogues hQv and hPv .

At all places v, right multiplication of wnw−1 by Kv produces q =

(
a b
0 d

)
with a, d upper-triangular.

For finite v, we imagine achieving the Iwasawa decomposition in stages, first putting the bottom row into
the correct shape, then the next-to-bottom, and so on. To begin, right multiply by k1 ∈ Kv to put the gcd
of the bottom row of x and of 1 into the far right entry of the bottom row of the whole, and to replace the
bottom row of x by 0’s. This can be done without disturbing the left r1-by-(r1 − 1) part of the lower right
block of wnw−1. Next, without disturbing the adjusted bottom row, right multiply by k2 ∈ Kv to put the
gcd of the next-to-bottom row of (the new) x and 1 in the next-to-last entry of the next-to-bottom row of
the whole, and to replace the next-to-bottom row of (the new) x by 0’s. Continuing, every diagonal entry of
d will be a gcd of some v-adic numbers and 1, so not divisible by the local parameter $. Thus, |det d|v ≥ 1.
At the same time, the entries of a are among the entries of an element of Kv, so are all v-integral, and
|det a|v ≤ 1. Thus, hQv (wn) = hQv (wnw−1) ≤ 1.

Somewhat analogously, for archimedean v, the ith diagonal entry of d is lengths of vectors with entries
including the diagonal 1’s in the lower-right block of wnw−1. Thus, all the diagonal entries of d will be at
least 1 in size, and certainly |det d| ≥ 1. At the same time, the rows of a are fragments of rows of a matrix in
Kv, so have length at most 1. The absolute value of the determinant of a is the volume of the parallelopiped
spanned by those rows, so is at most 1. ///

Returning to the computation of the inner product in the self-associate case, the integral of
ΨP (ϕs,f − cTPEPs,f ) against ΨP (cTPE

P
r,h) unwinds to the integral of ϕs,f − cTPEPs,f against ΨP (cTPE

P
r,h), which

is then the integral of ϕs,f − cTPE
P
s,f against cP

(
ΨP (cTPE

P
r,h)
)
. By construction,

(
ϕs,f − cTPE

P
s,f

)
(m) is

supported where hP (m) ≥ T , for m ∈ MP . The proof of [3.11.3] and remarks in [3.11.8] apply as well to
pseudo-Eisenstein series, so

cP
(
ΨP (cTPE

P
r,h)
)
(m) = cTPE

P
r,h +

∫
NPA

(
cTPE

P
r,h

)
(wn ·m) dn (for m ∈MP )

By definition of the truncation, the integrand is 0 unless hP (wn ·m) ≥ T . The lemma gives hP (wn ·m) ≤
hP (m)−1. Thus, for T > 1, there is no overlap of supports of ϕs,f − cTPEPs,f and the second part of the
constant term. That is,

〈∧TEPs,f , ∧TEPr,h〉 =

∫
ΨP (ϕs,f − cTPEPs,f ) ·ΨP (cTPE

P
r,h) =

∫ (
ϕs,f − cTPEPs,f

)
· cTPEPr,h

=

∫
ΨP (ϕs,f − cTPEPs,f ) · EPr,h = 〈∧TEPs,f , EPr,h〉

Unwind the truncated Eisenstein series:

〈∧TEPs,f , EPr,h〉 =

∫
Z+Gk\GA

ΨP (ϕs,f − cTPEPs,f )EPr,h =

∫
Z+·Pk\GA

(ϕs,f − cTPEPs,f )EPr,h

=

∫
Z+·Pk\GA

−cs,fϕ1−s,fw (for hP ≥ T )

ϕs,f (for hP < T )

 · EPr,h
This is ∫

Z+NAMk\GA

−cs,fϕ1−s,fw (for hP ≥ T )

ϕs,f (for hP < T )

 · cPEPr,h
=

∫
Z+NAMk\GA

−cs,fϕ1−s,fw (for hP ≥ T )

ϕs,f (for hP < T )

 · (ϕr,h + c1−r,hw ϕ1−r,hw
)
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Since the integrand is now left NA-invariant, ZA-invariant, and right KA-invariant, this integral may be
computed as an integral over the Levi component MP , using the Iwasawa decomposition, noting that the
Haar integral on GA in such coordinates is∫

GA
f(g) dg =

∫
NA

∫
MA

∫
KA

f(nmk) dn
dm

δP (m)
dk

Then

〈∧TEPs,f , ∧TEPr,h〉 =

∫
ZAMk\MA

−cs,fϕ1−s,fw (for hP ≥ T )

ϕs,f (for hP < T )

 · (ϕr,h + c1−r,hw ϕ1−r,hw
) dm

δP (m)

This gives the four terms of the theorem for the self-associate case. We evaluate one in detail, as follows.
Use Z+Mk\MA ≈ Z+\A+

P ×Mk\M1 and the A+
P -invariance of f , parametrizing Z+\A+

P by

t −→ at =

(
δ(t)1/r2 · 1r1 0

0 1r2

)
(for t > 0)

with the diagonal imbedding of the ray (0,∞) into the archimedean part of the ideles, so that δP (at) = t.
Then, for example,∫

m∈ZAMk\MA : hP (m)<T

ϕs,f · ϕ1−r,hw
dm

δP (m)
=

∫
0<t<T,m∈ZAMk\M1

ts · f(atm1) · t1−r · hw(atm1)
dt

t
dm1

=

T∫
0

ts+(1−r) dt

t
·
∫

ZAMk\M1

f(m1) · hw(m1) dm1 =
T s+(1−r)

s+ (1− r)
· 〈f, hw〉

The other three integrals are evaluated in identical fashion.
In the non-self-associate case, invoking the Lemma in similar fashion,

〈EPs,f −ΨP (cTPE
P
s,f ), ΨP (cTPE

P
s,h)〉 = 0

〈EPs,f −ΨQ(cTQE
P
s,f ), ΨQ(cTQE

P
s,h)〉 = 0

〈ΨP (cTPE
P
s,f ), ΨQ(cTQE

P
s,h)〉 = 0

so the inner product of the truncated Eisenstein series is

〈∧TEPs,f , ∧TEPr,h〉 = 〈EPs,f −ΨP (cTPE
P
s,f ), EPr,h〉 + 〈ΨQ(cTQE

P
s,f ),ΨQ(cTQE

P
r,h)〉

The pairings unwind. First,

〈EPs,f −ΨP (cTPE
P
s,f ), EPr,h〉 = 〈ΨP (cPE

P
s,f − cTPEPs,f ), EPr,h〉 =

∫
Z+Pk\GA

 0 (for hP ≥ T )

ϕPs,f (for hP < T )

 · EPr,h
Because of the left NA-invariance of the first part of the integral, this is

∫
Z+NAMk\GA

 0 (for hP ≥ T )

ϕPs,f (for hP < T )

 · cPEPr,h =

∫
Z+NAMk\GA

 0 (for hP ≥ T )

ϕPs,f (for hP < T )

 · ϕPr,h
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Again, the integrand is left NA-invariant and right KA-invariant, so may be computed as an integral over
the Levi component using the Iwasawa decomposition: it is

∫
ZMAMk\MA

 0 (for hP ≥ T )

ϕPs,f (for hP < T )

 · ϕPr,h dm

δP (m)

giving one term in the non-self-associate case. The other pairing unwinds similarly, and becomes

〈ΨQ(cTQE
P
s,f ), ΨQ(cTQE

P
r,h)〉 =

∫
ZAM

Q
k \M

Q

A

 cQs,f ϕ
Q
1−s,fw (for hQ ≥ T )

0 (for hQ < T )

 · cQr,h ϕQ1−r,hw dm

δQ(m)

giving the second term of the theorem for the not self-associate case. ///

Proof: (of corollary). From the theory of the constant term, the only possible poles of the Eisenstein series
are at poles of the constant terms, which in this case means a pole of cs,f . Invoke the Maaß-Selberg relation
with r = s and h = f . In the non-self-associate case this is

〈∧TEPs,f ,∧TEPs,f 〉 = 〈f, f〉 T
2σ−1

2σ − 1
+ 〈fw, hw〉 |cs|2

T 1−2σ

1− 2σ
(with σ = Re(s))

The non-self-associate case is slightly unlike the simple case of GL2, in that the inner product of truncated
Eisenstein series is missing the two middle terms which for GL2 made a pole possible. Specifically, in the
non-self-associate case, let so = σo + ito be an alleged pole so of cs of order ` in that half-plane. Letting
s = σo + it approach so vertically the left-hand side of the relation is asymptotic to a positive multiple of
t−2`, while on right-hand side only the second of the two terms blows up at all. In particular, that expression

|cs|2 · 〈fw, fw〉 ·
T 1−2σ

1− 2σ

is asymptotic to a negative multiple of t−2`, since σ = Re(s) > 1
2 . Thus, there is no pole in that half-plane.

Similarly, in the self-associate case, for there to be any pole in the right half-plane the two middle terms
on the right-hand side of the relation must not vanish, or the same contradiction occurs, so 〈f, fw〉 must
be non-zero, and the alleged pole must be on the real axis, and must be simple: if any of these conditions
fail, the middle terms cannot keep up with the negative value of the fourth term. Letting f = fo ⊗ fo with
real-valued fo, we have fw = f and 〈f, f〉 = 〈fo, fo〉 · 〈fo, fo〉. Letting s = σ + it,

〈∧TEPs,f ,∧TEPs,f 〉 = 〈fo, fo〉2
T 2σ−1

2σ − 1
+ 〈fo, fo〉2 cs,f

T 2it

2it
+ 〈fo, fo〉2 cs,f

T−2it

−2it
+ 〈fo, fo〉2 |cs,f |2

T 1−2σ

1− 2σ

Multiplying through by t2 = (it)(−it) and taking the limit as t→ 0 gives

〈Resσ ∧T EPs,f ,Resσ ∧T EPs,f 〉 = 〈fo, fo〉2 Resσcs,f ·
1

2
+ 〈fo, fo〉2 Resσcs,f ·

1

2
+ 〈fo, fo〉2 |Resσcs,f |2

T 1−2σ

1− 2σ

Letting T → +∞ causes the last term to go to zero, and yields the indicated finite limit in the self-associate
case, since cs,f = cs,f and the supposed pole is on the real axis. ///

[3.14.6] Claim: All residues of Eisenstein series EPs,f are orthogonal to cuspforms.

Proof: There exists an orthogonal basis for cuspforms consisting of strong-sense cuspforms [3.7.3]. Thus, by
the theory of the constant term [8.3], that basis consists of functions of rapid decay in Siegel sets. Eisenstein
series are of moderate growth even when analytically continued, so the integral for 〈Es,f , F 〉 with strong-
sense cuspform F is absolutely convergent, and is 0. By properties of vector-valued integrals [14.1] and
holomorphic vector-valued functions [15.2], taking residues commutes with the integral, so the integral of
any residue against a cuspform is 0, whether or not that residue is square-integrable. ///
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3.15 Minimal-parabolic decomposition

The harmonic analysis required to express pseudo-Eisenstein series in terms of genuine Eisenstein series
reduces to Fourier transform on Euclidean spaces. Here we treat the extreme case P = Pmin , where no
cuspidal data enters. We consider minimal-parabolic pseudo-Eisenstein series Ψϕ with test function data ϕ.
All the r! functional equations [3.12.1] of the genuine Eisenstein series are needed to obtain the expression
of pseudo-Eisenstein series as integrals of Eisenstein series.

Let A+ be the archimedean split component of M = Mmin = MP , that is, the image of r copies of
(0,+∞) imbedded diagonally on the archimedean factors M∞ =

∏
v|∞Mv of MA. With M1 the subgroup of

M = Mmin
A with diagonal entries mi all satisfying |mi| = 1, we have Mmin

A = A+ ·M1. Via the exponential
R → (0,+∞), we have A+ ≈ Rr and Z+\A+ ≈ Rr−1. Spectral decomposition along the Euclidean space
Z+\A+ and the functional equations of the minimal-parabolic Eisenstein series Es = EPs yield the spectral
decomposition of minimal-parabolic pseudo-Eisenstein series. Let 〈, 〉 be the invariant pairing on the Lie
algebra q of Z+\A+, as in [3.10.2], where it was shown that Es converges nicely in the cone

{s ∈ q⊗R C : 〈α,Re(s)− 2ρ〉 > 0, for all simple positive roots α}

For simplicity, we only consider right KA-invariant Ψϕ with trivial central character formed from ϕ ∈
D(Z+\A+). Further, suppose that the pseudo-Eisenstein series Ψϕ is orthogonal to all residues of Eρ+s in
the cone

{s ∈ q⊗R C : 〈α,Re(s)〉 > 0, for all simple positive roots α}

[3.15.1] Theorem: Ψϕ is an integral of Eisenstein series:

Ψϕ =
1

r! (2πi)r−1

∫
ia∗
〈Ψϕ, Eρ+s〉 · Eρ+s ds

[3.15.2] Remark: From [3.8.1], the pseudo-Eisenstein series Ψϕ is compactly supported on Z+Gk\GA, and
Eρ+s is of moderate growth, so the integral

〈Ψϕ, Eρ+s〉 =

∫
Z+Gk\GA

Ψϕ · Eρ+s

implied by 〈Ψϕ, Eρ+s〉, while not an inner product, converges well.

Proof: To decompose right KA-invariant pseudo-Eisenstein series as integrals of minimal-parabolic Eisenstein
series, begin with Fourier transform on the Lie algebra q ≈ Rr−1 of Z+\A+. Let 〈, 〉 : q∗ × q → R be the
R-bilinear pairing of q with its R-linear dual q∗. For f ∈ D(q), the Fourier transform and inversion are

f̂(ξ) =

∫
q

e−i〈x,ξ〉 f(x) dx f(x) =
1

(2π)r−1

∫
q∗
ei〈x,ξ〉 f̂(ξ) dξ

Let exp : q → Z+\A+ be the Lie algebra exponential, and log : Z+\A+ → q the inverse. Given
ϕ ∈ D(Z+\A+), let f = ϕ ◦ exp be the corresponding function in D(q). The Mellin transform Mϕ of
ϕ is the Fourier transform of f :

Mϕ(iξ) = f̂(ξ)

Mellin inversion is Fourier inversion in these coordinates:

ϕ(expx) = f(x) =
1

(2π)r−1

∫
q∗
ei〈ξ,x〉 f̂(ξ) dξ =

1

(2π)r−1

∫
q∗
ei〈ξ,x〉Mϕ(iξ) dξ

Extend the pairing 〈, 〉 on q∗ × q to a C-bilinear pairing on the complexification. Use the convention

(expx)iξ = ei〈ξ,x〉 = e〈iξ,x〉
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With a = expx ∈ Z+\A+, Mellin inversion is

ϕ(a) =
1

(2π)r−1

∫
q∗
aiξMϕ(iξ) dξ =

1

(2πi)r−1

∫
iq∗

asMϕ(s) ds (with a ∈ Z+\A+ and s = iξ)

With this notation, the Mellin transform itself is

Mϕ(s) =

∫
Z+\A+

a−s ϕ(a) da (with s ∈ iq∗)

Since ϕ is a test function, its Fourier-Mellin transform is entire on q∗⊗RC. (It is in the Paley-Wiener space.)
Thus, for any σ ∈ q∗, Mellin inversion can be written

ϕ(a) =
1

(2πi)r−1

∫
σ+iq∗

asMϕ(s) ds

Via Iwasawa, identify Z+NAM
1\GA/KA ≈ A+, and let g → a(g) be the function that picks out the A+

component. For σ ∈ q∗ suitable for convergence [3.10.1], the following rearrangement is legitimate:

Ψϕ(g) =
∑

γ∈Pk\Gk

ϕ(a(γ ◦ g)) =
∑

γ∈Pk\Gk

1

(2πi)r−1

∫
σ+iq∗

Mϕ(s) a(γg)s ds

=
1

(2πi)r−1

∫
σ+iq∗

Mϕ(s)
( ∑
γ∈Pk\Gk

a(γg)s
)
ds =

1

(2πi)r−1

∫
σ+iq∗

Mϕ(s) · Es(g) ds

Anticipating the invocation of the functional equations, using the rapid vertical decay of Mϕ(s), we can
move the (r − 1)-fold integration to ρ + iq∗. For simplicity, we assume Ψϕ is orthogonal to any (multi-)
residues:

Ψϕ =
1

(2πi)r−1

∫
iq∗
Mϕ(ρ+ s) · Eρ+s ds

This does express the pseudo-Eisenstein series as a superposition of Eisenstein series. However, the
coefficients Mϕ are not expressed in terms of Ψϕ itself. This is rectified using the functional equations
of Eρ+s, as follows.

Since dn dmda dk/a2ρ with n ∈ NA, m ∈ M1, a ∈ A+, k ∈ KA is a Haar measure on GA, da dk/a2ρ is a
right G-invariant measure on NAM

1\GA, and da/a2ρ is the associated measure on NAM
1\GA/KA ≈ A+

and it descends to Z+\A+. In the region of convergence, for ϕ ∈ D(Z+Gk\GA),∫
Z+Gk\GA

f · Eρ+s =

∫
Z+Pk\GA

f · aρ+s =

∫
Z+NAMk\GA

∫
Nk∩NA

f(ng) a(ng)ρ+s dn dg

=

∫
Z+NAMk\GA

cP f · aρ+s =

∫
Z+\A+

cP f(a) · aρ+s da

a2ρ
=

∫
Z+\A+

cP f(a) · a−(ρ−s) da = McP f(ρ− s)

That is, with f = Ψϕ, ∫
Z+Gk\GA

Ψϕ · Eρ+s = McPΨϕ(ρ− s)

On the other hand, a similar unwinding of the pseudo-Eisenstein series, and recollection of the constant term
cPEρ+s from [3.10.3], gives∫

Z+Gk\GA
Ψϕ · Eρ+s =

∫
Z+\A+

ϕ(a) · cPEρ+s(a)
da

a2ρ
=

∫
Z+\A+

ϕ(a) ·
∑
w

cw,s a
ρ+w·s da

a2ρ

=
∑
w

cw,s

∫
A+

ϕ(a) a−(ρ−w·s) da =
∑
w

cw,sMϕ(ρ− w · s)
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Combining these,

McPΨϕ(ρ− s) =

∫
Z+Gk\GA

Ψϕ · Eρ+s =
∑
w

cw,sMϕ(ρ− w · s)

Replacing s by −s,

McPΨϕ(ρ+ s) =

∫
Z+Gk\GA

Ψϕ · Eρ−s =
∑
w

cw,−sMϕ(ρ+ w · s)

The Eisenstein series Es behaves reasonably under complex conjugation: Es = Es. This is visible in the
region of convergence, and persists under analytic continuation, since Es = Es is an equality of meromorphic
functions. Thus, the previous equality becomes

McPΨϕ(ρ+ s) =

∫
Z+Gk\GA

Ψϕ · Eρ+s =
∑
w

cw,−sMϕ(ρ+ w · s)

Behavior under complex conjugation is inherited by the constant term along P :∑
w

cw,s · aρ+w·s = cPEρ+s = cPEρ+s =
∑
w

cw,s · aρ+w·s

Since aρ+w·s = aρ+w·s, this gives cw,s = cw,s. For ρ + s on the unitary hyperplane ρ + ia∗, conveniently
s = −s, and cw,−s = cw,s, so

McPΨϕ(ρ+ s) =

∫
Z+Gk\GA

Ψϕ · Eρ+s =
∑
w

cw,sMϕ(ρ+ w · s)

With these points in hand, average the relation

Ψϕ =
1

(2πi)r−1

∫
iq∗
Mϕ(ρ+ s) · Eρ+s ds

over w ∈ W to convert it a W -symmetric expression, thereby to obtain an expression in terms of cPΨϕ,
using the functional equations:

Ψϕ =
1

|W |
∑
w

1

(2πi)r−1

∫
iq∗
Mϕ(ρ+w ·s)·Eρ+w·s ds =

1

|W |
1

(2πi)r−1

∫
ia∗

(∑
w

1

cw,s
Mϕ(ρ+w ·s)

)
·Eρ+s ds

Fortunately, from [3.12.6], |cw,s| = 1 for s ∈ iq∗, so this becomes

Ψϕ =
1

|W |
1

(2πi)r−1

∫
ia∗

(∑
w

cw,sMϕ(ρ+ w · s)
)
· Eρ+s ds =

1

|W |
1

(2πi)r−1

∫
ia∗
〈Ψϕ, Eρ+s〉 · Eρ+s ds

The cardinality of the Weyl group W is r-factorial. ///
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3.16 Cuspidal-data decomposition

Now we treat the opposite extreme, the case of maximal proper parabolics P = P r1,r2 , where cuspforms on
Levi components unavoidably enter. With δ : (0,∞) −→ J the diagonal imbedding at archimedean places,
the split component of P is

A+
P = {

(
δ(t1) · 1r1 0

0 δ(t2) · 1r2

)
: t1 > 0, t2 > 0}

Let

M1 = {m =

(
m1 0
0 m2

)
∈MP

A : |detm1| = 1 = |detm2|}

The family of pseudo-Eisenstein series Ψϕ with fixed cuspidal data f = f1⊗f2 on M1 with test-function data
just on the quotient Z+\A+

P ≈ (0,∞) of split components, as in [3.9], constitute the smallest natural vector
spaces of functions expressible as integrals of genuine Eisenstein series. In contrast, the pseudo-Eisenstein
series with test-function data on ZAMk\MA, as in [3.8], are smeared out across these smaller spaces of
functions.

For simplicity, we only consider everywhere spherical automorphic forms with trivial central character, that
is, right KA-invariant and left ZA-invariant functions. Thus, via Iwasawa decomposition, constant terms cP f
are identifiable with functions on the quotient of the Levi component of P . allowing easier description of
the cuspidal data, as follows. Let f1, f2 be cuspforms on GLr1(A) and GLr2(A), right invariant by the
standard maximal compacts everywhere, themselves with trivial central characters. We require that f1 and
f2 be eigenfunctions for all the spherical Hecke algebras, including the archimedean places. That is, f1

and f2 are cuspforms in a strong sense, beyond vanishing of constant terms. The theory of the constant
term [8.3] shows that cuspforms in this strong sense are of rapid decay. Then f = f1 ⊗ f2 is a function on
GLr1(A)×GLr2(A) ≈MP

A . For a test function η on the ray (0,∞), define

ϕ(znmk) = ϕη,f (znmk) = η

(
|detm1|r2
|detm2|r1

)
· f1(m1) · f2(m2)

with m =

(
m1 0
0 m2

)
∈MP

A , z ∈ Z+, n ∈ NA, k ∈ KA, with corresponding pseudo-Eisenstein series

ΨP
ϕ (g) = ΨP

η,f =
∑

γ∈Pk\Gk

ϕ(γ · g)

Convergence follows from comparison to similarly-formed genuine Eisenstein series in their range of absolute
convergence, in [3.11.2]. The decomposition of such pseudo-Eisenstein series in terms of the analogous
genuine Eisenstein series reduces to Fourier inversion on R together with the functional equation (and
analytic continuation) of the genuine Eisenstein series.

Without loss of generality, normalize so that
∫
Mk\M1 |f |2 = 1, and f is real-valued. In the self-associate

case, we can assume that either f1 = f2 or they are orthogonal.

[3.16.1] Theorem:

ΨP
η,f =

1

4πi

1
2 +i∞∫

1
2−i∞

〈ΨP
η,f , E

P
s,f 〉 · EPs,f ds +

∑
so

〈ΨP
η,f , RessoE

P
s,f 〉 · RessoE

P
s,f

The residual part is non-zero only for self-associate P and fw = f , in which case there are at most finitely-
many residues, all in L2.

[3.16.2] Remark: The argument literally only proves the previous equality pointwise. In fact, a natural
extension of the argument shows that the integral converges as a vector-valued integral, stemming from
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corresponding convergence of Euclidean Fourier inversion, one instance of the latter proven in [14.3], and
already exploited in [1.12] and [2.11-12] to prove Plancherel theorems for fragments of the spectrum. The
current form of the issue is addressed in [3.17].

Proof: Euclidean Fourier-Mellin inversion as in [1.12] expresses η ∈ D(0,∞) as

η(y) =
1

2π

∫ ∞
−∞
Mη(σ + it) yσ+it dt (for any σ ∈ R)

Thus,

η

(
|detm1|r2
|detm2|r1

)
· f1(m1) · f2(m2) =

1

2π

∫ ∞
−∞
Mη(σ + it) f(m)

∣∣∣ (detm1)r2

(detm2)r1

∣∣∣σ+it

dt

=
1

2πi

∫ σ+i∞

σ−i∞
Mη(s) f(m)

∣∣∣ (detm1)r2

(detm2)r1

∣∣∣s ds
As usual, to see how a genuine Eisenstein series arises, let

ϕs,f (znmk) =
∣∣∣ (detm1)r2

(detm2)r1

∣∣∣s · f(m)

with z ∈ ZA, n ∈ NP
A , m ∈ MP

A , and k ∈ KA. Moving σ to Re(s) > 1 for convergence of the sum, wind up
to

ΨP
η,f =

1

2πi

∫ σ+i∞

σ−i∞
Mη(s)

∑
γ∈Pk\Gk

ϕf,s(γg) ds =
1

2πi

∫ σ+i∞

σ−i∞
Mη(s) · EPs,f (g) ds

with the genuine Eisenstein series

EPs,f (g) =
∑

γ∈Pk\Gk

ϕs,f (γg) (for Re(s) > 1)

Expression of ΨP
η,f in terms of η should be replaced by an intrinsic expression in terms of ΨP

η,f . The non-
self-associate and self-associate cases are somewhat different from each other, due to the different behavior
of the constant terms of Eisenstein series in those two cases. We treat the non-self-associate case first.

In the non-self-associate case, from [3.14.4], EPf,s has no poles in Res ≥ 1
2 , and has reasonable vertical

behavior. Meanwhile, being essentially the Fourier transform of a compactly-supported smooth function,
Mη(s) is in the Paley-Wiener space, so is entire with rapid decay on vertical lines. Thus, we can shift the
vertical integral to the line σ = 1

2 without picking up any residues:

ΨP
η,f =

1

2πi

∫ 1
2 +i∞

1
2−i∞

Mη(s) · EPs,f (g) ds

To obtain an intrinsic expression for Mη(s): unwinding the pseudo-Eisenstein series, using an Iwasawa
decomposition, spherical-ness, and trivial central character, and the fact that cPE

P
s,f is just ϕs,f in the

non-self-associate case: with δP (m) = |detm1|r1/|detm2|r1 the modular function of P ,∫
Z+Gk\GA

ΨP
f,η · EPs,f =

∫
Z+Mk\MA

f(m) η
( |detm1|r2
|detm2|r1

)
· cPEPs,f (m)

dm

δP (m)

=

∫
Z+Mk\MA

f(m) η
( |detm1|r2
|detm2|r1

)
· f (m)

∣∣∣ (detm1)r2

(detm2)r1

∣∣∣1−s dm

δP (m)

From
Z+Mk\MA ≈ Z+\A+

P × Mk\M1

the pairing of pseudo-Eisenstein series against Eisenstein series becomes
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Z+Gk\GA

ΨP
η,f · EPs,f =

∫
Z+\A+

P×Mk\M1

|f(m)| · η(δ(a)) · δ(a)−s dmda

=

∫
Mk\M1

|f |2 ·
∫ ∞

0

η(r) · rs 1

r

dr

r
= 〈f, f〉 ·Mη(s)

yielding an intrinsic expression for Mη,

Mη(s) =
1

〈f, f〉

∫
Z+Gk\GA

ΨP
η,f · EPs,f

This computation incidentally demonstrates the absolute convergence of the integral. Unlike GL2 and self-
associate cases, the previous computation of the integral of a pseudo-Eisenstein series against an Eisenstein
series already gives an intrinsic expression for the coefficient Mη(s) in the spectral decomposition, with no
immediate reason to use functional equations to symmetrize the integral. With the normalization 〈f, f〉 = 1,
the spectral decomposition is

ΨP
η,f =

1

2πi

∫ 1
2 +i∞

1
2−i∞

Mη(s) · EPs,f ds =
1

2πi

∫ 1
2 +i∞

1
2−i∞

〈ΨP
η,f , E

P
s,f 〉 · EPs,f ds

where, as usual, the pairing 〈, 〉 cannot be the L2 pairing, because EPs,f is not in L2, but the implied integral
converges absolutely, as the above unwinding argument demonstrates.

In the self-associate case, the subcase where f and fw are orthogonal is similar to the non-self-associate
case, as follows. First,∫

Z+Gk\GA
ΨP
f,η · EPs,f =

∫
Z+Mk\MA

f(m) η
(
δ(m)

)
· cPEPs,f (m)

dm

δP (m)

=

∫
Z+Mk\MA

f(m) η
(
δ(m)

)
·
(
f(m) · δ(m)s + cPs,ff

w(m) δ(m)1−s
) dm

δP (m)

Since f and fw are orthogonal, the second summand in the constant term of the Eisenstein series integrates
to 0 against the unwound pseudo-Eisenstein series. From [3.14.4], the Eisenstein series has no poles in
Re(s) ≥ 1

2 , so we can move the contour to that line without picking up any residues. Again from

Z+Mk\MA ≈ Z+\A+
P × Mk\M1

the pairing of pseudo-Eisenstein series against Eisenstein series with Re(s) = 1
2 becomes∫

Z+Gk\GA
ΨP
η,f · EPs,f =

∫
Mk\MA

|f |2 ·
∫ ∞

0

η(r) · r1−s 1

r

dr

r
= 〈f, f〉 ·Mη(s)

yielding the same decomposition

ΨP
η,f =

1

2πi

∫ 1
2 +i∞

1
2−i∞

Mη(s) · EPs,f ds =
1

2πi

∫ 1
2 +i∞

1
2−i∞

〈ΨP
η,f , E

P
s,f 〉 · EPs,f ds

in the self-associate case with f orthogonal to fw.
In the subcase of the self-associate case where f = fw, moving the contour from Re(s) > 1 to Re(s) = 1

2
may pick up finitely-many residues of EPs,f , which by [3.14.4] are in L2. Thus,

ΨP
η,f − (residual part) =

1

2πi

∫ 1
2 +i∞

1
2−i∞

Mη(s) · EPs,f ds
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As suggested by both the GL2 case [2.11] and the minimal-parabolic GLn case [3.15], average the original
expression of ΨP

η,f with its image under replacing s by 1− s, to symmetrize:

ΨP
η,f − (residual part) =

1

4πi

1
2 +i∞∫

1
2−i∞

(
Mη(s) · EPs,f +Mη(1− s) · EP1−s,f

)
ds

=
1

4πi

1
2 +i∞∫

1
2−i∞

(
Mη(s) +Mη(1− s) 1

cs,f

)
· EPs,f ds

Because fw = f , applying the functional equation twice gives cs,f · c1−s,f = 1, and |cs,f | = 1 on Re(s) = 1
2 .

Unwind and use Iwasawa:

〈ΨP
η,f , E

P
s,f 〉 =

∫
Z+NAMk\GA

η
(
δ(m)

)
· cPEPs,f (m)

dm

δP (m)

=

∫
Z+\A+

P×Mk\M1

η(δ(a)) · f(m) ·
(
f(m) · δ(a)s + cs,ff(m) · δ(a)1−s

)
· δ(a)−1 dmda

=

∫ ∞
0

η(t) ·
(
t−s + cs,f t

s
) dt
t

=

∫ ∞
0

η(t) ·
(
t−s +

1

cs,f
ts
) dt
t

= Mη(s) +Mη(1− s) 1

cs,f

so once again

ΨP
η,f − (residual part) =

1

4πi

1
2 +i∞∫

1
2−i∞

〈ΨP
η,f , E

P
s,f 〉 · EPs,f ds

To address the finitely-many residues of EPs,f in the self-associate situation with fw = f , recall that the

poles so of Es,f in Re(s) > 1
2 are poles of cs,f of the same order. Since cs,f · c1−s,f = 1, necessarily c1−s,f

has a zero at so. Thus, from

McPΨP
η,f (s) = Mη(s) f(m) + c1−s,fMη(1− s) f(m)

at a pole so of Es

McPΨη,f (so) =
(
Mη(so) + c1−so,fMη(1− so)

)
· f(m)

=
(
Mη(so) + 0 · Mη(1− so)

)
· f(m) = Mη(so) f(m)

That is, the value McPΨη,f at so is just the value of Mη(so) f(m), so the coefficients appearing in the
decomposition of Ψη,f are intrinsic. Thus, the decomposition above has the form as in the statement of the
theorem. ///

3.17 Plancherel for pseudo-Eisenstein series

For a fixed cuspform f = f1 ⊗ f2 on the Levi component MP of a maximal proper parabolic P , we show
that the map from pseudo-Eisenstein series ΨP

η,f attached to test functions η on the ray Z+\A+
P and that

fixed cuspidal data f to decomposition coefficients 〈ΨP
η,f , E

P
s,f 〉 against genuine Eisenstein series with the

same cuspidal data is an isometry to the image. This gives a Plancherel theorem for the fragment of L2 given
by (the closure of) the span of {ΨP

η,f : test function η}. Similarly, we show that the map from minimal-
parabolic pseudo-Eisenstein series to their decomposition coefficients against minimal-parabolic Eisenstein
series is an isometry to its image, giving Plancherel for this part of the spectrum. In both cases, retain the
simplifying hypotheses of the last sections: trivial central character and right KA-invariance.
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Often, legitimization of natural procedures requires a linear map to commute with an integral. The best
assurance of commuting is when the integral converges as a vector-valued integral, as in [14.1]. Thus, we will
see that we want the spectral decomposition integrals to converge not merely pointwise, but as vector-valued
integrals in spaces of functions on Z+Gk\GA on which integration against cuspidal-data pseudo-Eisenstein
series are continuous functionals. In earlier examples [1.12] and [2.11-12], the pseudo-Eisenstein series were
compactly supported, so convergence of spectral integrals in C∞(Z+Gk\GA), without growth or support
constraints, was sufficient, and this was inherited from the analogous argument [14.3] for Fourier series on
R. The present discussion requires somewhat more, since cuspidal-data pseudo-Eisenstein series do not have
compact support, but are of rapid decay for strong-sense cuspidal data, as in [3.9] and [3.16].

Fix a strong-sense cuspform f = f1 ⊗ f2 on MP with P maximal proper. The Plancherel theorem for
associated pseudo-Eisenstein series comes from

[3.17.1] Theorem: With |f |2 = 1, letting so run over poles of EPs,f in Re(s) ≥ 1
2 , with η, θ test functions on

Z+\A+
P ) ≈ (0,∞),

〈ΨP
η,f ,Ψ

P
θ,f 〉 =

1

2πi

∫ 1
2 +i∞

1
2−i∞

〈ΨP
η,f , E

P
s,f 〉 · 〈ΨP

θ,f , E
P
s,f 〉 ds +

∑
so

〈ΨP
η,f , RessoE

P
s,f 〉 · 〈ΨP

η,f , RessoE
P
s,f 〉

[3.17.2] Remark: There are no residues in Re(s) ≥ 1
2 unless P is self-associate and 〈f, fw〉 6= 0, by [3.14.4].

Proof: Grant that the decomposition integral for ΨP
η,f converges well enough to pass integration against ΨP

θ,f

inside it: a vector-valued convergence certainly is sufficient, and more pedestrian arguments are also possible.
Then

〈ΨP
η,f ,Ψ

P
θ,f 〉 =

〈 1

2πi

∫ 1
2 +i∞

1
2−i∞

〈ΨP
η,f , E

P
s,f 〉 · EPf,s ds +

∑
so

〈ΨP
η,f , RessoE

P
s,f 〉 · RessoE

P
s,f , ΨP

θ,f

〉

=
1

2πi

∫ 1
2 +i∞

1
2−i∞

〈ΨP
η,f , E

P
s,f 〉 · 〈ΨP

θ,f , E
P
s,f 〉 ds +

∑
so

〈ΨP
η,f , RessoE

P
s,f 〉 · 〈ΨP

η,f , RessoE
P
s,f 〉

as claimed. ///

This spectral decomposition facilitates demonstration of the orthogonality of pseudo-Eisenstein series
remarked upon in [3.9.1], beyond the non-self-associate case from [3.11.5]:

[3.17.3] Corollary: Pseudo-Eisenstein series ΨP
η,f and ΨQ

θ,f ′ for maximal proper parabolics P,Q, with test
functions η, θ and cuspidal data f, f ′, are mostly mutually orthogonal: they are orthogonal if P,Q are not
associate, or if P = Q but 〈f, f ′〉 = 0, or if MP = wMQw−1 but 〈fw, f ′〉 = 0.

Proof: In all cases, the first part of the proof of the decomposition of pseudo-Eisenstein series in terms of
genuine Eisenstein series yields a vector-valued integral

ΨP
η,f =

1

2πi

∫ 1
2 +i∞

1
2−i∞

Mη(s) · EPs,f ds +
∑
so

Mη(so) · RessoE
P
s,f

converging in the C∞(Z+Gk\GA) topology, from the discussions just above. By [14.1], the inner product

functional against ΨQ
θ,f ′ can pass through the integral, and through the operation of residue as well [15.2].

Thus,

〈ΨP
η,f ,Ψ

Q
θ,f ′〉 =

1

2πi

∫ 1
2 +i∞

1
2−i∞

Mϕ(s) · 〈EPs,f ,Ψ
Q
θ,f ′〉 ds +

∑
so

Mϕ(so) · Resso〈EPs,f ,Ψ
Q
θ,f ′〉

The integrals of ΨQ
θ,f ′ against genuine Eisenstein series unwind to integrals of ϕQθ,f ′ against the Q-constant

terms of the Eisenstein series, computed in [3.11.9]. If Q is not associate to P , this is 0. If Q = P , or if P
is not self-associate and Q is the other associate to P , the integral includes an inner integral of f against f ′

or fw against f ′, as in the proof of Maaß-Selberg relations [3.14.2], and these are 0 by assumption. ///
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These formulas suggest the form of a Plancherel theorem for this fragment of L2. For P self-associate and
fw = f , let s1, . . . , sn be the poles of EPs,f in Re(s) ≥ 1

2 , and let

FPf : ΨP
η,f −→

(
t→ 〈ΨP

η,f , E
P
1
2 +it,f 〉

)
⊕
(
. . . , 〈ΨP

η,f , RessoE
P
s,f 〉, . . .

)
∈ L2( 1

2 + iR)⊕ Cn

be the spectral coefficient map. It is necessary to identify the image of FPf . Let

V =

 {F ∈ L
2( 1

2 + iR) : F (1− s) = cs,fF (s)} ⊕ Cn (for P self-associate and fw = f)

L2( 1
2 + iR) (for P not self-associate or 〈f, fw〉 = 0)

[3.17.4] Claim: The spectral coefficient map FPf is an isometry to its image in V , and that image is dense
in V .

Proof: The fact that it is an isometry to its image is [3.17.1]. The map η → Mη is essentially Fourier
transform, so sends the dense subset of test functions inside the Schwartz space to the dense subset of Paley-
Wiener functions inside the Schwartz space. The Schwartz space is dense in L2, so the functions Mη are
dense in L2( 1

2 + iR).
For P not self-associate, this is all we need, since there are no residues, and no folding-up of the spectral

integral, since the functional equation of the Eisenstein series does not relate it to itself. The case of P
self-associate but 〈f, fw〉 = 0 is similar.

Now consider P self-associate and fw = f . The residues of Es,f in Re(s) ≥ 1
2 are orthogonal to cuspforms,

by [3.14.6]. These residues have Q-constant terms 0 unless Q is associate to P , by [3.11.3], since taking
residues commutes with evaluation of constant terms, from generalities about vector-valued integrals [14.1]
and holomorphic or meromorphic vector-valued functions [15.2]. With Q associate to P , for cuspidal data
f ′ with 〈f ′, f〉 = 0 = 〈f ′, fw〉, we have orthogonality by [3.17.3]. Thus, by a process of elimination, these
residues must in the closure of the space of pseudo-cuspforms ΨP

η,f with test-function data η.
The decomposition integral gets folded up via the functional equation of Es,f to obtain coefficients

〈Ψη,f , Es,f 〉 = Mη(s) + c−1
s,fMη(1 − s). The map F → F (s) + c1−s,fF (1 − s) is a continuous map of

L2 to the subspace in V , and is continuous because |cs,f | is constant on Re(s) = 1
2 . Since the residues are in

the closure, the integral part of the spectral decomposition is in the closure. This proves that the spectral
map has dense image. ///

[3.17.5] Remark: Continuing in this vein, the L2 closure of the image of ΨP
η,f for fixed P , for all cuspforms

f , and for all test functions η, is the collection of functions orthogonal to cuspforms on G and with all
constant terms vanishing except cP and cQ.

In the opposite case, with minimal parabolic P = Pmin , in [3.10.1] the Eisenstein series EPs was shown
convergent for s ∈ 2ρ+ C, with cone

C = {s ∈ q⊗R C : 〈α,Re(s)〉 > 0, for all simple positive roots α}

The argument for the spectral decomposition of pseudo-Eisenstein series for P = Pmin in [3.15] showed that
only (multi-) residues of EPs for in s ∈ ρ + C are relevant to the spectral decomposition. Let q be the Lie
algebra of Z+\A+

P , as in [3.15].

[3.17.6] Theorem: Let η, θ be test functions on Z+\A+
P ≈ (0,∞)r−1 such that ΨP

ϕ is orthogonal to all

residues of EPρ+s with s ∈ C. Then

〈ΨP
η ,Ψ

P
θ 〉 =

1

r!

1

(2πi)r−1

∫
iq∗
〈Ψη, Eρ+s〉 · 〈Ψθ, Eρ+s〉 ds

Proof: In this example, since the pseudo-Eisenstein series have only test-function data, they are compactly-
supported on Z+Gk\GA, by [3.8.1]. Thus, integration against ΨP

θ in the following is justified by observing
that the spectral expansion of ΨP

η converges in the C∞(Z+Gk\GA) topology. The latter follows from the
corresponding assertion for Fourier transform on R and Rn, proven in [14.3], simply augmenting the argument
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for the spectral decomposition [3.15] to retain that aspect, rather than mere pointwise convergence. More
pedestrian arguments are possible, as usual. Granting that, compute directly:

〈ΨP
η ,Ψ

P
θ 〉 =

〈 1

r!

1

(2πi)r−1

∫
iq∗

〈ΨP
η , E

P
ρ+s〉 · EPρ+s ds, ΨP

θ

〉
=

1

r!

1

(2πi)r−1

∫
iq∗

〈ΨP
ϕ , E

P
ρ+s〉 · 〈ΨP

θ , E
P
ρ+s〉 ds

as claimed. ///

Toward Plancherel: Any F ∈ L2(iq∗) satisfying F (w · s) = cw,s · F (s) for all w ∈W is in the closure of
the image of the map ΨP

η → 〈ΨP
η , Eρ+s〉 ranging over all test functions η on iq∗. Indeed, the map η →Mη

is essentially Fourier transform, and as in other examples maps test functions to the Paley-Wiener space,
dense in L2. The averaging map

F −→
∑
w∈W

1

cw,s
F (w · s)

surjects L2(iq∗) to its subspace where F (w ·s) = cw,s ·F (s) for all w ∈W , since |cw,s| = 1 on iq∗, by [3.12.6].
However, we have not identified the (multi-) residues of Es that appear when moving contours, and cannot
immediately distinguish the subspace of pseudo-Eisenstein series orthogonal to these residues.

Further, we would need to be able to argue that these multi-residues are entirely inside the closure of the
images of the pseudo-Eisenstein series. For the latter, it seems necessary to invoke the complete spectral
decomposition of L2(Γ\G/K), that cuspforms and cuspidal data Eisenstein series attached to non-minimal
parabolics, and their L2 residues, as well as the minimal-parabolic pseudo-Eisenstein series, span L2(Γ\G/K).
Only then is the orthogonality of integrals of minimal-parabolic Eisenstein series to all the other spectral
components clear.

Thus, while we did prove that the map from the space of pseudo-Eisenstein series to integrals of Eisenstein
series is an isometry to its image, we did not quite identify that image.

3.18 Automorphic spectral expansions

We would like to express L2(Z+Gk\GA/KA) as the closure of subspaces consisting of eigenfunctions for
invariant differential operators and for spherical Hecke operators. Analogous decomposition of L2(Z+Gk\GA)
needs more general integral operators.

First, we can decompose by central characters into pieces L2(Z+Gk\GA, ω), for general reasons [3.6].
Then the general pattern is that there are cuspforms, and we are left to sift through their orthogonal

complement. That orthogonal complement is spanned by pseudo-Eisenstein series with cuspidal data
attached to the various parabolics. The cuspidal-data pseudo-Eisenstein series themselves are not
eigenfunctions for invariant differential operators or Hecke operators, but are essentially integrals of genuine
Eisenstein series, and the latter are eigenfunctions [3.11.6] and [3.11.11]. The functional equations of genuine
Eisenstein series show that parabolics P,Q that are associate, in the sense that their Levi components are
conjugate, produce the same functions on the group. Thus, a rough indexing of parts of L2 is by associate-
class of parabolics.

In general, residues of cuspidal-data Eisenstein series also enter the expression of pseudo-Eisenstein series.
The relevant residues are square-integrable, and inherit eigenfunction properties from the genuine Eisenstein
series. For GL2, these residues are relatively uninteresting, as in [2.B]. For GL3, the P 2,1 and P 1,2 parabolics’
Eisenstein series have no relevant residues [3.14.4], so the only residues are those from P 1,1,1 = Pmin , which
turn out to be constants. Granting the latter, fact, for example, with trivial central character, over groundfield
Q, since there are no unramified Hecke characters, functions Φ in L2(ZAGL3(Q)\GL3(A)/GL3(A)) have L2

decompositions

Φ =
∑

GL3 cfm F

〈Φ, F 〉 · F +
∑

GL2 cfm f

1

2πi

1
2 +i∞∫

1
2−i∞

〈Φ, E2,1
s,f 〉 · E

2,1
s,f ds +

1

3! · 2πi

∫
iq∗
〈Φ, Emin

ρ+s 〉 · Emin
ρ+s ds+

〈Φ, 1〉 · 1
〈1, 1〉

where the first sum is over an orthonormal basis of spherical cuspforms for GL3(Z) with trivial central
character, and the second sum is over an orthonormal basis for spherical cuspforms for GL2(Z) with trivial
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central character. The right-hand side is only promised to converge in an L2 sense, and the explicit and
implicit integrals involving Eisenstein series are merely isometric extensions of the corresponding literal
integrals.

Non-trivial residual spectrum for GL4: This is the smallest GLn in which some Eisenstein series
E2,2
s,f with real-valued f = fw have non-constant residues. [34] The Maaß-Selberg relations do not exclude

the possibility of a pole of such an Eisenstein series. A computation of the constant term of that Eisenstein
series shows that it is a ratio of values of the Rankin-Selberg L-function attached to f × f , which definitely
has a pole in Re(s) > 1

2 , yielding a square-integrable residue. Granting this, for example, over Q, spherical
Φ in L2(ZAGL4(Q)\GL4(A), that is, in L2(ZAGL4(Q)\GL4(A)/KA), have L2 decompositions described as
follows. For a modicum of coherence, let Ξn be a fixed orthonormal basis for spherical cuspforms with trivial
central character for GLn(Z), consisting of spherical Hecke eigenfunctions, etc. We grant that there is a
unique relevant residue Ff of E2,2

s,f⊗f for cuspforms f on GL2. Then

Φ =
∑
f∈Ξ4

〈Φ, F 〉 · F +
∑
f∈Ξ3

1

2πi

1
2 +i∞∫

1
2−i∞

〈Φ, E3,1
s,f 〉 · E

3,1
s,f ds +

∑
f1,f2∈Ξ2, f1 6=f 2

1

2πi

1
2 +i∞∫

1
2−i∞

〈Φ, E2,2
s,f1⊗f2

〉 · E2,2
s,f1⊗f2

ds

+
∑
f∈Ξ2

1

4πi

1
2 +i∞∫

1
2−i∞

〈Φ, E2,2

s,f⊗f 〉 · E
2,2

s,f⊗f ds +
∑
f∈Ξ2

〈Φ, Ff 〉 · Ff

+
∑
f∈Ξ2

1

4πi

1
2 +i∞∫

1
2−i∞

〈Φ, E2,1,1
s,f 〉 · E

2,1,1
s,f ds +

1

4! · 2πi

∫
iq∗
〈Φ, E1,1,1,1

ρ+s 〉 · E1,1,1,1
ρ+s ds+

〈Φ, 1〉 · 1
〈1, 1〉

Again, the explicit and implicit integrals involving Eisenstein series are in fact isometric extensions of the
literal integrals.

3.A Appendix: Bochner’s Lemma

Bochner’s Lemma is a one-of-a-kind device for meromorphic continuation in two or more complex variables.
[35] Let Ωo be a non-empty, connected, open set in Rn with n > 1. The tube domain Ω over Ωo is
Ω = Ωo + iRn, that is, the collection of z ∈ Cn with real part in Ωo. Let f be a holomorphic C-valued
function on Ω, of not-too-awful vertical growth, in the sense that, for x in fixed compact C ⊂ Ωo, there is
1 ≤ N ∈ Z such that

|f(x+ iy)| �C e|y|
N

(with |(y1, . . . , yn)|2 = y2
1 + . . .+ y2

n)

[3.A.1] Claim: f extends to a holomorphic function on the convex hull of Ω.

Proof: First, let x, ξ be two points in Ωo, such that the line segment connecting them lies entirely within Ωo.
We will specify a rectangle inside Ω with x, ξ the midpoints of opposite sides. Let γ = γx,ξ,R parametrize

[34] Non-constant residues for Pn,n are called Speh forms, since for GL4(R) the relevant unitary representations

appear in [Speh 1981/2]. The general pattern for residual spectrum for GLn was conjectured in [Jacquet 1982/3] and

proven in [Moeglin-Waldspurger 1989].
[35] I first saw Bochner’s lemma in the appendix of [Langlands 1967/76] treating minimal-parabolic Eisenstein series

for SLn(o) for rings of integers o. General accounts of several complex variables are [Bochner-Martin 1948] and

[Hörmander 1973].
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the rectangle with sides individually parametrized by

side through x: x+ it(x− ξ) (with −R ≤ t ≤ R)

top: (1− t)(x+ iR(x− ξ)) + t(ξ + iR(x− ξ)) (with 0 ≤ t ≤ 1)

side through ξ: ξ − it(x− ξ) (with −R ≤ t ≤ R)

bottom: (1− t)(ξ − iR(ξ)) + t(x− iR(x− ξ)) (with 0 ≤ t ≤ 1)

The expressions for the top and bottom simplify to top: (1− t)x+ tξ + iR(x− ξ) (with 0 ≤ t ≤ 1)

bottom: (1− t)ξ + tx− iR(x− ξ) (with 0 ≤ t ≤ 1)

This rectangle lies inside Z = x+ C · (x− ξ) ≈ C, and is contractible in Ω. Let j(ζ) = x+ ζ · (x− ξ). In Z,
Cauchy’s formula in one variable is

f ◦ j(ζo) =
1

2πi

∫
γ

f ◦ j(ζ) dζ

ζ − ζo

To legitimately push the top and bottom of the rectangle to infinity, use the growth assumption on f , and
the modified integral expression

f ◦ j(ζo) = e−ζ
2N
o

1

2πi

∫
γ

eζ
2N · f ◦ j(ζ) dζ

ζ − ζo

Thus, taking the limit R→ +∞,

eζ
2N
o ·f(ζo ·(x−ξ)) =

1

2π

∫ +∞

−∞

e(x+it(x−ξ))2N

f(x+ it(x− ξ)) dt
it− ζo

+
1

2π

∫ +∞

−∞

e(ξ−it(x−ξ))2N

f(ξ − it(x− ξ)) dt
−1− it− ζo

The right-hand side makes sense for any x, ξ ∈ Ωo, whether or not the line segment connecting them lies in
Ωo. Further, the right-hand side is holomorphic in x, ξ ∈ Ω. Thus, the left-hand side is holomorphic, and
gives the extension to the convex hull of Ω. ///

3.B Appendix: Phragmén-Lindelöf theorem

This is from [Lindelöf 1908] and [Phragmén-Lindelöf 1908].
The maximum modulus principle can easily be misapplied on unbounded open sets. That is, while for

an open set U ⊂ C with bounded closure U , it does follow that the sup of a holomorphic function f on U
extending continuously to U occurs on the boundary ∂U of U , holomorphic functions on an unbounded set
can be bounded by 1 on the edges but be violently unbounded in the interior.

The usual simple example is f(z) = ee
z

:∣∣∣eex+iy
∣∣∣ = eRe(ex+iy) = ee

x·cos y

On one hand, for fixed y = Im z with cos y > 0, the function blows up as x = Re z → +∞. On the other
hand, for cos y = 0 the function is bounded. Thus, on the strip −π2 ≤ y ≤

π
2 , the function ee

z

is bounded on
the edges but blows up as x→ +∞.

This example suggests growth conditions under which a bound of 1 on the edges implies the same bound
throughout the strip. In fact, the suggested bound is essentially sharp, in light of the example. For a
half-strip, the theorem is
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3. SL3(Z), SL4(Z), SL5(Z), . . .

[3.B.1] Theorem: For f a holomorphic function on the horizontal half-strip

{z : −π
2
≤ y ≤ π

2
and 0 ≤ x}

satisfying

|f(z)| � ee
C·Rez

(for some constant 0 ≤ C < 1)

|f(z)| ≤ 1 on the edges of the half-strip implies |f(z)| ≤ 1 in the interior, as well.

Proof: Unsurprisingly, the proof is a reduction to the usual maximum modulus principle. Take any fixed D
in the range

C < D < 1

The function
Fε(z) = f(z)/eεe

D·z
(for ε > 0)

is bounded by 1 on the edges of the half-strip, and in the interior goes to 0 uniformly in y as x→ +∞, for
fixed ε > 0, exploiting the modification with D. Thus, on a rectangle

RT = {z : −π
2
≤ y ≤ π

2
, and 0 ≤ x ≤ T}

for sufficiently large T > 0 depending upon ε, the function Fε is bounded by 1 on the edge. The usual
maximum modulus principle implies that Fε is bounded by 1 throughout. That is, for each fixed zo in the
half-strip,

|f(zo)| ≤ eε·e
DRezo

(for all ε > 0)

Let ε→ 0+, giving |f(zo)| ≤ 1. ///

[3.B.2] Remark: Analogous theorems on strips of other widths follow by using ec·e
z

with suitable constants
c.

The theorem on a full strip follows by using ecosh z in place of ee
z

, as follows.

[3.B.3] Theorem: For f a holomorphic function on the horizontal strip

{z : −π
2
≤ Im z ≤ π

2
}

satisfying
|f(z)| � ecoshC·Rez (for some constant 0 ≤ C < 1)

|f(z)| ≤ 1 on the edges of the strip implies |f(z)| ≤ 1 in the interior, as well.

Proof: Again, reduce to the maximum modulus principle. Fix D in the range C < D < 1. The function

Fε(z) = f(z)/eε coshDz (for ε > 0)

is bounded by 1 on the edges of the strip, and in the interior goes to 0 uniformly in y as x→ ±∞, for fixed
ε > 0. Thus, on a rectangle

RT = {z : −π
2
≤ y ≤ π

2
, and − T ≤ x ≤ T} (for large T > 0, depending upon ε)

the function Fε is bounded by 1 on the edge. The usual maximum modulus principle implies that Fε is
bounded by 1 throughout. That is, for each fixed zo in the half-strip,

|f(zo)| ≤ eε coshDRe zo (for all ε > 0)

We can let ε→ 0+, giving |f(zo)| ≤ 1. ///
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4. Invariant differential operators

1. Derivatives of group actions: Lie algebras
2. Laplacians and Casimir operators
3. Details about universal algebras
4. Descending to G/K
5. Example computation: SL2(R) and H
6. Example computation: SL2(C)
7. Example computation: Sp∗1,1
8. Example computation: SL2(H)
Appendix A: brackets
Appendix B: existence and uniqueness

We want a method to determine natural Laplacian-like differential operators invariant under group actions
in coordinate-free terms, and also exhibit the operators in convenient coordinate systems. That is, we do not
want to specify operators in coordinate systems and check invariance, but, rather, know invariance a priori.
The first example is the well-known operator

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
(in coordinate(s) z = x+ iy on H)

Although, once exhibited, this operator is certifiably invariant under the linear fractional action of SL2(R),
it is oppressive and unenlightening to do this checking. Worse, it is misguided to think in terms of such
verification. The relevant issue is the coordinate-independent origin of the operator, expressed subsequently
in coordinates. No prior acquaintance with Lie groups or Lie algebras is assumed.

4.1 Derivatives of group actions: Lie algebras

Let G be a subgroup of GLn(R) or GLn(C) or GLn(H) acting differentiably [36] on the right on a smooth

manifold [37] thereby acting on functions f on M by

(g · f)(m) = f(mg)

Our operational definition of the (real) Lie algebra g of G is

g = {real n-by-n real matrices x : etx ∈ G for all real t}

where the matrix exponential is

exp(x) = ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

This definition makes clear that g is closed under scalar multiplication, but not that it is closed under
addition. When x and y are n-by-n real or complex matrices with xy = yx, then ex+y = ex · ey, but this
does not hold more generally, so we cannot easily conclude closed-ness under addition. We will prove closure
under addition as a side effect of proof in [4.A] that such a Lie algebra is closed under Lie brackets

x× y −→ [x, y] = xy − yx (for x, y ∈ g, with x× y → xy matrix multiplication)

[36] When the group G and the set M are subsets of Euclidean spaces defined as zero sets or level sets of differentiable

functions, differentiability of the action can be posed in the ambient Euclidean coordinates and the Implicit Function

Theorem. In any particular example, even less is usually required to make sense of this requirement.
[37] As in other instances of a group acting transitively on a set with additional structure, under modest hypotheses

M is a quotient Go\G of G by the isotropy group Go of a chosen point in M .

159



4. Invariant differential operators

In any particular example, the vector space property is readily verified, as below. However, this binary
operation x × y → [x, y] is not similar to more elementary ring or algebra multiplications, as it is not
associative, is anti-commutative, and [x, x] = 0.

For each x ∈ g we have a differentiation Xx of functions f on M in the direction x, by

(Xx f)(m) =
d

dt

∣∣∣∣
t=0

f(m · etx)

This applies uniformly to any space M on which G acts (differentiably). [38] The differential operators Xx

for x ∈ g do not typically commute with the action of g ∈ G, although the relation between the two is
reasonable:

(g ◦Xx ◦ g−1)f(h) =
d

dt

∣∣∣∣
t=0

f(h · getxg−1) =
d

dt

∣∣∣∣
t=0

f(h · et·gxg
−1

) = Xgxg−1f(h)

[4.1.1] Example: The condition etx ∈ SLn(R) for all real t is that det(etx) = 1. To see what this requires
of x, observe that for n-by-n (real or complex) matrices x

det(ex) = etr x (where tr is trace)

To see why, both determinant and trace are invariant under conjugation x → gxg−1, so without loss of
generality x is upper-triangular. Then ex is upper-triangular, with diagonal entries exii , with diagonal
entries xii of x. Thus,

det(ex) = ex11 · · · exnn = ex11+...+xnn = etr x

Using this, the determinant-one condition is

1 = det(etx) = et·tr x = 1 + t · trx+
(t · trx)2

2!
+ . . .

Taking the derivative with respect to t and setting t = 0 gives 0 = trx. Looking at the right-hand side of
the expanded 1 = det(etx), this condition is also sufficient for det(etx) = 1. Thus,

Lie algebra sln(R) of SLn(R) = { n-by-n realx : trx = 0}

[4.1.2] Example: Similarly,

Lie algebra sln(C) of SLn(C) = { n-by-n complexx : trx = 0}

[4.1.3] Example: From det(ex) = etr x, any matrix ex is invertible, so

Lie algebra gln(R) of GLn(R) = {all real n-by-n matrices}

[4.1.4] Example: For the simplest real orthogonal group G = O(n,R) = {g ∈ GLn(R) : g> · g = 1n}, using

(etx)> = etx
>

,

1 = (etx)> · etx = (1 + tx> + . . .) · (1 + tx+ . . .) = 1 + t(x+ x>) + . . .

Thus, necessarily x> + x = 0. On the other hand, when x> + x = 0 we have x> = −x, so

(etx)> · etx = e−tx · etx = (etx)−1 · etx = 1

[38] The action of the Lie algebra by differentiating the action of the Lie group also applies abstractly to certain vectors

v in vectorspaces V on which G acts, namely, those v such that g → g · v is a differentiable V -valued function on G.

Under mild hypotheses, smooth vectors are dense [14.6].
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This shows that the Lie algebra of O(n,R) is skew-symmetric matrices.

[4.1.5] Example: Exponentiation of matrices with quaternion entries is similar:

Lie algebra gln(H) of GLn(H) = {all quaternion n-by-n matrices}

Slightly more subtly,

Lie algebra sln(H) of SLn(H) = {n-by-n quaternionicx :
∑
i

trxii = 0} (quaternion trace)

[4.1.6] Example: For G = Sp∗1,1 ⊂ GL2(H), let S =

(
0 1
1 0

)
and let σ be quaternion-conjugate-transpose.

The defining condition S = (etx)σS(etx) is S = etx
σ

Setx. Differentiating with respect to t ∈ R gives
0 = xσetx

σ

Setx + etx
σ

Sxetx. Setting t = 0 gives xσS + Sx = 0, which is SxσS−1 = −x. Multiplying out,
this condition is (

−a −b
−c −d

)
= S

(
a b
c d

)σ
S−1 = S

(
a c
b d

)
S−1 =

(
d b
c a

)
The sufficiency of this necessary condition is seen by exponentiating, noting that exponentiation respects
conjugation: first,

(etx)σS(etx) = S · S(etx)σS · (etx)S · Setx
σ

Setx = S · et·Sx
σSetx = S · et·(−x)etx = S · e−txetx = S

Thus,

Lie algebra sp∗1,1(H) of Sp∗1,1 = {2-by-2 quaternionic

(
a b
c −a

)
: b = −b, c = −c}

[4.1.7] Example: In the simple case that the space M is G itself, there is a second action of G on itself in
addition to right multiplication, namely left multiplication. The right differentiation by elements of g does
commute with the left multiplication by G, for the simple reason that

F (h · (g etx)) = F ((h · g) · etx) (for g, h ∈ G, x ∈ g)

That is, g gives left G-invariant differential operators on G.

[4.1.8] Claim: The conjugation action of G on g stabilizes g, and g ·Xx · g−1 = Xgxg−1 for g ∈ G and x ∈ g.

Proof: For smooth f on M ,

(g ·Xx · g−1 · f)(m) = (g(Xx(g−1f)))(m) = (Xx(g−1f))(mg)

=
d

dt

∣∣∣∣
t=0

(g−1f)(mg etx) =
d

dt

∣∣∣∣
t=0

f(mg etx g−1)

Again, conjugation and exponentiation interact well:

g etx g−1 = g

(
1 + tx+

(tx)2

2!
+ . . .

)
g−1 = 1 + tgxg−1 +

(tgxg−1)2

2!
+ . . . = etgxg

−1

Thus,

(g ·Xx · g−1 · f)(m) =
d

dt

∣∣∣∣
t=0

f(mg etx g−1) =
d

dt

∣∣∣∣
t=0

f(metgxg
−1

) = (Xgxg−1 f)(m)

as claimed, and gxg−1 ∈ g. ///

The commutant expression [x, y] = xy − yx, the Lie bracket, arises naturally:
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4. Invariant differential operators

[4.1.9] Claim: Since G is non-abelian in many cases of interest, typically ex · ey 6= ey · ex for x, y ∈ g.
Specifically,

etx ety e−tx e−ty = 1 + t2[x, y] + (higher-order terms) (where [x, y] = xy − yx)

Proof: This is a direct computation, easy if we drop cubic and higher-order terms.

etx ety e−tx e−ty = (1 + tx+ t2x2/2)(1 + ty + t2y2/2)(1− tx+ t2x2/2)(1− ty + t2y2/2)

= (1 + t(x+ y) +
t2

2
(x2 + 2xy + y2)) (1− t(x+ y) +

t2

2
(x2 + 2xy + y2))

= 1 + t2
(
x2 + 2xy + y2 − (x+ y)(x+ y)

)
=
(
1 + t2(2xy − xy − yx)

)
= 1 + t2[x, y]

as claimed. ///

[4.1.10] Claim: The conjugation/adjoint action of G on g respects brackets:

[gxg−1, gyg−1] = g[x, y]g−1 (for x, y ∈ g and g ∈ G)

Proof: For Lie brackets expressed in terms of matrix operations, this is straightforward:

[gxg−1, gyg−1] = gxg−1 gyg−1 − gyg−1 gxg−1 = gxyg−1 − gyxg−1 = g(xy − yx)g−1 = g[x, y]g−1

as claimed. ///

Composition of the derivatives Xx operators mirrors the bracket in the Lie algebra:

[4.1.11] Theorem: The map x→ Xx is a Lie algebra homomorphism, meaning it respects these commutants
(brackets): Xx ◦Xy −Xy ◦Xx = X[x,y]. (Proof: see [4.A].)

4.2 Laplacians and Casimir operators

As in the last theorem, commutants of differential operators coming from Lie algebras g are again
differential operators coming from the Lie algebra, namely [39]

Xx ◦Xy −Xy ◦Xx = [Xx, Xy] = X[x,y] = Xxy−yx

However, the composition of differential operators has no analogue inside the Lie algebra. That is, typically,

Xx ◦Xy 6= Xε (for any ε ∈ g)

We want an object associated to the Lie algebra that allows this composition. [40] That is, we want an
associative algebra Ug universal in the sense that any linear map ϕ : g → B to an associative algebra B
respecting brackets

ϕ([x, y]) = ϕ(x)ϕ(y)− ϕ(y)ϕ(x) (for x, y ∈ g)

[39] For matrix groups with Lie bracket described via matrix multiplication [x, y] = xy − yx, properties otherwise

needing explicit declaration, such as the Jacobi identity

[x, [y, z]]− [y, [x, z]] = [[x, y], z], can be verified directly by expanding the brackets. The content of the Jacobi identity

is that the map ad : g→ End(g) by (adx)(y) = [x, y] is a Lie algebra homomorphism. That is, [adx, ady] = ad[x, y].
[40] For Lie algebras g such as so(n), sln, or gln lying inside matrix rings, typically Xx ◦ Xy 6= Xxy. That is,

multiplication of matrices is definitely not multiplication in any sense that will match multiplication (composition)

of differential operators.
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should give a unique associative algebra homomorphism Φ : Ug −→ B. There must be a connection to the
original ϕ : g→ B, so we require existence of a fixed map i : g→ Ug respecting brackets and commutativity
of a diagram

Ug
∃! Φ (assoc)

&&
g

i (Lie)

OO

∀ϕ (Lie)
//______ B

where the labels tell the type of the maps.
Below, we see that Ug is a canonical quotient of the universal associative algebra AV of a vector space

V over a field k, very often called the tensor algebra and denoted
⊗•

V , although, unhelpfully, this name
refers to details of a specific construction, rather than to the characterizing property of the algebra. The
characterizing property of the universal associative algebra AV is that there is a fixed linear j : V → AV , and
any linear map V → B to an (associative) algebra B extends to a unique associative algebra map AV → B.
That is, there is a commutative diagram

AV
Φ (assoc)

''
V

j (linear)

OO

ϕ (linear)
//______ B

Since the universal associative algebra j : g→ Ag is universal with respect to maps g→ B that are merely
linear, not necessarily preserving the Lie brackets, there is a (unique) natural (quotient) map q : Ag→ Ug.

The conjugation (Adjoint) action x→ gxg−1 of G on g should extend to an action of G on Ug (which we
may still write as conjugation) compatible with the multiplication in Ug. That is, we expect g(α) = gαg−1 (for α ∈ g and g ∈ G)

g(αβ) = g(α) · g(β) (for α, β ∈ Ug and g ∈ G)

The action of G on g should extend to Ag, too, and the quotient map q : Ag → Ug should respect that
action. We also assume for the moment that we have a non-degenerate symmetric bilinear form 〈, 〉 on g,
and that this form is G-invariant: 〈gxg−1, gyg−1〉 = 〈x, y〉 for x, y ∈ g and g ∈ G.

Granting these things, we can intrinsically describe the simplest non-trivial G-invariant element in Ug, the
Casimir element Ω. In any action of G, the Casimir element gives rise to a G-invariant differential operator,
the corresponding Casimir operator. In many situations the Casimir operator is the suitable notion of
invariant Laplacian. Map ζ : EndC(g)→ Ug by

EndC(g)
natural ≈ //

ζ

33g⊗ g∗
≈ via 〈,〉 // g⊗ g

inclusion // Ag
quotient // Ug

where the first map is an instance of the inverse of the isomorphism V ⊗ V ∗ → EndV for finite-dimensional
vectorspaces V , the second map uses the inverse of the isomorphism V → V ∗ given by v → 〈−, v〉 for a
non-degenerate bilinear form 〈, 〉 on V . The action of G respects all the maps. An obvious endomorphism
of g commuting with the action of G on g is the identity map idg. Thus,

[4.2.1] Claim: The Casimir element Ω = ζ(idg) is a G-invariant element of Ug.

Proof: Since ζ is G-equivariant by construction,

gζ(idg)g−1 = ζ(g idg g
−1) = ζ(g g−1 idg) = ζ(idg)

since idg commutes with any endomorphism of g. Thus, ζ(idg) is a G-invariant element of Ug. ///
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4. Invariant differential operators

The possible hazard is that ζ(idg) is accidentally 0. This non-vanishing can be proven by demonstrating

at least one associative algebra B and g→ B so that the induced image of Casimir is non-zero in B. [41]

The above prescription does implicitly tell how to express the Casimir element Ω = ζ(idg) in various
coordinates. Namely, for any basis x1, . . . , xn of g, let λ1, . . . , λn be the corresponding dual dual basis of the
dual g∗: λi(xj) is 0 or 1 as i = j or not. Let x∗1, . . . , x

∗
n be the corresponding dual basis for g in terms of 〈, 〉,

namely, 〈xi, x∗j 〉 is 0 or 1 as i = j or not. Then

EndC(g)
≈ //

ζ

))
g⊗ g∗

≈ via 〈,〉 // g⊗ g
inc // Ag

quot // Ug

idg
//∑

i xi ⊗ λi //∑
i xi ⊗ x∗i //∑

i xi ⊗ x∗i //∑
i xix

∗
i = Ω

The intrinsic description of the Casimir element as ζ(idg) shows that it does not depend upon the choice of

basis x1, . . . , xn. [42]

4.3 Details about universal algebras

We fill in details about Ug and Ag, including constructions. Again, we want an associative algebra Ug
such that any Lie algebra map ϕ : g→ B to an associative algebra B with the property

ϕ([x, y]) = ϕ(x)ϕ(y)− ϕ(y)ϕ(x) (for x, y ∈ g)

gives a unique associative algebra homomorphism Φ : Ug −→ B fitting into a commutative diagram

Ug
Φ (assoc)

&&
g

i (Lie)

OO

ϕ (Lie)
//______ B

Similarly, we want a universal associative algebra AV of a vector space V over a field k, with a specified
linear j : V → AV , such that any linear map V → B to an associative algebra B extends to a unique
associative algebra map AV → B fitting into a commutative diagram

AV
Φ (assoc)

''
V

j (linear)

OO

ϕ (linear)
//______ B

Granting for a moment the existence of Ag, construct Ug as the quotient of Ag by the two-sided ideal
generated by all elements (

jx⊗ jy − jy ⊗ jx
)
− j[x, y] (where x, y ∈ g)

[41] The non-vanishing is also a corollary of the Poincaré-Birkhoff-Witt theorem, but we need not invoke it.
[42] Some sources define the Casimir element as

∑
i xi x

∗
i in the universal enveloping algebra, show by computation

that it is G-invariant, and show by change-of-basis that the defined object is independent of the choice of basis. That

element
∑
i xi x

∗
i is of course the image in Ug of the tensor

∑
i xi ⊗ x

∗
i (discussed here) which is simply the image of

idg in coordinates.
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The map i : g→ Ug is the obvious composite q◦j. Given a Lie algebra map ϕ : g→ B from g to an associative
algebra, we show that the induced map Φ : Ag −→ B factors through q : Ag −→ Ug. Diagrammatically, we
claim the existence of an arrow to fill in a commutative diagram

Ag

q

!!BBBBBBBB
Φ

��

Ug

  @
@

@
@

g

j

OO

i

>>|||||||| ϕ // B

Indeed, the the Lie algebra homomorphism property ϕ(x)ϕ(y)−ϕ(y)ϕ(x)−ϕ[x, y] = 0 and the commutativity
imply that

Φ
(
jx⊗ jy − jy ⊗ jx

)
− j[x, y]

)
= 0 (for all x, y ∈ g)

That is, Φ vanishes on the kernel of the quotient map q : Ag → Ug, so factors through this quotient map.
This proves the existence of Ug in terms of Ag.

The conjugation (Adjoint) action x→ gxg−1 of G on g should extend to an action of G on Ug (which we
may still write as conjugation) compatible with the multiplication in Ug. That is, we expect g(α) = gαg−1 (for α ∈ g and g ∈ G)

g(αβ) = g(α) · g(β) (for α, β ∈ Ug and g ∈ G)

The action of G on g should extend to Ag, too, and the quotient map q : Ag→ Ug should respect that action.
Fulfillment of this requirement, or the observation that it is automatically fulfilled, is best understood from
further details about Ag, just below.

[4.3.1] Construction of universal associative algebras The tensor construction of Ag gives enough
further information so that we can see that it inherits an action of G from g, and that this action is inherited
by Ug. The construction of AV in terms of tensors is

AV = k ⊕ V ⊕ (V ⊗ V ) ⊕ (V ⊗ V ⊗ V )⊕ . . .

with multiplication given by (the bilinear extension of) the obvious

(v1 ⊗ . . .⊗ vm) · (w1 ⊗ . . .⊗ wn) = v1 ⊗ . . .⊗ vm ⊗ w1 ⊗ . . .⊗ wn

The well-definedness of the multiplication follows from noting that there is a unique linear map⊗m
V ⊗

⊗n
V −→

⊗m+n
V induced from the bilinear map

(v1 ⊗ . . .⊗ vm)× (w1 ⊗ . . .⊗ wn) −→ v1 ⊗ . . .⊗ vm ⊗ w1 ⊗ . . .⊗ wn

Distributivity of multiplication over addition follows from the fact that the multiplication maps are induced
from bilinear maps. The map V → AV is to the summand V ⊂ AV , which shows that this map is injective.
It is also true that g→ Ug is injective, but the latter fact is considerably less trivial to prove.

To verify that this constructed object has the requisite universal property, let ϕ : V → B be a linear map
to an associative algebra. Then the linear map Φn :

⊗n
V → B defined by

Φ(v1 ⊗ . . .⊗ vn) = ϕ(v1) . . . ϕ(vn) (latter is multiplication in B)

is well-defined, being induced from the n-multilinear map

V × . . .× V︸ ︷︷ ︸
n

−→ B by v1 × . . .× vn −→ ϕ(v1) . . . ϕ(vn)
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4. Invariant differential operators

Letting k be the underlying field (probably either C or R), there is also the map Φ0 : k → B by a → 1B .
The collection of maps Φn gives a linear map Φ : AV → B. It also obviously preserves multiplication. This
proves that the tensor construction yields the universal associative algebra.

[4.3.2] G-action on Ag and Ug The notationally obvious G-action on Ag is

g(x1 ⊗ . . .⊗ xm)g−1 = gx1g
−1 ⊗ . . .⊗ gxmg−1

This gives a well-defined linear map of each
⊗n

g to itself, because it is the unique map induced by the
multilinear map

g× . . .× g︸ ︷︷ ︸
n

−→
⊗n

g by v1 × . . .× vn −→ gv1g
−1 ⊗ . . .⊗ gvng−1

The map is visibly compatible with multiplication. Since g injects to Ag, we can safely suppress the map j
in this discussion. The G-action stabilizes the kernel of the kernel of q : Ag→ Ug, since

g(
(
x⊗ y − y ⊗ x

)
− [x, y]

)
g−1 = g(x⊗ y)g−1 − g(y ⊗ x)g−1 − g[x, y]g−1

= gxg−1 ⊗ gyg−1 − gyg−1 ⊗ gxg−1 − [gxg−1, gyg−1]

This gives a natural action of G on Ug, respecting the quotient q : Ag→ Ug, and, therefore, respecting the
map g → Ug. The universal associative algebra Ag is sufficiently large that, roughly, it has no non-trivial
relations. Thus, the notationally-obvious apparent definition of the G-action on Ag is well-defined. Then
the G-action descends to Ug.

[4.3.3] Killing’s bilinear form The last necessary item is more special, and not possessed by all Lie
algebras. We want a non-degenerate symmetric R-bilinear map

〈, 〉 : g× g −→ R

G-equivariant in the sense that
〈gxg−1, gyg−1〉 = 〈x, y〉

Happily, for so(n), sln(R), and gln(R), the obvious trace form

〈x, y〉 = tr(xy)

suffices. For G described as a subgroup of GLn(C), take 〈x, y〉 = Re(trxy). For G described as a subgroup
of GLn(H), take 〈x, y〉 =

∑
ij(xijyji + xijyji). For notational simplicity, we write out the arguments only

for G ⊂ GLn(R). The behavior under the action of G is clear:

〈gxg−1, gyg−1〉 = tr
(
gxg−1 · gyg−1

)
= tr

(
gxyg−1

)
= tr(xy) = 〈x, y〉

The non-degeneracy and G-equivariance of 〈, 〉 give a natural G-equivariant isomorphism g→ g∗ by

x −→ λx by λx(y) = 〈x, y〉 (for x, y ∈ g)

When G acts on a vector space V the action on the dual V ∗ is by (g · λ)(v) = λ(g−1 · v) for v ∈ V and
λ ∈ V ∗. As usual, the inverse appears to preserve associativity. The equivariance of 〈, 〉 gives

λg·x(y) = λgxg−1(y) = 〈gxg−1, y〉 = 〈x, g−1yg〉 = λx(g−1yg) = λx(g−1 · y) = (g · λx)(y)

proving that the map x→ λx is a G-isomorphism.
Finally, recall that the natural isomorphism V ⊗k V ∗ −→ EndkV for V a finite-dimensional vector space

over a field k is given by the k-linear extension of the map v×λ −→ (w → λ(w) ·v) for v, w ∈ V and λ ∈ V ∗.
The fact that the map is an isomorphism follows by dimension counting, using the finite-dimensionality.
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4.4 Descending to G/K

Now we see how the Casimir operator Ω on G gives G-invariant Laplacian-like differential operators on
quotients G/K. Let k ⊂ g be the Lie algebra of a maximal compact K ⊂ G. Again, the action of x ∈ g on
the right on functions f on G, by

(x · f)(g) =
d

dt

∣∣∣∣
t=0

f(g etx)

is left G-invariant for the straightforward reason that

f(h · (g etx)) = f((h · g) · etx)) (for g, h ∈ G, x ∈ g)

For a (closed) subgroup K of G let q : G→ G/K be the quotient map. A function f on G/K gives the right
K-invariant function F = f ◦ q on G. Given x ∈ g, the differentiation

(x · (f ◦ q))(g) =
d

dt

∣∣∣∣
t=0

(f ◦ q)(g etx)

makes sense. However, x ·(f ◦q) is not usually right K-invariant. Indeed, the condition for right K-invariance
is

d

dt

∣∣∣∣
t=0

F (g etx) = (x · F )(g) = (x · F )(gk) =
d

dt

∣∣∣∣
t=0

F (gk etx) (k ∈ k)

Using the right K-invariance of F = f ◦ q,

F (gk etx) = F (g ketxk−1 k) = F (g et·kxk
−1

)

Thus, unless kxk−1 = x for all k ∈ K, it is unlikely that x · F is still right K-invariant. That is, the left
G-invariant differential operators coming from g usually do not descend to differential operators on G/K.

The differential operators in the G-invariant subalgebra

z = {α ∈ Ug : gαg−1}

do descend to G/K, exactly because of the commutation property, as follows. For any function ϕ on G let
(k · ϕ)(g) = ϕ(gk). For F right K-invariant on G, for α ∈ Z(g) compute directly

k · (α · F ) = α · (k · F ) = α · F

showing the right K-invariance of α · F . Thus, α · F gives a well-defined function on G/K.

4.5 Example computation: SL2(R) and H

Let g = sl2(R), the Lie algebra of G = SL2(R). A typical choice of basis for g is [43]

H =

(
1 0
0 −1

)
X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
These have the easily verified relations

[H,X] = HX −XH = 2X [H,Y ] = HY − Y H = −2Y [X,Y ] = XY − Y X = H

[43] Yes, the notation is somewhat in conflict with previous use of Xx to denote the differential operator attached to

x ∈ g.
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To see that the pairing 〈x, y〉 = tr(xy) is non-degenerate, use the stability of g under transpose v → v>, and
then

〈v, v>〉 = tr(vv>) = 2a2 + b2 + c2 (for v =

(
a b
c −a

)
)

We easily compute that

〈H,H〉 = 2 〈H,X〉 = 0 〈H,Y 〉 = 0 〈X,Y 〉 = 1

Thus, for the basis H,X, Y we have dual basis H∗ = H/2, X∗ = Y , and Y ∗ = X, and in these coordinates
the Casimir operator is

Ω = HH∗ +XX∗ + Y Y ∗ = 1
2H

2 +XY + Y X (now inside Ug)

Since XY − Y X = H [44] the expression for Ω can be rewritten in various useful forms, such as

Ω = 1
2H

2 +XY + Y X = 1
2H

2 +XY − Y X + 2Y X = 1
2H

2 +H + 2Y X

and, similarly,

Ω = 1
2H

2 +XY + Y X = 1
2H

2 +XY − (−Y X) = 1
2H

2 + 2XY − (XY − Y X) = 1
2H

2 + 2XY −H

To obtain a G-invariant differential operator on the upper half-plane H from Ω, use the G-space
isomorphism H ≈ G/K where K = SO2(R) is the isotropy group of the point i ∈ H. Let q : G → G/K be
the quotient map q(g) = gK ←→ g(i). A function f on H naturally yields the right K-invariant function
f ◦ q

(f ◦ q)(g) = f(g(i)) (for g ∈ G)

As above, for any z ∈ g there is the corresponding left G-invariant differential operator on a function F on
G by

(z · F )(g) =
d

dt

∣∣∣∣
t=0

F (g etz)

but these linear operators should not be expected to descend to operators on G/K. Nevertheless, G-invariant
elements such as the Casimir operator Ω in Z(g) do descend.

The computation of Ω on f ◦ q can be simplified by using the right K-invariance of f ◦ q, which implies
that f ◦ q is annihilated by

so2(R) = Lie algebra of SO2(R) = skew-symmetric 2-by-2 real matrices = {
(

0 t
−t 0

)
: t ∈ R}

Thus, in terms of the basis H,X, Y above, X − Y annihilates f ◦ q.
Among other possibilities, a point z = x+ iy ∈ H is the image

x+ iy = (n ·m)(i) where nx =

(
1 x
0 1

)
my =

(√
y 0

0 1√
y

)
These are convenient group elements because they match the exponentiated Lie algebra elements:

etX = nt etH = me2t

In contrast, the exponentiated Y has a more complicated action on H. This suggests invocation of the fact
that X − Y acts trivially on right K-invariant functions on G. Order matters: application of a differential
operator typically disrupts right K-invariance. For right K-invariant F on G,

[44] The identity XY − Y X = H holds both in the universal enveloping algebra and as matrices.
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(ΩF )(nxmy) = ( 1
2H

2 +XY + Y X)F (nxmy) = ( 1
2H

2 + 2XY −XY + Y X)F (nxmy)

= ( 1
2H

2 + 2X2 + 2X(Y −X)− [X,Y ])F (nxmy) = ( 1
2H

2 + 2X2 −H)F (nxmy)

Compute the pieces separately. First, using the identity

my nx = (mynxm
−1
y )my =

(√
y 0

0 1√
y

)(
1 x
0 1

)(√
y 0

0 1√
y

)−1

my = nyxmy

we compute the effect of X

(X · F )(nxmy) =
d

dt

∣∣∣∣
t=0

F (nxmy nt) =
d

dt

∣∣∣∣
t=0

F (nx nytmy) =
d

dt

∣∣∣∣
t=0

F (nx+ytmy) = y
∂

∂x
F (nxmy)

Thus,

2X2 −→ 2(y
∂

∂x
)2 = 2y2(

∂

∂x
)2

The action of H is

(H · F )(nxmy) =
d

dt

∣∣∣∣
t=0

F (nxmyme2t) =
d

dt

∣∣∣∣
t=0

F (nxmye2t) = 2y
∂

∂y
F (nxmy)

Then
1
2H

2 −H = 1
2 (2y

∂

∂y
)2 − (2y

∂

∂y
) = 2y2(

∂

∂y
)2 + 2y

∂

∂y
− 2y

∂

∂y
= 2y2(

∂

∂y
)2

Altogether, on right K-invariant functions F ,

(ΩF )(nxmy) = 2y2

(
(
∂

∂x
)2 + (

∂

∂y
)2

)
F (mx ny)

That is, in the usual coordinates z = x+ iy on H, discarding the leading constant,

(image of) Ω = y2

(
∂2

∂x2
+

∂2

∂y2

)

4.6 Example computation: SL2(C)

Let g = sl2(C), the Lie algebra of G = SL2(C), with basis

H =

(
1 0
0 −1

)
H ′ =

(
i 0
0 −i

)
X =

(
0 1
0 0

)
X ′ =

(
0 i
0 0

)
Y =

(
0 0
1 0

)
Y ′ =

(
0 0
−i 0

)
with [X,Y ] = H and [X ′, Y ′] = H, and so on. To see that the pairing 〈x, y〉 = Retr(xy) is non-degenerate,
use the stability of g under conjugate-transpose v → v∗ = v>, and then

〈v, v∗〉 = Retr(vv∗) = 2|a|2 + |b|2 + |c|2 (for v =

(
a b
c −a

)
)

We easily compute that

〈H,H〉 = 2 〈H ′, H ′〉 = −2 〈X,Y 〉 = 1 〈X ′, Y ′〉 = 1
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and all other pairings give 0. Thus, for the basis H,X, Y,H ′, X ′, Y ′ we have dual basis H∗ = H/2, X∗ = Y ,
Y ∗ = X, H ′∗ = −H ′/2, X ′∗ = Y ′, Y ′∗ = X ′, In these coordinates the Casimir operator is

Ω = HH∗+XX∗+Y Y ∗+H ′H ′∗+X ′X ′∗+Y ′Y ′∗ = 1
2H

2+XY +Y X− 1
2H
′2+X ′Y ′+Y ′X ′ (in Ug)

Let q : G→ G/K be the quotient map and use Iwasawa coordinates

nxayk =

(
1 x
0 1

)(√
y 0

0 1√
y

)
· k (with x ∈ C, y > 0, and k ∈ K = SU2)

For any z ∈ g there is the corresponding left G-invariant differential operator on a function F on G by

(z · F )(g) =
d

dt

∣∣∣∣
t=0

F (g etz)

but these linear operators generally do not descend to operators on G/K, that is, are not right K-invariant.
Nevertheless, G-invariant elements such Casimir do descend.

Differentiating the condition 12 = (etx)∗(etx) with respect to t gives

0 =
d

dt
12 = x∗(etx)∗(etx) + (etx)∗(etx)x

and setting t = 0 gives a necessary condition for x to be in the Lie algebra k of K = SU2, namely, 0 = x∗+x.
Conversely, for x∗ = −x, exponentiation gives 12 = (etx)∗(etx). The determinant-one condition gives trx = 0.
Thus, the Lie algebra k = su2 of K = SU2 is

k = skew-hermitian 2-by-2 trace 0 complex matrices = {
(

it τ
−τ −it

)
: t ∈ R, τ ∈ C}

The computation of Ω on G/K is simplified by using the right K-invariance: the right action of k annihilates
right K-invariant functions on G. In terms of the basis H,X, Y,H ′, X ′, Y ′ above, H ′, X − Y and X ′ + Y ′

are all in k, so annihilate right K-invariant functions. Order matters: application of a differential operator
typically disrupts right K-invariance. First, rearrange Ω in anticipation of application to right K-invariant
f on G:

Ω = 1
2H

2 +XY + Y X − 1
2H
′2 +X ′Y ′ + Y ′X ′ = 1

2H
2 + 2XY −H − 1

2H
′2 + 2X ′Y ′ −H

= 1
2H

2 − 2H + 2X2 + 2X(Y −X)− 1
2H
′2 − 2X ′2 + 2X ′(Y ′ +X ′)

Since H ′, X − Y , and X ′ + Y ′ annihilate right K-invariant functions f , this gives

Ωf = (1
2H

2 − 2H + 2X2 − 2X ′2)f

Compute the pieces separately. Use coordinates x = x1 + ix2 ∈ C. Using my nx = nytmy, the effects of X
and X ′ are

(X · f)(nxmy) =
d

dt

∣∣∣∣
t=0

f(nxmy nt) =
d

dt

∣∣∣∣
t=0

f(nx nytmy) =
d

dt

∣∣∣∣
t=0

f(nx+ytmy) = y
∂

∂x1
f(nxmy)

(X ′ · f)(nxmy) =
d

dt

∣∣∣∣
t=0

f(nxmy nit) =
d

dt

∣∣∣∣
t=0

f(nx niytmy) =
d

dt

∣∣∣∣
t=0

f(nx+iytmy) = iy
∂

∂x2
f(nxmy)

Thus,

2X2 −→ 2(y
∂

∂x1
)2 = 2y2(

∂

∂x1
)2 and − 2X ′2 −→ −2(iy

∂

∂x2
)2 = 2y2(

∂

∂x2
)2

170



Garrett: Modern Analysis of Automorphic Forms

As for SL2(R), the action of H is

(H · f)(nxmy) =
d

dt

∣∣∣∣
t=0

f(nxmyme2t) =
d

dt

∣∣∣∣
t=0

f(nxmye2t) = 2y
∂

∂y
f(nxmy)

so
1
2H

2 − 2H = 1
2 (2y

∂

∂y
)2 − 2(2y

∂

∂y
) = 2y2(

∂

∂y
)2 + 2y

∂

∂y
− 4y

∂

∂y
= 2y2(

∂

∂y
)2 − 2y

∂

∂y

Altogether, on right K-invariant functions f , discarding the irrelevant leading constant 2,

Ω −→ y2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂y2

)
− y ∂

∂y

In contrast to the situation for SL2(R) and H, this is not merely a multiple of the Euclidean Laplacian.

4.7 Example computation: Sp∗1,1

Let g = sp∗1,1, the Lie algebra of G = Sp∗1,1, with ten-element basis

H =

(
1 0
0 −1

)
H` =

(
` 0
0 −`

)
X` =

(
0 `
0 0

)
Y` =

(
0 0
−` 0

)
(with ` = i, j, k)

Note that
[Xi, Yi] = [Xj , Yj ] = [Xk, Yk] = H

With tr(a+ bi+ cj + dk) = a, use the pairing〈(
α β
γ δ

)
,

(
α′ β′

γ′ δ′

)〉
= tr

(
α · α′ + β · γ′ + γ · β′ + δ · δ′

)
The non-degeneracy follows from the stability of g under conjugate-transpose v → v∗, and then noting that
v → 〈v, v∗〉 is positive-definite. Compute that

〈H,H〉 = 2 〈H`, H`〉 = −2 〈X`, Y`〉 = 1

and all other pairings give 0. Thus, we have dual basis H∗ = H/2, H∗` = −H`/2, X∗` = Y`, Y
∗
` = X`. In

these coordinates the Casimir operator is

Ω = HH∗ +
∑
`=i,j,k

(H`H
∗
` +X`X

∗
` + Y`Y

∗
` ) = 1

2H
2 +

∑
`=i,j,k

(− 1
2H

2
` +X`Y` + Y`X`) (in Ug)

Use Iwasawa coordinates

nxayk =

(
1 x
0 1

)(√
y 0

0 1√
y

)
· k (with x = ix1 + jx2 + kx3 ∈ H, y > 0, and k ∈ K)

The Lie algebra k of the compact subgroup K ≈ Sp∗1 × Sp∗1 of G can be identified by observing two copies
of the Lie algebra of Sp∗1, as follows. By differentiating,

0 =
d

dt
1 =

d

dt
(etx)(etx) =

d

dt
(etx)(etx) = x · (etx)(etx) + (etx)(etx)x

and at t = 0 this is x+ x = 0. We can observe two suitable copies of this inside sp∗1,1, by

k = {
(
α 0
0 −α

)
: α = −α} ⊕ {

(
0 β
−β 0

)
: β = −β}
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The computation of Ω on G/K is simplified by using the right K-invariance, which entails annihilation by
k. In terms of the basis above, H` and X` + Y`, for ` = i, j, k, are all in k. Rearrange Ω in anticipation of
application to right K-invariant f on G:

Ω = 1
2H

2 +
∑
`=i,j,k

(− 1
2H

2
` +X`Y` + Y`X`) = 1

2H
2 +

∑
`=i,j,k

(− 1
2H

2
` + 2X`Y` −X`Y` + Y`X`)

= 1
2H

2 +
∑
`=i,j,k

(− 1
2H

2
` + 2X`Y` − [X`, Y`]) = 1

2H
2 − 3H +

∑
`=i,j,k

(− 1
2H

2
` − 2X2

` +X`(X` + Y`))

Since the elements H` and X` + Y` annihilate right K-invariant functions f , this gives

Ωf =
(

1
2H

2 − 3H −
∑
`=i,j,k

2X2
`

)
f

Compute the pieces separately, with coordinates x = ix1 + jx2 +kx3 ∈ H. Using my nx = nytmy, the effects
of Xi, Xj , Xk are

(Xi · f)(nxmy) =
d

dt

∣∣∣∣
t=0

f(nxmy nit) =
d

dt

∣∣∣∣
t=0

f(nx niytmy) =
d

dt

∣∣∣∣
t=0

f(nx+iytmy) = y
∂

∂x1
f(nxmy)

(Xj · f)(nxmy) =
d

dt

∣∣∣∣
t=0

f(nxmy njt) =
d

dt

∣∣∣∣
t=0

f(nx njytmy) =
d

dt

∣∣∣∣
t=0

f(nx+jytmy) = jy
∂

∂x2
f(nxmy)

(Xk · f)(nxmy) =
d

dt

∣∣∣∣
t=0

f(nxmy nkt) =
d

dt

∣∣∣∣
t=0

f(nx nkytmy) =
d

dt

∣∣∣∣
t=0

f(nx+kytmy) = ky
∂

∂x3
f(nxmy)

Thus,

−2X2
i − 2X2

j − 2X2
k −→ −2(iy

∂

∂x1
)2 − 2(jy

∂

∂x2
)2 − 2(ky

∂

∂x3
)2 = 2y2

( ∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
As for SL2(R) and SL2(C), the action of H is

(H · f)(nxmy) =
d

dt

∣∣∣∣
t=0

f(nxmyme2t) =
d

dt

∣∣∣∣
t=0

f(nxmye2t) = 2y
∂

∂y
f(nxmy)

so
1
2H

2 − 3H = 1
2 (2y

∂

∂y
)2 − 3(2y

∂

∂y
) = 2y2(

∂

∂y
)2 + 2y

∂

∂y
− 6y

∂

∂y
= 2y2(

∂

∂y
)2 − 4y

∂

∂y

Altogether, on right K-invariant functions f , discarding the irrelevant leading constant 2,

Ω −→ y2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+
∂2

∂y2

)
− 2y

∂

∂y

Again, as with SL2(C), in contrast to the situation for SL2(R) and H, this is not merely a multiple of the
Euclidean Laplacian.

4.8 Example computation: SL2(H)

Let g = sl2(H), the Lie algebra of G = SL2(H). Letting ` run over i, j, k, take basis

H =

(
1 0
0 −1

)
H` =

(
` 0
0 −`

)
H ′` =

(
0 0
0 `

)

X =

(
0 1
0 0

)
X` =

(
0 `
0 0

)
Y =

(
0 0
1 0

)
Y` =

(
0 0
−` 0

)
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Note that

[X,Y ] = [Xi, Yi] = [Xj , Yj ] = [Xk, Yk] = H

With tr(a+ bi+ cj + dk) = a, as with Sp∗1,1, use the pairing

〈(
α β
γ δ

)
,

(
α′ β′

γ′ δ′

)〉
= tr

(
α · α′ + β · γ′ + γ · β′ + δ · δ′

)
Compute that

〈H,H〉 = 2 〈H`, H`〉 = −2 〈H ′`, H ′`〉 = −1 〈X`, Y`〉 = 1

and all other pairings give 0. Thus, we have dual basis H∗ = H/2, H∗` = −H`/2, H ′`
∗

= −H ′`, X∗` = Y`,
Y ∗` = X`. In these coordinates the Casimir operator is

Ω = HH∗ +XX∗ + Y Y ∗ +
∑
`=i,j,k

(H`H
∗
` +H ′`H

′
`
∗

+X`X
∗
` + Y`Y

∗
` )

= 1
2H

2 +XY + Y X +
∑
`=i,j,k

(− 1
2H

2
` −H ′`H ′` +X`Y` + Y`X`) (in Ug)

Use Iwasawa coordinates

nxayk =

(
1 x
0 1

)(√
y 0

0 1√
y

)
· k (with x = x1 + ix2 + jx3 + kx4 ∈ H, y > 0, and k ∈ K)

To determine the Lie algebra k of the compact subgroup K = Sp∗2 of G, differentiate

0 =
d

dt
12 =

d

dt

(
(etx)∗(etx)

)
= x∗(etx)∗(etx) + (etx)∗(etx)x

and at t = 0 obtain x∗ + x = 0. As usual, the converse follows by exponentiating. Thus,

k = sp∗2 = {
(

a b
−b d

)
: a = −a, d = −d, a, b, d ∈ H}

The computation of Ω on G/K can be simplified by using the right K-invariance, which entails annihilation
by k. The basis elements Hi, Hj , Hk and H ′i, H

′
j , H

′
k are in k, as are X−Y and Xi+Yi, Xj +Yj , and Xk+Yk.

Rearrange Ω anticipating application to right K-invariant f on G:

Ω = 1
2H

2 +XY + Y X +
∑
`=i,j,k

(− 1
2H

2
` −H ′`H ′` +X`Y` + Y`X`)

= 1
2H

2 + 2XY + Y X −XY +
∑
`=i,j,k

(− 1
2H

2
` −H ′`H ′` + 2X`Y` −X`Y` + Y`X`)

= 1
2H

2 + 2XY −H +
∑
`=i,j,k

(− 1
2H

2
` −H ′`H ′` + 2X`Y` −H)

= 1
2H

2 − 4H + 2X2 + 2X(−X + Y ) +
∑
`=i,j,k

(− 1
2H

2
` −H ′`H ′` − 2X2

` + 2X`(X` + Y`))

Since the elements H`, H
′
`, X − Y , and X` + Y` annihilate right K-invariant functions f , this gives

Ωf =
(

1
2H

2 − 4H −
∑
`=i,j,k

2X2
`

)
f

173



4. Invariant differential operators

The individual terms are computed as in the previous three cases. For example,

X2 −X2
i −X2

j −X2
k −→ (y

∂

∂x1
)2 − (iy

∂

∂x2
)2 − (jy

∂

∂x3
)2 − (ky

∂

∂x4
)2 = y2

( ∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+
∂2

∂x2
4

)
and

1
2H

2 − 4H = 1
2 (2y

∂

∂y
)2 − 4(2y

∂

∂y
) = 2y2(

∂

∂y
)2 + 2y

∂

∂y
− 8y

∂

∂y
= 2y2(

∂

∂y
)2 − 6y

∂

∂y

Altogether, on right K-invariant functions f , discarding the irrelevant leading constant 2,

Ω −→ y2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+
∂2

∂x2
4

+
∂2

∂y2

)
− 3y

∂

∂y

Again, as with SL2(C) and Sp∗1,1, in contrast to SL2(R), this is not merely a multiple of the Euclidean
Laplacian.

4.A Appendix: brackets

Here we prove the basic result about intrinsic derivatives. Let G act on itself by right translations, and on
functions on G by (g · f)(h) = f(hg), for g, h ∈ G. For x ∈ g, the corresponding differential operator Xx on
smooth functions f on G is (Xx f)(h) = d

dt

∣∣
t=0
f(h · etx).

[4.A.1] Theorem: [Xx, Xy] = Xx,y, that is, Xx ◦Xy −Xy◦, Xx = X[x,y] for x, y ∈ g.

Proof: First, re-characterize the Lie algebra g less formulaically. The tangent space TmM to a smooth
manifold M at a point m ∈ M is intended to be the collection of first-order (homogeneous) differential
operators, on functions near m, followed by evaluation of the resulting functions at the point m.

One way to make the description of the tangent space precise is as follows. Let O be the ring of germs [45]

of smooth functions at m. Let em : f → f(m) be the evaluation-at-m map O → R on (germs of) functions
in O. Since evaluation is a ring homomorphism, (and R is a field) the kernel m of em is a maximal ideal in
O. A first-order homogeneous differential operator D might be characterized by the Leibniz rule

D(f · F ) = Df · F + f ·DF

Then em ◦D vanishes on m2, since

(em ◦D)(f · F ) = f(m) ·DF (m) +Df(m) · F (m) = 0 ·DF (m) +Df(m) · 0 = 0 (for f, F ∈ m)

Thus, D gives a linear functional on m that factors through m/m2. Define

tangent space to M at m = TmM = (m/m2)∗ = HomR(m/m2, R)

To see that we have included exactly what we want, and nothing more, use the defining fact (for manifold)

that m has a neighborhood U and a homeomorphism-to-image ϕ : U → Rn. [46] The precise definition of

[45] The germ of a smooth function f near a point xo on a smooth manifold M is the equivalence class of f under

the equivalence relation ∼, where f ∼ g if f, g are smooth functions defined on some neighborhoods of xo, and which

agree on some neighborhood of xo. This is a construction, which does admit a more functional reformulation. That

is, for each neighborhood U of xo, let O(U) be the ring of smooth functions on U , and for U ⊃ V neighborhoods

of xo let ρUV : O(U) → O(V ) be the restriction map. Then the colimit colimUO(U) is exactly the ring of germs of

smooth functions at xo.
[46] This map ϕ is presumably part of an atlas, meaning a maximal family of charts (homeomorphisms-to-image) ϕi
of opens Ui in M to subsets of a fixed Rn, with the smooth manifold property that on overlaps things fit together

smoothly, in the sense that

ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) −→ Ui ∩ Uj −→ ϕi(Ui ∩ Uj)

is a smooth map from the subset ϕj(Ui ∩ Uj) of Rn to the subset ϕi(Ui ∩ Uj).
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smoothness of a function f near m is that f ◦ϕ−1 be smooth on some subset of ϕ(U). [47] In brief, the nature
of m/m2 and (m/m2)∗ can be immediately transported to an open subset of Rn. From Maclaurin-Taylor
expansions, the pairing

v × f −→ (∇f)(m) · v (for v ∈ Rn and f smooth at m ∈ Rn)

induces an isomorphism Rn → (m/m2)∗. Thus, (m/m2)∗ is a good notion of tangent space.

[4.A.2] Claim: The Lie algebra g of G is naturally identifiable with the tangent space to G at 1, via

x× f −→ d

dt

∣∣∣∣
t=0

f(etx) (for x ∈ g and f smooth near 1)

Proof: The exponential map is a diffeomorphism of the Lie algebra g to its image, and the image is a
neighborhood of the identity in G. For linear Lie groups, the invertibility is immediate from existence of an
explicit local inverse to the exponential near 1, given by the usual logarithm. ///

Left translation action of G on functions on G is (Lgf)(h) = f(g−1h) with g, h ∈ G, with the inverse for
associativity, as usual.

[4.A.3] Claim: The map x −→ Xx gives an R-linear isomorphism

g −→ left G-invariant vector fields on G

Proof: (of claim) On one hand, since the action of x is on the right, it is not surprising that Xx is invariant
under the left action of G, namely

(Xx ◦ Lg)f(h) = Xxf(g−1h) =
d

dt

∣∣∣∣
t=0

f(g−1hetx) = Lg
d

dt

∣∣∣∣
t=0

f(hetx) = (Lg ◦Xx)f(h)

On the other hand, for a left-invariant vector field X,

(Xf)(h) = (L−1
h ◦X)f(1) = (X ◦ L−1

h )f(1) = X(L−1
h f)(1)

That is, X is completely determined by what it does to functions at 1.
Let m be the maximal ideal of functions vanishing at 1, in the ring O of germs of smooth functions at 1

on G. The first-order nature of vector fields is captured by the Leibniz rule X(f ·F ) = f ·XF +Xf ·F . As
above, the Leibniz rule implies that e1 ◦X vanishes on m2. Thus, we can identify e1 ◦X with an element of

(m/m2)∗ = HomR(m/m2,R) = tangent space to G at 1 = g

Thus, the map x→ Xx is an isomorphism from g to left invariant vector fields, proving the claim. ///

Now use the re-characterized g to prove [Xx, Xy] = Xz for some z ∈ g. Consider [Xx, Xy] for x, y ∈ g.
That this differential operator is left G-invariant is clear, since it is a difference of composites of such. It is
less clear that it satisfies Leibniz’ rule (and thus is first-order). But, indeed, for any two vector fields X,Y ,

[X,Y ](fF ) = XY (fF )− Y X(Ff) = X(Y f · F + f · Y F )− Y (Xf · F + f ·XF )

= (XY f · F + Y f ·XF +Xf · Y F + f ·XY F )− (Y Xf · F +Xf · Y F + Y f ·XF + f · Y XF )

= [X,Y ]f · F + f · [X,Y ]F

so [X,Y ] does satisfy the Leibniz rule. In particular, [Xx, Xy] is again a left-G-invariant vector field, so is of
the form [Xx, Xy] = Xz for some z ∈ g.

In fact, the relation [Xx, Xy] = Xz is the intrinsic definition of the Lie bracket on g, since we could define
the element z = [x, y] by the relation [Xx, Xy] = X[x,y]. However, we are burdened by having the ad hoc

[47] The well-definedness of this definition depends on the maximality property of an atlas.
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4. Invariant differential operators

but convenient definition [x, y] = xy − yx in terms of matrix multiplication. However, our assumption that
G is a subgroup of some GLn(R) or GLn(C) allows us to use the explicit exponential and a local logarithm
inverse to it, to determine the bracket [Xx, Xy] somewhat more intrinsically, as follows.

Consider linear functions on g, locally transported to G via locally inverting the exponential near 1 ∈ G.
Thus, for λ ∈ g∗, near 1 ∈ G, define

f(ex) = λ(x)

Then

[Xx, Xy]f(1) =
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

(
λ
(

log(esxety))− λ(log(etyesx))
))

Dropping O(s2) and O(t2) terms, this is

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

(
λ
(

log(1 + sx)(1 + ty)
)
− λ
(

log(1 + ty)(1 + sx)
))

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

λ
(

log(1 + sx+ ty + stxy)− log(1 + ty + sx+ styx)
)

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

λ
(
(sx+ ty + stxy − 1

2 (sx+ ty)2)− (ty + sx+ styx− 1
2 (ty + sx)2)

)
=

d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

λ
(
(stxy − 1

2stxy −
1
2styx)− (styx− 1

2stxy −
1
2styx)

)
=

d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

st · λ(xy − yx) = λ(xy − yx)

where the multiplication and commutator xy− yx is in the ring of matrices. Thus, since g∗ separates points
on g, we have the equality [Xx, Xy] = X[x,y]. with the ad hoc definition of [x, y]. ///

4.B Appendix: existence and uniqueness

The characterization of the Lie algebra of a subgroup G of GLn(F ) with F = R,C, or H, as g = {x :
etx ∈ G, for all t ∈ R} produces a set g closed under scalar multiplication, but not obviously closed under
addition, although in the explicit examples above this latter property is clear.

One way to prove closure under addition is verification that the matrix exponentiation characterization
of g really does produce the tangent space to G at 1, since the tangent space is a vectorspace. For matrix x
such that etx ∈ G for small real t, the map t→ etx is a curve inside G, and in an extrinsic-geometry sense x
is a tangent vector to G at 1. The converse is not as elementary, namely, given a tangent vector x to G at
1, show that etx ∈ G for all t ∈ R.

The curve u(t) = etx certainly lies in GLn(F ), and satisfies the differential equation d
dtu = u ·x with initial

condition u(0) = 1n. This differential equation can be viewed as a differential equation on G, and also as
a differential equation on GLn(F ), and u(t) = etx a solution in GLn(F ). To prove that in fact etx ∈ G for
small t would follow from uniqueness of solutions to this differential equation on GLn(F ), and from existence
of a solution (for small t) on G. Then because G is a group, etx ∈ G for all t ∈ R.

[4.B.1] Theorem: For smooth F on an open subset Ω of R2, and for (xo, yo) ∈ Ω, the equation
df
dx = F (x, f(x)) has a unique differentiable solution f on a neighborhood of (xo, yo) with f(xo) = yo.
This solution is smooth.

Proof: Picard iteration converts the differential equation to an equivalent integral equation to prove existence.
Uniqueness of fixed points of contractive mappings proves uniqueness. Assuming f ′ = df/dx exists as a
pointwise-valued function and f is continuous, the relation df/dx = F (x, f(x)) shows that f ′ is continuous.
Thus, by the fundamental theorem of calculus,

f(x) = f(xo) +

∫ x

xo

f ′(t) dt = yo +

∫ x

xo

F (t, f(t)) dt
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That is, f satisfies the integral equation

f(x) = yo +

∫ x

xo

F (t, f(t)) dt

Conversely, for continuous f satisfying this integral equation, by the fundamental theorem of calculus f is
differentiable and

f ′(x) = F (x, f(x)) (and f satisfies f(xo) = yo)

Thus, for continuous f , the integral equation is equivalent to the differential equation and initial value.
Without loss of generality, xo = yo = 0. Picard’s iteration scheme is to take fo(x) = 0, and iterate:

fn+1(x) =

∫ x

0

F (t, fn(t)) dt

These are continuous functions. The claim is that, on a sufficiently small neighborhood of x = 0, these fn
approach a solution to the integral equation on that interval, proving existence.

We should check that, with x restricted to a small-enough interval |x| ≤ δ, the pairs (x, fn(x)) stay inside
Ω. By smoothness of F , given a finite rectangle

R = {|x| ≤ δ, |y| ≤ η} ⊂ Ω

there is a constant B such that |F (x, y)| ≤ B for all (x, y) ∈ R. Shrink δ so that 0 < δ < B−1. Assuming
the pairs (x, fn(x)) are inside R,

|fn+1(x)| ≤
∫ x

0

|F (t, fn(t))| dt ≤
∫ x

0

B dt ≤ δ ·B

Thus, further shrinking δ so that δ · B ≤ η, the restriction |x| ≤ δ produces functions fn with (x, fn(x))
staying inside R ⊂ Ω of F .

We show that, possibly further shrinking δ, for |x| ≤ δ the sequence of functions fn converges in sup norm
to a solution of the integral equation. The natural estimate succeeds: first,

sup
|x|≤δ

|fn+1(x)− fn(x)| ≤
∫ δ

0

∣∣∣F (t, fn(t))− F (t, fn−1(t))
∣∣∣ dt

Since F is smooth, for a fixed compact-closure neighborhood U of (0, 0) there is a constant C such that∣∣∣F (x, y)− F (x, y′)
∣∣∣ ≤ C · |y − y′| (for (x, y) ∈ U and (x, y′) ∈ U)

Thus,
sup
|x|≤δ

|fn+1(x)− fn(x)| ≤ |δ| · C · sup
|x|≤δ

|fn(x)− fn−1(x)|

Shrinking δ so that δ · C ≤ 1
2 , for example, gives convergence in sup norm to a continuous function f . This

further shrinking of δ occurs just once, not for each n.
To show that f is a solution of the integral equation, given ε > 0, take N large enough so that the sup

norm of fm − fn is less than ε for all m,n ≥ N . Then the sup norm of f − fN+1 is ≤ ε, and∣∣∣f(x)−
∫ x

0

F (t, f(t)) dt
∣∣∣ ≤ ∣∣∣f(x)− fN+1(x)

∣∣∣+

∫ x

0

∣∣∣F (t, fN (t))− F (t, f(t))
∣∣∣ dt

≤ ε+

∫ x

0

C · |fN (t)− f(t)| dt ≤ ε+ δ · C · ε

This holds for every ε > 0, so we have equality, proving f is a solution of the integral equation.
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4. Invariant differential operators

Toward uniqueness, we showed above that the mapping

Tg(x) =

∫ x

0

F (t, g(t)) dt

maps continuous functions g on |x| ≤ δ with bounds |g(x)| ≤ η to continuous functions with the same bound,
for sufficiently small δ and η. Let X be the set of such functions. With metric given by sup norm, X is
complete. Shrinking δ if necessary, as above we have the contractive mapping property

sup
x
|Tg(x)− Th(x)| ≤ 1

2 · sup
x
|g(x)− h(x)|

Given two solutions g, h to the integral equation,

sup
x
|g(x)− h(x)| ≤ sup

x
|Tg(x)− Th(x)| ≤ 1

2 · sup
x
|g(x)− h(x)|

proving that g(x) = h(x), giving uniqueness of solution to the integral equation.
Smoothness follows from the differential equation: granting f ∈ Ck, the relation df/dx = F (x, f(x))

exhibits the derivative as Ck. By induction, f ∈ C∞. ///
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5. Integration on quotients

1. Surjectivity of averaging maps
2. Invariant measures and integrals on quotients H\G
Appendix A: apocryphal lemma X ≈ G/Gx
Appendix B: topology on quotients H\G or G/H

The simplest case of unwinding is for f ∈ Coc (R):∫
R/Z

(∑
n∈Z

f(x+ n)
)
dx =

∫
R
f(x) dx

In fact, the integral on the quotient R/Z is unequivocally characterized, [48] by this relation, once we know
that the averaged functions

∑
n f(x + n) are at least dense in Co(R/Z). As corollary, for F ∈ Co(R/Z),

since F · f ∈ Coc (R), ∫
R/Z

F (x)
(∑
n∈Z

f(x+ n)
)
dx =

∫
R/Z

(∑
n∈Z

F (x) f(x+ n)
)
dx

=

∫
R/Z

(∑
n∈Z

F (x+ n) f(x+ n)
)
dx =

∫
R
F (x) f(x) dx

We need analogous assertions with less elementary group actions and less transparent representatives
for the quotients. For example, with G,K,Γ as in our examples, integration on Γ\G is characterized by
requiring, for all f ∈ Coc (G), ∫

Γ\G

(∑
γ∈Γ

f(γg)
)
dg =

∫
G

f(g) dg

once we know that the averages
∑
γ∈Γ f(γz) are at least dense in Coc (Γ\G). In fact, such averaging maps

are universally surjective on compactly-supported continuous functions, as demonstrated below.
An important variant [49] uses f ∈ Coc (Γ∞\G) for a subgroup Γ∞ of Γ, by the surjectivity of averaging

maps, take ϕ ∈ Coc (G) such that ∑
β∈Γ∞

ϕ ◦ β = f

so then ∫
Γ\G

( ∑
γ∈Γ∞\Γ

f ◦ γ
)

=

∫
Γ\G

( ∑
γ∈Γ∞\Γ

( ∑
β∈Γ∞

(ϕ ◦ β) ◦ γ
))

=

∫
Γ\G

(∑
γ∈Γ

ϕ ◦ γ
)

=

∫
G

ϕ =

∫
Γ∞\G

( ∑
β∈Γ∞

ϕ ◦ β
)

=

∫
Γ∞\G

f

The corollary with F ∈ Co(Γ\G) and f ∈ Coc (Γ∞\G) is∫
Γ\G

F ·
( ∑
γ∈Γ∞\Γ

f ◦ γ
)

=

∫
Γ\G

( ∑
γ∈Γ∞\Γ

(F · f) ◦ γ
)

=

∫
Γ∞\G

F · f

[48] The Riesz-Markov-Kakutani theorem asserts that every (continuous) functional on compactly-supported

continuous functions on a reasonable topological space X is f →
∫
X f(x) dµ(x) for some measure µ. Relying

on this, specification of a functional (integration) on Coc (X) specifies a measure. In fact, we care more about the

integral than about the measure.
[49] This variant of unwinding arose most prominently in the Rankin-Selberg method, where

∫
Γ\H |f |

2 ·Es for cuspform

f and Eisenstein series Es is unwound using the definition of Es as wound up from ys. This theme is pervasive in

the theory of automorphic forms.
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5.1 Surjectivity of averaging maps

By convention, a topological group is a locally compact, Hausdorff topological space G with a continuous
group operation G ×G → G, and continuous inversion map g → g−1. To avoid pathologies with regard to
measures on products, we require that topological groups have a countable basis.

Let dg be a right G-invariant measure on G, meaning that for f ∈ Coc (G)∫
G

f(gh) dg =

∫
G

f(g) d(gh−1) =

∫
G

f(g) dg (for all h ∈ G)

Let δG : G→ (0,+∞) be the modular function of G, gauging the discrepancy between left and right invariant
measures, in the sense that meas (gE) = δG(g) ·meas (E) for a measurable set E ⊂ G. It is immediate that
δG is a group homomorphism δG : G→ (0,+∞). It is continuous. And δ−1

G (g) dg is a left invariant measure.
A group with δ = 1 is unimodular.

[5.1.1] Claim: Every discrete, compact, or abelian group is unimodular.

Proof: For an abelian group, d(hg) = d(gh). For a discrete group, one uses counting measure, which is both
left and right invariant. For a compact groups, observe that the modular function is continuous, and has
image in the multiplicative group of positive reals. The only compact subgroup is {1}. ///

Let H be a closed subgroup of G, with right H-invariant measure dh. The quotient H\G has the quotient
topology [5.B]. See also [5A].

[5.1.2] Claim: The averaging map α : Coc (G)→ Coc (H\G) by

(αF )(g) =

∫
H

F (hg) dh (for F ∈ Coc (G))

is surjective.

Proof: By design, the image consists of left H-invariant functions on G:

(αF )(hg) =

∫
H

F (h′(hg)) dh′ =

∫
H

F ((h′h)g)) dh′ =

∫
H

F (h′g)) dh′

by replacing h′ by h′h−1. The surjectivity is much less trivial. Let q : G→ H\G be the quotient map. Let
U be a neighborhood of 1 ∈ G having compact closure U . For each g ∈ G, gU is a neighborhood of g. The
images q(gU) are open, by the characterization of the quotient topology. Given f ∈ Coc (H\G), the support
spt(f) of f is covered by the opens q(gU), and admits a finite subcover q(g1U), . . . , q(gnU). The set

C = spt(f ◦ q) ∩
(
g1U ∪ . . . ∪ gnU

)
⊂ G

is compact, and q(C) = spt(f) ⊂ H\G. By Urysohn’s lemma [9.E.2], let ϕ ∈ Coc (G) be identically 1 on C,
and non-negative real-valued everywhere. Let F = ϕ · (f ◦q). Since αϕ is strictly positive on a neighborhood
of the (compact) support of F , the quotient F/αϕ is in Coc (G). Since f is already left H-invariant,

αF (g) =

∫
H

ϕ(hg) · f(hg) dh =

∫
H

ϕ(hg) · f(g) dh =

∫
H

ϕ(hg) dh · f(g) = αϕ(g) · f(g)

Because f and αϕ are left H-invariant,

α
( F
αϕ

)
(g) =

∫
H

ϕ(hg) · f(hg)

αϕ(hg)
dh =

∫
H

ϕ(hg) · f(g)

αϕ(g)
dh =

∫
H

ϕ(hg) dh · f(g)

αϕ(g)
= αϕ(g)· f(g)

αϕ(g)
= f

giving the surjectivity. ///
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5.2 Invariant measures and integrals on quotients H\G
Temporarily, for clarity in the proofs of this section, we may let ġ denote an element of the quotient H\G,

where H is a closed subgroup of G. Let H have modular function δH .

[5.2.1] Theorem: The quotient H\G has a right G-invariant measure if and only if δG
∣∣
H

= δH . In that
case, the integral is unique up to scalars, and is characterized as follows. For given right Haar measure dh
on H and for given right Haar measure dg on G there is a unique invariant measure dġ on H\G such that
for f ∈ Coc (G) ∫

H\G

(∫
H

f(hġ) dh
)
dġ =

∫
G

f(g) dg (for f ∈ Coc (G))

Proof: First, prove the necessity of the condition on the modular functions. Suppose that there is a right
G-invariant measure on H\G. Let α be the averaging map f →

∫
H
f(hg) dh. For f ∈ Coc (G) the map

f −→
∫
H\G

αf(ġ) dġ

emphasizing the coordinate ġ on the quotient, is a right G-invariant functional (with the continuity property
as above), so by uniqueness of right invariant measure on G must be a constant multiple of the Haar integral

f −→
∫
G

f(g) dg

The averaging map behaves in a straightforward manner under left translation Lhf(g) = f(h−1g) for h ∈ H:
for f ∈ Coc (G) and for h ∈ H

α(Lhf)(g) =

∫
H

f(h−1xg) dx = δH(h)

∫
H

f(xg) dx

by replacing x by hx. Then∫
G

f(g) dg =

∫
H\G

α(f)(g) dġ = δ(h)−1

∫
H\G

α(Lhf)(g) dġ = δ(h)−1

∫
G

f(h−1g) dg

by comparing the iterated integral to the single integral. Replacing g by hg in the integral gives∫
G

f(g) dg = δ(h)−1δG(h)

∫
G

f(g) dg

Choosing f such that the integral is not 0 implies the stated condition on the modular functions.
Proof of sufficiency starts from existence of Haar measures on G and on H. For simplicity, first suppose

that both groups are unimodular. As expected, attempt to define an integral on Coc (H\G) by∫
H\G

αf(ġ) dġ =

∫
G

f(g) dg

invoking the fact that the averaging map α from Coc (G) to Coc (H\G) is surjective. The potential problem is
well-definedness. It suffices to prove that

∫
G
f(g) dg = 0 for αf = 0. Indeed, for αf = 0, for all F ∈ Coc (G),

the integral of F against αf is certainly 0. Rearrange

0 =

∫
G

F (g)αf(g) dg =

∫
G

∫
H

F (g) f(hg) dh dg =

∫
H

∫
G

F (h−1g) f(g) dg dh

by replacing g by h−1g. Replace h by h−1, so

0 =

∫
G

αF (g) f(g) dg
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Surjectivity of α shows that F can be chosen so that αF is identically 1 on the support of f . Then the
integral of f is 0, as claimed, proving the well-definedness for unimodular H and G.

For not-necessarily-unimodular H and G, in the previous argument the left translation by h−1 produces a
factor of δG(h−1). Then replacing h by h−1 converts right Haar measure to left Haar measure, so produces
a factor of δH(h)−1, and the other factor becomes δG(h). If δG(h) · δH(h)−1 = 1, then the product of these
two factors is 1, and the same argument goes through, proving well-definedness. ///

[5.2.2] Corollary: Let G be a group, with closed subgroups Θ ⊂ H ⊂ G. Suppose that δG|H = δH and
δH |Θ = δΘ. Given any two of: right H-invariant measure on Θ\H, right G-invariant measure on Θ\G,
or right G-invariant measure on H\G, the other one of the three is uniquely determined so that, for all
f ∈ Coc (Θ\G), ∫

Θ\G
f(g) dg =

∫
H\G

(∫
Θ\H

f(hg) dh
)
dg

Proof: With the surjectivity of averaging maps in hand, this proof is just an iterative application of the
previous theorem. Namely, given f ∈ Coc (Θ\G), let F ∈ Coc (G) map to f by the averaging-over-Θ map, so,
by the theorem, ∫

Θ\G
f =

∫
Θ\G

∫
Θ

F (θg) dθ dg =

∫
G

F

Again by the theorem, ∫
G

F =

∫
H\G

∫
H

F (hg) dh dg

At the same time, applying the theorem to h→ F (hg),∫
H

F (hg) dh =

∫
Θ\H

∫
Θ

F (θhg) dθ dh

The inner integral in the latter is f(hg), giving the claim. ///

5.A Appendix: apocryphal lemma X ≈ G/Gx

We prove that under mild hypotheses a topological space X acted upon transitively by a topological group
G is homeomorphic to the quotient G/Gx, where Gx is the isotropy group of a chosen point x in X. Ignoring
the topology, the bijection G/Gx ≈ X by g ·Gx ↔ gx is easy to see. In contrast, the topological aspects are
not trivial, but are very general.

[5.A.1] Proposition: Let G be a locally compact, Hausdorff topological group and X a locally compact
Hausdorff topological space with a continuous transitive action of G upon X. Suppose that G has a countable
basis. Fix any x ∈ X, and let Gx be the isotropy group Gx = {g ∈ G : gx = x}. Then we have a
homeomorphism G/Gx −→ X given by the natural gGx −→ gx.

Proof: A little systematic development of topological groups will allow a coherent argument.

[5.A.2] Claim: In a locally compact Hausdorff space X, given an open neighborhood U of a point x, there
is a neighborhood V of x with compact closure V and V ⊂ U .

Proof: By local compactness, x has a neighborhood W with compact closure. Intersect U with W if necessary
so that U has compact closure U . Note that the compactness of U implies that the boundary ∂U of U is
compact. Using the Hausdorff-ness, for each y ∈ ∂U let Wy be an open neighborhood of y and Vy an open
neighborhood of x such that Wy ∩ Vy = φ. By compactness of ∂U , there is a finite list y1, . . . , yn of points
on ∂U such that the sets Uyi cover ∂U . Then V =

⋂
i Vyi is open and contains x. Its closure is contained

in U and in the complement of the open set
⋃
iWyi , the latter containing ∂U . Thus, the closure V of V is

contained in U . ///

[5.A.3] Claim: The map gGx → gx is a continuous bijection of G/Gx to X.

Proof: First, G ×X → X by g × y → gy is continuous by definition of the continuity of the action. Thus,
with fixed x ∈ X, the restriction to G × {x} → X is still continuous, so G → X by g → gx is continuous.
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The quotient topology on G/Gx is the unique topology on the set (of cosets) G/Gx such that any continuous
G→ Z constant on Gx cosets factors through the quotient map G→ G/Gx. That is, we have a commutative
diagram

G //

��

Z

G/Gx

<<y
y

y
y

Thus, the induced map G/Gx → X by gGx → gx is continuous. ///

We need to show that gGx → gx is open to prove that it is a homeomorphism.

[5.A.4] Claim: For a given point g ∈ G, every neighborhood of g is of the form gV for some neighborhood
V of 1.

Proof: First, again, G × G → G by g × g → gh is continuous, by assumption. Then, for fixed g ∈ G, the
map h → gh is continuous on G, by restriction. And this map has a continuous inverse h → g−1h. Thus,
h→ gh is a homeomorphism of G to itself. In particular, since 1→ g · 1 = g, neighborhoods of 1 are carried
to neighborhoods of g, as claimed. ///

[5.A.5] Claim: Given an open neighborhood U of 1 in G, there is an open neighborhood V of 1 such that
V 2 ⊂ U , where V 2 = {gh : g, h ∈ V }.
Proof: From the continuity of multiplication G×G→ G, given the neighborhood U of 1, the inverse image
W of U under the multiplication G×G→ G is open. Since G×G has the product topology, W contains an
open of the form V1 × V2 for opens Vi containing 1. With V = V1 ∩ V2, we have V 2 ⊂ V1 · V2 ⊂ U . ///

Similarly, but more simply, inversion g → g−1 is continuous and is its own (continuous) inverse, so the
image V −1 = {g−1 : g ∈ V } of an open V is open. For example, given a neighborhood V of 1, replacing V
by V ∩ V −1 replaces V by a smaller symmetric neighborhood: the new V satisfies V −1 = V .

The following result is not strictly necessary, but sheds some light on the nature of topological groups. It
has an analogue for topological vector spaces.

[5.A.6] Claim: The closure of E ⊂ G is
⋂
U E · U , where U runs over open neighborhoods of 1.

Proof: A point g ∈ G is in the closure of E if and only if every neighborhood of g meets E. That is, from just
above, every set gU meets E, for U an open neighborhood of 1. That is, g ∈ E ·U−1 for every neighborhood
U of 1. We have noted that inversion is a homeomorphism of G to itself (and sends 1 to 1), so the map
U → U−1 is a bijection of the collection of neighborhoods of 1 to itself. Thus, g is in the closure of E if and
only if g ∈ E · U for every open neighborhood U of 1, as claimed. ///

[5.A.7] Corollary: Given a neighborhood U of 1 in G, there is a neighborhood V of 1 such that V ⊂ U .

Proof: From the continuity of G × G → G, there is V such that V · V ⊂ U . From the previous claim,
V ⊂ V · V , so V ⊂ V · V ⊂ U , as claimed. ///

We can improve the conclusion of the previous remark using the local compactness of G, as follows. Given
a neighborhood U of 1 in G, there is a neighborhood V of 1 such that V ⊂ U and V is compact. Indeed,
local compactness means exactly that there is a local basis at 1 consisting of opens with compact closures.
Thus, given V as in the previous remark, shrink V if necessary to have the compact closure property, and
still V ⊂ V · V ⊂ U , as claimed.

[5.A.8] Corollary: For an open subset U of G, given g ∈ U , there is a compact neighborhood V of 1 ∈ G
such that gV 2 ⊂ U .

Proof: The set g−1U is an open containing 1, so there is an open W 3 1 such that W 2 ⊂ g−1U . Using
the previous claim and remark, there is a compact neighborhood V of 1 such that V ⊂ W . Then
V 2 ⊂W 2 ⊂ g−1U , so gV 2 ⊂ U as desired. ///

[5.A.9] Claim: Given an open neighborhood V of 1, there is a countable list g1, g2, . . . of elements of G such
that G =

⋃
i giV .

Proof: To see this, first let U1, U2, . . . be a countable basis. For g ∈ G, by definition of a basis,

gV =
⋃

Ui⊂gV
Ui
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Thus, for each g ∈ G, there is an index j(g) such that g ∈ Uj(g) ⊂ gV . Do note that there are only countably
many such indices. For each index i appearing as j(g), let gi be an element of G such that j(gi) = i, that is,

gi ∈ Uj(gi) ⊂ gi · V

Then, for every g ∈ G there is an index i such that

g ∈ Uj(g) = Uj(gi) ⊂ gi · V

This shows that the union of these gi · V is all of G. ///

Now we can prove that G/Gx ≈ X:
Given an open set U in G and g ∈ U , let V be a compact neighborhood of 1 such that gV 2 ⊂ U . Let

g1, g2, . . . be a countable set of points such that G =
⋃
i giV . Let Wn = gnV x ⊂ X. By the transitivity,

X =
⋃
iWi.

We observed at the beginning of this discussion that G→ X by g → gx is continuous, so Wn is compact,
being a continuous image of the compact set gnV . So Wn is closed since it is a compact subset of the Hausdorff
space X. By the Baire category theorem [15.A] for locally compact Hausdorff spaces, some Wm = gmV x
contains a non-empty open set S of X. For h ∈ V so that gmhx ∈ S,

gx = g(gmh)−1(gmh)x ∈ gh−1g−1
m S

Every group element y ∈ G acts by homeomorphisms of X to itself, since the continuous inverse is given by
y−1. Thus, the image gh−1g−1

m S of the open set S is open in X. Continuing,

gh−1g−1
m S ⊂ gh−1g−1

m gmV x ⊂ gh−1V x ⊂ gV −1 · V x ⊂ Ux

Therefore, gx is an interior point of Ux, for all g ∈ U . ///

5.B Appendix: topology on quotients H\G or G/H

As always, G is a topological group, which requires that G be locally compact and Hausdorff, with the
group operation and inversion continuous.

Let H be a closed subgroup of G. As sets, the left-quotient H\G is the set of cosets Hg with g ∈ G, and
G/H is the set of cosets gH with g ∈ G. Let q : G → H\G be the quotient map q(g) = Hg. A subset
U ⊂ H\G is open when the inverse image q−1(U) = {g ∈ G : Hg ⊂ U} is open in G. Similarly for G/H.

[5.B.1] Claim: The quotient maps are open maps, meaning that they take open sets to open sets.

Proof: For open U ⊂ G,

q−1(q(U)) = {g ∈ G : Hg ⊂
⋃
u∈U

Hu} = {g ∈ G : g ∈ H · U} = H · U =
⋃
h∈H

h · U

Since the group operation and inverse are continuous, for every h ∈ H the map g → h ·g is a homeomorphism
of G to itself. Thus, every set h · U is open. An arbitrary union of opens is open. ///
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6. Action of G on function spaces on G

1. Action of G on L2(Γ\G)
2. Action of G on Coc (Γ\G)
3. Test functions on Z+Gk\GA
4. Action of GA on C∞c (Z+Gk\GA)
5. Symmetry of invariant Laplacians
6. An instance of Schur’s lemma
7. Duality of induced representations
8. An instance of Frobenius reciprocity
9. Induction in stages
10. Representations of compact G/Z
11. Gelfand-Kazhdan criterion
Appendix A: action of compact abelian groups

The function spaces here are more complicated versions of the very concrete examples of chapter 12, where
various spaces of functions on the real line were given metrics or topologies so that they would be complete
or quasi-complete. In some of those concrete examples of spaces of functions on R, the translation action of
R on functions plays a role. Spaces of automorphic forms are less visualizable examples. Fortunately, most
of the specifics of the concrete examples are irrelevant to proofs.

6.1 Action of G on L2(Γ\G)

For this section, G need merely be a topological group, unimodular in the sense that its right-invariant
measure is left-invariant. Let Γ be a discrete subgroup, and K a compact subgroup. This includes the
assumptions that G is locally compact, Hausdorff, and countably-based. This applies to both classical
situations and adelic, such as G = SLn(R) and Γ = SLn(Z), and also to G = Z+GLn(A) and Γ = GLn(k)
for number fields k.

Identify functions on Γ\G/K with right K-invariant functions on the overlying space Γ\G by composition
with the quotient map. Unlike Γ\G/K, the space Γ\G admits an action of G by right translation. A right
G-invariant measure dg on G (Haar measure) specifies a unique normalization for a right G-invariant measure
on Γ\G by the unwinding characterization [5.2]∫

Γ\G

(∑
γ∈Γ

f(γg)
)
dg =

∫
G

f(g) dg (for f ∈ Coc (G))

Uniqueness of the Haar measure on G up to scalars, and uniqueness of a measure on Γ\G compatible with
unwinding, are special cases of uniqueness of invariant distributions, as in [14.4]. In many examples, existence
is not an issue, as it is established by reduction to simpler cases. We have an isometry:

[6.1.1] Claim: For f ∈ L2(Γ\G) and g ∈ G, the right translate (g · f)(x) = f(xg) is still in L2(Γ\G), and
|g · f |L2 = |f |L2 .

Proof: Directly computing,∫
Γ\G
|(g · f)(x)|2 dx =

∫
Γ\G
|f(xg)|2 dx =

∫
Γ\G
|f(x)|2 dx

by replacing x by xg−1, using the invariance of the measure. ///

The over-riding point is the continuity of the group action:

[6.1.2] Theorem: G×L2(Γ\G) −→ L2(Γ\G) by g× f −→
(
x→ f(xg)

)
for x, g ∈ G is (jointly) continuous.

That is, L2(Γ\G) is a unitary representation space for G.

Proof: For the moment, write | · | for the L2 norm. The crux of the matter is that L2 functions can
be approximated by continuous, compactly-supported functions, and the latter are uniformly continuous.
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Granting that approximation property for a moment, given ε > 0, take ϕ ∈ Coc (Γ\G) such that |f − ϕ| < ε.
Being compactly supported, ϕ is uniformly continuous, and the topology of Γ\G descends from that of G,
so for every ε1 > 0 there is a neighborhood U of 1 in G such that |ϕ(xu)− ϕ(x)| < ε1 for all x ∈ Γ\G and
for all u ∈ U . For every F ∈ L2(Γ\G) such that |f −F | < ε, for h = gu ∈ gU , the triangle inequality breaks
things into atomic issues:

|g · f − h · F | = |f − g−1h · F | = |f − u · F | ≤ |f − ϕ|+ |ϕ− u · ϕ|+ |u · ϕ− u · f |+ |u · f − u · F |

= |f − ϕ|+ |ϕ− u · ϕ|+ |ϕ− f |+ |f − F | < 3ε+ |u · ϕ− ϕ|

The support S of ϕ has finite measure µ, so for U a small enough neighborhood of 1 such that
supx |ϕ(xu)− ϕ(x)| < ε/2µ for u ∈ U ,(∫

Γ\G
|ϕ(xu)− ϕ(x)|2 dx

) 1
2

< ε

and |g · f − h · F | < 4ε, proving joint continuity.
Density of continuous compactly-supported functions in L2 follows from general principles, but its

importance justifies some attention to it. Now write | · |L2 to distinguish this from the absolute value
on real or complex numbers, and | · |L1 for the L1 norm. First, it suffices to approximate four pieces of f , the
positive and negative parts of its real and imaginary parts, separately, by the triangle inequality. So without
loss of generality, suppose f is real-valued and non-negative. For given ε > 0 there is a bound M such that
a truncated form of f , with maximum value replaced by M , satisfies∫

Γ\G
|f −min (f,M)|2 < ε

Indeed, the sum of integrals of |f |2 over the sets {M ≤ |f | ≤M + 1} converges, so the tails must go to zero.
Replace f by that truncation.

For µ a (positive, regular, Borel) measure on a locally compact Hausdorff space, a simple function is a
finite real-linear combination s =

∑
i ci · χEi of characteristic functions χEi of µ-measurable sets Ei. The

integral of s is
∫
s =

∑
i ci · µ(Ei). The integral of a non-negative real-valued (measurable) function f is the

sup of the integrals of simple functions s such that 0 ≤ s(x) ≤ f for all x. Since 0 ≤ f ≤M , for such s∫
|f − s|2 =

∫
|f − s| · |f − s| ≤

∫
2M · |f − s| = 2M · (

∫
f −

∫
s)

Thus, with s such that
∫
s is within ε/2M of

∫
f , we have |f − s|2L2 ≤ 2M · ε/2M = ε. By the triangle

inequality, it suffices to approximate characteristic functions of measurable sets. Regularity of µ is that the
measure of a set is the sup of the measures of compacts inside it, and is the inf of the opens containing it.
Let K ⊂ E ⊂ U with compact K and open U such that µ(U)− µ(K) < ε. Urysohn’s lemma [9.E.2] yields a
continuous function ϕ with values in the range [0, 1] and 1 on K and 0 outside U , and∫

|ϕ− χE |2 =

∫
K

|ϕ− χE |2 +

∫
U−K

|ϕ− χE |2 ≤ 0 +

∫
U−K

1 < ε

Thus, continuous functions approximate simple functions, which are dense in L2. ///

As in [13.13], the strong operator topology on the continuous linear endomorphisms EndoC(L2(Γ\G)) is
given by the collection of seminorms

T −→ |Tv|L2 (for v ∈ L2(Γ\G))

The strong operator topology is weaker than the (uniform) operator norm topology sup|v|≤1 |Tv|. The
strong operator topology is not complete-metrizable but is quasi-complete as a special case of [13.12], and
immediately locally convex since the topology is given by seminorms [13.11].
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[6.1.3] Corollary: The map G→ EndoC(L2(Γ\G)) by right translation is continuous when EndoC(L2(Γ\G))
has the strong operator topology.

Proof: This is a paraphrase of the joint continuity of G× L2(Γ\G)→ L2(Γ\G). ///

[6.1.4] Remark: As mentioned in [13.13], G → EndoC(L2(Γ\G)) is not continuous when EndoC(L2(Γ\G))
has the operator norm topology. To see this, for each neighborhood N of 1 ∈ G, we claim there is an L2

function f such that |f − g · f |L2 ≥ 1, so certainly cannot be made arbitrarily small. Indeed, shrink N if
necessary so that it injects to the quotient Γ\G, by the discreteness of Γ. Replace N by N ∩N−1, so that
it is closed under inverses. Take 1 6= g ∈ N , and let U ⊂ N be a small-enough neighborhood of 1 such that
g 6∈ U , by Hausdorff-ness. By continuity of multiplication, there is an open V 3 1 such that V · V ⊂ U .
Replace V by V ∩ V −1 so that V is stable under inverses. Then g 6∈ V 2 gives g−1 6∈ V 2, and g−1V ∩ V = φ.
For an L2 function f of norm 1 and supported in V , the supports of f and g · f , namely, V and g−1V , are
disjoint, so |f − g · f |2L =

√
2. This quantity cannot be made arbitrarily small, so the representation is not

continuous for the uniform operator norm topology.
The continuity property of the theorem gives a precise and useful sense to certain integral operators:

[6.1.5] Corollary: For ϕ ∈ Coc (G), the integral operator f → ϕ · f defined on f ∈ L2(Γ\G) by a convergent
vector-valued integral

ϕ · f =

∫
G

ϕ(g) g · f dg

is a continuous linear map L2(Γ\G) −→ L2(Γ\G), with the natural property that for F ∈ L2(Γ\G)

〈ϕ · f, F 〉 =

∫
G

ϕ(g) 〈g · f, F 〉 dg

In fact, letting Tgf = g · f and Tϕ for the expected operator, we have a vector-valued integral convergent in
the strong operator topology:

Tϕ =

∫
G

ϕ(g) Tg dg

with the property

Tϕf =

∫
G

ϕ(g) Tgf dg

Proof: This is a special case of properties of Gelfand-Pettis vector-valued integrals [14.1], and using the
quasi-completeness of the strong operator topology [13.12], [13.13]. First, because G×L2(Γ\G)→ L2(Γ\G)
is continuous, the function g → g · f is a continuous L2(Γ\G)-valued function on G. Then g → ϕ(g) g · f is a
compactly-supported continuous L2(Γ\G)-valued functions, so by [14.8] the integral purporting to define ϕ·f
converges in L2(Γ\G), and enjoys the properties [14.1] of Gelfand-Pettis integrals. In particular, f → 〈f, F 〉
is a continuous linear functional on L2(Γ\G), so by [14.1]

〈ϕ · f, F 〉 =
〈∫

G

ϕ(g) g · f dg, F
〉

=

∫
G

〈ϕ(g) g · f, F 〉 dg =

∫
G

ϕ(g) 〈g · f, F 〉 dg

Similarly, the continuity of the action of G on L2(Γ\G) actually gives the stronger assertion that g → Tg
is a continuous EndoC(L2(Γ\G))-valued function on G. Multiplying by ϕ makes the function compactly-
supported, and again a Gelfand-Pettis integral exists, by [14.8]. The map T → Tf is a continuous L2(Γ\G)-
valued function on EndoC(L2(Γ\G)), so commutes with the integral, by [14.1]. ///
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6.2 Action of G on Co
c (Γ\G)

The following instance of a general result is also a warm-up to the analogous result for test functions
C∞c (Γ\G). For this section, it still suffices that G is a topological group and Γ a discrete subgroup. Although
any locally convex topological vector space topology can be given by a separating family of seminorms [13.11],
this need not be the way the topology arises. The topology on Coc (Γ\G) most naturally arises from the
expression of Coc (Γ\G) as an ascending union of subspaces

CoE(Γ\G) = {f ∈ Coc (Γ\G) : sptf ⊂ E} (where E varies over compact subsets of Γ\G)

Recall the usual

[6.2.1] Lemma: Each CoE(Γ\G) is a Banach space, with sup-norm

|f |Co = sup
x∈E
|f(x)| (for f ∈ CoE(Γ\G))

Proof: First, as proven in [13.1.1], the space Co(E) of all continuous functions on a compact subset E of Γ\G
is a Banach space. Then CoE(Γ\G) is a closed subspace defined by pointwise vanishing on the topological
boundary of E in Γ\G: each evaluation map f → f(xo) is certainly continuous with the sup norm on Co(E),
so the kernels are closed, and the intersection of all these closed subspaces for xo on the boundary of E is a
closed subspace of a Banach space, so is Banach. ///

Then Coc (Γ\G) is the ascending union, a colimit, as discussed in [13.8] and [13.9]:

Coc (Γ\G) =
⋃

E
CoE(Γ\G) = colimE CoE(Γ\G)

There is a countable cofinal colimit over a countable collection of compact subsets E1 ⊂ E2 ⊂ . . . of G whose
union is G. We can take the Ei to be closures of a nested family U1 ⊂ U2 ⊂ ... of opens whose union is G.
Cofinal colimits are isomorphic, for general reasons, so

Coc (Γ\G) =
⋃

Ei
CoEi(Γ\G) = colimEiC

o
Ei(Γ\G)

Each inclusion CoEi(Γ\G) ⊂ CoEi+1
(Γ\G) is a homeomorphism to its image, and its image is closed, defined

by vanishing at all x ∈ Ei+1 − Ei. A countable colimit of such restricted inclusions is a strict colimit. [50]

A strict colimit of Hilbert, Banach, or Fréchet spaces is an LF-space [13.8]. As in [13.12.4], LF-spaces are
rarely complete in the strongest sense, but are quasi-complete [13.8.5], and this is sufficient for use.

[6.2.2] Claim: G acts continuously on Coc (Γ\G) by right translation: this is the joint continuity of

G× Coc (Γ\G) −→ Coc (Γ\G) by g × f −→
(
x→ f(xg)

)
Proof: Of course, right translation by g ∈ G does not stabilize any single CoE(Γ\G), only the colimit. Let
νE(f) be supx∈E |f(x)|. On the other hand, we have the tautological

νE(g · f) = νEg(f) and g · CoE(Γ\G) = CoEg−1(Γ\G)

Fix f ∈ CoE(Γ\G), ε > 0, and g ∈ G. By the uniform continuity of f there is a small-enough neighborhood
U of 1 ∈ G such that |f(x)− f(xu)| < ε for all u ∈ U and for all x ∈ Γ\G. Without loss of generality, U has
compact closure V , and then EV −1g−1 is compact. For all h = gu ∈ gU ,

h · CoE(Γ\G) ⊂ gU · CoE(Γ\G) ⊂ CoEV −1g−1(Γ\G) (h = gu ∈ gU)

[50] Slightly older terminology is that a strict colimit is a strict inductive limit.
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For all F ∈ CoE(Γ\G) with νE(f − F ) < ε, with h = gu ∈ gU

νEV −1g−1(g · f − h · F ) = νEV −1(f − g−1h · F ) = νEV −1(f − u · F )

≤ νEV −1(f − u · f) + νEV −1(u · f − u · F ) = νEV −1(f − u · f) + νE(f − F ) < ε+ ε

proving joint continuity at g × f of

gU × CoE(Γ\G) −→ CoEV −1g−1(Γ\G)

The inclusion CoEV −1g−1(Γ\G) → Coc (Γ\G) is continuous, so gU × CoE(Γ\G) → Coc (Γ\G) is continuous

at {g} × {f}. Since the colimit is stable under the action of G, now it makes sense to say that
G × CoE(Γ\G) → Coc (Γ\G) is continuous at g × f . Since g ∈ G and f ∈ CoE(Γ\G) were arbitrary, this
shows that G× CoE(Γ\G)→ Coc (Γ\G) is continuous.

Maps from a colimit X = colimiXi to another object Y are exactly compatible families of maps Xi → Y
from the limitands to Y , as in [13.8], [13.9]. Using the countable cofinal family E1 ⊂ . . . ⊂ Ei ⊂ Ei+1 ⊂ . . .
for notational convenience, the compatible family of jointly continuous maps

. . . // G× CoEi(Γ\G) //

++XXXXXXXXXXXXX

**
G× CoEi+1

(Γ\G) //

''PPPPPP

,,
. . . Coc (Γ\G)

xx
Coc (Γ\G)

is the joint continuity of G× Coc (Γ\G) −→ Coc (Γ\G) for all U , as claimed. ///

[6.2.3] Corollary: The right translation action G× C∞c (G)→ C∞c (G) is jointly continuous.

Proof: Take Γ = {1} in the previous. ///

6.3 Test functions on Z+Gk\GA

As a preamble, we could consider SLn(Z)\SLn(R), a smooth manifold due to the discreteness of
SLn(Z), on which the notion of test function as compactly-supported smooth function has a general
sense. The simple example C∞c (R) is in [13.9]. Edging toward generality, we could similarly consider
SLn(Z[ 1

p ])\(SLn(R) × SLn(Qp)), where as usual Z[ 1
p ] is Z with prime p inverted. Again, SLn(Z[ 1

p ]) is

demonstrably a discrete subgroup, basically because Z[ 1
p ] is discrete in R×Qp. Certainly SLn(R)×SLn(Qp)

is not locally homeomorphic to any RN , but to (R×Zp)N for suitable N . Nevertheless, for a compact open
subgroup Kp of SLn(Qp), such as Kp = SLn(Zp) or any congruence subgroup, the quotient SLn(Qp)/Kp

is discrete, so SLn(Z[ 1
p ])\SLn(R) × SLn(Qp)/Kp is a smooth manifold. But we object that SLn(Qp) no

longer acts on this quotient, nor on functions on it.
To overcome this objection, and in anticipation of examination of the action of GA on functions on

Z+Gk\GA in the next section, we can characterize differentiability slightly indirectly, taking advantage of
the additional structure. At the same time, the appropriate notion of smoothness of functions f on totally-
disconnected groups such as SLn(Qp) is that there should exist an open subgroup K ′ such that f is right

K ′-invariant. We address these simultaneously. Let G = GLn(A) and Γ = Z+GLn(k). [51] Let g be the Lie
algebra [4.1] of G∞ =

∏
v|∞Gv, and Ug its universal enveloping algebra [4.3]. Each γ ∈ g gives difference

quotients for functions on Z+Gk\GA:

Xγf(x) = lim
t→0

f(xetγ)− f(x)

t
(for x ∈ Z+Gk\GA and t ∈ R)

[51] The same ideas apply to G a product G = G∞ × Go of a real Lie group G∞ and a totally disconnected group

Go, with Γ a discrete subgroup.
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The limit may or may not exist, depending on f and x ∈ Z+Gk\GA and γ ∈ g. Given f and γ, when the limit
does exist for every x, it gives a compactly supported function on Z+Gk\GA. Say f is C1 if this limit exists
for every x ∈ Z+Gk\GA and γ ∈ g, and for each γ ∈ g is a continuous function on Z+Gk\GA. Similarly, if
`-fold limits exist and produce continuous functions, f is C`. The action of a monomial γ1 . . . γ` ∈ Ug is

Xγ1...γ`f = Xγ1 ◦ . . . ◦Xγ`f

when all the implied limits exist. Temporarily, say that a function f ∈ Coc (Z+Gk\GA) such that these
limits exist for all elements of Ug is archimedean-smooth. Also temporarily, say f ∈ Coc (Z+Gk\GA) is non-

archimedean smooth when f is right K ′-invariant for some open subgroup K ′ ⊂ Gfin =
∏
v<∞Gv.

[52] A
function f ∈ Coc (Z+Gk\GA) is smooth when it is both archimedean-smooth and non-archimedean smooth.
Compactly supported smooth functions are test functions, denoted C∞c (Z+Gk\GA).

The LF-space topology on V = C∞c (Z+Gk\GA) is described much as C∞c (R) in [13.9] and as the colimit
C∞ of finite-dimensional spaces Cn in [13.8]. For compact E ⊂ Z+Gk\GA and compact-open subgroup
K ⊂ Gfin, let C∞E (Z+Gk\GA)K be the collection of right K-invariant test functions on Z+Gk\GA with
support in E. Below, we see that each C∞E (Z+Gk\GA)K is a Fréchet space, a (projective) limit of a
countable collection of spaces C`E(Z+Gk\GA)K of right K-invariant C` functions with supports on E,
suitably topologized. Then C∞c (Z+Gk\GA) is the colimit of the spaces C∞E (Z+Gk\GA)K . Details are
as follows.

As always, the Co seminorm on CoE(Z+Gk\GA) is the sup norm, and this is a Banach space. Since
evaluation at points is a continuous linear functional, a requirement of right K-invariance for open subgroup
K ⊂ Gfin is a collection of closed conditions, so defines a closed subspace, giving a Banach space. The
C` seminorm on C`E(Z+Gk\GA) should be something like the sup of all derivatives of orders at most `,
with derivatives specifically given by g and Ug. In contrast to R, the action of the group here does not
generally commute with the natural differential operators. To topologize C1

E(Z+Gk\GA) to behave well
under the action of G∞ requires examination of the interaction of the right translation action with these
right derivatives. Of course, Gfin does commute with the action of g. For G∞, the interaction is by the
conjugation action [53] on g:

g · etγ · f = getγg−1 · g · f (for g ∈ G∞)

Conjugation interacts well with exponentiation:

gehg−1 = g
(∑
n≥0

hn

n!

)
g−1 =

∑
n≥0

g
hn

n!
g−1 =

∑
n≥0

(ghg−1)n

n!
= eghg

−1

so
g · etγ · f = getgγg

−1

· g · f and by differentiating g · γ · f = gγg−1 · g · f

The right translation action of G∞ on functions does not stabilize any individual differential operator coming
from g, nor any finite subset, and does not stabilize the individual spaces C`E(Z+Gk\GA), since it does not
stabilize supports. Nevertheless, for any open subgroup K ⊂ Gfin, the condition of right K-invariance is a
collection of closed conditions, so defines a Banach space C`E(Z+Gk\GA)K .

One approach to a suitable topology is as follows. For each bounded neighborhood b of 0 in g, and for each
compact E ⊂ Z+Gk\GA, define a semi-norm

νb,E(f) = sup
β∈b

sup
x∈E
|(β · f)(x)|

The collection of these has the desirable stability property that

νb,E(f) = νgbg−1,Eg−1(g · f)

[52] For f not necessarily compactly supported, the non-archimedean notion of smoothness would be local, allowing

K′ to vary. The compact support of f implies uniform non-archimedean smoothness, so we may as well give the

simpler definition.
[53] This is an instance of an Adjoint action of a Lie group on its Lie algebra.
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Because g is finite-dimensional, for every pair of bounded neighborhoods b, b′ of 0 ∈ B, there are constants
0 < c < C <∞ such that c · b′ ⊂ b ⊂ C · b′, so

c · νb′,E(f) ≤ νb,E(f) ≤ C · νb′,E(f) (for all f)

That is, the topologies are the same, for all bounded neighborhoods b of 0, for fixed E. That is, we can
topologize each space C1

E(Z+Gk\GA) by any one of the topologically equivalent seminorms νb,E . As in the
simplest Euclidean case in [13.1], for a fixed choice of b ∈ B each C1

E(Z+Gk\GA) is complete with respect
to the (semi-) norm νb,E , so is a Banach space. However, here there is no canonical Banach space structure,
only a canonical topology, given by any one of the topologically equivalent Banach-space structures. In
this topology, pointwise evaluation is continuous, so for open subgroup K ⊂ Gfin the requirement of right
K-invariance is a collection of closed conditions, so C1

E(Z+Gk\GA)K is a closed subspace of any of these
Banach spaces.

Similarly, to topologize C`E(Z+Gk\GA), let B be the collection of bounded neighborhoods of 0 in the
graded piece Ug≤` of elements of degree ≤ ` in Ug. Each b ∈ B and compact E give a seminorm

νb,E(f) = sup
α∈b

sup
x∈E
|αf(x)|

on `-times differentiable functions supported on E. Since Ug≤` is finite-dimensional, these seminorms
for varying bounded neighborhoods b of 0 ∈ Ug≤k are all comparable, giving the same topology on
C`E(Z+Gk\GA). The collection of such seminorms is stabilized by the right action of G, by the extension of
the conjugation (Adjoint) action, written as conjugation:

νb,E(f) = νgbg−1,Eg−1(g · f)

As for C1, each space C`E(Z+Gk\GA) is complete, although there is no canonical Banach-space structure.
Again, for open subgroup K of Gfin, the K-fixed functions C`E(Z+Gk\GA)K constitute a closed subspace,
hence complete.

As in the simplest case [13.2], C∞E (Z+Gk\GA) is a (projective) limit of topological vector spaces

C∞E (Z+Gk\GA) =
⋂

`
C`E(Z+Gk\GA) = lim` C

`
E(Z+Gk\GA)

This is equivalent to characterizing the topology on C∞E (Z+Gk\GA) by the seminorms νb,E with compact
b ⊂ Ug≤` for all ` and E. The completeness of the limitands implies completeness of the limit, for general
reasons, as in [13.2] and other elementary examples in chapter 12. For each open subgroup K ⊂ Gfin, taking
K-invariant subspaces commutes with the projective limit, for elementary reasons: the evaluation maps
f → f(xo) are continuous and commute with the restriction maps C∞E (Z+Gk\GA) −→ C∞E′(Z

+Gk\GA) for
E ⊃ E′. Thus, we can unambiguously write

C∞E (Z+Gk\GA)K =
⋂

`
C`E(Z+Gk\GA)K = lim` C

`
E(Z+Gk\GA)K

Then C∞E (Z+Gk\GA) is a (strict) colimit

C∞c (Z+Gk\GA) =
⋃

E,K
C∞E (Z+Gk\GA)K = colimE,K C

∞
E (Z+Gk\GA)K

The strictness property resides first in the fact that there is the countable cofinal collection E1, E2, . . ., and a
countable local basis K1,K2, . . . for Gfin. For example, take Ei to be closures of a nested family U1 ⊂ U2 ⊂ ...
of opens whose union is Z+Gk\GA. Second, the strictness resides in the fact that the inclusion maps are
isomorphisms to their images, which are closed subspaces. Thus, as in the more elementary examples [13.8]
and [13.9], this colimit is an LF-space, and is quasi-complete [13.8.5].

The space of distributions C∞c (Z+Gk\GA)∗ is the dual to C∞c (Z+Gk\GA), with the weak-dual (also called
weak-*) topology, as in [13.14].
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6.4 Action of GA on C∞c (Z+Gk\GA)

[6.4.1] Theorem: GA acts continuously on C∞c (Z+Gk\GA) by right translation. This is the joint continuity
of

GA × C∞c (Z+Gk\GA) −→ C∞c (Z+Gk\GA) by g × f −→
(
x→ f(xg)

)
Proof: As in the case of Coc (Γ\G) in the proof of [6.2.2], the collection of seminorms νb,E behaves reasonably
under right translation by G∞:

νb,E(f) = νgbg−1,Eg−1(g · f) (compact neighborhood b of 0 ∈ Ug≤k)

and the collection of spaces C∞E (Z+Gk\GA)K behaves reasonably:

g · C∞E (Z+Gk\GA)K = C∞Eg−1(Z+Gk\GA)K (for g ∈ G∞, fixed K ⊂ Gfin)

although G∞ does not stabilize any individual C∞E (Z+Gk\GA). Similarly, although right translation by Gfin

does not preserve right K-invariance for any individual open subgroup K ⊂ Gfin, for g ∈ Gfin, for fixed open
subgroup K ⊂ Gfin, and for right K-invariant f , the translate g · f is gKg−1-invariant: for h ∈ K,

(g · f)(x(ghg−1)) = f(xghg−1g) = f(xgh) = f(xg) = (g · f)(x)

Still gKg−1 is an open subgroup of Gfin, so

g · C`E(Z+Gk\GA)K = C`Eg−1(Z+Gk\GA)gKg
−1

(for g ∈ G∞, fixed K ⊂ Gfin)

As in the proof of [6.2.2], for joint continuity, we further need comparisons for g in a small open set containing
a given go ∈ GA.

This uniformity is easiest to see for Gfin:

[6.4.2] Claim: Given g ∈ Gfin, a compact neighborhood C of g, and compact open subgroup K of Gfin,⋂
h∈C hKh

−1 is still an open subgroup of Gfin.

Proof: (of claim) Since inversion and multiplication are continuous, U = g−1C is a compact neighborhood
of 1. We may as well enlarge it to C ·K. Since K is compact, C ·K is still compact. Thus, C ·K consists
of finitely-many cosets c1K, . . . , c`K, and any h ∈ C is h = gcik for some i and some k ∈ K, and

hKh−1 = (gcik) ·K · (gcik)−1 = g(ci ·K · c−1
i )g−1

Thus, the indicated intersection is actually a finite intersection of open subgroups, so is open. ///

The uniformity at archimedean places is slightly more complicated, but is parallel to [6.2.2], with further
details. Fix f ∈ C∞E (Z+Gk\GA), ε > 0, g ∈ G∞, and 1 ≤ ` ∈ Z. Given a compact neighborhood b
of 0 ∈ Ug≤`, by the uniform continuity of f and its derivatives βf for β ∈ b, there is a small-enough
neighborhood U of 1 ∈ G∞ such that |βf(x)− βf(xu)| < ε for all u ∈ U , for all x ∈ Z+Gk\GA, and for all
β ∈ b. Without loss of generality, U has compact closure V . Certainly E′ = EV −1g−1 is compact. Being
the continuous image of compact V × b, the set

⋃
v∈V vbv

−1 is itself a compact neighborhood of 0 ∈ Ug≤`,
so the seminorms νg−1bg,E′ are uniformly comparable to νb,E′ . For all h = gu ∈ gU ⊂ G∞,

h · C∞E (Z+Gk\GA)K ⊂ gU · C∞E (Z+Gk\GA)K ⊂ C∞EV −1g−1(Z+Gk\GA)K (h = gu ∈ gU)

For all F ∈ C∞E (Z+Gk\GA)K with νb,EV −1(f −F ) < ε, with h = gu ∈ gU , using the uniform comparability
of these seminorms.

νb,EV −1g−1(g · f − h · F ) = νg−1bg,EV −1(f − g−1h · F ) = νg−1bg,EV −1(f − u · F ) � νb,EV −1(f − u · F )

≤ νb,EV −1(f − u · f) + νb,EV −1(u · f − u · F ) = νb,EV −1(f − u · f) + νb,E(f − F ) < ε+ ε
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proving archimedean joint continuity at {g} × {f} of

gU × C∞E (Z+Gk\GA)K −→ C∞EV −1g−1(Z+Gk\GA)K

The inclusion C∞EV −1g−1(Z+Gk\GA) → C∞c (Z+Gk\GA) is continuous, so gU × C∞E (Z+Gk\GA) →
C∞c (Z+Gk\GA) is continuous at {g} × {f}. Since the colimit is stable under the action of G, now it
makes sense to say that G×C∞E (Z+Gk\GA)→ C∞c (Z+Gk\GA) is continuous at {g}×{f}. Since g ∈ G and
f ∈ C∞E (Z+Gk\GA) were arbitrary, this shows that G× C∞E (Z+Gk\GA)→ C∞c (Z+Gk\GA) is continuous.

Maps from a colimit X = limiXi to another object Y are exactly compatible families of maps Xi → Y
from the limitands to Y , as in [13.8], [13.9], [13.10]. Thus, the compatible family of continuous maps

. . . // G× C∞Ei(Z
+Gk\G) //

,,YYYYYYYYYYYYYYY

++
G× C∞Ei+1

(Z+Gk\G) //

))SSSSSSS

,,
. . . C∞c (Z+Gk\G)

vv
Coc (Z+Gk\G)

immediately gives the joint continuity of

G× C∞c (Z+Gk\GA) −→ C∞c (Z+Gk\GA) (for all U)

as claimed. ///

[6.4.3] Corollary: The right translation action G× C∞c (G)→ C∞c (G) is jointly continuous.

Proof: The proof did not use specific features of Z+Gk other than its discreteness in Z+\G, so we could as
well take replace Z+Gk by {1}. ///

[6.4.4] Corollary: The contragredient or dual action of G on distributions C∞c (Z+Gk\GA)∗ defined by
(g · u)(f) = u(g−1 · f) for all f ∈ C∞c (Z+Gk\GA) gives jointly continuous

G× C∞c (Z+Gk\GA)∗ −→ C∞c (Z+Gk\GA)∗

Proof: This is a special case of the continuity of G×V → V giving that of G×V ∗ → V ∗, where V ∗ is the dual
space of V and is given the weak dual topology [13.11]. The group acts on the dual by (g ·λ)(v) = λ(g−1 ·v).
Given g ∈ G, λ ∈ V ∗, v ∈ V , and ε > 0, we want a neighborhood of gU and a neighborhood λ+N of λ such
that for h = gu ∈ gU and µ = λ+ ν ∈ λ+N , |(hµ− gλ)(v)| < ε. This is

ε > |(hµ− gλ)(v)| =
∣∣µ(h−1v)− λ(g−1v)

∣∣ =
∣∣ν(u−1g−1v) + λ(u−1g−1v − g−1v)

∣∣
By continuity of G×V → V , take U small enough so that u−1g−1v−g−1v is in a small enough neighborhood
E of 0 in V such that |λ(E)| < ε

2 . Then take N small enough so that |ν(U−1g−1v)| < ε
2 . ///

6.5 Symmetry of invariant Laplacians

Just as the density of Coc (Z+Gk\GA) in L2(Z+Gk\GA) was used above to examine the representation
of G on L2(Z+Gk\GA), we need the density of test functions in L2(Z+Gk\GA) to prove things about the
invariant Laplacians on right K∞-invariant functions. As in [4.2], the invariant Laplacians ∆v on Gv/Kv

with v archimedean are the restrictions of the corresponding Casimir elements Ωv to right Kv-invariant
functions.

[6.5.1] Claim: In the four simplest examples from chapter 1, C∞c (Γ\G/K) is dense in L2(Γ\G/K). Similarly,
on adele groups GA is in chapters 2 and 3, C∞c (Z+Gk\GA) is dense in L2(Z+Gk\GA).

Proof: The argument for Γ\G/K is the same as that for Z+Gk\GA, simply dropping any reference to non-
archimedean phenomena. We give the adele-group argument, to include the non-archimedean aspects. By
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density of continuous, compactly-supported functions in either case, it suffices to L2-approximate continuous,
compactly-supported functions f by smooth, compactly-supported functions. The standard device uses
a smooth Dirac sequence [54] {ϕi} on G, where smoothness at archimedean places means indefinitely
continuously differentiable, and at non-archimedean places means locally constant. Put

(ϕi · f)(g) =

∫
GA

ϕi(h) f(gh) dh

As in [14.5] and [14.6], via Gelfand-Pettis integrals, ϕi · f is in Coc (Z+Gk\GA), and ϕi · f → f in the L2

topology, and, in fact, in the finer LF-topology on Coc (Z+Gk\GA). Changing variables in the integral,

(ϕi · f)(g) =

∫
GA

ϕi(g
−1h) f(h) dh

That is, the function-valued function

h −→
(
g → ϕi(g

−1h) f(h)
)

is a continuous, compactly-supported, C∞c (Z+Gk\GA)-valued function. Thus, it has a Gelfand-Pettis
integral in C∞c (Z+Gk\GA). That is, each ϕi · f is a smooth, compactly-supported function. We saw
that the sequence of these approaches f . ///

[6.5.2] Corollary: The Casimir operators Ωv on the archimedean factors Gv of GA are symmetric on
C∞c (Z+Gk\GA), that is,

〈Ωvf, F 〉Z+Gk\GA = 〈f,ΩvF 〉Z+Gk\GA (for f, F ∈ C∞c (Z+Gk\GA))

and negative semi-definite on right K∞-invariant functions C∞c (Z+Gk\GA)K∞ :

〈Ωvf, f〉Z+Gk\GA ≤ 0 (for f ∈ C∞c (Z+Gk\GA))

Proof: As in [4.2], the Casimir element Ωv on archimedean Gv, or a constant multiple of it, is described as
follows. Let 〈α, β〉 = Retr(αβ) be the trace pairing on the Lie algebra g of Gv, where trace is just matrix
trace. As in [4.2], for any basis {xj} of g and dual basis {x∗j}, Ωv =

∑
j xjx

∗
j ∈ Ug. In fact, the pairing

is negative-definite on the Lie algebra k of Kv, which is O(n,R) or U(n), and positive-definite on their
complements s consisting of symmetric real matrices and hermitian-symmetric complex matrices. So we can
choose an orthogonal basis {xj} for s with x∗j = xj , and an orthogonal basis {θj} for k with θ∗j = −θj . Thus,

Ωv =
∑
j

x2
j −

∑
j

θ2
j

The action of x ∈ g on f ∈ C∞c (Z+Gk\GA) is

(xf)(g) =
∂

∂t

∣∣∣
t=0

f(getx)

To properly indicate the order of operations, the evaluation at t = 0 should come after the derivative, so for
clarity write

(xf)(g) =
∣∣∣
t=0

∂

∂t
f(getx)

[54] A smooth Dirac sequence or approximate identity {ϕi} on a unimodular group G is a sequence of smooth,

compactly-supported real-valued functions ϕi so that
∫
G ϕi(g) dg = 1 and 0 ≤ ϕ ≤ 1 for all i, and for every

neighborhood N of the identity e ∈ G, there is io such that for all i ≥ io the support of ϕi is inside N .
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For f, F ∈ C∞c (Z+Gk\GA),

〈xf, F 〉 =

∫
Z+Gk\GA

∣∣∣
t=0

∂

∂t
f(getx) · F (g) dg

It would be needlessly reckless to claim that the integrand is a compactly-supported, continuous C∞c (R)-
valued function

g −→
(
t −→ f(getx) · F (g)

)
because the compact support in t can easily fail. Instead, restrict t to a small interval [−ε, ε]. The integrand
is a compactly-supported, continuous C∞[−ε, ε]-valued function, where C∞[−ε, ε] has its natural Fréchet-
space structure, as in [13.8] and [13.9]. Evaluation at t = 0 is a continuous linear functional on C∞[−ε, ε],
so by Gelfand-Pettis the evaluation commutes with the integral:∫

Z+Gk\GA

∣∣∣
t=0

∂

∂t
f(getx) · F (g) dg =

∣∣∣
t=0

∫
Z+Gk\GA

∂

∂t
f(getx) · F (g) dg

Similarly, ∂/∂t is a continuous map of C∞[−ε, ε] to itself, so commutes with the integral:

∣∣∣
t=0

∫
Z+Gk\GA

∂

∂t
f(getx) · F (g) dg =

∣∣∣
t=0

∂

∂t

∫
Z+Gk\GA

f(getx) · F (g) dg

This legitimizes the change of variables replacing g by ge−tγ :∣∣∣
t=0

∂

∂t

∫
Z+Gk\GA

f(getx) · F (g) dg =
∣∣∣
t=0

∂

∂t

∫
Z+Gk\GA

f(g) · F (ge−tγ) dg

The differentiation and evaluation can be moved back inside the integral for the same reasons. Thus,
〈xf, F 〉 = −〈f, xF 〉, and

〈x2f, F 〉 = −〈xf, xF 〉 = 〈f, x2F 〉

Thus, 〈
(
∑
j

x2
j −

∑
j

θ2
j )f, F

〉
=
〈
f, (
∑
j

x2
j −

∑
j

θ2
j )F

〉
This is the symmetry. On f, F right Kv-invariant, θj ∈ k acts by 0, so〈

(
∑
j

x2
j −

∑
j

θ2
j )f, f

〉
=
〈

(
∑
j

x2
j )f, f

〉
=
∑
j

〈x2
jf, f〉 = −

∑
j

〈xjf, xjf〉 ≤ 0

giving the non-positiveness. ///

6.6 An instance of Schur’s lemma

The general idea of Schur’s lemma is that endomorphisms of an irreducible G-representation space
commuting with the G-action must be scalar.

The group G = GLn(Qp) is abstracted to consider G totally disconnected, in the sense that for every x 6= y
in X there are open sets x ∈ U , y ∈ V so that U ∩ V = φ and U ∪ V = X. Since we only consider Hausdorff
topological groups, the sets U, V in the definition are not only open but closed. The first assertions admit
explicit arguments for GLn(Qp), but, in fact, use only general features of totally disconnected groups.

[6.6.1] Claim: At every point x of a locally compact totally disconnected space X there is a local basis
consisting of compact open sets.
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Proof: By local compactness, take an open set V containing x so that the closure V is compact. The boundary
∂V = V ∩ (X − V ) ⊂ V is closed, so is compact. For y ∈ ∂V , there are open (and closed) sets x ∈ Uy and
y ∈ Vy so that Uy ∩ Vy = ∅ and Uy ∪ Vy = X. Take a finite subcover Vy1

, . . . , Vyn of ∂V . The set

V − (
⋃
i

V̄yi) = V̄ − (
⋃
i

Vyi)

contains x, and is both open and closed. Being a closed subset of the compact set V in a Hausdorff space,
it is compact. ///

[6.6.2] Claim: A locally compact totally disconnected topological group G has a local basis at 1 = 1G
consisting of compact open subgroups. Further, for a fixed compact open subgroup K1, there are normal
compact open subgroups of K1 such that K1 ⊃ K2 ⊃ K3 ⊃ . . . and these Kj are a local basis at 1.

Proof: Let V be a compact open subset of G containing 1, by the previous. The set

K = {x ∈ G : xV ⊂ V and x−1V ⊂ V }

is a subgroup of G, and

K = (
⋂
v∈V

V v−1) ∩ (
⋂
v∈V

V v−1)−1

so K is the continuous image of a compact set, so is compact. What remains to be shown is that K is open.
To the latter end, show that the compact-open topology on G constructed from the original topology on

G is the original topology on G. That is, show that, for compact C in G and for open V in G, the set

U = UC,V = {x ∈ G : xC ⊂ V }

is open in G. Take U non-empty, and x ∈ U . For all points xy ∈ xC for y ∈ C, there is a small-enough open
neighborhood Uy of 1 so that the open neighborhood xUyy of xy is contained in V . By continuity of the
multiplication in G, there is an open neighborhood Wy of 1 so that WyWy ⊂ Uy. The sets xWyy cover xC.
Let xWy1

y1, . . . , xWynyn be a finite subcover. Put W =
⋂
iWyi . Then xW is a neighborhood of x and

xW · C ⊂ xW ·
⋃
i

Wyiyi

and xWWyiyi ⊂ xWyiWyiyi ⊂ xUyiyi. Thus, U is open.
Let H1 ⊃ H2 ⊃ . . . be a local basis of compact open subgroups. Put K1 = H1. Of course, K1 is a union

of cosets K1 =
⋃
x∈K1

xH2. By compactness, there is a finite subcover K1 = x1H2 ∪ . . . ∪ xnH2. Thus, H2

is of finite index in K1. Then

K2 =
⋂
x∈K1

xH2x
−1 =

⋂
x∈K1/H2

xH2x
−1 = x1H2x

−1
1 ∩ . . . ∩ xnH2x

−1
n

is a finite intersection of compact open subgroups, so is compact and open, and is normal in K1. Replace
H3 by H3 ∩K2 and continue inductively. ///

A representation G×V → V of G on a complex vector space V is smooth when, for all v ∈ V , the isotropy
group Gv = {g ∈ G : g · v = v} is open. Because of the total-disconnectedness, this condition is equivalent
to an expression of V as an ascending union, or strict colimit [13.8], [13.9],

V =
⋃
K

V K = colimK V
K (with V K = K-fixed vectors in V )

where K runs over compact open subgroups of G. All our topological groups are countably based, so the
colimit has a countable cofinal subsystem. Since every G-homomorphism V → W preserves K-fixed-ness,
smoothness is automatically preserved by G-homomorphisms. The representation V is admissible when each
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V K is finite-dimensional. In that case, V is a strict colimit of finite-dimensional topological vector spaces.
[55] Finite-dimensional topological vectors spaces have unique topologies [13.4], and every linear map from
a finite-dimensional space is continuous. Thus, admissible V has a topology so that every linear T : V →W
is continuous. In particular, the continuous dual V ∗ of admissible V consists of all linear functions on V .
Similarly, for a topological vector space V that is a strict colimit of finite-dimensional spaces, every group
action G× V → V is continuous. [56]

Generally, given an arbitrary (continuous) representation G × V → V on a vectorspace V , the subspace
V∞ of smooth vectors is

V∞ = {v ∈ V : Gv is open}

This subspace is G-stable, so the restriction of G × V → V to G × V∞ → V∞ is a G-subrepresentation
of V . For a smooth representation G × V → V , the (smooth) dual or (smooth) contragredient V ∨ is the
representation of G on the smooth vectors (V ∗)∞ in the continuous linear dual V ∗, where, as always, G acts
on V ∗ by (g · λ)(v) = λ(g−1 · v). A smooth representation G× V → V is (topologically) irreducible when it
contains no proper closed subspace W stable under G. It is (algebraically) irreducible when it contains no
proper (not necessarily closed) subspace W stable under G.

[6.6.3] Claim: Every subspace of a strict colimit of finite-dimensional spaces is closed.

Proof: Let W be a subspace of
⋃
i Vi where Vi ⊂ Vi+1 and every Vi is finite-dimensional. Given v ∈ V and

v 6∈W , we can make a linear functional λv on V that vanishes on W and is non-zero on v, as follows. Let j
be large-enough so that v ∈ Vj . Let λj : Vj → C be linear with λj(W ∩Vj) = 0 and λjv = 1. Extend λj to a
linear functional λj+1 on Vj+1 by choosing a complementary subspace Xj+1 to Vj inside Vj+1, and making
λj+1Xj+1 = 0, while agreeing with λj on the copy of Vj inside Vj+1. Continue by induction. This defines
λv on the strict colimit, and continuity is automatic. Thus, W is the intersection of the kernels of all such
λv over all v 6∈W , so is closed. ///

The (full) Hecke algebra on G is the space H = H(G) = C∞c (G) of smooth, compactly-supported complex-
valued functions on G. Here smooth means locally constant, in the sense that, given η ∈ H and g ∈ G,
there is a neighborhood U of g such that η(g′) = η(g) for all g′ ∈ U . The Hecke algebra acts on V for any
representation G× V → V as usual by

η · v =

∫
G

η(g) g · v dg (with right-invariant measure)

and convolution η ∗ ψ on H is characterized by

(η ∗ ψ)v = η · (ψ · v) (for v ∈ V and η, ψ ∈ H)

That is,

(η ∗ ψ)v = η · (ψ · v) = η ·
∫
G

ψ(x)x · v dx =

∫
G

η(y) y ·
(∫

G

ψ(x)x · v dx
)
dy

=

∫
G

∫
G

η(y)ψ(x) y · x · v dx dy

using properties of Gelfand-Pettis integrals of vector-valued functions [14.1]. Changing the order of
integration and replacing y by yx−1, then changing the order back, and again using Gelfand-Pettis, this
is ∫

G

∫
G

η(yx−1)ψ(x) y · v dy dx =

∫
G

(∫
G

η(yx−1)ψ(x) dx
)
y · v dy

[55] Happily, but not obviously, many important representations of such groups are admissible, which reduces the

topological or analytical delicacy.
[56] Some sources give the impression that a colimit of finite-dimensional spaces has no topology, or that topology is

ignored. However, as noted here, there is a canonical topology, and every linear map from it to any topological vector

space is continuous.
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Thus, we discover an expression for the convolution, without assuming unimodularity of G,

(η ∗ ψ)(y) =

∫
G

η(yx−1)ψ(x) dx

Unless G is discrete, which is not of interest here, the algebra H with convolution has no unit element 1.
Fortunately, there are sufficiently many idempotents: for compact open subgroup K of G, let

eK =
chK

meas (K)
∈ H (with characteristic function chK of K)

These are idempotents: eK ∗ eK = eK . Indeed, for any K ′ ⊂ K, we have e′K ∗ eK = eK ∗ eK′ = eK .
There are sufficiently many of these idempotents in H in the sense that, given η ∈ H there is eK such that
eK ∗ η = η = η ∗ eK . Smoothness of a G-representation space V is that for all v ∈ V there is a small-enough
K so that eK · v = v.

A complex vectorspace V which is a module over the ring H is smooth when for every v ∈ V there is a
small-enough compact open subgroup K so that eKv = v.

[6.6.4] Theorem: The category of smooth H-modules is the same as the category of smooth G-
representations.

Proof: We have already seen how to get smooth H-modules from smooth G-representations. We need to
recover the action of G from the H-module structure. Slightly generalizing previous notation, for a compact
open subset X of G, let

eX =
chX

meas (X)

For v in a smooth H-module V with K a small-enough compact open subgroup so that eKv = v, and for
g ∈ G, try go define the action of g by g ·v = egKv. To see that this is well-defined, check that K may be made
smaller without altering egK · v. Since eK · v = v, by associativity it suffices to show that egK′ ∗ eK = egK
for K ′ ⊂ K:

meas (gK ′) ·meas (K) · (egK′ ∗ eK)(x) =

∫
G

chgK′(xy
−1) chK(y) dy =

∫
K

chgK′(xy
−1) dy

The integrand is non-zero exactly for y ∈ K and xy−1 ∈ gK ′, that is, for y ∈ K and y ∈ K ′g−1x. Since
K ′ ⊂ K, the set K ′g−1x ∩ K is non-empty exactly for g−1x ∈ K, which is x ∈ gK, in which case the
intersection has measure meas (K ′). That is, with modular function δ,

egK′ ∗ eK(x) =
meas (K ′)

meas (gK ′) ·meas (K)
· chgK(x) =

chgK(x)

δ(g) ·meas (K)
=

chgK(x)

meas (gK)

as claimed. Second, check that this gives a group homomorphism: given compact open K and given h ∈ G,
take K ′ small-enough so that eK′ ∗ ehK = ehK . This condition is

chhK(x) = meas (K ′) ·
∫
G

chK′(xy
−1) chhK(y) dy = meas (K ′) ·

∫
G

chK′(y
−1) chhK(yx) dy

= meas (K ′) ·
∫
K′

chhK(yx) dy

It suffices that chhK be left K ′-invariant, since then the integrand is chhK(x) for all y ∈ K ′. This left
invariance is that k′x ∈ hK for x ∈ hK and k′ ∈ K ′. That is, k′hK ⊂ hK, or k′h ∈ hK, or k′ ∈ hKh−1.
Thus, K ′ = hKh−1 suffices. We must show that egK′ ∗ ehK = eghK . Noting that

meas (K ′) = meas (hKh−1) = meas (hK) = δ(h) ·meas (K)

we have
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meas (gK ′) ·meas (hK) · (egK′ ∗ ehK)(x) =

∫
G

chgK′(xy
−1) chhK(y) dy

= δ(h)

∫
G

chgK′(xy
−1h−1) chK(y) dy = δ(h)

∫
K

chghKh−1(xy−1h−1) dy

= δ(h)

∫
K

chghK(xy) dy

The integrand is non-zero exactly when xy ∈ ghK, which is y ∈ K ∩ x−1ghK. This is non-zero exactly for
x−1ghK ⊂ K, which is equivalent to x ∈ ghK. Then y is integrated over K, giving δ(h)meas (K) · chghK(x).
Thus,

egK′ ∗ ehK =
δ(h)meas (K) · chghK

meas (gK ′) ·meas (hK)
=

δ(h)meas (K) · chghK
δ(g)δ(h)meas (K) · δ(h)meas (K)

=
chghK

meas (ghK)

This is the homomorphism property. Visibly, G-homomorphisms and H-module homomorphisms are
interchanged under this bijection. ///

In the following, recall from above that for G×V → V with V a strict colimit of finite-dimensional complex
vectorspaces, for example admissible, algebraic irreducibility and topological irreducibility are equivalent. For
larger, not necessarily admissible, representations, algebraic irreducibility is usually strictly stronger.

[6.6.5] Theorem: (Schur’s Lemma) Let G× V → V be an algebraically irreducible smooth representation
of G. Let T be a C-linear endomorphism of V commuting with all maps v → g · v with g ∈ G. Then T is a
scalar, that is, multiplication by an element of C.

Proof: (Jacquet) Since G has a countable basis, H has countable dimension as C-vectorspace. Algebraic
irreducibility implies H · v = V for v 6= 0 in V , so V is of countable C-dimension. An H-endomorphism
T is completely determined by Tv for one v 6= 0, since T (ηv) = ηT (v) for η ∈ H. Thus, the ring D of
H-endomorphisms of V has countable C-dimension. As V is algebraically irreducible, for all T ∈ D both
the kernel and image of T are H-submodules, so can be only 0 or V . Thus, D is a division ring with C in
its center.

Since C is algebraically closed, non-scalar T ∈ D are transcendental over C. Therefore, for T ∈ D not
a scalar the elements Sλ = (T − λ)−1 ∈ D with λ varying over C are linearly independent over C, by
uniqueness of partial fraction expansions in C(T ). As C is uncountable, this would yield an uncountable set
of linearly-independent elements of D, contradiction. ///

6.7 Duality of induced representations

The group G is still totally disconnected, and representations G×V → V are smooth. For a closed subgroup
H of G, there is the forgetful functor ResGH from smooth G-representations to smooth H-representations, by

forgetting all but the action of H. We eventually want a right adjoint [57] IndGH to this forgetful functor from
representations of H to representations of G, in the sense that there should be natural bijections

HomG(V, IndGHW ) ≈ HomH(ResGHV, W ) (for representation W of H)

for all smooth G-representation V and smooth H-representation W . This adjunction is Frobenius reciprocity,
proven in the next section, and is viewed there as approximately analogous to the Cartan-Eilenberg adjunction

HomZ(A, HomZ(B,C)) ≈ HomZ(A⊗Z B, C) (for Z-modules A,B,C)

with ϕΦ ← Φ by ϕΦ(a)(b) = Φ(a⊗ b), and ϕ→ Φϕ by Φϕ(a⊗ b) = ϕ(a)(b). The relatively simple argument
for this will also be recalled in the next section.

[57] It is not obvious, but there is no left adjoint to ResGH in this situation.
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The present section constructs induced representations IndGHW of G made from representations W of H,
and compactly-induced representations c-IndGHW as spaces of W -valued functions on G, and proves a duality

(c-IndGHW, C)∨ = HomG(c-IndGHW, C) ≈ IndGH
(
ρ ·HomG(W∨,C)

)
with ρ = δH/δG for modular functions on H and G, (proof below) whose relevance to Frobenius reciprocity
is suggested by the simpler Cartan-Eilenberg adjunction.

For a smooth representation W of a closed subgroup H of G, let C∞c (H\G,W ) be the space of W -valued
functions f on G that are compactly-supported left-modulo H (in the sense that the images in H\G of their
supports are compact), locally constant, and so that

f(hg) = h · f(g) (for h ∈ H and g ∈ G)

The compact-induced representation c-IndGHW has representation space C∞c (H\G,W ) with the right
translation action of G

(g · f)(g′) = f(g′g) (for g, g′ ∈ G)

The induced representation IndGHW has representation space consisting of uniformly locally constant W -
valued functions f on G satisfying

f(hg) = h · f(g) (for h ∈ H and g ∈ G)

with the right translation action

(g · f)(g′) = f(g′g) (for g, g′ ∈ G)

The uniform locally-constant condition on f in this space of functions is that there is a compact open
subgroup Θ so that

f(gθ) = f(g) (for all g ∈ G and for all θ ∈ Θ)

As a variant of [5.2.1] about invariant measures on quotients, for the present discussion we need a slightly
different unwinding:

[6.7.1] Lemma: Let δH , δG be the modular functions of H,G, for a closed subgroup H of G, and ρ = δH/δG.
There is a non-trivial right G-invariant functional u on c-IndGH ρ, unique up to scalar multiples.

Proof: Let

α : C∞c (G) −→ c-IndGH ρ by αf(g) =

∫
H

ρ−1(h) · f(hg) dh

be the appropriate averaging map, as in [5.1], [5.2], using right Haar measure on H. For totally disconnected
groups and locally constant, compactly supported functions, the surjectivity of α allows an even simpler
argument than the case treated in [5.1].

Attempt to define a right G-invariant C-valued u on c-IndGHρ by u(αf) =
∫
G
f with right Haar measure

on G. The telling issue is well-definedness: replacing g → f(g) by g → f(hg) gives, on one hand∫
G

f(hg) dg = δH(h−1) ·
∫
G

f(g) dg = u(αf)

On the other hand,

α(h′ → f(hh′)) =

∫
H

ρ−1(h′) f(hh′g) dh′ = δG(h−1)ρ−1(h−1)

∫
H

ρ−1(h′) f(h′g) dh′

Thus, ρ is the only possible choice. As in the proof of [5.2.1], it suffices to show that
∫
G
f(g) dg = 0 for

αf = 0. Indeed, for αf = 0, for all F ∈ C∞c (G), the integral of F against αf is certainly 0. Rearrange
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0 =

∫
G

F (g)αf(g) dg =

∫
G

∫
H

F (g) ρ(h)−1f(hg) dh dg =

∫
H

∫
G

F (g) ρ(h)−1f(hg) dg dh

=

∫
H

∫
G

F (h−1g) f(g) δG(h−1) dg dh

by replacing g by h−1g. Replacing h by h−1 replaces right Haar measure by δH(h) dh, so

0 =

∫
G

(∫
H

ρ(h)−1 · F (hg) dh
)
f(g) dg =

∫
G

αF (g) f(g) dg

Surjectivity of α shows that F can be chosen so that αF is identically 1 on the support of f . Then the
integral of f is 0, as claimed, proving the well-definedness. ///

[6.7.2] Claim: Let W be a smooth representation of a closed subgroup H of G. Let ρ = δH/δG. The smooth
dual of the compactly-induced c-IndGHW is the induced representation IndGH(ρ ·W∨), by the map described
as follows. With 〈, 〉 the duality pairing on W ×W∨, for F ∈ IndGH(ρ ·W∨), and u : c-IndGHρ as in the
previous lemma, define

λF (f) = u
(
g −→

〈
f(g), F (g)

〉)
(for all f ∈ c-IndGHW )

Proof: First, claim that the C-valued function ϕ(g) = 〈f(g), F (g)〉 is in c-IndGHρ. Since F is uniformly
locally constant and f is locally constant and compactly-supported left modulo H, ϕ is locally constant and
compactly-supported left modulo H. Further, from the definition of the action on the dual W∨,

ϕ(hg) = 〈f(hg), F (hg)〉 = 〈h · f(g), ρ(h) · h · F (g)〉 = ρ(h) · 〈f(g), F (g)〉 = ρ(h) · ϕ(g)

Therefore, these functionals constitute a C-linear subspace of the smooth dual of c-IndGHW . That F → λF
is a G-homomorphism is also apparent.

To see that F → λF is injective, take F ∈ (IndGHρ ·W∨)K for some compact open K, take x ∈ G so that
0 6= F (x) ∈ W∨. Let w ∈ W with 〈w,F (x)〉 = 1. Without loss of generality, w ∈ WK : by properties [14.1]
of Gelfand-Pettis integrals,〈∫

K

k · w dk, F (x)
〉

=

∫
K

〈k · w, F (x)〉 dk =

∫
K

〈w, k−1 · F (x)〉 dk = meas (K) · 〈w, F (x)〉

Define f ∈ c-IndGHW by

f(g) =

∫
H

chxK(hg) · h · w dh

Again using [14.1] to move the integration outside the pairing 〈, 〉,

〈f(g), F (g)〉 =

∫
H

chxK(hg) · 〈h · w, F (g)〉 dh =

∫
H

ρ(h)−1 ·
(

chxK(hg) · 〈h · w, F (hg)〉
)
dh

This expresses g → 〈f(g), F (g)〉 ∈ c-IndGHρ as an image of the averaging map of [6.7.1], so

λF (f) = u
(
g → 〈f(g), F (g)〉

)
=

∫
G

chxK(g) · 〈w, F (g)〉 dg =

∫
xK

〈w, F (g)〉 dg

=
〈
w,

∫
xK

F (g) dg
〉

= meas (xK) · 〈w, F (x)〉 = meas (xK) · 1 6= 0

Prove surjectivity by proving surjectivity to each ((c-IndGHW )∗)K , for compact open subgroups K. The
quotient (H\G)/K is discrete since K is open, and Hausdorff since K is closed. Fix a set of representatives
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xi for H\G/K, and let fi be the characteristic function of xiK ⊂ G. For λ ∈ ((c-IndGHW )K)∗, define a
smooth functional λi ∈W∨ by

λi(w) = λ
(∫

H

fi(h) · h · w dh
)

(for w ∈W )

Define F piecewise by F (hxiθ) = ρ(h)λi, so λF (f) = u(g → 〈f(g), F (g)〉) is the original λ. ///

6.8 An instance of Frobenius reciprocity

The following simplest instance of the fundamental adjunction is a precursor to the adjunction that is the
assertion of Frobenius reciprocity proven just below:

[6.8.1] Claim: (Cartan-Eilenberg adjunction) For Z-modules A,B,C,

HomZ(A, HomZ(B,C)) ≈ HomZ(A⊗Z B, C)

with ϕΦ ← Φ by ϕΦ(a)(b) = Φ(a⊗ b), and ϕ→ Φϕ by Φϕ(a⊗ b) = ϕ(a)(b).

Proof: Given Φ ∈ HomZ(A⊗B, C), certainly ϕΦ(a)(b) = Φ(a⊗b) is immediately well-defined. Oppositely, the
universal property of tensor products produces a unique linear map A⊗B → C for each bilinear A×B → C.
Applied to a× b→ ϕ(a)(b) produces a well-defined Φϕ ∈ Hom(A⊗B,C) by Φϕ(a⊗ b) = ϕ(a)(b). ///

The duality of compact-induced and induced proven in the previous section gives

(c-IndGHW )∨ = HomG(c-IndGHW, C) ≈ IndGH(ρ ·W∨)

However, to apply such ideas in the present context, there would be several technical complications: tensor
products of smooth bi-modules over non-commutative rings without units, even with sufficiently idempotents
as H, are not as simply-behaved as over Z. These complications cannot be avoided in the following section,
but we can prove Frobenius reciprocity more directly:

[6.8.2] Theorem: (Frobenius Reciprocity) There is a natural C-vectorspace isomorphism

HomG(V, IndGHW ) −→ HomH(ResGHV, W ) (by Φ→ ϕΦ where ϕΦ(v) = Φ(v)(1))

The inverse is Φϕ ← ϕ where Φϕ(v)(g) = ϕ(g · v).

Proof: Once the formula for the inverse is conceived, the several things to be checked are fairly straightforward.
The H-homomorphism property of ϕΦ follows from

h · ϕΦ(v) = h · Φ(v)(1) = Φ(v)(1 · h) = Φ(h · v)(1) = ϕΦ(h · v)

The G-homomorphism property of Φϕ follows from

(g · Φϕ(v))(x) = Φϕ(v)(xg) = ϕ(xg · v) = ϕ(x · (g · v)) = Φϕ(g · v)(x) (for g, x ∈ G)

That the two maps are mutual inverses is easy in one direction:

ϕΦϕ(v) = Φϕ(v)(1) = ϕ(1 · v) = ϕ(v)

and in the other direction

ΦϕΦ
(v)(x) = ϕΦ(x · v) = Φ(x · v)(1) = x · Φ(v)(1) = Φ(v)(1 · x) = Φ(v)(x)

This proves Frobenius reciprocity in this situation. ///
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6.9 Induction in stages

The description just below of compactly-induced representations c-IndGHW as tensor products HG⊗HHW ,
suggests the possibility of inducing in stages, from the associativity of tensor products.

First, we describe a purely algebraic context which encourages optimism about the more complicated
situation at hand. Consider not-necessarily commutative rings with a copy of C in their centers, and 1C is
the multiplicative unit 1R of R. All R-modules will be unital, in the sense that 1R · v = v for all v ∈ V .
The tensor product M ⊗RN of a right R-module M and left R-module N is the quotient of M ⊗CN by the
submodule generated by all expressions

m · r ⊗ n − m⊗ r · n

In general, this tensor product is no longer an R-module. However, when M is both a right R-module and
a left S-module for another ring S, that is, is an S,R-bimodule, there does remain the left multiplication by
S on the tensor product over R, namely, s · (m ⊗ n) = (s ·m) ⊗ n. In particular, when M = S, for a left
R-module N the tensor product S ⊗RN is a left S-module. This is one notion of induced module. However,
for present purposes, we only need a comparison:

[6.9.1] Claim: Let R,S, T be C-algebras, with S a right R-algebra, and T a right S-algebra. Make T a right
R-module by t · r = t · (1S · r). Let M be a left R-module. Then

T ⊗S (S ⊗RM) ≈ T ⊗RM

by
t⊗ (s⊗m) −→ t · s⊗m and t⊗ (1S ⊗m) ←− t⊗m

Proof: The two maps are well-defined as maps

ϕ : T ⊗C S ⊗C M −→ T ⊗S M ψ : T ⊗C M −→ T ⊗S (S ⊗RM)

Thus, it suffices to show that these maps factor through the corresponding quotients. For t ∈ T , s, s′ ∈ S,
r ∈ R, and m ∈M ,

ϕ
(
t⊗ (ss′ ⊗m)− t · s⊗ (s′ ⊗m)

)
= t · (ss′)⊗m− (t · s) · s′ ⊗m = 0

by associativity of the right action of S on T . Similarly,

ϕ
(
t⊗ (s⊗ r ·m)− t⊗ (s · r ⊗m)

)
= (t · s) · r ⊗m− t · (s · r)⊗m = 0

by the associativity

(t · s) · r = (t · s) · (1S · r) = t · (s · (1S · r)) = t · ((s · 1S) · r) = t · (s · r)

In the other direction,

ψ
(
t⊗ r ·m− t · r ⊗m

)
= t⊗ 1S ⊗ r ·m− t · (1S · r)⊗m = (t⊗ 1S) · r ⊗m− t · (1S · r)⊗m = 0

again by the associativity

(t · 1S) · r = (t · 1S) · (1S · r) = t · (1S · (1S · r)) = t · (1S · r) = t · (1S · r)

Thus, the two maps are mutual inverses. ///

The intention is to use the same idea in application to Hecke algebras HB , HP , HG for closed subgroups
B ⊂ P ⊂ G, with suitable right HP structure on HG, and right HB structure on HP . These are rings
without units, but with sufficiently many idempotents.
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We first describe relevant right HH -module structure on HG, for closed subgroup H of G. Let δH be the
modular function on H. Give HG = C∞c (G) a right HH -module structure by

(f · η)(g) =

∫
H

f(hg) η(h) δH(h) dh (with η ∈ HH and f ∈ HG)

The insertion of the modular function is a normalization choice which becomes sensible in hindsight, just
below. The action of h ∈ H on the argument of f is literally left multiplication in G, but the H-structure
or HH -module structure should be notated on the right, to have associativity

(f · η1) · η2 = f · (η1 ∗ η2) (with η1, η2 ∈ HH and f ∈ HG)

To check this associativity:

((f · η1) · η2)(g) =

∫
H

∫
H

f(xyg) η1(x) δ(x) η2(y) δH(y) dx dy

=

∫
H

∫
H

f(xg) η1(xy−1) δ(xy−1) η2(y) δH(y) dx dy

=

∫
H

f(xg)
(∫

H

η1(xy−1) η2(y) dy
)
δH(x) dx = (f · (η1 ∗ η2))(g)

A smooth representation H×W →W is a smooth HH -module as in [6.6.4]. The tensor product HG⊗HHW
is HG ⊗C W modulo all relations

(f · η)⊗ w = f ⊗ (η · w)

and has left HG-module structure

ζ · (f ⊗ w) = (ζ ∗ f)⊗ w (convolution in HG)

[6.9.2] Theorem: We have an HG-isomorphism HG ⊗HH W ≈ c-IndGHW by

β(f ⊗ w)(g) =

∫
H

f(hg) · h−1w dh (for f ∈ HG and w ∈W )

Proof: To see that β commutes with the HG action, that is, that β(ζ ∗ f ⊗w) = ζ ∗ β(f ⊗w) for ζ, f ∈ HG,
is just a change of order of integration:

β(ζ ∗ f ⊗ w)(x) = β
((
y →

∫
G

ζ(yz−1) f(z) dz
)
⊗ w

)
(x) =

∫
H

(∫
G

ζ(hxz−1) f(z) dz
)
· h−1w dh

=

∫
G

∫
H

ζ(hxz−1) · h−1w dh f(z) dz =

∫
G

β
(
y → ζ(yz−1)⊗ w

)
(x) f(z) dz =

(
ζ ∗ β(f ⊗ w)

)
(x)

as claimed. A change of variables in the integral shows that the image β(f ⊗ w) lies in the indicated
compact-induced representation space:

β(f ⊗ w)(hg) =

∫
H

f(h′hg) · (h′)−1w dh′ =

∫
H

f(h′g) · (h′h−1)−1w dh′ =

∫
H

f(h′g) · h · (h′)−1w dh′

= h ·
∫
H

f(h′g) · (h′)−1w dh′ = h · β(f ⊗ w)(g)

To show that the map factors through the tensor product over HH we must show that

β(f · η ⊗ v) = β(f ⊗ η · v) (for η ∈ HH)
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Here the normalization by insertion of the modular function will play a role. Take η ∈ HH , w ∈ W , and
f ∈ HG:

β(f · η ⊗ w)(g) = β
(
x→

∫
H

f(hx) η(h) δH(h) dh⊗ w
)

(g) =

∫
H

(∫
H

f(hyg)η(h) δH(h) dh
)
y−1w dy

=

∫
H

η(h)
(∫

H

f(hyg) y−1w dy
)
δH(h) dh =

∫
H

η(h)
(∫

H

f(yg) δH(h−1) y−1hw dy
)
δH(h) dh

by replacing y by h−1y. The δH(h−1) and δH(h) cancel, giving∫
H

η(h)
(∫

H

f(yg) y−1hw dy
)
dh =

∫
H

f(yg)y−1 ·
(∫

H

η(h) hw dh
)
dy

=

∫
H

f(yg)y−1 · (η · w) dy = β(f ⊗ η · w)(g)

Thus, β factors through a map γ : HG ⊗HH W → c-IndGHW .
To make an inverse map, make an inverse on right K-fixed elements for each compact open subgroup K

of G. Given K, fix representatives {xi} for H\G/K, and let chi be the characteristic function of xiK. Let
q : HG ⊗C W → HG ⊗HH W be the quotient map. For F ∈ c-IndGHW , put

Φ(F ) = q
(∑

i

chi ⊗ F (xi)
)
∈ HG ⊗HH W

This is the inverse to γ. ///

[6.9.3] Corollary: Let B ⊂ P ⊂ G be closed subgroups of a totally disconnected group G, and W a smooth
representation of B. Then inducing W from B to G produces the same outcome as inducing from B to P
and then from P to G:

c-IndGBW ≈ c-IndGP

(
c-IndPBW

)
Proof: Grant for a moment that for a class of rings without units containing Hecke algebras HG, HP , and
HB , and and containing smooth representations V of them,

T ⊗S (S ⊗R V ) ≈ T ⊗R V

The theorem gives

c-IndGBW ≈ HG ⊗HB V ≈ HG ⊗HP (HP ⊗HB V ) ≈ c-IndGP (c-IndPBW )

The collapsing of tensor products does hold for idempotented rings R,S, T where T is a smooth right S-
module, and S is a smooth right R-module. A ring R is idempotented when, for every finite X ⊂ R, there
is an idempotent element e ∈ R so that ex = x = xe for all x ∈ X. This property holds for these Hecke
algebras, using idempotents eK as in the proof of [6.6.4]. Smoothness of a module V over an idempotent
ring R is that for every finite X ⊂ V there is an idempotent e ∈ R such that ex = x = xe for all x ∈ X.

Then T has a smooth right R-module structure t · r = t · (e′ · t) where e′ ∈ S is an idempotent in S fixing t,
invoking smoothness of T over S. Unlike the case of rings with units, we must check that this is well-defined.
Let e1, e2 be idempotents in S both fixing t, let e′ be an idempotent in S such that e′e1 = e1e

′ = e1 and
e′e2 = e2e

′ = e2. Then

t · (e1 · r) = t · (e1e
′ · r) = (t · e1) · (e′ · r) = t · (e′ · r) = (t · e2) · (e′ · r) = t · (e2e

′ · r) = t · (e2 · r)

which gives the well-definedness. For an idempotent e ∈ R such that e′ · e = e′, we have smoothness
t · e = t · (e′ · e) = t · e′ = t. The isomorphisms are

t⊗ s⊗ v −→ t · s⊗ v and t⊗ e′⊗ ←− t⊗ v
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for any idempotent e ∈ S such that t · e = t. Certification of the well-definedness of the second map is
similar to the previous argument: let t · e1 = t = t · e2 for two idempotents e1, e2 ∈ S, and let e be another
idempotent in S such that e1e = e1 and e2e = e2. It suffices to compute in T ⊗S S:

t⊗ e1 = t⊗ e1e = t · e1 ⊗ e = t⊗ e = t · e2 ⊗ e = t⊗ e2e = t⊗ e2

This gives the well-definedness. ///

6.10 Representations of compact G/Z

We still consider totally disconnected G and smooth representations. The general case of representations
of compact groups on topological vector spaces is treated in [9.C].

Let Z be a closed subgroup of G inside the center of G, and suppose that G/Z is compact. Consider
representations V with central character ω : Z → C×, i.e., so that z · v = ω(z)v for all v ∈ V and z ∈ Z.
The simple situation that G is compact and Z = {1} is already useful.

[6.10.1] Proposition: Every finitely-generated smooth representation V of G with central character ω is
finite-dimensional.

Proof: Take a compact open subgroup K small enough so that a (finite) set X of generators for V lies inside
V K . Let Y be a choice of a set of representatives for G/ZK; since G/Z is compact, Y is finite. The set of
all vectors g · v with v ∈ X and g ∈ G is contained in the span of the finite set of vectors y · x for y ∈ Y and
x ∈ X. ///

[6.10.2] Corollary: Every irreducible smooth representation of G having a central character for Z is finite-
dimensional ///

[6.10.3] Proposition: Let f : M → N be a surjective G-homomorphism of two smooth G-representation
spaces, both with central character ω. Suppose there is a small-enough compact open subgroup K of G so
that MK = M and NK = N , as for M,N finitely-generated. There is a G-homomorphism ϕ : N → M so
that f ◦ ϕ is the identity map idN on N .

Proof: Let n be the cardinality of G/ZK. Let ψ : N → M be any k-vectorspace map so that f ◦ ψ = idN :
take any k-vectorspace N1 in M complementary to the kernel of f , and let ψ be the inverse of the restriction
of f to N1. Define

ϕv =
1

n

∑
h∈G/ZK

h−1ψhv

The hypotheses assure that this ϕ is independent of the choice of representatives for G/ZK, and it is
immediate (by changing variables in the sum) that this averaged version of ψ is a G-homomorphism providing
a one-sided inverse to f . ///

[6.10.4] Corollary: Let f : M → N be an injective G-homomorphism of two G-representation spaces, both
with central character ω (for Z). Suppose that there is a compact open subgroup K of G so that MK = M
and NK = N (as is the case if M,N are finitely-generated). There is a G-homomorphism ϕ : M → N so
that ϕ ◦ f is the identity map idM on M . In particular, every G-submodule of N has a complementary
submodule.

Proof: Let Q = N/fM be the quotient, and q : N → Q the quotient map. The previous proposition yields
ψ : Q→ N so that q ◦ ψ = idQ. Since N = fM ⊕ ψQ and fM ≈ M , N/ψQ is naturally isomorphic to M ,
and the composition

N −→ N/ψ ≈ M

is the desired ϕ. ///

[6.10.5] Corollary: (Complete Reducibility) Every smooth representation of G with central character ω (for
Z) is a direct sum of irreducible smooth representations, each with central character ω for Z.

Proof: This will follow from the previous and from Zorn’s Lemma.
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First, show that a finite-dimensional smooth representation M contains a non-zero irreducible. Since M is
finite-dimensional it is finitely-generated, so has an irreducible quotient q : M → Q. By the above discussion,
there is a G-subspace M ′ of M so that as G-spaces M ≈M ′ ⊕Q. Thus, M contains the irreducible Q.

Let M = ⊕αMα be a maximal direct sum of (necessarily finite-dimensional) irreducibles inside N , and
suppose that M 6= N . Take x ∈ N not lying in M , and let X be the G-subspace of N generated by x. Then
X is finitely-generated, so is finite-dimensional, and has a non-zero irreducible quotient Q. From above,
there is a copy Q′ of Q inside X and X = Q′ ⊕X ′ for some X ′. By the maximality of M , Q must be inside
M already. Apply the same argument to X ′, so by induction on dimension conclude that X was 0. ///

6.11 Gelfand-Kazhdan criterion

Subgroups H of groups G with the property that restrictions of most or all irreducibles V of G to H are
multiplicity-free, that is, so that dimC HomH(W, ResGHV ) ≤ 1 for most or all irreducibles W of H, are called
(strongly) Eulerian, or G,H is a (strong) Gelfand pair.

It is important to know that induced representations are multiplicity-free, meaning contain at most one
copy of a given irreducible representation, whenever this is the case, to produce Euler factorization of
global integrals, for example. The idea of the proof, useful already in the representation theory of finite
groups, is that if no irreducible occurs twice inside a representation, then the endomorphism algebra should
be commutative, and vice-versa. Unfortunately, this principle is not quite valid more generally, for infinite-
dimensional representations of non-finite groups. After sufficient adaptations are made, we have the Gelfand-
Kazhdan criterion below. As in the Gelfand criterion for commutativity of the spherical Hecke algebra
[2.4.5] (echoed in [3.5.4]), the criterion for multiplicity-free-ness depends upon identifying an involutive anti-
automorphism to interchange the order of factors, but which nevertheless acts as the identity on suitable
subalgebras.

Let G be a unimodular, totally disconnected group. The space D = D(G) of test functions on G is the
space of a compactly-supported, locally constant complex-valued functions on G. As a colimit (that is, direct
limit) of finite-dimensional complex vector spaces, this space has a uniquely determined topology. The space
D∗ = D(G)∗ of distributions on G is the space of continuous complex-linear functionals on D.

Let H be a closed, unimodular subgroup of G. For a one-dimensional complex representation ψ of H,

IndGHψ =

{
C-valued functions f on G, uniformly locally constant, so that f(hg) = ψ(h)f(g)
for all g ∈ G and h ∈ H

}
The case of trivial ψ is already interesting. Let C denote the trivial representation of G or of H. Say (G,H)
is a Gelfand pair, or equivalently, H is an Euler subgroup of G if, for all irreducible admissible representations
π of G,

dim HomG(π, IndGH C) × dim HomG(π∨, IndGH C) ≤ 1

where π∨ is the contragredient of π. By Frobenius Reciprocity, this is equivalent to

dim HomH(ResGHπ,C) × dim HomH(ResGHπ
∨,C) ≤ 1

An involutive anti-automorphism σ on a group G is a bijection G→ G so that (gh)σ = hσgσ. The action
of σ on functions is by fσ(g) = f(gσ), and on distributions u by uσ(f) = u(fσ) for f ∈ D.

[6.11.1] Theorem: Let ψ be a one-dimensional representation of a closed unimodular subgroup H of G.
Suppose H is stabilized by an involutive anti-automorphism σ of G. Put ψσ(h) = ψ(hσ). Suppose that
uσ = u for all distributions u on G possessing equivariance

u(Lhη) = ψ(h) · u(η) and u(Rhη) = ψσ(h)−1 · u(η) (for η ∈ D(G))

Then

dim HomG(π, IndGH ψ) × dim HomH(ResGHπ
∨, ψσ) ≤ 1
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Proof: By Frobenius reciprocity HomG(π, IndGHψ) ≈ HomH(ResGHπ, ψ), existence of non-trivial G-maps
π → IndGHψ and π∨ → IndGHψ

σ is equivalent to existence of non-zero H-homomorphisms s : π −→ ψ
and t : π∨ −→ ψσ. We obtain G-homomorphisms S : D −→ π∨ and T : D −→ (π∨)∨ by integrating:

(Sη)(v) =

∫
G

η(x) s(x · v) dx (Tη)(λ) =

∫
G

η(x) t(x · λ) dx (for η ∈ D(G), v ∈ π, λ ∈ π̌)

The assumed admissibility of π implies that π is reflexive, that is, that (π∨)∨ ≈ π. By direct computation,
right translation Rg by g ∈ G, and left translation Lh by h ∈ H interact with S and T by

S(Rgη) = g · (Sη) T (Rgη) = g · (Tη) S(Lhη) = ψ(h) · Sη T (LHη) = ψσ(h) · Tη

The first assertion, for example, is verified as follows: for v ∈ π,

S(Rgη)(v) =

∫
G

η(xg) s(x · v) dx =

∫
G

η(x) s(xg−1 · v) dx = Sη(g−1v)

by replacing x by xg−1. The last expression is simply the contragredient action of g, that is, on π∨. The
left H-invariance follows by

S(Lhη)(v) =

∫
G

η(h−1x) s(x · v) dx =

∫
G

η(x) s(hx · v) dx =

∫
G

η(x)ψ(h) s(x · v) dx = S(η)(v)

by replacing x by hx and then invoking the H-equivariance of s. The corresponding assertions for T are
proven similarly. That is, both S and T are left H-equivariant as indicated, and are right G-equivariant,
giving G-homomorphisms from D(G) (with right regular representation) to π and π∨.

Let 〈, 〉 : π × π∨ → C be the canonical complex-bilinear pairing 〈v, λ〉 = λ(v). Let the induced complex-
linear map on the tensor product be β : π ⊗C π

∨ −→ C. Define

B = β ◦ (T ⊗ S) : D(G)⊗D(G) −→ π ⊗ π∨ −→ C

Note the reversal of S and T . The functional B is in the space of distributions D(G × G)∗, is left
(H,ψσ)× (H,ψ)-equivariant and right G∆-invariant, where G∆ is the diagonal copy of G in G×G. Reversal
of ψ and ψσ due to the reversal of S and T .

[6.11.2] Lemma: With B, t, S as above, for η, ϕ in D(G), B(η ⊗ ϕ) = t(S(ϕ ∗ η)).

Proof: Apart from an issue of interchange of integration and linear operators, this is a direct computation:

B(η ⊗ ϕ) = Tη(Sϕ) =

∫
G

η(x) t(x · Sϕ) dx =

∫
G

η(x) t(S(R−1
x · ϕ)) dx

by the G-equivariance of S. Moving the integral inside t ◦ S, this becomes

(t ◦ S)

(∫
G

η(x)R−1
x · ϕdx

)
= (t ◦ S)(ϕ ∗ η)

Exchange of integration and application of the operator t ◦ S is easily justified, since the indicated integral
is actually a finite sum. More generally, D(G) is an an LF-space [13.10], so is quasi-complete [13.12], and
Gelfand-Pettis integrals of compactly-supported continuous D(G)-valued function f exist, and, as in [14.1],
for any continuous linear operator L on D(G),

L

(∫
G

f(x) dx

)
=

∫
G

L(f(x)) dx

The desired exchange is a special case of this. ///
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[6.11.3] Corollary: The distribution u on G defined by u(η) = t(S(η)) is left H-equivariant by ψ and right
H-equivariant by (ψσ)−1, meaning that

u(Lhη) = ψ(h) · u(η) and u(Rhη) = ψσ(h)−1 · u(η)

Proof: Given η ∈ D(G) and given h ∈ H, we claim that there is ϕ ∈ D(G) so that Rhη ∗ ϕ = Rhη. For
example, for K a small-enough compact open subgroup of G so that Rhη is left K-invariant, take ϕ to be
meas (K)−1 on K and 0 off K. Then

u(Rhη) = (t ◦ S)(Rhη) = (t ◦ S)((Rhη) ∗ ϕ) = (t ◦ S)(η ∗ L−1
h ϕ) = B(L−1

h ϕ⊗ η)

by the way that convolutions and translations interact. By the left H-equivariance of B by ψσ in its first
argument,

B(L−1
h ϕ⊗ η) = ψσ(h)−1 ·B(ϕ⊗ η)

Going back by the same procedure, u(Rhη) = ψσ(h)−1·u(η). Even more simply, for ϕ so that (Lhη)∗ϕ = Lhη,
we compute that

u(Lhη) = B(ϕ⊗ Lhη) = ψ(h) ·B(ϕ⊗ η) = ψ(h) · u(η)

giving the equivariance. ///

As usual,

[6.11.4] Lemma: For η, ϕ in D(G),
(η ∗ ϕ)σ = ϕσ ∗ ησ

Proof: For g ∈ G,

(η ∗ ϕ)σ(g) = (η ∗ ϕ)(gσ) =

∫
G

η(gσx−1)ϕ(x) dx =

∫
G

η(x−1)ϕ(xgσ) dx

=

∫
G

η(x)ϕ(x−1gσ) dx =

∫
G

η(xσ)ϕ((gx−1)σ) dx

replacing x successively by xg, x−1, and xσ. This is∫
G

ησ(x)ϕσ(gx−1) dx = (ϕσ ∗ ησ)(g)

as claimed. ///

[6.11.5] Corollary: B(η ⊗ ϕ) = B(ϕσ ⊗ ησ).

Proof: u(ησ) = u(η) for all η ∈ D(G), so

B(η ⊗ ϕ) = u(ϕ ∗ η) = u((ϕ ∗ η)σ) = u(ησ ∗ ϕσ) = B(ϕσ ⊗ ησ)

///

[6.11.6] Corollary: For η in D(G), Tη = 0 implies S(ησ) = 0, and similarly Sη = 0 implies T (ησ) = 0.

Proof: For, Tη = 0, for all ϕ in D(G)

0 = 〈Tη, Sϕ〉 = B(η ⊗ ϕ) = B(ϕσ ⊗ ησ) = 〈Tϕσ, Sησ〉

by the previous corollary. That is, Sησ gives the trivial linear functional on π, so must be 0 in π∨. The
other assertion is similarly proven. ///

That is, kerT determines kerS and vice-versa.
Since π is irreducible, by Schur’s lemma the kernel of S : D(G) → π determines S uniquely up to a

constant, and the same assertion holds for T . We can recover s : π → C unambiguously from S. Given
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v ∈ π, let η be meas (K)−1 times the characteristic function of K, where K is any sufficiently small compact
open subgroup of G. Then

(Sη)(v) =

∫
G

η(x) s(x · v) dx = s(v)

That is, from kerS we recover S uniquely up to a constant, and then recover s uniquely up to a constant.
The analogous assertion holds for kerT , T , and t.

Then t certainly determines T , which determines kerT . From above, kerT determines kerS, which (by
the previous paragraph) determines s up to a constant. We could have fixed t and let s be arbitrary, which
would show that if the space of t’s were positive-dimensional then the space of s’s would be at most one-
dimensional. The symmetrical argument reversing the role of s and t goes through in the same manner,
wherein we use the assumed admissibility of π and, thus, of π∨. This proves the theorem. ///

6.A Appendix: action of compact abelian groups

Let A be a compact, abelian topological group, and countably-based. We grant that A has a translation-
invariant measure, that is, a Haar measure. Let | · | be the corresponding norm on L2(A). The analogue of
Fourier series expansion is

[6.A.1] Theorem: L2(A) is the completion of the direct sum
⊕

χC · χ as χ ranges over continuous

homomorphisms χ : A→ C×.

Proof: Certainly every χ is in L2(A). On the other hand, a ∈ A acts on F ∈ L2(A) by translation
(a · F )(b) = F (a + b), and every continuous f on A acts correspondingly on F ∈ L2(A) by an integral
operator

(f · F )(b) =

∫
A

f(a)F (a+ b) da

Replacing a by a− b, this is

(f · F )(b) =

∫
A

f(a− b)F (a) da

expressing the map F → f ·F as a Hilbert-Schmidt operator with integral kernel K(a, b) = f(a− b). Hilbert-
Schmidt operators are compact [9.A.4]. For f real-valued and even, in the sense that f(−a) = f(a), the
corresponding integral kernel is symmetric and real-valued, so gives a self-adjoint operator. The spectral
theorem [9.A.6] for compact self-adjoint operators gives an eigenspace decomposition of L2(A) with respect
to the operator given by f , and all eigenspaces are finite-dimensional except possibly the 0-eigenspace. As
usual, composition of two such operators is by the action of their convolution, as illustrated already in [2.4]
for non-abelian groups: for f, g real-valued in Co(A) and F ∈ L2(A),

f · (g · F ) =

∫
A

f(a) a ·
(∫

A

g(b) b · F db
)
da =

∫
A

f(a)
(∫

A

g(b) a · (b · F ) db
)
da

The integrand b→ g(b) b·F of the inner integral is a continuous, compactly-supported, L2(A)-valued function
of b ∈ A, by the continuity of the action of A on L2(A) and the continuity of g on the compact A. Thus,
the action of a passes inside the vector-valued integral for general reasons [14.1]. By Fubini, this is∫

A

∫
A

f(a) g(b) (a+ b) · F da db =

∫
A

∫
A

f(a− b) g(b) a · F da db

by replacing a by a− b. This is∫
A

(∫
A

f(a− b) g(b) db
)
a · F da =

∫
A

(f ∗ g)(a) a · F da = (f ∗ g) · F

Since the group is abelian, the convolution product is abelian:

(f ∗ g)(a) =

∫
A

f(a− b) g(b) db =

∫
A

f(−b) g(a+ b) db =

∫
A

f(b) g(a− b) db
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by replacing b by b+a and then replacing b by −b. Since the group is abelian, the Haar measure is invariant
under b → −b as well. Thus, these self-adjoint compact operators commute with each other. Commuting
operators preserve each others’ eigenspaces: for v in the λ-eigenspace for T , and for ST = TS,

T (Sv) = (TS)v = (ST )v = S(Tv) = S(λv) = λ · SV

Thus, L2(A) decomposes into simultaneous eigenspaces for all these operators. For that matter, the action
a× F −→ a · F stabilizes eigenspaces:

a · (f · F ) = a ·
∫
A

f(b) b · F db =

∫
A

a · f(b) b · F db =

∫
A

f(b) (a+ b) · F db

=

∫
A

f(b) (b+ a) · F db =

∫
A

f(b) b · (a · F ) db = f · (a · F )

Again, the action of a ∈ A passes inside the integral by Gelfand-Pettis theory [14.1].
The non-degeneracy result [14.1.5], that for every 0 6= v ∈ V there is ϕ ∈ Coc (G) such that ϕ · v 6= 0,

implies that the simultaneous 0-eigenspace for all the integral operators is trivial.
Since the integral operators are self-adjoint, distinct eigenspaces are mutually orthogonal: given two

distinct eigenspaces, let real-valued f ∈ Co(A) be such that the two eigenvalues λ, µ ∈ R are different. For
v, w in the respective eigenspaces, using the self-adjointness,

λ · 〈v, w〉 = 〈f · v, w〉 = 〈v, f · w〉 = 〈v, µ · w〉 = µ · 〈v, w〉

We claim that each of these finite-dimensional spaces Vo decomposes into simultaneous eigenspaces for A
itself. Again, as above, each is stabilized by the (unitary) action of the abelian group A. We do a descending
induction on dimension. If Vo is a simultaneous eigenspace for A, we are done. Otherwise, there is a1 ∈ A
such that Vo decomposes properly into a1-eigenspaces, noting that a1 acts unitarily. Let V1 be a proper a1-
eigenspace inside Vo. If V1 is a simultaneous eigenspace for all A, we are done. Otherwise, take a2 ∈ A such
that V1 decomposes properly into a2-eigenspaces. Continuing, by the finite-dimensionality of Vo, the process
must stop, producing a simultaneous eigenspace for A. That is, L2(A) has an orthogonal decomposition into
simultaneous eigenspaces for A.

Let V λ be such a simultaneous eigenspace, where a · v = λa · v for λa ∈ C. The collection of eigenvalues
λa is a group homomorphism A→ C×:

λa · λb · v = λb · λa · v = λb · a · v = a · λb · v = a · b · v = (a+ b) · v = λa+b · v

We claim that the λ-eigenspace V λ is simply all scalar multiples of λ itself: for F ∈ V λ,

F (a) = F (0 + a) = (a · F )(0) = (λa · F )(0) = λa · F (0)

That is, F = F (0) · λ. Last, we show that such λ is continuous: from the continuity of A×L2(A)→ L2(A),
the restriction A× V λ → V λ is continuous, with one-dimensional V λ = C · λ. Thus, a→ (a · λ) = λa · λ is
continuous, so a → λa must be continuous. Thus, L2(A) is the completion of the orthogonal direct sum of
C · χ with χ running over all continuous group homomorphisms A→ C×. ///

Let compact, abelian A act on a Hilbert space V by unitary operators. For a continuous group
homomorphism χ : A→ C×, the χ-isotype V χ in V is

V χ = {v ∈ V : a · v = χ(a) · v, for all a ∈ A}

[6.A.2] Claim: V decomposes as the completion of the direct sum

V = (completion of)
⊕
χ

V χ (χ ranging over continuous homomorphisms A→ C×)
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Proof: First, we claim that the orthogonal projection Pχ : V → V χ is given by the integral operator

Pχv =

∫
A

χ(a) a · v da

with compact A having total measure normalized to 1. Indeed, the image is in V χ: using properties of
vector-valued integrals [14.1] to allow the action to pass inside the integral,

a · Pχv = a ·
∫
A

χ(b) b · v db =

∫
A

χ(b) a · (b · v) db =

∫
A

χ(b) (a+ b) · v db =

∫
A

χ(b− a) b · v db

=

∫
A

χ(a)χ(b) b · v db =; χ(a) ·
∫
A

χ(b) b · v db = χ(a) · Pχv

Next, Pχ ◦ Pχ = Pχ: using properties of vector-valued integrals [14.1], and using the normalization that the
total measure of A is 1,

Pχ(Pχv) =

∫
A

∫
A

χ(a)χ(b) a · b ·v da db =

∫
A

∫
A

χ(a)χ(b) (a+ b) ·v da db =

∫
A

∫
A

χ(a− b)χ(b) a ·v da db

=

∫
A

∫
A

χ(a)χ(b)χ(b) a · v da db =

∫
A

∫
A

χ(a) a · v da db =

∫
A

χ(a) a · v da ·
∫
A

1 db

=

∫
A

χ(a) a · v da = Pχv

Last, we show that the orthogonal complement of all the images PχV is just {0}. Let {ηi} be an approximate
identity in Co(A), as in [6.5] and [14.1], meaning that 0 ≤ ηi(a) ≤ 1 for all i and a ∈ A, that

∫
A
ηi = 1

for all i, and the supports shrink to {1A}. By [14.1.4], ηi · v → v in V for each fixed v ∈ V . Each ηi
has a Fourier expansion ηi =

∑
χ η̂i(χ) · χ converging in L2(A), summing over continuous homomorphisms

χ : A → C×. For a finite set X of χs, let ηXi be the corresponding finite partial sum
∑
χ∈X η̂i(χ) · χ of

the Fourier expansion of ηi. These are finite linear combinations of continuous functions, so are certainly
continuous.

We claim that ηXi · v −→ v in V . Since the partial sums ηXi approach ηi in L2(A), it suffices to show
that for η ∈ Co(A) with |η|L2(A) small, |η · v|V is small, for fixed v ∈ V . Indeed, invoking properties of
vector-valued integrals [14.1] to exchange inner products and integrals,

|η · v|2V =
〈∫

A

η(a) a · v da,
∫
A

η(b) b · v db
〉

=

∫
A

∫
A

η(a) · η(b) · 〈a · v, b · v〉 da db

By Cauchy-Schwarz-Bunyakowsky and the unitariness, |〈a · v, b · v〉| ≤ |av| · |bv| = |v| · |v|, so

|η · v|2V ≤
∫
A

∫
A

|η(a)| · |η(b)| da db =

∫
A

|η(a)| da ·
∫
A

|η(b)| db ≤ |η| · |η|

again by Cauchy-Schwarz-Bunyakowsky, since |η(a)| = η(a) · µ(a), where |µ(a)| = 1, and the total measure
of A is 1. This shows that ηXi · v → v.

The action χ · v is that of the projector Pχ:

χ · v =

∫
A

χ(a) a · v da =

∫
A

χ(a) a · v da = Pχ v

Thus,

ηXi · v =
∑
χ∈X

η̂i(χ) · χ · v =
∑
χ∈X

η̂i(χ) · Pχ v

Since ηi · v → v and ηXi · v → ηi · v, not all Pχv can be 0 for non-zero v. ///
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7. Discrete decomposition of cuspforms

1. The four simplest examples
2. Z+GL2(k)\GL2(A)
3. Z+GLr(k)\GLr(A)
Appendix A: dualities
Appendix B: compact quotients Γ\G

The general result here is that test functions ϕ ∈ C∞c (G) act as compact operators on spaces of square-
integrable cuspforms. Similar arguments and outcomes hold for both the four simplest archimedean examples
from chapter 1, adelic Z+GL2(k)\GL2(A) from chapter 2, and archimedean or adelic versions of GLn from
chapter 3, with appropriate senses of test functions depending on context.

The most general argument refers to non-commutative rings of compact operators, closed under adjoints,
and the irreducible representations of such rings are generally infinite-dimensional. In a larger context, this
is the truth of the matter, but without knowing more about the irreducibles it is not easy to recover more
tangible information about the behavior of the Laplacian or spherical Hecke operators.

Thus, we also give more special arguments using commutative rings of compact operators closed under
adjoints, so that a more tangible notion of simultaneous eigenspace takes the place of (infinite-dimensional)
irreducible representation. This gives the decomposition of spaces of rightK-invariant functions by Laplacians
and spherical Hecke algebras. The result for spherical Hecke algebras obtained in this fashion is nearly
optimal, but there is still some imprecision in corollaries on eigenfunctions for Laplacians. The method
of chapter 10, directly considering the spectral behavior of pseudo-Laplacians and pseudo-cuspforms, gives
better results of that sort.

Beyond the spectral decomposition theorems [7.1.1], [7.2.1], [7.3.1] and their immediate corollaries, we also
conclude that there is an orthonormal basis for cuspforms consisting of smooth functions of rapid decay in
Siegel sets: [7.1.20], [7.2.19], [7.2.20], [7.3.19].

For perspective, appendix [7.B] gives the much easier argument for discreteness of decomposition of
L2(Γ\G) for compact quotients Γ\G, for a unimodular topological group G and discrete subgroup Γ, although
we do not give explicit examples of such G,Γ. In fact, this is a variant on the discrete decomposition [9.C.2]
of L2(K) for compact topological groups K.

7.1 The four simplest examples

For this section, let G,Γ,K be as in any of the four examples SL2(R), SL2(C), Sp∗1,1, SL2(H) from chapter
1. As earlier, test functions C∞c (G) are compactly supported, smooth functions, and act on functions f on
Γ\G by

(η · f)(g) =

∫
G

η(h) f(gh) dh (for η ∈ C∞c (G))

As earlier, functions on Γ\G/K are identified with right K-invariant functions on Γ\G, and the action
of the spherical convolution algebra of left-and-right K-invariant test functions C∞c (K\G/K) stabilizes
the subspace of such functions. As we recall below, the spherical convolution algebra C∞c (K\G/K) is
commutative. The main results of this section are

[7.1.1] Theorem: The spherical convolution algebra C∞c (K\G/K) of left and right K-invariant test
functions on G acts on square-integrable right K-invariant cuspforms L2

o(Γ\G/K) by compact operators,
the collection of such operators is closed under adjoints, and is non-degenerate in the sense that for every
f ∈ L2

o(Γ\G/K) there is ϕ ∈ C∞c (K\G/K) such that ϕ · f 6= 0. (Proof in the sequel.)

[7.1.2] Corollary: The space L2
o(Γ\G/K) of right K-invariant square-integrable cuspforms decomposes

into simultaneous eigenspaces for operators in the commutative convolution algebra C∞c (K\G/K), each
finite-dimensional. The simultaneous eigenfunctions are smooth. (Proof below.)

[7.1.3] Corollary: There is an orthonormal Hilbert-space basis for the space of K-invariant square-integrable
cuspforms consisting of simultaneous eigenfunctions for the invariant Laplacian ∆. (Proof below.)
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[7.1.4] Remark: The argument here does not immediately prove that the eigenspaces for ∆ are of finite
multiplicity, since it only indirectly refers to ∆. The unbounded-operator argument in chapter 9 gives a
stronger result about ∆-eigenspaces.

Let P,M,N,A+ be as in chapter 1, and let η be a height function

η(natk) = tro (n ∈ N , k ∈ K, with at =

(√
t 0

0 1/
√
t

)
for t > 0)

with ro = 1, 2, 3, 4 in the respective cases. Thus, η(m) = δ(m), the modular function for P . In an Iwasawa
decomposition G = N ·M ·K for x ∈ G, write x = nx ·mx · kx with nx ∈ N , mx ∈ M , and kx ∈ K. This
notation nx is in conflict with the use of that notation in the earlier discussion of the smaller examples, but
those former uses will not be needed here. For t > 0, compact C ⊂ N , the corresponding Siegel set in G is

S = SC,τ = C · {at ∈ A+ : t ≥ τ} ·K = C · {m ∈M : η(m) ≥ τ} ·K

[7.1.5] Claim: A point in a Siegel set is well approximated by its M -component in an Iwasawa decomposition,
in the sense that, for x ∈ SC,τ with τ > 0 and C compact in N , there is another compact subset C ′ of N
such that x ∈ mx · C ′ ·K.

Proof: x ∈ SC,τ gives
x = nx ·mx · kx ∈ C ·mx ·K = mx ·m−1

x Cmx ·K

The lower bound η(m) ≥ τ gives a compact set C ′ in N depending only upon τ and C such that

m−1Cm ⊂ C ′ (for m ∈M with η(m) ≥ τ)

In particular, m−1
x Cmx ⊂ C ′. Thus, x ∈ mx · C ′ ·K. ///

For strictly upper-triangular square matrices x with entries in any field of characteristic zero, the series
for the matrix exponential ex = exp(x) =

∑
`≥0 x

`/`! is finite. Let n be the Lie algebra of N :

n = {
(

0 v
0 0

)
}

where v is in R, C, {w ∈ H : w+w = 0}, or H in the four cases. Because N is abelian, the exponential map is
a diffeomorphism exp : n −→ N , and there is a discrete additive subgroup Λ in n such that exp(Λ) = Γ∩N :

exp

(
0 v
0 0

)
=

(
1 v
0 1

)
namely, take v in Z, Z[i], Zi+Zj +Zk, or the Hurwitz quaternion integers o, respectively. For test function
ϕ ∈ C∞c (G), wind up the integral for f → ϕ · f along exp(Λ) = N ∩ Γ: for y ∈ G,

(ϕ · f)(y) =

∫
G

ϕ(x) f(yx) dx =

∫
G

ϕ(y−1x) f(x) dx =

∫
exp(Λ)\G

 ∑
γ∈exp(Λ)

ϕ(y−1γx)

 f(x) dx

=

∫
exp(Λ)\G

(∑
ν∈Λ

ϕ(y−1 · exp(ν) · x)

)
f(x) dx

The kernel function for the (N ∩ Γ)-wound-up operator is the latter inner sum:

Kϕ(x, y) =
∑
ν∈Λ

ϕ(y−1 · exp(ν) · x)

[7.1.6] Claim: For a fixed Siegel set S and for fixed compact E ⊂ C∞c (G), there is compact CM ⊂ M
such that if there exist n ∈ N , x, y ∈ S, and ϕ ∈ E with ϕ(y−1 · n · x) 6= 0, then mx ∈ my · CM . That is,
Kϕ(x, y) = 0 for all x, y ∈ S and all ϕ ∈ E unless mx ∈ my · CM .
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Proof: From the previous claim, there is compact C ′ ⊂ N such that m−1
y y ∈ C ′ ·K. A compact set of test

functions has a common compact support CG, because a compact set is bounded in the topological vector
space sense, and a bounded subset of an LF-space such as C∞c (G) lies in some Fréchet limitand, by [13.8.5].
Non-vanishing of ϕ(y−1nx) implies y−1nx ∈ CG, so

nx ∈ y · CG ⊂ my · C ′ ·K · CG ⊂ my · C ′G (with C ′G = C ′KCG = compact)

That is,
C ′G 3 m−1

y · nx = m−1
y · nnx ·mx · kx = (m−1

y nnxmy) ·m−1
y mx · kx

That is,
(m−1

y nnxmy) ·m−1
y mx ∈ C ′G ·K = compact

Since M normalizes N , the element m−1
y nnxmy is in N . Since N ∩ M = {1}, the multiplication map

N ×M → NM is a homeomorphism. Thus, for the product (m−1
y nnxmy) ·m−1

y mx to lie in a compact set
in G requires that its N -component lies in a compact set in N and its M -component lies in a compact set
in M . Thus, there is compact CM ⊂M such that m−1

y mx ∈ CM , as claimed. ///

[7.1.7] Corollary: For fixed Siegel set S and fixed compact E ⊂ C∞c (G), there is a compact CM ⊂M such
that, if ϕ(y−1nx) 6= 0 for some x, y ∈ S, some n ∈ N and some ϕ ∈ E, then m−1

y x ∈ CM .

Proof: By [7.1.5], there is a compact CG in G such that x ∈ mx · CG. By [7.1.6], there is a compact CM in
M such that mx ∈ myCM . Thus, x ∈ mxCG ⊂ (myCM )C ′G, rearranging to give the claim. ///

[7.1.8] Corollary: With ωy = y−1my and ωx,y = m−1
y x, the functions ν −→ ϕx,y(ν) = ϕ(ωy · exp(ν) · ωx,y)

for x, y in fixed Siegel set, ϕ(y−1nx) 6= 0, ϕ ∈ E, constitute a compact subset of the Schwartz space S (n).

Proof: The left and right translation actions of G on test functions are continuous G×G×C∞c (G)→ C∞c (G)
by [6.4]. With fixed Siegel set S, by [7.1.5] and [7.1.7], {ωy : y ∈ S} and {ωx,y : x ∈ S, y ∈ S} are compact.
This gives compactness of the image of

{ωy : y ∈ S} × {ωx,y : x ∈ S, y ∈ S} × E −→ C∞c (G) (with ϕ(y−1nx) 6= 0)

Since N is closed in G, the restriction map C∞c (G)→ C∞c (N) ≈ C∞c (n) is continuous. A continuous image
of a compact set is compact. Comparing the topologies from [13.7] and [13.9], as in [13.9.3], the inclusion
C∞c (n) ⊂ S (n) is continuous, giving compactness of the image. ///

Poisson summation for the lattice Λ ⊂ n gives

Kϕ(x, y) =
∑
ν∈Λ

ϕ(y−1 · exp(ν) · x) =
∑
ψ∈Λ∗

∫
n

ψ(ν)ϕ(y−1 · exp(ν) · x) dν

where Λ∗ is the collection of C×-valued characters on n that are trivial on Λ. Rearrange slightly to

Kϕ(x, y) =
∑
ψ∈Λ∗

∫
n

ψ(ν) · ϕ
(
y−1my · exp(m−1

y νmy) ·m−1
y x

)
dν

Replacing ν by myνm
−1
y and letting ϕx,y(ν) = ϕ

(
y−1my · ν ·m−1

y x
)
,

Kϕ(x, y) = δ(my)
∑
ψ∈Λ∗

ϕ̂x,y(ψmy )

where ϕ̂x,y(ψmy ) is the Fourier transform ϕ̂x,y of ϕx,y evaluated at ψ, and ψmy (ν) = ψ(myνm
−1
y ).

[7.1.9] Theorem: Fix compact E ⊂ C∞c (G) and Siegel set S. For any given q > 0 there is a uniform bound

|(ϕ · f)(y)| �q η(y)−q · |f |L2(Γ\G) (for all y ∈ S, for all ϕ ∈ E, for all L2 cuspforms f)
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Proof: For convenient discussion of the Schwartz seminorms on n, give the real vector space n a positive-
definite inner product 〈, 〉 invariant under conjugation action of M ∩K, allowing identification of n with its
dual n∗ when desired, for simplicity. Let | · | be the associated norm on either. The compactness [7.1.8] and
continuity of Fourier transform on S (n) give a uniform estimate on Fourier transforms: for fixed Siegel set
S, for given q > 0, |ϕ̂x,y(ψ)| �r (1 + |ψ|)−q for all x, y ∈ S. Then

δ(my) |ϕ̂x,y(ψmy )| �q δ(my) · (1 + |ψmy |)−q (for all x, y ∈ S)

Next, toward [7.1.9] we need

[7.1.10] Claim: For fixed Siegel set S and r � 1, the kernel Kϕ(x, y) with its 0th Fourier component
removed satisfies

|Kϕ(x, y)− ϕ̂x,y(ψ0)| �q |η(y)|−q (for x, y ∈ S)

Proof: First, we claim that, given Λ and given a Siegel set S = SC,τ , there is an implied constant such that

η(y) � 1 + |ψmy |ro (for all y ∈ S, for all 0 6= ψ ∈ Λ∗)

Again, η(y) = tro for y = natk with t > 0, and |ψmy | = t · |ψ|. Since the norms of non-zero elements of Λ∗

have a positive inf,

|ψmy |ro =
(
η(y)1/ro · |ψ|

)ro
≥ η(y) · inf

06=ψ∈Λ∗
|ψ|ro

Since ϕ̂x,y is a Schwartz function, |ϕ̂x,y(ψ)| �` (1 + |ψ|)−` for every ` > 0. By the comparison of η(y) to
|ψmy |, for 0 6= ψ ∈ Λ∗,

δ(my) · (1 + |ψmy |)−` = η(y) · (1 + |ψmy |)−` � η(y) · (1 + |ψmy |)−(q+1)·ro−(`−(q+1)·ro)

� η(y) · η(y)−(q+1) · (1 + |ψmy |)−(`−(q+1)·ro)

For ` sufficiently large depending on q, the latter sum over 0 6= ψ ∈ Λ∗ converges, giving the claim. ///

[7.1.11] Claim: Cuspforms f ignore the ψth0 Fourier component of Kϕ(x, y):

(ϕ · f)(y) =

∫
exp(Λ)\G

(
Kϕ(x, y)− ϕ̂x,y(ψ0)

)
· f(x) dx

Proof: For trivial character ψ0 on n, the corresponding function ϕ̂x,y(ψ0) is left N -invariant in x: let n ∈ N ,
and replace x by nx in the original integral defining ϕ̂x,y(ψ0), with n = exp(ν′), obtaining∫

n

ψ(ν) · ϕ(y−1 exp(ν) · nx) dν =

∫
n

ψ(ν) · ϕ(y−1 exp(ν + ν′) · x) dν

using the abelian-ness of N . Replacing ν by ν − ν′ in the integral gives the left N -invariance in x:∫
n

ψ(ν) · ϕ(y−1 exp(ν) · nx) dν = ψ(ν′) · ϕ̂x,y(ψ) = ϕ̂x,y(ψ)

Therefore, in

(ϕ · f)(y) = δ(my)
∑
ψ∈Λ∗

∫
(N∩Γ)\G

ϕ̂x,y(ψmy ) · f(x) dx

the integral for trivial character ψ0 is∫
(N∩Γ)\G

ϕ̂x,y(ψ
my
0 ) · f(x) dx =

∫
N\G

∫
(N∩Γ)\N

ϕ̂nx,y(ψ
my
0 ) · f(nx) dn dx

=

∫
N\G

ϕ̂x,y(ψ
my
0 ) ·

(∫
(N∩Γ)\N

f(nx) dn

)
dx =

∫
N\G

ϕ̂x,y(ψ
my
0 ) · 0 dx = 0 (cuspform f)
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proving the claim. ///

The proof of [7.1.9] is almost complete. From above, for y in a fixed Siegel set S and for fixed test function
ϕ, there is a compact CM ⊂ A+ such that, for ϕ(y−1nx) to be nonzero, the Iwasawa component mx of x
must lie in my · CM . Thus,

{x ∈ S : ϕ(y−1nx) 6= 0 for some n ∈ N} ⊂ myCM ·K

Combining this with the estimate just obtained, for cuspform f ,

|(ϕ · f)(y)| �q |η(y)|−q ·
∫

Γ\Γ(C·myCM ·K)

|f(x)| dx

By Cauchy-Schwarz-Bunyakowsky,(∫
Γ\Γ(C·myCM ·K)

|f(x)| dx
)2

≤
∫

Γ\Γ(C·myCM ·K)

1 dx ·
∫

Γ\Γ(C·myCM ·K)

|f(x)|2 dx � |f |2L2

This gives the desired decay, proving theorem [7.1.9]. ///

We are getting closer to the compactness of the operators f → ϕ · f on cuspforms f . Recall that a
collection E of continuous functions on G or Γ\G is (uniformly) equicontinuous when, given ε > 0, there is
a neighborhood U of 1 in G such that

|f(x)− f(y)| < ε (for all f ∈ E, for all x ∈ G, for all y ∈ x · U)

We have the expected

[7.1.12] Lemma: For X ∈ g, the left-derivative map

C∞c (G) −→ C∞c (G) by ϕ −→ X left · ϕ =

(
g → d

dt

∣∣∣∣
t=0

ϕ(e−tX g)

)
is continuous.

Proof: C∞c (G) is an LF-space, a (strict) colimit of Fréchet spaces, the limit being taken over spaces DΩ of
smooth functions on G supported on compact Ω ⊂ G. The topology on each DΩ is given by seminorms
taking sups of derivatives of all orders, but of course the notion of derivative is ambiguous, since there are
at least two different choices of global vectorfields, left derivatives by g, and right derivatives by g.

But a reasonable general assertion is true, for fairly elementary reasons. On a smooth manifold, let Xi be
a tuple of (smooth) vector fields on an open U containing a given compact set B such that, for every x in U ,
the values Xi

x at x are a basis for the tangent space at x. Another such tuple Y j can be expressed (smoothly,
pointwise) as linear combinations of the Xi, and vice-versa. Every entry of the matrix of coefficients is
bounded, the determinant of the matrix of coefficients does not vanish on the compact B, so is bounded and
bounded away from 0, the coefficients are smooth functions, and the inverse is smooth on B. Thus, the two
sets of seminorms, corresponding to left or right first derivatives,

sup
x∈B

sup
i

(Xiϕ)(x) or sup
x∈B

sup
j

(Yjϕ)(x)

are topologically equivalent. With this ambiguity removed, a (left or right) derivative is a continuous map
Ck(B)→ Ck−1(B), and so gives a continuous map on the limit: C∞(B)→ C∞(B). The subspace DB is a
closed subspace of C∞(B) described by closed conditions: all derivatives vanishing on the boundary. Thus,
a derivative map is still continuous DB → DB . This induces a continuous map on the colimit. ///

[7.1.13] Corollary: For a compact set E of test functions on G, for a compact Cg in g, and for f ranging
over cuspforms in the unit ball in L2(Γ\G), there is a uniform implied constant such that∣∣(X · (ϕ · f)

)
(g)
∣∣ � 1 (for all g ∈ G, for all ϕ ∈ E, for all X ∈ Cg)
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Proof: The differentiation of ϕ ·f can be rewritten as a differentiation of ϕ, followed by action of the resulting
function on f :

(X · ϕ · f)(x) =
d

dt

∣∣∣∣
t=0

∫
G

ϕ(y) f(x etX y) dy =
d

dt

∣∣∣∣
t=0

∫
G

ϕ(e−tXy) f(x y) dy

=

∫
G

(
d

dt

∣∣∣∣
t=0

ϕ(e−tXy)

)
f(x y) dy (replacing y by e−tXy)

justifying interchange of differentiation and integration by the continuity of differentiation on test functions
ϕ, and Gelfand-Pettis integral properties [14.1]. That is, X · ϕ · f = (X leftϕ) · f with X left the left action.
Since g is a finite-dimensional real vector-space and the action is linear in X, this gives the continuity in
X ∈ g. Thus, the collection of test functions X leftϕ with X ∈ Cg and ϕ ∈ E is again compact in C∞c (G).
Thus, by the bound of theorem [7.1.9],

|(X · ϕ · f)(y)| = |(X leftϕ) · f)(y)| �r η(y)−r · |f |L2(Γ\G) (for all y ∈ S, X ∈ Cg, ϕ ∈ E)

For large-enough Siegel set to cover the quotient, and any r > 0, this gives

sup |X · ϕ · f(y)| �r |f |L2

proving uniform boundedness for |f |L2 ≤ 1. ///

The smoothing property of f → ϕ · f as in [14.5] assures that each ϕ · f is in C∞(G). A uniform bound
on derivatives implies uniform continuity:

[7.1.14] Lemma: Let F be a smooth function on G, with a uniform pointwise bound on all X · F with X
in a compact neighborhood Cg of 0 in g, namely,

|(X · F )(x)| ≤ B (for all x ∈ G, all X ∈ Cg)

Then F is uniformly continuous: for every ε > 0 there is a neighborhood U of 1 in G such that
|F (x)− F (y)| < ε for all x ∈ G and y ∈ xU .

Proof: Let V be a small enough open containing 1 such that V is contained in expCg, and that the exponential
map on exp−1 V is injective to V . Let y = x · esX for X ∈ Cg and 0 ≤ s ≤ 1. By hypothesis, the function
h(t) = F (x · esX) has

h′(s) =
d

dt

∣∣∣∣
t=0

h(s+ t) = F (x · esX · etX)

bounded by B. From the mean value theorem, |F (x · etX)− F (x)| ≤ t ·B. Thus, for all |t| < B · ε we have
the desired inequality. ///

[7.1.15] Corollary: For a compact set E of test functions on G, and for f ranging over cuspforms in the
unit ball in L2(Γ\G), the family of images ϕ · f is equicontinuous on G. ///

We are almost done with the proof that f → ϕ · f is compact on cuspforms.

[7.1.16] Lemma: Let E be a equicontinuous, uniformly bounded, set of functions on Γ\G. Then E has
compact closure in L2(Γ\G).

[7.1.17] Remark: Superficially, this lemma is reminiscent of the Arzela-Ascoli theorem, which asserts that
an equicontinuous and uniformly bounded subset of Co(K) (with sup norm) for a compact topological space
K has compact closure in Co(K). Indeed is common to end a sketch of the discrete decomposition of
cuspforms by an allusion to Arzela-Ascoli. However, we need less, fortunately, since adaptation of the literal
Arzela-Ascoli result to the present circumstance seems awkward.

Proof: The proof is a maneuver to invoke the fact that a totally bounded subset of a complete metric space
has compact closure. If the quotient Γ\G were compact then we could simply invoke Arzela-Ascoli, but
this is perhaps exactly the difficulty. Without loss of generality, all the functions in E are bounded (in
absolute value) by 1, and the total measure of Γ\G is 1. Take ε > 0. Using the equicontinuity, let U be a
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small enough neighborhood (with compact closure) of 1 in G such that for any x ∈ G and y ∈ xU we have
|F (x)− F (y)| < ε for all F ∈ E.

Let {xi} be a countable set dense in G. Let Ui = xiU . Let q : G→ Γ\G be the quotient map. Let V1 be
the image of U1 in Γ\G, and recursively take

Vn+1 = {x ∈ Γ\G : x ∈ qUi but x 6∈ q(U1 ∪ . . . ∪ Un)}

Since the Vi are disjoint and their union is Γ\G, which has finite measure,
∑
i meas (Vi) < +∞. In particular,

the measures measVi go to 0 as i → ∞. Take m large enough such that
∑
i>m meas (Vi) < ε. Let X be a

finite set of complex numbers such that any complex number of absolute value at most 1 is within ε/2 of an
element of X. For each m-tuple ξ = (ξ1, . . . , ξm) of elements of X, define a function Fi,ξ on Γ\G by

Fi,ξ(x) =

 ξi (for x ∈ Vi, i ≤ m)

0 (for x ∈ Vi, i > m)

Given F ∈ E, for each i ≤ m choose ξi such that |F (xi)− ξi| < ε. By the choice of U ,

|F (x)− ξi| ≤ |F (x)− F (xi)|+ |F (xi)− ξi| < 2ε (for x ∈ Vi)

Then∫
Γ\G
|F − Fξ|2 <

∫
V1∪...∪Vm

(2ε)2 +

∫
Vm+1∪...

1 ≤ 4ε2 ·meas Γ\G+ meas (Vm+1 ∪ . . .) ≤ 4ε2 + ε

Tweaking the estimates as desired, for given ε > 0 we can cover E by a finite number of balls of radius ε > 0
in L2(Γ\G). Total boundedness implies compact closure. ///

[7.1.18] Corollary: For ϕ ∈ C∞c (G), the operator f → ϕ · f is a compact operator L2
o(Γ\G) −→ L2

o(Γ\G).

Proof: The asymptotics of the kernels prove pointwise boundedness of the image of the unit ball B of L2
o(Γ\G).

Consideration of derivatives proves equicontinuity of the image of B. The faux-Arzela-Ascoli compactness
lemma above proves compactness of the closure of ϕ ·B. Being integrated versions of right translations, these
operators stabilize the subspace of cuspforms, as the latter is defined by a left integral condition. Thus, ϕ
maps the unit ball to a set with compact closure, so is a compact operator. ///

In these examples, the space of right K-invariant cuspforms L2
o(Γ\G/K) = L2

o(Γ\G)K is of main interest,
and the left-and-right K-invariant test functions act there:

[7.1.19] Corollary: For ϕ ∈ C∞c (K\G/K), the operator f → ϕ · f is a compact operator
L2
o(Γ\G/K) −→ L2

o(Γ\G/K).

Proof: A restriction of a compact operator is still compact. It suffices to show that the K-fixed subspace is
closed in L2

o(Γ\G), since the spherical Hecke algebra C∞c (K\G/K) stabilizes it, by direct computation. From
[6.1], the right action of G on L2(Γ\G) is unitary, so continuous. Thus, the condition of right K-invariance
is a closed condition. ///

Adjoints of the operators f → ϕ · f are easily computed: letting 〈, 〉 be the inner product on L2(Γ\G),

〈ϕ · f, F 〉 =

∫
Γ\G

∫
G

ϕ(x) f(yx)F (y) dx dy =

∫
Γ\G

∫
G

ϕ(x) f(y)F (yx−1) dx dy

=

∫
Γ\G

∫
G

f(y)ϕ(x−1)F (yx) dx dy =

∫
Γ\G

f(y)ϕ∨ · F (y) dy

where ϕ∨(x) = ϕ(x−1) as suggested by the computation. The space C∞c (K\G/K) is stable under the
operation ϕ→ ϕ∨.

The non-degeneracy is essentially [14.1.5], but we need a right K-averaged version. Let ϕi be an
approximate identity, so that ϕi · f → f , by [14.1.4]. For f right-invariant, the K-averaged versions

α(ϕi · f)(x) =

∫
K

(ϕi · f)(xk) dk (giving K total measure 1)
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of ϕi ·f must approach f , since K-averaging is an orthogonal projector to the space of K-invariant functions:

〈αf, αF 〉 =

∫
K

∫
K

∫
G

f(xh)F (xk) dx dk dh =

∫
K

∫
K

∫
G

f(x)F (xh−1k) dx dk dh

=

∫
K

∫
K

∫
G

f(x)F (xk) dx dk dh = 〈f, αF 〉

Thus, for f 6= 0, for all sufficiently large i we have ϕi · f 6= 0. These averaged versions are obtained by
averaging ϕi:

α(ϕi · f)(x) =

∫
K

(ϕi · f)(xk) dk =

∫
K

∫
G

ϕi(y) · f(xky) dy dk

=

∫
K

∫
G

ϕi(k
−1y) · f(xy) dy dk =

∫
G

(∫
K

ϕi(k
−1y) dk

)
· f(xy) dy

Again using the right K-invariance of f ,

(ϕ · f)(x) =

∫
G

ϕ(y) f(xy) dy =

∫
G

ϕ(y) f(xy) dy ·
∫
K

1 dk

=

∫
K

∫
G

ϕ(y) f(xyk) dy dk =

∫
G

(∫
K

ϕ(yk−1) dk
)
f(xy) dy

Thus, for K-invariant f , there is left and right K-invariant ϕ such that ϕ ·f 6= 0. This is the non-degeneracy
of the action of C∞c (K\G/K) on L2

o(Γ\G/K). This proves theorem [7.1.1]. ///

Proof: (of corollary [7.1.2]) Just as in [2.4.5], the Gelfand commutativity criterion for the convolution algebra
C∞c (K\G/K) is that there should be an involutive anti-automorphism σ on G, that is, g → gσ such that
(gh)σ = hσgσ and (gσ)σ = g for all g, h ∈ G, and stabilizing double cosets for K, that is, (KgK)σ = KgK
for all g ∈ G. Then the convolution algebra C∞c (K\G/K) is commutative. Again, transpose-conjugation
gσ = g∗ is such an anti-automorphism, because the Cartan decomposition G = KA+K from [1.2] shows that
left and right K-invariant test functions are determined by their values on A+, and A+ is pointwise fixed
under transpose-conjugation.

By this commutativity and by the theorem [7.1.1], we have a commutative ring of compact operators, closed
under adjoints, acting on a Hilbert space V = L2

o(Γ\G/K) non-degenerately. The closed-ness under adjoints
assures that any operator T in that commutative algebra is a complex linear combination of self-adjoint
operators in that algebra:

T =
T + T ∗

2
+ i · T − T

∗

2i

For a non-zero self-adjoint operator T on V , by the spectral theorem for self-adjoint compact operators
[9.A], V decomposes into finite-dimensional eigenspaces Vλ for T with non-zero, real eigenvalues, and an
orthogonal complement V ′:

V =
(

completion of
⊕
λ6=0

Vλ

)
⊕ V ′

The eigenspaces Vλ for non-zero eigenvalues λ of a non-zero operator self-adjoint compact T in that algebra
are stabilized by every operator commuting with it, by the usual argument:

T (Sv) = (TS)v = (ST )v = S(Tv) = S(λv) = λ · Sv (for v ∈ Vλ)

Then Vλ decomposes further into S-eigenspaces. By finite-dimensionality, we can do a downward induction
to decompose Vλ into simultaneous eigenspaces for all of C∞c (K\G/K). The eigenvalue map from operators
to eigenvalues on a given simultaneous eigenspace must be a ring homomorphism.

This motivates one formulation of a proof of the corollary. Let X be the collection of not-identically-zero
commutative-ring homomorphisms χ of C∞c (K\G/K) to C such that

Vχ = {v ∈ V : Sv = χ(S) · v for all S ∈ C∞c (K\G/K)}
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is not {0}. Each Vχ is finite-dimensional, by the spectral theorem, since χ is not identically 0. The orthogonal
complement of the sum of all the Vχ is stable under the action of C∞c (K\G/K), and every ϕ ∈ C∞c (K\G/K)
acts by 0 there. But this contradicts the non-degeneracy of the action, from the theorem. Thus, indeed, V
is the completion of the orthogonal direct sum of the Vχ with χ not identically 0.

For non-zero f in Vχ, invoking the non-degeneracy, let ϕ be a test function such that χ(ϕ) 6= 0, and put
η = ϕ/χ(φ). Then η · f = f . By smoothing, as in [14.5] for example, this entails that f is smooth. This
finishes the proof of [7.1.2]. ///

Proof: (of corollary [7.1.3]) As in [4.2], the invariant Laplacian ∆ on Γ\G/K or G/K is the Casimir operator
Ω restricted to right K-invariant functions. Since Ω commutes with both right and left translation action of
G, it commutes with the integrated action of ϕ ∈ C∞c (G):

Ω(ϕ · f)(x) = Ω

∫
G

ϕ(y) f(xy) dy =

∫
G

ϕ(y) Ωxf(xy) dy =

∫
G

ϕ(y) (Ωxf)(xy) dy = (ϕ · Ωf)(x)

using the Gelfand-Pettis characterization [14.1] and the fact that y → (x → ϕ(y)f(xy)) is a continuous,
compactly-supported, C∞(Γ\G)-valued function and Ω is a continuous map of C∞(Γ\G) to itself. Thus, for
right K-invariant smooth f on Γ\G and ϕ ∈ C∞c (K\G/K),

∆(ϕ · f) = Ω(ϕ · f) = ϕ · (Ωf) = ϕ ·∆f

Thus, ∆ stabilizes each of the finite-dimensional simultaneous eigenspaces Vχ, each of which consists of
smooth functions. The restriction of ∆ to Vχ still has the symmetry proven in [6.5], so Vχ has an orthonormal
basis of ∆-eigenfunctions. ///

Further implications of the following corollary will be apparent in chapter 8:

[7.1.20] Corollary: The space of L2 cuspforms has an orthonormal basis of cuspforms f such that there is
a test function ϕ ∈ C∞c (K\G/K) such that ϕ · f = f . Such a cuspform f is smooth and of rapid decay in
the sense that, on a standard Siegel set S, for every q > 0,

|f(g)| �q η(g)−q (for all g ∈ S)

Proof: By the commutativity of H = C∞c (K\G/K) from above, its irreducible representations consist of
simultaneous eigenfunctions, and are one-dimensional. On each such H necessarily acts by an algebra
homomorphism λ : H → C. By the spectral consequences of the compactness above, the λth simultaneous
eigenspace Vλ has finite dimension.

That is, for f ∈ Vχ and for test function ϕ, ϕ · f = λ(ϕ) · f . From the non-degeneracy result in [7.1.1],
there is ϕ such that λ(ϕ) 6= 0. Replace ϕ by ϕ/λ(ϕ) for the result. Then [7.1.9] applies to f = ϕ · f to prove
rapid decay. Smoothness follows as in [14.5] and [14.6]. ///
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7.2 Z+GL2(k)\GL2(A)

The next example shows how to adapt the argument of the previous section to adele groups G = GL2 over
number fields k. This incorporates spherical Hecke operators at good primes, and shows how to decouple
bad primes. Use notation as in chapter 2. Test functions C∞c (GA) on GA are compactly supported and
smooth, where smoothness at archimedean places means indefinite continuous differentiability, and at finite
places means local constancy. Test functions ϕ act on functions f on Z+Gk\GA as usual by

(ϕ · f)(x) =

∫
GA

ϕ(y) f(xy) dy (for x ∈ GA)

The compactness of suitable operators on cuspforms is a global property, and the kernel function is a global
object. Thus, we cannot expect purely local arguments to suffice. In particular, the (purely local) Hecke
operators of chapter 2 are not quite adequate.

Let K∞ =
∏
v|∞Kv. As in chapter 2, for simplicity, we will eventually restrict attention to right K∞-

invariant functions on Z+Gk\GA rather than track K∞-types. Commensurately, we will eventually restrict
attention to left and right K∞-invariant test functions on GA.

The main results of this section can be specialized to situations involving commutative Hecke algebras,
which admit simultaneous eigenfunctions. The non-commutative Hecke algebras entering more general
assertions mostly do not admit simultaneous eigenfunctions, and need a more complicated notion of
irreducible representation, as follows.

[7.2.1] Theorem: C∞c (GA) acts on square-integrable cuspforms L2
o(Z

+Gk\GA) by compact operators. The
collection of such operators is closed under adjoints, and is non-degenerate in the sense that for every
f ∈ L2

o(Z
+Gk\GA) there is ϕ ∈ C∞c (GA) such that ϕ · f 6= 0. (Proof below.)

[7.2.2] Corollary: The space L2
o(Z

+Gk\GA) decomposes discretely with finite multiplicities into irreducibles
for C∞c (GA). (Proof below.)

The assertion deserves clarification. Thinking of A = C∞c (GA), let A be a (not necessarily commutative)
associative algebra over C, not necessarily having a unit. In the present context, a representation of A is a
Hilbert space V on which A acts by continuous linear operators, with the expected associativity

ϕ · (ψ · v) = (ϕ ∗ ψ) · v (for ϕ,ψ ∈ A, v ∈ V )

where ∗ is the multiplication in A (convolution in Coc (G)). The space V is (topologically) irreducible (with
respect to A) when it has no proper closed subspace stable under the action of A. An A-homomorphism
T : V → W of A-representation spaces V,W is a continuous linear map T commuting with A, in the sense
that T (av) = aT (v) for a ∈ A and v ∈ V . The multiplicity of an A-irreducible V in a larger A representation
(Hilbert) space H is

multiplicity of V in H = dimC HomA(V,H)

A form of Schur’s lemma [9.D.12] shows that dimC HomA(V, V ) = 1 for irreducibles V , and its corollary
[9.D.14] shows that this removes potential ambiguity or ill-definedness in the definition of multiplicity. For
Hilbert spaces, also

multiplicity of V in H = dimC HomA(H,V )

because closed subspaces of Hilbert spaces admit orthogonal complements.
Yet, lacking further information about the irreducible representations of these non-commutative

convolution algebras, or of the groups Gv and GA, variant results for commutative Hecke algebras may
be more immediately informative. Fix K ′ = K∞

∏
v<∞K ′v, a compact subgroup of GA, with K ′v equal to

Kv = GL2(ov) for almost all v. The finite primes v for which K ′v is Kv are good primes, while the finite v
for which K ′v is strictly smaller than Kv are bad primes. Let S be the set of bad finite primes, of course
depending on K ′. With notation differing from chapter 2, a suitable spherical Hecke algebra, depending on
K ′, that does not attempt to do anything with bad primes is the collection H of left and right K ′-invariant
test functions ϕ on GA which vanish at g ∈ GA unless the vth component gv is in K ′v for every v ∈ S.
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Gelfand’s criterion [2.4.5] and the p-adic and archimedean Cartan decompositions show that this Hecke
algebra H is commutative, as in [2.4] and in the proof of [7.1.2].

[7.2.3] Corollary: The space L2
o(Z

+Gk\GA)K
′

of right K ′-invariant cuspforms has an orthonormal basis
of simultaneous eigenfunctions for the spherical Hecke algebra H attached to K ′, with each eigenspace
finite-dimensional. The simultaneous eigenfunctions are smooth. (Proof below.)

[7.2.4] Corollary: The space L2
o(Z

+Gk\GA/KA) of right KA-invariant square-integrable cuspforms decom-
poses into simultaneous eigenspaces for operators in the maximal spherical Hecke algebra C∞c (KA\GA/KA),
with finite multiplicities. The simultaneous eigenfunctions are smooth. (Proof below.)

[7.2.5] Corollary: There is an orthonormal Hilbert-space basis for the space of KA-invariant square-
integrable cuspforms consisting of simultaneous eigenfunctions for the invariant Laplacians on the
archimedean factors Gv. (Proof below.)

For strictly upper-triangular square matrices x with entries in any field of characteristic zero, the series
for the matrix exponential ex = exp(x) =

∑
`≥0 x

`/`! is finite. Thus, such matrices give an entirely algebraic
notion of Lie algebra n of N . Here,

nA = {
(

0 u
0 0

)
: u ∈ A} nv = {

(
0 u
0 0

)
: u ∈ kv}

Since N is abelian, the exponential map is an isomorphism. Locally at archimedean places, the exponential
map is a diffeomorphism exp : nv −→ Nv. Locally at non-archimedean places, it is a homeomorphism and
preserves local-constant-ness. The discrete subgroup Λ = nk ⊂ nA is mapped isomorphically to Nk.

For x ∈ GA write x = nx ·mx · kx with nx ∈ NA, mx ∈ MA, and kx ∈ KA. We can further decompose
mx = m1

x · ax with mx ∈M1 and ax in the archimedean split component

A+ = {
(
t1/r 0

0 1

)
: t > 0} (on the diagonal in M∞ =

∏
v|∞Mv)

Let η be the height function as in chapter 2: in Iwasawa decomposition,

η(n

(
α 0
0 β

)
k) =

∣∣∣α
β

∣∣∣ (idele norm, with n ∈ NA, α ∈ J, and k ∈ KA)

Let
Aτ = {a ∈ A+ : η(a) ≥ τ}

For this section, a slightly refined notion of Siegel set is convenient: for compact CN ⊂ NA, compact
CM ⊂M1, and τ > 0 the corresponding Siegel set is

S = SCN ,CM ,τ = Z+ · CN · CM ·Aτ ·KA

From [2.A], Mk ⊂ M1, and Mk\M1 is compact. Thus, sufficiently large CM surjects to Mk\M1, and
reduction theory [2.2] showed that for sufficiently small τ > 0 the Siegel set S surjects to Z+Gk\GA.

[7.2.6] Claim: A point in a Siegel set is well approximated by its M -component in an Iwasawa decomposition,
in the sense that, for x ∈ SCN ,CM ,τ with τ > 0, compact CN ⊂ NA, and compact CM ⊂M1, there is another
compact subset C ′ of NA such that x ∈ mx · C ′ · CM ·KA.

Proof: x ∈ S gives
x = nx ·mx · kx ∈ NA ·mx ·KA = mx ·m−1

x NAmx ·K

The lower bound on Aτ gives a compact set C ′ in NA depending only upon τ , CN , and CM such that

m−1CNm ⊂ C ′ (for m = m1a with m1 ∈ CM and a ∈ Aτ )

In particular, m−1
x CNmx ⊂ C ′. Thus, x ∈ mx · C ′ ·KA as claimed. ///
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Given test function ϕ, wind up the operator f → ϕ · f along Nk = exp(nk): for y ∈ G,

(ϕ · f)(y) =

∫
GA

ϕ(x) f(yx) dx =

∫
GA

ϕ(y−1x) f(x) dx =

∫
exp(Λ)\GA

(∑
ν∈nk

ϕ(y−1 exp(ν)x)

)
f(x) dx

=

∫
Nk\G

(∑
ν∈Λ

ϕ(y−1 · exp(ν) · x)

)
f(x) dx

The kernel function for the (N ∩ Γ)-wound-up operator is the latter inner sum:

Kϕ(x, y) =
∑
ν∈nk

ϕ(y−1 · exp(ν) · x)

[7.2.7] Claim: For x, y both in a Siegel set S the Nk-wound-up kernel vanishes unless the M -components
of the two are close. That is, for fixed compact E ⊂ C∞c (GA) and for x, y ∈ S, there is compact CM ⊂MA
such that if there exist n ∈ NA and ϕ ∈ E with ϕ(y−1 · n · x) 6= 0, then mx ∈ my · CM .

Proof: From the previous claim, there is compact C ′ ⊂ N such that m−1
y y ∈ C ′ ·KA. A compact set of test

functions has a common compact support CG, because a compact set is bounded in the topological vector
space sense, and a bounded subset of an LF-space such as C∞c (G) lies in some Fréchet limitand, by [13.8.5].
Non-vanishing of ϕ(y−1nx) implies y−1nx ∈ CG, so

nx ∈ y · CG ⊂ my · C ′ ·KA · CG ⊂ my · C ′G (with C ′G = C ′KACG = compact)

That is,
C ′G 3 m−1

y · nx = m−1
y · nnx ·mx · kx = (m−1

y nnxmy) ·m−1
y mx · kx

That is,
(m−1

y nnxmy) ·m−1
y mx ∈ C ′G ·KA = compact

Since MA normalizes NA, the element m−1
y nnxmy is in NA. Since NA ∩MA = {1}, the multiplication map

NA ×MA → NAMA is a homeomorphism. Thus, for the product (m−1
y nnxmy) ·m−1

y mx to lie in a compact
set in GA requires that n lies in a compact set in NA and m lies in a compact set in MA. Thus, there is
compact CM ⊂MA such that m−1

y mx ∈ CM , as claimed. ///

[7.2.8] Corollary: For x, y in a fixed Siegel set, and for fixed compact E ⊂ C∞c (GA), there is a compact
CM ⊂MA such that, if ϕ(y−1nx) 6= 0 for some n ∈ NA and some ϕ ∈ E, then m−1

y x lies in CM .

Proof: By the first of the two claims, there is a compact CG in GA such that x ∈ mx · CG. By the second,
there is a compact CM in MA such that mx ∈ myCM . Thus, x ∈ mxCG ⊂ (myCM )C ′G, rearranging to give
the claim. ///

The notion of Schwartz function on an archimedean vectorspace such as n∞ =
∏
v|∞ nv is as in [13.7].

On non-archimedean vectorspaces nv, Schwartz functions are the same as test functions, namely, locally
constant, compactly supported. Similarly, on the finite-adeles part of an adelic vectorspace, Schwartz
functions are simply test functions, that is, locally constant, compactly supported. Then Schwartz functions
on adelic vector spaces nA are finite sums

∑
i f∞,i ⊗ fo,i where the functions f∞,i are Schwartz functions

on the archimedean part, and the functions fo,i are Schwartz/test functions on the non-archimedean part.
Topologies on such spaces are as in [6.2], [6.3], and as simpler examples in [13.7], [13.8], and [13.9].

[7.2.9] Claim: With ωy = y−1my and ωx,y = m−1
y x, the functions ν −→ ϕx,y(ν) = ϕ(ωy · exp(ν) · ωx,y) for

x, y in fixed Siegel set, ϕ(y−1nx) 6= 0, ϕ ∈ E, constitute a compact subset of the Schwartz space S (nA).

Proof: The left and right translation actions GA×GA×C∞c (GA)→ C∞c (GA) are continuous, by [6.4]. With
fixed Siegel set S, by [7.2.6], [7.2.7], and [7.1.7], {ωy : y ∈ S} and {ωx,y : x ∈ S, y ∈ S} are compact. This
gives compactness of the image of

{ωy : y} × {ωx,y : x, y} × E −→ C∞c (GA) (x, y in fixed Siegel set, ϕ(y−1nx) 6= 0)
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Since NA is closed in GA, the restriction map C∞c (GA)→ C∞c (NA) ≈ C∞c (nA) is continuous. From [13.9.3],
the inclusion C∞c (nA) ⊂ S (nA) of test functions to Schwartz functions is continuous, giving compactness of
the image. ///

Poisson summation for the lattice nk ⊂ nA gives

∑
ν∈nk

ϕ(y−1 · exp(ν) · x) =
∑
ψ∈n∗k

∫
nA
ψ(ν)ϕ(y−1 · exp(ν) · x) dν

with suitably normalized measure, where n∗k is the collection of C×-valued characters on nA ≈ A trivial
on the lattice nk ≈ k. By appendix [7.A], given a non-trivial character ψ1 on nA/nk ≈ A/k, every other
character is of the form ψξ(ν) = ψ1(ξ · ν) with ξ ∈ k. Thus, choice of that non-trivial character identifies
A∗ ≈ n∗A with A ≈ nA and the dual lattice of k ≈ nk with k itself. Thus,

∑
ν∈nk

ϕ(y−1 · exp(ν) · x) =
∑
ξ∈k

∫
nA
ψ1(ξ · ν)ϕ(y−1 · exp(ν) · x) dν

We have∫
nA
ψ1(ξ · ν) · ϕ

(
y−1 · exp(ν) · x

)
dν =

∫
nA
ψ1(ξ · ν) · ϕ

(
y−1my · exp(m−1

y νmy) ·m−1
y x

)
dν

Replacing ν by myνm
−1
y and letting ϕx,y(ν) = ϕ

(
y−1my · ν ·m−1

y x
)
,

Kϕ(x, y) = δ(my)
∑
ξ∈k

ϕ̂x,y(ψ
my
ξ )

where ϕ̂x,y(ψ
my
ξ ) is the Fourier transform ϕ̂x,y of ϕx,y evaluated at ψξ, and ψ

my
ξ (ν) = ψξ(myνm

−1
y ).

[7.2.10] Theorem: Fix compact E ⊂ C∞c (GA) and Siegel set S. Given q > 0 there is a uniform bound

|(ϕ · f)(y)| �q η(y)−q · |f |L2(Γ\G) (for all y ∈ S, for all ϕ ∈ E, for all L2 cuspforms f)

Proof: With the self-duality identifications as above, Fourier transform is a continuous automorphism of
S (nA) to itself, by the archimedean case [13.15] and the p-adic case [13.17]. Thus, {ϕ̂x,y : ϕ ∈ E, x, y ∈ S}
is a compact subset of S (nA). The adelic Schwartz space S (nA) is an LF-space, a strict colimit of Fréchet
spaces, characterized as a countable ascending union of Fréchet subspaces described by restricting support
at finite primes and by requiring uniform local constancy at finite primes. That is, for U (large) compact
open subgroup of the finite-adele part nAfin

of nA, and for H a (small) compact open subgroup of nAfin
, let

S (n∞ × U)H be the space of H-invariant Schwartz functions supported on nA∞ × U . Then

S (nA) =
⋃
H,U

S (n∞ × U)H = colimH,U S (n∞ × U)H (as H shrinks and U grows)

There is a countable cofinal collection of subgroups U and subgroups H, confirming that the adelic Schwartz
space is an LF-space [13.8], [13.9]. In particular, a compact subset lies in some limitand S (n∞ × U)H , by
[13.8.5]. Thus, the compactness [7.2.8] implies that the Schwartz functions ψ → ϕ̂x,y(ψ) are inside a compact
subset of some S (n∞ × U)H .

Thus, for ϕ̂x,y(ψ) 6= 0, the finite-prime part ξfin of ξ is in some compact U ⊂ nAfin
≈ Afin. Thus, ξ ∈ 1

hok
for some 0 < h ∈ Z, and the collection of infinite-prime parts ξ∞ of such ξ is a lattice Λ∗ ⊂ n∞ ≈ k∞. Give
the real vectorspace k∞ the real inner product

〈ξ, ξ′〉 =
∑
v|∞

Re
(
ξv · ξ′v

)
225



7. Discrete decomposition of cuspforms

with the complex conjugation to accommodate complex kv. Let | · | be the associated norm. Thus, for
0 6= ξ∞ ∈ Λ∗, we have |ξ| �o

1
h , with an implied constant depending on the ring of integers o. In these

terms, for F ∈ S (n∞×U)H , |F (ψ)| �r (1 + |ψ|)−` for all ` > 0. Thus, for fixed Siegel set S and ϕ in fixed
compact E, the compactness [7.2.9] gives a uniform implied constant depending only on ` so that

|ϕ̂x,y(ψ)| �` (1 + |ψ|)−` (for all x, y ∈ S, for all ϕ ∈ E)

For my = zm′at with z ∈ Z+, m′ ∈ CM ⊂ M1, and t > 0, our parametrization of the archimedean split
component A+ gives δ(my) = t, and

|ψmy | �CM t1/ro · |ψ| = δ(my)1/ro · |ψ|

where ro is the number of archimedean completions of k modulo complex conjugation. Thus, with fixed
Siegel set,

δ(my) |ϕ̂x,y(ψmy )| �` δ(my) · (1 + δ(my)1/ro · |ψ|)−` (for all x, y ∈ S)

[7.2.11] Claim: For fixed Siegel set S and r � 1, the kernel Kϕ(x, y) with its 0th Fourier component
removed satisfies

|Kϕ(x, y)− ϕ̂x,y(ψ0)| �q |η(y)|−q (for x, y ∈ S)

Proof: First, we claim that, with fixed lattice Λ∗ ⊂ k∞ obtained by projecting k ∩ (k∞×U) to k∞, there is
an implied constant such that

η(y) = δ(my) � |ψmy |ro (for all y ∈ S, for all 0 6= ψ ∈ k ∩ U)

Again, η(y) = t for y = natk with t > 0, and |ψmy | �S t1/ro · |ψ|. Since the norms of non-zero elements of
Λ∗ have a positive inf,

|ψmy |ro �S

(
η(y)1/ro · |ψ|

)ro
≥ η(y) · inf

0 6=λ∈Λ∗
|λ|ro

Since ϕ̂x,y is a Schwartz function, |ϕ̂x,y(ψ)| �` (1 + |ψ|)−` for every ` > 0. By the comparison of η(y) to
|ψmy |, for 0 6= ψ ∈ k ∩ (k∞ × U),

δ(my) · (1 + |ψmy |)−` = η(y) · (1 + |ψmy |)−` = η(y) · (1 + |ψmy |)−(q+1)·ro−(`−(q+1)·ro)

� η(y) · η(y)−(q+1) · (1 + |ψmy |)−(`−(q+1)·ro)

For ` sufficiently large depending on q, the sum of this over 0 6= ψ converges, giving the claim. ///

[7.2.12] Claim: Cuspforms f ignore the trivial Fourier component of Kϕ(x, y):

(ϕ · f)(y) =

∫
exp(Λ)\G

(
Kϕ(x, y)− ϕ̂x,y(ψ0)

)
· f(x) dx

(Direct computation, identical to [7.1.11].) ///

The proof of [7.2.9] is almost complete. From above, for y in a fixed Siegel set S and for fixed test function
ϕ, there is a compact CM ⊂ A+ such that, for ϕ(y−1nx) to be nonzero, the Iwasawa A+-component mx of
x must lie in my · CM . Thus,

{x ∈ S : ϕ(y−1nx) 6= 0 for some n ∈ N} ⊂ myCM ·K

Combining this with the estimate just obtained, for cuspform f ,

|(ϕ · f)(y)| �r |η(y)|−r ·
∫
Z+Gk\Gk(C·myCM ·KA)

|f(x)| dx

226



Garrett: Modern Analysis of Automorphic Forms

By Cauchy-Schwarz-Bunyakowsky,( ∫
Z+Gk\Gk(C·myCM ·KA)

|f(x)| dx
)2

≤
∫

Z+Gk\Gk(C·myCM ·KA)

1 dx ·
∫

Z+Gk\Gk(C·myCM ·KA)

|f(x)|2 dx � |f |2L2

This gives the desired decay, proving theorem [7.2.9]. ///

We are getting closer to the compactness of the operators f → ϕ · f on cuspforms f . Again, a collection
E of continuous functions on GA or Z+Gk\GA is (uniformly) equicontinuous when, given ε > 0, there is a
neighborhood U of 1 in GA such that

|f(x)− f(y)| < ε (for all f ∈ E, for all x ∈ GA, for all y ∈ x · U)

As in the previous section, for general reasons, we have

[7.2.13] Lemma: Let gv be the Lie algebra of Gv for archimedean v. For X ∈ gv, the left-derivative map

C∞c (GA) −→ C∞c (GA) by ϕ −→
(
g → d

dt

∣∣∣∣
t=0

ϕ(e−tX g)

)
is continuous. (Same proof as [7.1.12].) ///

[7.2.14] Corollary: For a compact set E of test functions on GA, for a compact Cg in g = gv, and for f
ranging over cuspforms in the unit ball in L2(Z+Gk\GA), there is a uniform implied constant such that∣∣∣∣ ddt ∣∣t=0

(ϕ · f)(g etX)

∣∣∣∣ � 1 (for all g ∈ GA, for all ϕ ∈ E, for all X ∈ Cg)

Proof: As in the proof of [7.1.13], differentiation of ϕ · f can be rewritten as a differentiation of ϕ, followed
by action of the resulting function on f , by changing variables:

(X · ϕ · f)(x) =
d

dt

∣∣∣∣
t=0

∫
G

ϕ(y) f(x etX y) dy =
d

dt

∣∣∣∣
t=0

∫
G

ϕ(e−tXy) f(x y) dy

=

∫
G

(
d

dt

∣∣∣∣
t=0

ϕ(e−tXy)

)
f(x y) dy (replacing y by e−tXy)

justifying interchange of differentiation and integration by the continuity of differentiation on test functions
ϕ, and Gelfand-Pettis integral properties [14.1]. That is, X · ϕ · f = (X leftϕ) · f with X left the left action.
Since gv is a finite-dimensional real vector-space and the action is linear in X, this gives the continuity in
X ∈ gv. Thus, the collection of test functions X leftϕ with X ∈ Cg and ϕ ∈ E is again compact in C∞c (G).
Thus, by the bound of theorem [7.2.10],

|(X · ϕ · f)(y)| = |(X leftϕ) · f)(y)| �r η(y)−r · |f |L2 (for all y ∈ S, X ∈ Cg, ϕ ∈ E)

For large-enough Siegel set to cover the quotient, and any r > 0, this gives

sup |X · ϕ · f(y)| �r |f |L2

proving uniform boundedness for |f |L2 ≤ 1. ///

The smoothing property of f → ϕ · f as in [14.5] assures that each ϕ · f is smooth. Smoothness of ϕ at
finite places is uniform, since that of ϕ is: with ϕ left-invariant by compact open subgroup K ′ ⊂ GAfin

, for
h ∈ K ′,

(ϕ · f)(g · h) =

∫
G

ϕ(x) f(ghx) dx =

∫
G

ϕ(h−1x) f(gx) dx =

∫
G

ϕ(x) f(gx) dx = (ϕ · f)(g)
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A uniform bound on derivatives at archimedean places will imply uniform continuity:

[7.2.15] Lemma: Let F be a smooth function on G, (uniformly) right K ′-invariant for some compact open
subgroup K ′ ⊂ GAfin

, with a uniform pointwise bound on all X · F with X in a compact neighborhood Cg

of 0 in g∞, namely,
|(X · F )(x)| ≤ B (for all x ∈ GA, all X ∈ Cg)

Then F is uniformly continuous: for every ε > 0 there is a neighborhood U of 1 in GA such that
|F (x)− F (y)| < ε for all x ∈ GA and y ∈ xU .

Proof: The only issue is at archimedean places. Let V be a small enough open containing 1 such that V
is contained in exp(Cg) ·K ′, and that the exponential map on the archimedean part is injective to V . Let
y = x · esX for X ∈ Cg and 0 ≤ s ≤ 1. By hypothesis, the function h(t) = F (x · esX) has

h′(s) =
d

dt

∣∣∣∣
t=0

h(s+ t) = F (x · esX · etX)

which is bounded by B. From the mean value theorem, |F (x · etX)− F (x)| ≤ t ·B. Thus, for all |t| < B · ε
we have the desired inequality. ///

[7.2.16] Corollary: For a compact set E of test functions on GA, and for f ranging over cuspforms in the
unit ball in L2(Z+Gk\GA), the family of images ϕ · f is (uniformly) equicontinuous on G. ///

We are almost done with the proof that f → ϕ · f is compact on cuspforms. We again have a compactness
lemma vaguely reminiscent of Arzela-Ascoli:

[7.2.17] Lemma: Let E be a equicontinuous, uniformly bounded, set of functions on Z+Gk\GA. Then E
has compact closure in L2(Z+Gk\GA). (Same proof as [7.1.16].)

Finally, we prove the theorem [7.2.1]. To summarize: the asymptotics of the kernels prove pointwise
boundedness of the image of the unit ball B of L2

o(Z
+Gk\GA), and consideration of derivatives proves

equicontinuity of the image of B. The faux-Arzela-Ascoli compactness lemma above proves compactness of
the closure of {ϕ · B : ϕ ∈ E}. Being integrated versions of right translations, these operators stabilize the
subspace of cuspforms, as the latter is defined by a left integral condition. Thus, ϕ maps the unit ball to a
set with compact closure, so is a compact operator.

Adjoints are easily computed: letting 〈, 〉 be the inner product on L2(Z+Gk\GA),

〈ϕ · f, F 〉 =

∫
Z+Gk\GA

∫
GA

ϕ(x) f(yx)F (y) dx dy =

∫
Z+Gk\GA

∫
GA

ϕ(x) f(y)F (yx−1) dx dy

=

∫
Z+Gk\GA

∫
GA

f(y)ϕ(x−1)F (yx) dx dy =

∫
Z+Gk\GA

f(y)ϕ∨ · F (y) dy

where ϕ∨(x) = ϕ(x−1) as suggested by the computation. The space of test functions is stable under the
operation ϕ→ ϕ∨.

The non-degeneracy is [14.1.5], finishing the proof of theorem [7.2.1]. ///

Proof: Now we can prove Corollary [7.2.2], that L2
o(Z

+Gk\GA) decomposes as (the closure of) a direct sum
of irreducible representations of C∞c (GA), each occurring with finite multiplicity.

[7.2.18] Claim: Let A be an adjoint-stable algebra of compact operators on a Hilbert space H, non-degenerate
in the sense that for every non-zero v ∈ H there is a ∈ A with a · v 6= 0. Then H is (the completion of)
an orthogonal direct sum of closed A-irreducible subspaces, and each isomorphism class of A-irreducible V
occurs with finite multiplicity.

Proof: To prove that H is (the completion of) a direct sum of (closed) A-irreducibles, reduce to the case that
H has no proper irreducible A-subspaces, by replacing H by the orthogonal complement to the sum of all
irreducible A-subspaces. By non-degenerateness, there is a non-zero self-adjoint operator T in A, since for a
non-zero operator S in A, either S + S∗ or S − S∗ is non-zero (and S + S∗ and (S − S∗)/i are self-adjoint).

From the spectral theorem for self-adjoint compact operators [9.A.6], there is a non-zero eigenvalue λ of
the (non-zero) self-adjoint compact operator T on H, and the λ-eigenspace is finite-dimensional. Among
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all A-stable closed subspaces choose one, W , such that the λ-eigenspace Wλ is of minimal positive (finite)
dimension. Let w be a non-zero vector in Wλ. The closure of A ·w is a closed subspace of W , and we claim
that it is irreducible. Suppose that closure(A · w) = X ⊕ Y is a decomposition into mutually orthogonal,
closed A-stable subspaces. With w = wX + wY the corresponding decomposition,

λwX + λwY = λw = Tw = T (wX + wY )

By the orthogonality and stability,

λwX = TwX and λwY = TwY

By the minimality of the λ-eigenspace in W , either wX = 0 or wY = 0. That is, λw = Tw ⊂ X or
λw = Tw ⊂ Y . That is, since λ 6= 0, either w ∈ X or w ∈ Y . Thus, either A · w ⊂ X or A · w ⊂ Y , and
likewise for the closures. But this implies that one or the other of X, Y is 0. This proves the irreducibility
of the closure of A · w, contradicting the assumption that H had no irreducible A-subspaces.

For finite multiplicities: an irreducible V is non-degenerate, since otherwise the subspace annihilated by
all a ∈ A would be a proper subspace. Thus, there is an operator T ∈ A compact and self-adjoint on H, and
non-zero on V . If the orthogonal direct sum V ⊕ . . .⊕ V of n copies appeared inside H for arbitrarily large
n, this would give T infinite multiplicities of non-zero eigenvalues on H, contradicting the spectral theorem.

///

Then the proofs of [7.2.3] and [7.2.4] are special cases, where the algebra H of compact operators is
designed to be commutative, so the notion of irreducibles simplifies to simultaneous eigenspace. Gelfand’s
criterion [2.4.5] and the p-adic and archimedean Cartan decompositions from [2.1] and [1.2] show that this
Hecke algebra H is commutative, as in [2.4] and in the proof of [7.1.2]. For non-zero f in a simultaneous
eigenspace Vχ for H, by non-degeneracy there is a test function ϕ such that ϕ · f = χ(ϕ) · f and χ(ϕ) 6= 0.
With η = ϕ/χ(φ), then η · f = f . By smoothing, as in [14.5] for example, f is smooth.

Just as in the proof of [7.1.3], the fact that the Casimir operators Ωv on archimedean Gv commute with
left and right translation implies that Ωv commutes with the action of C∞c (GA), by integrating. On right Kv-
invariant functions, Ωv is the invariant Laplacian ∆v. Thus, each ∆v stabilizes the simultaneous eigenspaces
Vχ of H, all of which are finite-dimensional, consisting of smooth functions. The restriction of ∆v to Vχ is
still symmetric, so by finite-dimensional spectral theory Vχ has a basis of ∆v-eigenfunctions. ///

As in the previous section, the implications of the following corollaries will be apparent in chapter 8:

[7.2.19] Corollary: The space of right KA-invariant L2 cuspforms has an orthonormal basis of cuspforms f
such that there is a test function ϕ ∈ C∞c (KA\GA/KA) such that ϕ · f = f . Such a cuspform f is smooth
and of rapid decay in the sense that, on a standard Siegel set S, for every q > 0,

|f(g)| �q η(g)−q (for all g ∈ S)

Proof: The proof is identical to that of [7.1.20]. ///

The proof of the following more general case is subtler than the previous:

[7.2.20] Corollary: The space of L2 cuspforms has an orthonormal basis of cuspforms f such that there is
a test function ϕ ∈ C∞c (GA) such that ϕ · f = f . Such a cuspform f is of rapid decay in the sense that, on
a standard Siegel set S, for every q > 0,

|f(g)| �q η(g)−q (for all g ∈ S)

Proof: The irreducible modules over H = C∞c (GA) appearing in the space of L2 cuspforms are merely finite-
dimensional, each occurring with finite multiplicity. Let f be in a copy V of an irreducible module for
C∞c (GA).

Since V is irreducible, it has no proper, topologically closed H-stable subspace. Since V is finite-
dimensional, all vector subspaces are closed. Thus, H · f = V . In particular, there is a test function ϕ
such that ϕ · f = f . Then [7.2.20] shows that f = ϕ · f is of rapid decay in Siegel sets. Smoothness follows
as in [14.5] and [14.6]. ///

[7.2.21] Remark: The irreducibles for adjoint-closed rings of compact operators need not be finite-
dimensional, even though non-zero eigenspaces of self-adjoint compact operators are finite-dimensional. It is
not so easy to give examples of such infinite-dimensional irreducibles. Perhaps the simplest examples would
be the irreducibles in the decomposition of L2(Γ\G) for compact quotients [7.B].
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7.3 Z+GLr(k)\GLr(A)

The only new ingredient beyond the previous two sections is treatment of more complicated asymptotics
for G = GLr for r ≥ 3. The statements of results, and the proof mechanisms, are essentially identical to the
previous section:

[7.3.1] Theorem: C∞c (GA) acts on square-integrable cuspforms L2
o(Z

+Gk\GA) by compact operators. The
collection of such operators is closed under adjoints, and is non-degenerate in the sense that for every
f ∈ L2

o(Z
+Gk\GA) there is ϕ ∈ C∞c (GA) such that ϕ · f 6= 0. (Proof below.)

[7.3.2] Corollary: The space L2
o(Z

+Gk\GA) decomposes discretely with finite multiplicities into irreducibles
for C∞c (GA). (Proof below.)

As in the previous sections, without further information about the irreducible representations of these non-
commutative convolution algebras, or of the groups Gv and GA, corollaries on commutative Hecke algebras
are more immediately informative. Fix K ′ = K∞

∏
v<∞K ′v, a compact subgroup of GA, with K ′v equal to

Kv = GLr(ov) for almost all v. The finite primes v for which K ′v is Kv are good primes, while the finite v for
which K ′v is strictly smaller than Kv are bad primes. Let S be the set of bad finite primes, of course depending
on K ′. With notation differing from chapter 3, a suitable spherical Hecke algebra, depending on K ′, that
does not attempt to do anything with bad primes is the collection H of left and right K ′-invariant test
functions ϕ on GA which vanish at g ∈ GA unless the vth component gv is in K ′v for every v ∈ S. Gelfand’s
criterion [2.4.5] and the p-adic and archimedean Cartan decompositions [3.2] show that H is commutative.

[7.3.3] Corollary: The space L2
o(Z

+Gk\GA)K
′

of right K ′-invariant cuspforms has an orthonormal basis
of simultaneous eigenfunctions for the spherical Hecke algebra H attached to K ′, with each eigenspace
finite-dimensional. The simultaneous eigenfunctions are smooth. (Proof below.)

[7.3.4] Corollary: The space L2
o(Z

+Gk\GA/KA) of right KA-invariant square-integrable cuspforms decom-
poses into simultaneous eigenspaces for operators in the maximal spherical Hecke algebra C∞c (KA\GA/KA),
with finite multiplicities. The simultaneous eigenfunctions are smooth. (Proof below.)

[7.3.5] Corollary: There is an orthonormal Hilbert-space basis for the space of KA-invariant square-
integrable cuspforms consisting of simultaneous eigenfunctions for the invariant Laplacians on the
archimedean factors Gv. (Proof below.)

As in the previous section, the discussion needs a slightly refined version of Siegel set. Let Φo be the
collection of positive simple roots (composed with norms), namely, the characters on diagonal matrices given
by

αj

m1

. . .

mr

 =
∣∣∣ mj

mj+1

∣∣∣ (for 1 ≤ j ≤ r − 1, with idele norm)

Let B = Pmin = P 1,1,...,1 be the minimal parabolic. Put

M1 = {

m1

. . .

mr

 ∈MB
A : |mj | = 1, for all j}

and

A+ = {at =

 t1
. . .

tr

 : all tj > 0, diagonally in archimedean
∏
v|∞MB

v }

Thus, for m′ ∈ M1, αj(m
′at) = (tj/tj+1)ro where ro is the number of isomorphism classes of archimedean

completions of k. For τ > 0, let

Aτ = {a ∈ A+ : α(a) ≥ τ, for all α ∈ Φo}

For τ > 0, compact CN ⊂ NB
A , compact CM ⊂ M1, and compact subgroup KA of GA, the corresponding

Siegel set attached to the minimal parabolic B is

S = S(CN , CM , τ) = CN · CM ·Aτ ·KA
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The compactness [2.A] of J1/k× and reduction theory [3.3] showed that for sufficiently large compact CN
and CM and sufficiently small τ > 0 the corresponding Siegel set surjects to Z+Gk\GA.

In the following, unadorned N,M will be N = NB and M = MB , and the unipotent radical and standard
Levi components for other parabolics P will be NP and MP .

[7.3.6] Claim: Fix a Siegel set S = S(CN , CM , τ) with compact CN ⊂ NA, compact CM ⊂M1, and τ > 0.
Write x ∈ S as x = nxmxkx with nx ∈ CN , mx = m′xat with m′x ∈ CM and at ∈ Aτ , and kx ∈ KA. Then
there is a compact subset C ′ of NA such that x ∈ mx · C ′ ·KA.

Proof: Rewrite the Iwasawa decomposition of x ∈ S as

x = nx ·mx · kx ∈ CN ·mx ·KA = mx ·m−1
x CNmx ·KA

⊂ mx · a−1
t

(
(m′x)−1CNm

′
x

)
at ·KA ⊂ mx · a−1

t

(
C−1
M CNCM

)
at ·KA

Being a continuous image of a compact set, D = C−1
M CNCM is a compact subset of NA. Now we claim that

because at ∈ Aτ , the union of all conjugates a−1
t Dat is contained in a compact set. Indeed, for u = {uv} ∈ NA,

since at is purely archimedean, conjugation by at does not alter the non-archimedean components uv of u.
At archimedean places v, for i < j, the ijth entry of a−1

t (uv)at is t−1
i tj times the ijth entry of uv, and

tj
ti

=
tj
tj−1

· tj−1

tj−2
· . . . · ti+1

ti
=
(
χi(at)χi+1(at) . . . χj−1(at)

)−1/ro
≤ (τ j−i−1)−1/ro

where ro is the number of isomorphism classes of archimedean completions of k. Those entries are bounded
on D, so the entries of the conjugate are uniformly bounded for all at ∈ Aτ . Thus,

⋃
a∈Aτ a

−1Da is contained
in a compact subset C ′ of NA, as claimed. ///

For strictly upper-triangular square matrices x with entries in any field of characteristic zero, the series
for the matrix exponential ex = exp(x) =

∑
`≥0 x

`/`! is finite. Thus, the Lie algebra nP of the unipotent

radical NP for any standard parabolic P has a purely algebraic sense:

nP = {n-by-n x : exp(x) ∈ NP }

For example, for the minimal parabolic B = Pmin , the Lie algebra n = nB is all upper-triangular matrices
with zeros on the diagonal. For maximal proper P = P i,r−i,

nP = {
(

0 u
0 0

)
} (where u is i-by-(r − i))

In the latter case, because NP is abelian, the exponential map is an isomorphism exp : nP −→ NP . For all
parabolics, the discrete additive subgroup nPk ⊂ nPA exponentiates to NP

k . For test function ϕ ∈ C∞c (GA),
we can wind up the integral for f → ϕ · f along the unipotent radical Nk of the standard minimal parabolic
B: for y ∈ GA,

(ϕ · f)(y) =

∫
GA

ϕ(x) f(yx) dx =

∫
GA

ϕ(y−1x) f(x) dx =

∫
Nk\GA

 ∑
γ∈exp(nPk )

ϕ(y−1γx)

 f(x) dx

=

∫
Nk\GA

(∑
ν∈nk

ϕ(y−1 · exp(ν) · x)

)
f(x) dx

The kernel function for this wound-up form of the operator is the latter left-Nk-invariant inner sum:

Kϕ(x, y) =
∑
ν∈nk

ϕ(y−1 · exp(ν) · x)

As just above, write B-Iwasawa decompositions for x ∈ S as x = nxmxkx with nx ∈ CN , mx = m′xat
with m′x ∈ CM and at ∈ Aτ , and kx ∈ KA.
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[7.3.7] Claim: For a fixed Siegel set S, fixed compact E ⊂ C∞c (G), there is compact C ′M ⊂ MA such that
if there exist n ∈ NA and ϕ ∈ E with ϕ(y−1 · n · x) 6= 0 for any x, y ∈ S, then mx ∈ my · C ′M . That is,
Kϕ(x, y) = 0 for all x, y ∈ S and all ϕ ∈ E unless mx ∈ my · C ′M .

Proof: From the previous claim, there is compact D ⊂ NA such that (my)−1y ∈ D · KA. A compact set
of test functions has a common compact support CG, because a compact set is bounded in the topological
vector space sense, and a bounded subset of an LF-space such as C∞c (G) lies in some Fréchet limitand, by
[13.8.5]. Non-vanishing of ϕ(y−1nx) implies y−1nx ∈ CG, so

nx ∈ y · CG ⊂ my ·D ·KA · CG ⊂ my · C ′G (with C ′G = DKACG = compact)

That is,

C ′G 3 m−1
y · nx = m−1

y · nnx ·mx · kx = (m−1
y nnxmy) ·m−1

y mx · kx

That is,

(m−1
y nnxmy) ·m−1

y mx ∈ C ′G ·KA = compact

Since M normalizes N , the element m−1
y nnxmy is in N . Since NA ∩MA = {1}, the multiplication map

NA×MA → BA is a homeomorphism. Thus, for the product (m−1
y )nnxmy) ·m−1

y mx to lie in a compact set
in GA requires that its N -component lies in a compact set in NA and its M -component lies in a compact
set in MA. Thus, there is compact C ′M ⊂MA such that m−1

y mx ∈ C ′M , as claimed. ///

[7.3.8] Corollary: For fixed Siegel set S and fixed compact E ⊂ C∞c (G), there is a compact C ′M ⊂ MA
such that, if ϕ(y−1nx) 6= 0 for some x, y ∈ S, some n ∈ NA and some ϕ ∈ E, then m−1

y x ∈ C ′M .

Proof: By [7.1.5], there is a compact CG in G such that x ∈ mx · CG. By [7.1.6], there is a compact C ′M in
MA such that mx ∈ myC

′
M . Thus, x ∈ mxCG ⊂ myC

′
MC

′
G, rearranging to give the claim. ///

As in the previous section, the notion of Schwartz function on an archimedean vectorspace such as
n∞ = ⊕v|∞nv is as in [13.7], and on non-archimedean vectorspaces nv, Schwartz functions are the same
as test functions, namely, locally constant, compactly supported. Similarly, on the finite-adeles part of
an adelic vectorspace, Schwartz functions are simply test functions, that is, locally constant, compactly
supported. Then Schwartz functions on adelic vector spaces nA are finite sums

∑
i f∞,i ⊗ fo,i where the

functions f∞,i are Schwartz functions on the archimedean part, and the functions fo,i are Schwartz/test
functions on the non-archimedean part. Topologies on such spaces are as in [6.2], [6.3], and as simpler
examples in [13.7], [13.8], and [13.9].

[7.3.9] Claim: With ωy = y−1my and ωx,y = m−1
y x, the functions ν −→ ϕx,y(ν) = ϕ(ωy · exp(ν) · ωx,y) for

x, y in fixed Siegel set, ϕ(y−1nx) 6= 0, ϕ ∈ E, constitute a compact subset of the Schwartz space S (nA).

Proof: The left and right translation actions GA×GA×C∞c (GA)→ C∞c (GA) are continuous, by [6.4]. With
fixed Siegel set S, by [7.2.6], [7.2.7], and [7.1.7], {ωy : y ∈ S} and {ωx,y : x ∈ S, y ∈ S} are compact. This
gives compactness of the image of

{ωy : y} × {ωx,y : x, y} × E −→ C∞c (GA) (x, y in fixed Siegel set, ϕ(y−1nx) 6= 0)

Since NA is closed in GA, the restriction map C∞c (GA) → C∞c (NA) ≈ C∞c (nA) is continuous. We are
fortunate that test functions are characterized by compact support together with purely local smoothness
properties, so that C∞c (NA) ≈ C∞c (nA). From [13.9.3], the inclusion C∞c (nA) ⊂ S (nA) of test functions to
Schwartz functions is continuous, giving compactness of the image. ///

Poisson summation for the lattice nk ⊂ nA gives

∑
ν∈nk

ϕ(y−1 · exp(ν) · x) =
∑

ψ∈(nk)∗

∫
nA
ψ(ν)ϕ(y−1 · exp(ν) · x) dν

with suitably normalized measure, where (nk)∗ is the collection of C×-valued characters on nA trivial on the
lattice nk. As in appendix [7.A], we can identify the dual (nA)∗ with nA and the dual lattice (nk)∗ with nk.
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One reasonable identification is as follows. Make an A-valued pairing on nA by 〈ν, ξ〉 =
∑
i<j νij ξij , and for

fixed non-trivial character ψ1 of A/k put

ψξ(ν) = ψ1

(
〈ν, ξ〉

)
(with ξ, ν in nA)

Thus, ∑
ν∈nk

ϕ(y−1 · exp(ν) · x) =
∑
ξ∈k

∫
nA
ψξ(ν)ϕ(y−1 · exp(ν) · x) dν

We have ∫
nA
ψξ(ν) · ϕ

(
y−1 · exp(ν) · x

)
dν =

∫
nA
ψξ(ν) · ϕ

(
y−1my · exp(m−1

y )νmy) ·m−1
y x

)
dν

Replacing ν by myνm
−1
y and letting ϕx,y(ν) = ϕ

(
y−1my · ν ·m−1

y x
)
,

Kϕ(x, y) = δB(my)
∑
ξ∈k

ϕ̂x,y(ψ
my
ξ )

where ϕ̂x,y(ψ
my
ξ ) is the Fourier transform ϕ̂x,y of ϕx,y along nA, evaluated at ψξ, where ψ

my
ξ (ν) =

ψξ(myν(my)−1), and where δB is the modular function of BA.

[7.3.10] Theorem: For y in a fixed Siegel set attached to the minimal parabolic B, and for ϕ in a fixed
compact E ⊂ C∞c (GA), for every q > 0 there is an implied constant depending only on such that, for every
L2 cuspform f ,

|(ϕ · f)(y)| �q

(
inf
α∈Φo

α(my)
)−q
· |f |L2

Proof: We need several preliminary results:

[7.3.11] Claim: Let P be a standard maximal proper parabolic. For every character ψ of nA trivial on
nPA , the Fourier component ϕ̂x,y(ψ) is left NP

A -invariant in x, and therefore integrates to 0 against every
cuspform.

Proof: For n ∈ NP
A , replace x by nx in the original integral defining ϕ̂x,y(ψ), obtaining

ϕ̂nx,y(ψ0) =

∫
nPA
ψ0(ν) · ϕ

(
y−1 exp(ν) · nx

)
dν =

∫
nPA
ψ0(ν) · ϕ

(
y−1 exp(ν + ν′) · x

)
dν

where ν′ is a continuous function of ν determined by the obvious exp(ν + ν′) = exp(ν) · n. That ν′ is in the
subalgebra nP rather than merely in n follows from a computation in block decompositions of the appropriate
size:

exp(ν) · n = exp

(
ν11 ν12

0 ν22

)
·
(

1 v
0 1

)
=

(
eν11 b

0 eν22

)
·
(

1 v
0 1

)
=

(
eν11 eν11 · v + b

0 eν22

)

for some block b. This is still of the form exp

(
ν11 ν′12

0 ν22

)
for some ν′12 depending on ν and n, and we take

ν′ =

(
0 ν′12

0 0

)
∈ nα (in suitable blocks)

Replacing ν by ν − ν′ in the integral gives∫
nA
ψ0(ν) · ϕ(y−1 exp(ν) · nx) dν = ψ0(ν′) · ϕ̂x,y(ψ0) = ϕ̂x,y(ψ0)
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proving the left NP
A -invariance in x. The corresponding integral is∫
Nk\GA

ϕ̂x,y(ψ
my
0 ) · f(x) dx =

∫
NkNPA\GA

∫
NPk \N

P

A
ϕ̂nx,y(ψ

my
0 ) · f(nx) dn dx

=

∫
NkNPA\GA

ϕ̂x,y(ψ
my
0 ) ·

(∫
NPk \N

P

A
f(nx) dn

)
dx

and the inner integral is 0 because f is a cuspform. ///

Thus, for cuspforms f ,

(ϕ · f)(y) = δB(my)
∑∗

ψ∈nk

∫
Nk\GA

ϕ̂x,y(ψmy ) f(x) dx

where the
∑∗

is to mean that the sum omits ψ ∈ nk such that ψ|nPA
= 1 identically for some maximal

standard proper parabolic P .
Returning to the proof of theorem [7.3.10], Fourier transform is a continuous map of S (nA) to itself, so

Fourier transform maps the compact set of [7.3.9] to a compact set of Schwartz functions
{ϕ̂x,y : x, y ∈ S, ϕ ∈ E} ⊂ S (nA). The adelic Schwartz space S (nA) is an LF-space, a strict colimit of
Fréchet spaces, characterized as a countable ascending union of Fréchet subspaces described by restricting
support at finite primes and by requiring uniform local constancy at finite primes. That is, for U (large)
compact open (additive) subgroup of the finite-adele part nAfin

of nA, and for H a (small) compact open
(additive) subgroup of nAfin

, let S (n∞ × U)H be the space of H-invariant Schwartz functions supported on
nA∞ × U . Then

S (nA) =
⋃
H,U

S (n∞ × U)H = colimH,U S (n∞ × U)H (as H shrinks and U grows)

There is a countable cofinal collection of subgroups U and subgroups H, certifying the LF-space structure
[13.8], [13.9]. In particular, a compact subset lies in some limitand S (n∞ × U)H , by [13.8.5]. Thus, the
compactness [7.2.8] implies that all the Schwartz functions ψ → ϕ̂x,y(ψ) lie in a compact subset of some
S (n∞ × U)H .

Thus, for ϕ̂x,y(ψξ) 6= 0, the finite-prime part ξfin of ξ is in some compact U ⊂ nAfin
. Thus, ξ ∈ 1

hno for
some 0 < h ∈ Z`, where no is the collection of elements of nk with entries in the ring of algebraic integers
o of k. The collection of infinite-prime parts ξ∞ of such ξ is a lattice Λ∗ ⊂ n∞. Give the finite-dimensional
R-vectorspace n∞ a positive-definite inner product

〈ξ, ξ′〉n =
∑
v|∞

Re
(
(ξv)ij · (ξ′v)ij

)
with complex conjugation to accommodate complex kv. Let | · |n be the associated norm, and write
|ψξ|n = |ξ∞|n. There is the lower bound |ξ∞|n ≥ h for 0 6= ξ∞ ∈ Λ∗. In these terms, for a fixed compact
subset E′ ⊂ S (n∞ × U)H , for each ` > 0, there is an uniform implied constant depending on `, not on
ϕ′ ∈ E′, such that

|ϕ′(ψξ)|n �` (1 + |ψξ|n)−` = (1 + |ξ∞|n)−` (for all ξ ∈ nk, for all ϕ′ ∈ E′)

[7.3.12] Lemma: For fixed S and Λ∗, there is a uniform implied constant such that, for every ψξ ∈ Λ∗ not
vanishing identically on any nPA , for every y = nymyky ∈ S, and for every α ∈ Φo,

α(y) � |ψmyξ |n

Proof: As above, for given Λ∗, there is a lower bound b > 0 such that for all ξ∞ ∈ Λ∗, |ξij | ≥ b for all indices
ij with ξij 6= 0. Given α = αi ∈ Φo, take P = P i−1,r−i+1. The non-zero entries of elements of nP are at

234



Garrett: Modern Analysis of Automorphic Forms

i′j′ with i′ ≤ i and j′ ≥ i+ 1. Thus, the condition that ψξ restricted to nPA is not identically 1 requires that

there are indices i′ ≤ i and j′ ≥ i+ 1 such that the i′j′
th

component ξi′j′ is non-zero. With such i′j′,

|ψmyξ |n = |myξm
−1
y |n ≥ |(myξm

−1
y )i′j′ | = |(my)i′ · ξi′j′ · (my)−1

j′ )|

where the latter two norms are on the real vector space k∞. Since my = m′yat with m′y in the compact CM ,
there is a uniform implied constant, independent of i, i′, j′, ξ, and y, such that

|(my)i′ · ξi′j′ · (my)−1
j′ )| � |(at)i′ · ξi′j′ · (at)−1

j′ )| =
ti′

tj′
· |ξi′j′ | ≥

ti′

tj′
· b

Every character at → ti′/tj′ with i′ < j′ is a product of non-negative powers of the simple positive characters
at → t`/t`+1 for 1 ≤ ` < r:

ti′

tj′
=

∏
i′≤`<j′

t`
t`+1

For i′ ≤ i < j′, the exponent of αi in such an expression is 1. Thus, for y = nym
′
yatky ∈ S = CNCMAτKA,

ti′

tj′
≥ ti

ti+1
·

∏
i′≤`<j′, ` 6=i

t`
t`+1

≥ ti
ti+1

·
∏

i′≤`<j′, ` 6=i

τ ≥ ti
ti+1

· τ r �S
ti
ti+1

Thus,

|ψmyξ |n �
ti
ti+1

= αi(my) (for y ∈ S)

as was claimed. ///

[7.3.13] Corollary: For fixed S and Λ∗, there is a uniform implied constant such that, for every ψξ ∈ Λ∗

not vanishing identically on any nPA , for every y = nymyky ∈ S,

δB(my) � |ψmyξ |
r(r−1)/2

Proof: δB is the product of all characters at → ti/tj with i < j. Apply the lemma. ///

Thus, for any q, ` > 0, for any α ∈ Φo, the part of the kernel Kϕ(x, y) that interacts with cuspforms has
an estimate

δB(my)
∑∗

ψ∈nk
ϕ̂x,y(ψmy ) �`

∑∗

ψ∈nk
|ψmyξ |

r(r−1)/2 · (1 + |ψξ|)−`

�
∑∗

ψ∈nk
α(my)−q|ψmyξ |

r(r−1)/2+q−` = α(my)−q
∑∗

ψ∈nk
|ψmyξ |

r(r−1)/2+q−`

For given q, for ` sufficiently large, the sum
∑∗
ψ |ψ|r(r−1)/2+q−` is convergent, so

δB(my)
∑∗

ψ∈nk
ϕ̂x,y(ψmy ) �q α(my)−q (for every α ∈ Φo)

From this estimate, for cuspform f ,

|(ϕ · f)(y)| �q

(
inf
α∈Φo

α(my)
)−q
·
∫
Z+Gk\GkS

|f(x)| dx

and by Cauchy-Schwarz-Bunyakowsky

∫
Z+Gk\GkS

|f(x)| dx ≤

(∫
Z+Gk\GkS

1 dx

)1/2

·

(∫
Z+Gk\GkS

|f(x)|2 dx

)1/2

≤ meas (Z+Gk\GA) · |f |L2
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That is, at last, for y in a fixed Siegel set,

|(ϕ · f)(y)| �q

(
inf
α∈Φo

α(my)
)−q
· |f |L2

This is the decay property of ϕ · f asserted in theorem [7.3.10]. ///

The remainder of the arguments for theorem [7.3.1] and corollaries [7.3.2]-[7.3.5] is essentially identical to
that for theorem [7.2.1] and corollaries [7.2.2]-[7.2.5]. We review the points of the argument.

As earlier, for general reasons, we have

[7.3.14] Lemma: Let gv be the Lie algebra of Gv for archimedean v. For X ∈ gv, the left-derivative map

C∞c (GA) −→ C∞c (GA) by ϕ −→
(
g → d

dt

∣∣∣∣
t=0

ϕ(e−tX g)

)
is continuous. (Proof as [7.1.12].) ///

[7.3.15] Corollary: For a compact set E of test functions on GA, for a compact Cg in g = gv, and for f
ranging over cuspforms in the unit ball in L2(Z+Gk\GA), there is a uniform implied constant such that∣∣∣∣ ddt ∣∣t=0

(ϕ · f)(g etX)

∣∣∣∣ � 1 (for all g ∈ GA, for all ϕ ∈ E, for all X ∈ Cg)

(Proof as [7.2.14].) ///

The smoothing property of f → ϕ · f as in [14.5] assures that each ϕ · f is smooth. Smoothness of ϕ at
finite places is uniform, since that of ϕ is: with ϕ left-invariant by compact open subgroup K ′ ⊂ GAfin

, for
h ∈ K ′,

(ϕ · f)(g · h) =

∫
G

ϕ(x) f(ghx) dx =

∫
G

ϕ(h−1x) f(gx) dx =

∫
G

ϕ(x) f(gx) dx = (ϕ · f)(g)

A uniform bound on derivatives at archimedean places will imply uniform continuity:

[7.3.16] Lemma: Let F be a smooth function on GA, (uniformly) right K ′-invariant for some compact open
subgroup K ′ ⊂ GAfin

, with a uniform pointwise bound on all X · F with X in a compact neighborhood Cg

of 0 in g∞, namely,
|(X · F )(x)| ≤ B (for all x ∈ GA, all X ∈ Cg)

Then F is uniformly continuous: for every ε > 0 there is a neighborhood U of 1 in GA such that
|F (x)− F (y)| < ε for all x ∈ GA and y ∈ xU . (Proof as [7.2.15].) ///

[7.3.17] Corollary: For a compact set E of test functions on GA, and for f ranging over cuspforms in the
unit ball in L2(Z+Gk\GA), the family of images ϕ · f is (uniformly) equicontinuous on G. ///

Again, a compactness lemma reminiscent of Arzela-Ascoli:

[7.3.18] Lemma: Let E be a equicontinuous, uniformly bounded, set of functions on Z+Gk\GA. Then E
has compact closure in L2(Z+Gk\GA). (Proof as [7.1.16].)

Finally, we prove the theorem [7.3.1]. To summarize: the asymptotics of the kernels prove pointwise
boundedness of the image of the unit ball B of L2

o(Z
+Gk\GA), and consideration of derivatives proves

equicontinuity of the image of B. The faux-Arzela-Ascoli compactness lemma proves compactness of the
closure of {ϕ · B : ϕ ∈ E}. Being integrated versions of right translations, these operators stabilize the
subspace of cuspforms, as the latter is defined by a left integral condition. Thus, ϕ maps the unit ball to a
set with compact closure, so is a compact operator.

As in earlier examples, by direct computation, the adjoint of f → ϕ·f is f → ϕ∨ ·f , where ϕ∨(x) = ϕ(x−1).
The space of test functions is stable under the operation ϕ→ ϕ∨.

Again, the general non-degeneracy result is [14.1.5], finishing the proof of [7.3.1]. ///

The proof of corollary [7.3.2], that L2
o(Z

+Gk\GA) decomposes as (the closure of) a direct sum of irreducible
representations of C∞c (GA), each occurring with finite multiplicity, is identical to the proof of [7.2.2].
///
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The proofs of [7.3.3] and [7.3.4] are special cases, where the algebra H of compact operators is designed
to be commutative, so the notion of irreducibles simplifies to simultaneous eigenspace. Gelfand’s criterion
[2.4.5] and the p-adic and archimedean Cartan decompositions from [3.2] show that this Hecke algebra H
is commutative. For non-zero f in a simultaneous eigenspace Vχ for H, by non-degeneracy there is a test
function ϕ such that ϕ · f = χ(ϕ) · f and χ(ϕ) 6= 0. With η = ϕ/χ(φ), then η · f = f . By smoothing, as in
[14.5] for example, f is smooth.

Just as in the proof of [7.1.3], the fact that the Casimir operators Ωv on archimedean Gv commute with
left and right translation implies that Ωv commutes with the action of C∞c (GA), by integrating. On right Kv-
invariant functions, Ωv is the invariant Laplacian ∆v. Thus, each ∆v stabilizes the simultaneous eigenspaces
Vχ of H, all of which are finite-dimensional, consisting of smooth functions. The restriction of ∆v to Vχ is
still symmetric, so by finite-dimensional spectral theory Vχ has a basis of ∆v-eigenfunctions. ///

[7.3.19] Corollary: The space of L2 cuspforms has an orthonormal basis of cuspforms f such that there is
a test function ϕ ∈ C∞c (GA) such that ϕ · f = f . Such a cuspform f is smooth and of rapid decay in the
sense that, given a standard Siegel set S and q > 0,

|f(g)| �q

(
inf
α∈Φo

α(mg)
)−q

Proof: The proof is the same as that of [7.2.19]: From above, the irreducibles modules over H = C∞c (GA)
appearing in the space of L2 cuspforms are finite-dimensional, each occurring with finite multiplicity. Let f
be in a copy V of an irreducible module for C∞c (GA).

Since V is irreducible, it has no proper, topologically closed H-stable subspace. Since V is finite-
dimensional, all vector subspaces are closed. Thus, H · f = V . In particular, there is a test function ϕ
such that ϕ · f = f . Then [7.3.10] applies to f = ϕ · f . Smoothness follows as in [14.5] and [14.6]. ///

7.A Appendix: dualities

For an abelian topological group G and T the unit circle in C, the unitary dual of G is

Ĝ = Homo(G,S1) = {continuous group homomorphisms G→ T}

Pointwise multiplication makes Ĝ an abelian group. A reasonable topology [58] on Ĝ is the compact-open
topology, with a sub-basis of opens

U = UC,E = {f ∈ Ĝ : f(C) ⊂ E} (for compact C in G, open E in T)

From [7.A.4], the compact-open topology makes Ĝ a abelian (locally-compact, Hausdorf) topological group,

[7.A.1] Claim: The unitary dual of a compact abelian group is discrete. The unitary dual of a discrete
abelian group is compact.

Proof: Let G be compact. Let E be a small-enough open in T so that E contains no non-trivial subgroups
of G. Noting that G itself is compact, let U ⊂ Ĝ be the open

U = {f ∈ Ĝ : f(G) ⊂ E}

Since E is small, f(G) = {1}. That is, f is the trivial homomorphism. This proves discreteness of Ĝ. For G
discrete, every group homomorphism to T is continuous. The space of all functions G → T is the cartesian

[58] The reasonable-ness of the compact-open topology is in its function. First, on a compact topological space X,

the space Co(X) of continuous C-valued functions with the sup-norm (of absolute value) is a Banach space . On

non-compact X, the semi-norms given by sups of absolute values on compacts make Co(X) a Fréchet space. The

compact-open topology accommodates spaces of continuous functions Co(X,Y ) where the target space Y is not a

subset of a normed real or complex vector space, and is most interesting when Y is a topological group. In the latter

case, when the source X is also a topological group, the subset of all continuous functions f : X → Y consisting of

group homomorphisms is a (locally compact, Hausdorff) topological group, as proven below.
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product of copies of T indexed by G. By Tychonoff’s theorem, with the product topology, this product is
compact. Indeed, for discrete X, the compact-open topology on the space Co(X,Y ) of continuous functions
from X → Y is the product topology on copies of Y indexed by X. The subset of functions f satisfying the
group homomorphism condition

f(gh) = f(g) · f(h) (for g, h ∈ G)

is closed, since the group multiplication f(g) × f(h) → f(g) · f(h) in T is continuous. Since the product is

also Hausdorff, Ĝ is also compact. ///

[7.A.2] Claim: Local fields kv are self-dual, as are the adeles of a number field k: A∨ ≈ A.

Proof: For compact totally disconnected G, since C× contains no small subgroups [2.4.3], every element of G∨

has image in roots of unity in C×, which can be identified with Q/Z. Thus, for compact totally disconnected
G,

G∨ ≈ Homo(G, Q/Z) (continuous homomorphisms)

where Q/Z = colim 1
NZ/Z is discrete. As a topological group, Zp = limZ/p`Z. It is also useful to observe

that Zp is a limit of the corresponding quotients of itself, namely,

Zp ≈ limZp/p`Zp

Indeed, more generally, every abelian totally disconnected topological group G has the property that

G ≈ lim
K
G/K

where K ranges over compact open subgroups of G. Also, as a topological group,

Qp =
⋃ 1

p`
Zp = colim

1

p`
Zp

Because of the no small subgroups property [2.4.3] of the unit circle in C×, every continuous element of Z∨p
factors through some limitand

Zp/p`Zp ≈ Z/p`Z

Thus,

Z∨p = colim
(
Zp/p`Zp

)∨
= colim

1

p`
Zp/Zp

since 1
p`
Zp/Zp is the dual to Zp/p`Zp under the pairing

1

p`
Zp/Zp × Zp/p`Zp ≈

1

p`
Z/Z × Z/p`Z 3

( x
p`

+ Z
)
×
(
y + p`Z

)
−→ xy + Z ∈ Q/Z

The transition maps in the colimit expression for Z∨p are inclusions, so

Z∨p = colim
1

p`
Zp/Zp ≈

(
colim

1

p`
Zp
)
/Zp ≈ Qp/Zp

Thus,

Q∨p =
(

colim
1

p`
Zp
)∨

= lim(
1

p`
Z∨p

As a topological group, 1
p`
Zp ≈ Zp by multiplying by p`, so the dual of 1

p`
Zp is isomorphic to Z∨p ≈ Qp/Zp.

However, the inclusions for varying ` are not the identity map, so for compatibility take( 1

p`
Zp
)∨

= Qp/p`Zp
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Thus,
Q∨p = limQp/p`Zp ≈ Qp

because, again, any abelian totally disconnected group is the projective limit of its quotients by compact
open subgroups. The same argument applies to Ẑ = limZ/NZ and finite adeles Afin = colim 1

N Ẑ, proving
the self-duality of Afin. Fourier inversion asserts the self-duality of R and C, giving the self-duality of A. The
same argument applies over an arbitrary finite extension kv of Qp, but now the pairing is composed with the
local trace from kv to Qp and the dual lattice to the local integers ov is (by definition) the inverse different.

///

[7.A.3] Claim: The unitary dual (A/k)̂ of the compact quotient A/k is isomorphic to k. In particular,
given any non-trivial character ψ on A/k, all characters on A/k are of the form x→ ψ(α ·x) for some α ∈ k.

Proof: Because A/k is compact, (A/k)̂ is discrete. Since multiplication by elements of k respects cosets
x+ k in A/k, the unitary dual has a k-vectorspace structure given by

(α · ψ)(x) = ψ(α · x) (for α ∈ k, x ∈ A/k)

There is no topological issue in this k-vectorspace structure, because (A/k)̂ is discrete. The quotient map

A→ A/k gives a natural injection (A/k)̂→ Â.

Given non-trivial ψ ∈ (A/k)̂, the k-vectorspace k ·ψ inside (A/k)̂ injects to a copy of k ·ψ inside Â ≈ A.
Assuming for a moment that the image in A is essentially the same as the diagonal copy of k, the quotient
(A/k)̂/k injects to the compact A/k. The topology of (A/k)̂ is discrete, and the quotient (A/k)̂/k is
still discrete. Since all these maps are continuous group homomorphisms, the image of (A/k)̂/k in A/k is
a discrete subgroup of a compact group, so is finite. Since (A/k)̂ is a k-vectorspace, the quotient (A/k)̂/k
must be a singleton. This proves that (A/k)̂ ≈ k, granting that the image of k · ψ in A ≈ Â is the usual
diagonal copy.

To see how k ·ψ is imbedded in A ≈ Â, fix non-trivial ψ on A/k, and let ψ be the induced character on A.

The self-duality of A is that the action of A on Â by (x ·ψ)(y) = ψ(xy) gives an isomorphism. The subgroup
x · ψ with x ∈ k is certainly the usual diagonal copy. ///

For completeness, we prove

[7.A.4] Claim: The unitary dual Ĝ of an abelian (locally compact, Hausdorff) topological group is an abelian
(locally compact, Hausdorff) topological group.

[7.A.5] Remark: We do not prove the local compactness in general. The important special cases, that the
dual of discrete is compact, and vice-versa, give the local compactness of the duals in those cases.

Proof: That the unitary dual is abelian is immediate, since the multiplication is pointwise by values, and the
target group T is abelian. First, verify that the topology is invariant. That is, given a sub-basis open

U(C,E) = {f ∈ Ĝ : f(c) ∈ E, for all c ∈ C} (with C compact in G, E open in T)

and given fo ∈ Ĝ, show that fo · U(C,E) is open. This is not completely trivial, as fo · U(C,E) is not
obviously of the form U(C ′, E′):

fo · U(C,E) = {f ∈ Ĝ : f(c) ∈ fo(c) · E, for all c ∈ C}

To show that fo ·U(C,E) is open, we show that every point is contained in a finite intersection of the basic
opens, with that intersection contained in fo · U(C,E).

Fix f ∈ fo ·U(C,E). Since f−1
o (c)f(c) ∈ E, each c ∈ C has a neighborhood Nc such that f−1

o (Nc)·f(Nc) ⊂
E. Shrink each Nc to have compact closure N c, and so that f−1

o (N c) · f(N c) ⊂ E. By compactness of C, it
has a finite subcover Ni = Nci . Thus,

f(N i) ⊂ fo(c
′) · E (for all i, for all c′ ∈ N i)

From the result of the following subsection, an intersection of a compact family of opens is open, so

Ei =
⋂

c′∈Ni

fo(c
′) · E = open
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This open Ei is non-empty, since it contains f(N i). Thus,

f ∈
⋂
i

U(N i, Ei) (a finite intersection)

On the other hand, with ci and N i determined by f , take

f ′ ∈
⋂
i

U(N i, Ei)

Then
f ′(N i) ⊂ fo(c) · E (for all c ∈ N i)

In particular,
f ′(c) ∈ fo(c) · E (for all c ∈ N i)

Since the sets N i cover C, we have f ′ ∈ fo · U(C,E). That is,⋂
i

U(N i, Ei) ⊂ fo · U(C,E)

This proves that the translate fo ·U(C,E) is open, in the compact-open topology. That is, the compact-open
topology is translation-invariant.

Now we prove the fact needed above, that compact intersections of opens are open, in the following sense.
Let H be a topological group, Hausdorff, but not necessarily locally compact. We claim that⋂

k∈K

k · U = open (for U ⊂ H open, and K ⊂ H compact)

For u ∈ k · U for all k, by the continuity of inversion and the group operation, there are neighborhoods Uk
of u and Vk of k such that

V −1
k · Uk ⊂ U

Let Vi = Vki be a finite subcover of K, and put Ui = Uki . Thus, for k ∈ Vi,

k−1 · Ui ⊂ U (for k ∈ Vi)

Thus,

k−1 ·
⋂
i

Ui ⊂ U (for all k ∈ K)

Since finite intersections of opens are open, the intersection of the Ui, each containing u, is an open
neighborhood of u. That is, the intersection of the translates k · U is open. This proves the claim.

Next, show that the pointwise multiplication operation

(f1 · f2)(x) = f1(x) · f2(x) (for fi ∈ Ĝ and x ∈ G)

in Ĝ is continuous in the compact-open topology. Given a sub-basis neighborhood U(C,E) of f1 · f2, the
already-demonstrated invariance of the topology implies that (f1f2)−1U(C,E) is open, and is a neighborhood
of the trivial character. Thus, without loss of generality, take f1 = f and f2 = f−1. Given a sub-basic
neighborhood U(C,E) of the trivial character in Ĝ, show that there are neighborhoods U1 of f and U2 of
f−1 such that U1 · U2 ⊂ U(C,E). For U(C,E) to be a neighborhood of the trivial character means exactly
that 1 ∈ E (and C 6= φ).

Let E′ be an open neighborhood of 1 such that E′ · E′ ⊂ E. For

f ′ ∈
(
f · U(C,E′)

)
·
(
f−1 · U(C,E′)

)
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we have
f ′(c) ∈

(
f(c) · E′

)
·
(
f−1(c) · E′

)
= E′ · E′ ⊂ E (for all c ∈ C)

That is, (
f · U(C,E′)

)
·
(
f−1 · U(C,E′)

)
⊂ U(C,E)

This proves continuity of multiplication. Continuity of inversion is similar.
Finally, Hausdorffness: take f1 6= f2 in Ĝ. For some g ∈ G, f1(g) 6= f2(g). Since the target T is Hausdorff,

there are opens E1 3 f1(g) and E2 3 f2(g) with E1 ∩E2 = φ. Since the source G is Hausdorff, the singleton
{g} is compact. Thus, fi ∈ U({g}, Ei), and these opens are disjoint. This completes the discussion of the
unitary dual. ///

7.B Appendix: compact quotients Γ\G
Here we see the enormous simplification in the argument for discrete decomposition when Γ\G is compact,

so that Gelfand’s cuspform condition is vacuously met. Let G be any unimodular topological group, and Γ
a discrete subgroup so that Γ\G is compact. As in [6.1] and [6.2], G acts continuously on L2(Γ\G) by right
translation, in fact by unitary operators, and η ∈ Coc (G) acts continuously by the integral operators

(η · f)(x) =

∫
G

η(g) f(xg) dg

[7.3.1] Theorem: Coc (G) acts on L2(Γ\G) by Hilbert-Schmidt (hence, compact) operators. The collection
of such operators is closed under adjoints, and is non-degenerate in the sense that for every f ∈ L2(Γ\G)
there is η ∈ C∞c (K\G/K) such that η · f 6= 0.

Proof: Just as in the more complicated arguments concerning cuspforms, first rearrange:

(η · f)(x) =

∫
G

η(x−1g) f(g) dg =

∫
Γ\G

∑
γ∈Γ

η(x−1γg) f(γg) dg

=

∫
Γ\G

∑
γ∈Γ

η(x−1γg) f(g) dg =

∫
Γ\G

(∑
γ∈Γ

η(x−1γg)
)
· f(g) dg

Thus, with Schwartz kernel Kη(x, y) =
∑
γ∈Γ η(x−1γy) (see [Schwartz 1950]),

(η · f)(x) =

∫
Γ\G

Kη(x, y) f(y) dy

Since Γ is discrete in G, for x, y in a fixed compact subset of G, the sum for Kη(x, y) is finite, so Kη is
continuous on Γ\G× Γ\G. Unlike the more general situation, since Γ\G is compact, Kη ∈ L2(Γ\G× Γ\G).
Thus, f → η · f is Hilbert-Schmidt (see [9.A]), and therefore a compact operator.

The adjoint of f → η · f is easily expressed by changing variables:

〈ηf, F 〉L2(Γ\G) =

∫
Γ\G

∫
G

η(g) f(xg)F (x) dg dx =

∫
G

∫
Γ\G

η(g) f(xg)F (x) dx dg

=

∫
G

∫
Γ\G

f(x) η(g)F (xg−1) dx dg = 〈f, η̌ · F 〉L2(Γ\G) (where η̌(g) = η(g−1))

The non-degeneracy is [14.1.5]. ///

A representation of G on a topological vector space V is a continuous map G× V → V that sends g ∈ G
to (continuous) linear maps on V . The representation V is irreducible when there are no (topologically)
closed G-stable subspaces except {0} and V itself. Homomorphisms ϕ : V → W of G-representations are
continuous linear maps commuting with the action of G: ϕ(g · v) = g · ϕ(v) for all g ∈ G and v ∈ V . The
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multiplicity of an irreducible V in another representation W of G is dimC HomG(V,W ), as elaborated in
[9.D.14]. The same terminology applies to the integral-operator action of Coc (G) on a G-representation.

[7.3.2] Corollary: L2(Γ\G) is (the completion of) an orthogonal direct sum of irreducible Coc (G)-
subrepresentations, each occurring with finite multiplicity.

Proof: Given the theorem, this is mostly just [7.2.18]. ///

[7.3.3] Corollary: L2(Γ\G) is (the completion of) an orthogonal direct sum of irreducible unitary
representations of G, each occurring with finite multiplicity.

Proof: By [14.1.6] and [14.1.7], Coc (G)-subrepresentations of the G-representation L2(Γ\G) are G-
subrepresentations, and Coc (G)-irreducibility implies G-irreducibility. ///

[7.3.4] Remark: Discrete subgroups Γ of G = SL2(R) with compact quotient Γ\G can be obtained in several
ways. A purely analytical device is the uniformization theorem, asserting that every compact, connected
Riemann surface of genus ≥ 2 is such a quotient. More number-theoretic examples are obtained by taking
quaternion division algebras B over Q (that is, Q-four-dimensional simple division algebras with Q in the
center) split over R, that is, so that B ⊗Q R is isomorphic to the 2-by-2 matrix algebra M2(R). For a
maximal finite-Z-module-rank subring o of B, imbed o× into GL2(R), and let Γ = o× ∩ SL2(R). Then Γ\G
is compact, by an argument resembling that in [2.A] for the compactness of J1/k×. Similarly, for a number
field k and quaternion division algebra B over k, with B ⊗k kv ≈M2(R) for exactly one archimedean place
v of k, and B ⊗k kv′ ≈ H for all other archimedean places, for maximal subring o, let Γ be the intersection
of SL2(R) with the projection of o× to GL2(kv) ≈ GL2(R). Then Γ\SL2(R) is compact. The corresponding
compact quotients Γ\H are Shimura curves.
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8. Moderate growth functions, theory of the constant term

1. The four small examples
2. GL2(A)
3. SL3(Z), SL4(Z), SL5(Z), . . .
4. Moderate growth of convergent Eisenstein series
5. Integral operators on cuspidal-data Eisenstein series
Appendix A: continuity of bilinear maps

From [7.1.20], [7.2.20], and [7.3.19], there is an orthonormal basis for cuspforms f such that there are test
functions ϕ with ϕ · f = f , and these cuspforms are of rapid decay in Siegel sets. This is a special case of
the idea that the asymptotic behavior of moderate growth automorphic forms f in Siegel sets is dominated
by their constant terms, under the hypothesis that there is a test function ϕ such that ϕ · f = f . Eisenstein
series are of moderate growth, even after meromorphic continuation, and under reasonable hypotheses on the
data used to form them, meet the condition ϕ · f = f for suitable test function. Thus, although Eisenstein
series are not in L2, they admit good asymptotic approximations by their constant terms.

The underlying mechanism for the results of this chapter is essentially the fundamental theorem of calculus.
Thus, these results are essentially archimedean. Thus, the second section indicates how to reduce the GL2(A)
example to the four simple examples, and the third section treats only the simplest purely archimedean
version of GLr.

8.1 The four small examples

First, consider the four small examples from chapter 1, with G,Γ, P,M,N,A+,K as there. For this section,
write Iwasawa decompositions as x = nxaxkx with ax ∈ A+. The height function η is

η(nak) = η(a) = δP (a) = t2r (for n ∈ N , a =

(
t 0
0 1/t

)
∈ A+, and k ∈ K)

where r = 1, 2, 3, 4 in the respective examples, and δP is the modular function. A left N ∩ Γ-invariant
function C-valued f on G or on G/K is of moderate growth of exponent λ ∈ R on a fixed standard Siegel set
S when

|f(x)| �S η(x)λ (for x ∈ S)

A left N ∩ Γ-invariant function C-valued f on G or G/K is of moderate growth of exponent λ (on standard
Siegel sets) when it is of moderate growth of exponent λ on every standard Siegel set. Say f is of moderate
growth if it is of moderate growth of exponent λ for some λ. Since constant terms

cP f(x) =

∫
(Γ∩N)\N

f(nx) dn

of automorphic forms f are merely N ∩Γ-invariant, the notion of moderate growth needs to be more broadly
applicable than just to Γ-invariant functions. A left N ∩ Γ-invariant function C-valued f on G or G/K is of
rapid decay on standard Siegel sets when

|f(x)| �λ,S η(x)λ (for x ∈ S, for every S, for every λ ∈ R)

We can see directly that, for f of moderate growth of exponent λ, the constant term cP f is also of moderate
growth of exponent λ, and for f of rapid decay, the constant term cP f is also of rapid decay: on a fixed
standard Siegel set S,

|cP f(x)| ≤
∫

(N∩Γ)\N
|f(nx)| dn �S

∫
(N∩Γ)\N

η(nx)λ dn =

∫
(N∩Γ)\N

η(x)λ dn = η(x)λ
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For f ∈ Co(G) and for ϕ ∈ D(G), as usual

(ϕ · f)(x) =

∫
G

ϕ(g) f(xg) dg (for ϕ ∈ D(G))

This converges at least as a C-valued integral, for each x ∈ G.

[8.1.1] Theorem: For f on (N ∩ Γ)\G/K of moderate growth, if there is ϕ ∈ D(G) with ϕ · f = f , then
f − cP f is of rapid decay on Siegel sets.

Proof: The proof of the theorem is in several stages. First, the action of test functions does preserve moderate
growth of a given exponent:

[8.1.2] Claim: Let f be a function on (Γ ∩ N)\G of moderate growth of exponent λ in standard Siegel
sets. Then, for every test function ϕ ∈ D(G), the function ϕ · f is also of moderate growth of exponent λ in
standard Siegel sets.

Proof: Let compact C ⊂ G contain the support of ϕ. Without loss of generality, replace C by C ·K to make
C right K-stable. Fix a Siegel set S = CNAτK with compact CN ⊂ N and Aτ = {a ∈ A+ : η(a) ≥ τ}. For
x ∈ S,

(ϕ · f)(x) =

∫
G

f(xy)ϕ(y) dy =

∫
G

f(y)ϕ(x−1y) dy =

∫
xC

f(y)ϕ(x−1y) dy

[8.1.3] Lemma: Given compact C ⊂ G, there is compact CA ⊂ A+ such that ay ∈ axCA for y ∈ xC.

Proof: (of lemma) For right K-stable C, C ⊂ (NA+ ∩ C) · K, since in Iwasawa coordinates pk ∈ C with
p ∈ NA+ and k ∈ K implies that p = (pk) · k−1 is also in C. Since N · A+ ≈ N × A+ is a topological
product, there are compacts C ′N ⊂ N , CA ⊂ A+ so that K · C ⊂ C ′N · CA ·K. Then

xC ⊂ NaxK · C ⊂ Nax · C ′NCAK ⊂ Nax ·NCAK ⊂ N · (axNa−1
x ) · (axCA) ·K ⊂ N · (axCA) ·K

That is, ay ∈ axCA for y ∈ xC, as claimed. ///

Returning to the proof of the claim, for x ∈ S, for y in the support xC of the integral,

η(y) = η(ay) ∈ η(axCA) = η(ax) · η(CA)

Let
µ = inf

a∈CA
η(a) σ = sup

a∈CA
η(a)λ

Take compact C ′′N ⊂ N large enough to surject to (N ∩Γ)\N . Then, up to adjustment by N ∩Γ, for x ∈ S,
y ∈ xC implies that y is in S′ = CN ′′Aµ·τK. Invoking the moderate growth of f on S′,

|ϕ · f(x)| ≤ sup |ϕ|
∫
xC

|f(y)| dy �f,S sup |ϕ| ·
∫
xC

η(y)λ dy � sup |ϕ| · σ ·
∫
xC

η(x)λ dy

= sup |ϕ| · σ · η(x)λ ·meas (C) �ϕ η(x)λ (for x ∈ S)

This argument applies to every standard Siegel set S, giving the moderate growth of f . ///

[8.1.4] Claim: For f of moderate growth of exponent λ, if ϕ · f = f for some ϕ ∈ D(G), then f is smooth,
and is of uniform moderate growth of exponent λ, in the sense that for any L in the universal enveloping
algebra Ug of the Lie algebra g of G, the derivative Lf is of moderate growth with exponent λ on standard
Siegel sets.

Proof: The image ϕ · f is smooth, by [14.5]. The point is that the left-G-invariant differential operators
attached to X in the Lie algebra of G by

Xf(x) =
∂

∂s

∣∣∣
s=0

f(x · esX)
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can be absorbed into the action of varying ϕ ∈ D(G) on f :

X(ϕ · f)(x) =
∂

∂s

∣∣∣
s=0

∫
G

f(x · esXg)ϕ(g) dg =
∂

∂s

∣∣∣
s=0

∫
G

f(g)ϕ(e−sXx−1g) dg

by replacing g by e−sXx−1g. This is∫
G

f(x)
∂

∂s

∣∣∣
s=0

ϕ(e−sXx−1g) dg =

∫
G

f(x)X leftϕ(x−1g) dg

where X left is the (right-G-invariant) differential operator on the left naturally attached to X via the left
translation action. The interchange of differentiation and integration is justified by Gelfand-Pettis [14.1],
observing that the integral is compactly supported, continuous, and takes values in a quasi-complete locally
convex topological vector space on which differentiation is a continuous linear map. Using ϕ · f = f ,

Xf(x) = X(ϕ · f)(x) = ((X leftϕ) · f)(x)

which is of moderate growth of exponent λ, by the previous claim. By induction on the degree of the
differential operator L, Lf is of moderate growth of exponent λ. ///

The key bootstrapping property is the following:

[8.1.5] Claim: For f smooth and left (N ∩ Γ)-invariant, of uniform moderate growth of exponent λ on
standard Siegel sets, on a standard Siegel set S

|(f − cP f)(x)| �S η(x)λ−1

Proof: For notational simplicity, we first carry out the argument for the example with G = SL2(R).
Normalizing the measure of (Γ ∩N)\N to be 1,

(cP f − f)(x) =

∫
(Γ∩N)\N

f(nx)− f(x) dn =

∫
0≤t≤1

f(etX · x)− f(x) dt

where X =

(
0 1
0 0

)
in the Lie algebra of N . By the fundamental theorem of calculus,

f(etX ·x)− f(x) =

∫ t

0

∂

∂u

∣∣∣
u=0

f(e(u+s)X ·x) ds =

∫ t

0

f(esX ·x · eux
−1Xx) ds =

∫ t

0

(
x−1Xx · f

)
(esX ·x) ds

Let x = nxaxkx with nx ∈ N , ax ∈ A+, kx ∈ K. Then

x−1Xx = (k−1
x a−1

x n−1
x )X(nxaxkx) = (k−1

x a−1
x )X(axkx)

Further,
a−1
x Xax = η(ax)−1 ·X

Then
x−1Xx = (k−1

x a−1
x )X(k−1

x a−1
x ) = η(ax)−1k−1

x Xkx = η(ax)−1 ·
∑
i

ci(kx)Xi

where the ci are continuous functions (depending upon X) on K and {Xi} is a basis for the Lie algebra
of G. Since the ci are continuous on the compact set K, they have a uniform bound c in absolute value.
Altogether,

(cP f − f)(x) =

∫
0≤t≤1

∫
0≤s≤t

η(ax)−1 ·

(
−
∑
i

ci(kx)Xi

)
f(esX · x) ds dt

= η(ax)−1 ·
∑
i

ci(kx)

∫
0≤t≤1

∫
0≤s≤t

(−Xif)(esX ·x) ds dt = η(ax)−1 ·
∑
i

ci(θx)

∫
0≤t≤1

(−Xif)(etX ·x) dt

= η(ax)−1 ·
∑
i

ci(θx) · cP (−Xif)(x)
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so
|(cP f − f)(x)| ≤ η(ax)−1 ·

∑
i

|ci(θx)| · cP |(−Xif)(x)| ≤ η(ax)−1 ·
∑
i

c · cP |(−Xif)(x)|

�S η(ax)−1 ·
∑
i

c · η(x)λ � η(ax)λ−1

as claimed, for G = SL2(R). For the other three small examples, since N is r = 2, 3, 4-dimensional,
respectively, commensurately more differentiations are needed, but the pattern is the same:

(cP f − f)(x) =

∫
(Γ∩N)\N

f(nx)− f(x) dn =

∫
0≤t1≤1

. . .

∫
0≤tr≤1

f(et1X1+...+trXr · x)− f(x) dt1 . . . dtr

where X1, . . . , Xr is a suitable basis for the Lie algebra of N . By the fundamental theorem of calculus,

f(et1X1+...+trXr · x)− f(x)

=

∫ t1

0

. . .

∫ tr

0

∂

∂u1

∣∣∣
u1=0

. . .
∂

∂ur

∣∣∣
ur=0

f(e(u1+s1)X1+...+(ur+sr)Xr · x)− f(x) ds1 . . . dsr

=

∫ t1

0

. . .

∫ tr

0

f(es1X1+...+srXr · x · eu1x
−1X1x+...+urx

−1Xrx) ds1 . . . dsr

=

∫ t1

0

. . .

∫ tr

0

(
x−1X1x · · ·x−1Xrx · f

)
(es1X1+...+srXr · x) ds1 . . . dsr

As in the simpler version above,

x−1Xjx = (k−1
x a−1

x )Xj(k
−1
x a−1

x ) = η(ax)−1/rk−1
x Xjkx

= η(ax)−1/r
∑
i

cij(kx)Xi (with η

(
t 0
0 1/t

)
= t2r)

for some continuous functions cij on K. Thus, again, these functions have a bound c, and

∣∣∣ ∫ t1

0

. . .

∫ tr

0

(
x−1X1x · · ·x−1Xrx · f

)
(es1X1+...+srXr · x) ds1 . . . dsr

∣∣∣
� η(x)−1

∑
i1,...,ir

∫ t1

0

. . .

∫ tr

0

(
Xi1 · · ·Xirf

)
(es1X1+...+srXr · x) ds1 . . . dsr

� η(x)−1
∑

i1,...,ir

cP
∣∣Xi1 · · ·Xirf(x)

∣∣ � η(x)−1 · η(x)λ

giving the claim. ///

Now finish the proof of the theorem. Take ϕ · f = f on (Γ ∩ N)\G of moderate growth of exponent λ
in Siegel sets. Then αf is of moderate growth of exponent λ for all α ∈ Ug, and f − cP f is of moderate
growth of exponent λ − 1. Then α(f − cP f) is of moderate growth of exponent λ − 1 for all α ∈ Ug, and
(f − cP f)− cP (f − cP f) is of moderate growth of exponent (λ− 1)− 1. But

(f − cP f)− cP (f − cP f) = f − cP f − cP f + cP cP f = f − cP f − cP f + cP f = f − cP f

By induction, f − cP f is of moderate growth of exponent λ− ` for every ` ∈ Z. ///

[8.1.6] Remark: In fact, the above arguments apply to f eventually having the property f = ϕ · f , in the
sense that this property holds in a region where η(ax) is sufficiently large.
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8.2 GL2(A)

The purely archimedean argument of the previous section applies to the archimedean local factors Gv of
groups GL2(A). Again, the fundamental device is the fundamental theorem of calculus. For simplicity, we
consider only trivial central characters.

A function f on ZAPk\GA/K is of moderate growth of exponent λ on standard Siegel sets S when

|f(nmk)| �f,S |m1/m2|λ (where n ∈ NA, m =

(
m1 0
0 m2

)
∈MA, k ∈ KA)

Such a function is of rapid decay (on Siegel sets) when it is of moderate growth of exponent λ for all λ ∈ R,
with implied constant allowed to depend on λ. We may suppress the phrase on Siegel sets, but this is implied
throughout.

[8.2.1] Theorem: For f on Pk\GA/K of moderate growth, KA-finite, if there is ϕ ∈ D(GA) with ϕ · f = f ,
then f − cP f is of rapid decay.

Proof: The proof is completely parallel to that of the previous sections, so we merely outline it, highlighting
differences and adaptations. First, the action of test functions preserves moderate growth of a given exponent:

[8.2.2] Claim: Let f be a function on ZAPk\G of moderate growth of exponent λ in standard Siegel sets.
Then, for every test function ϕ ∈ D(G), the function ϕ · f is also of moderate growth of exponent λ in
standard Siegel sets. (Same proof as [8.1.2].) ///

[8.2.3] Claim: For f of moderate growth of exponent λ, if ϕ · f = f for some ϕ ∈ D(G), then f is smooth,
and is of uniform moderate growth of exponent λ, in the sense that for any L in the universal enveloping
algebra Ug of the Lie algebra g of G, the derivative Lf is of moderate growth with exponent λ on standard
Siegel sets. (Same proof as [8.1.4].) ///

Again, we have the bootstrapping property

[8.2.4] Claim: For f smooth and left (N ∩ Γ)-invariant, of uniform moderate growth of exponent λ on
standard Siegel sets, on a standard Siegel set S

|(f − cP f)(nmk)| �S |m1/m2|λ−1 (with m =

(
m1 0
0 m2

)
)

(Same proof as [8.1.5], using the fundamental theorem of calculus.) ///

The proof of the theorem is finished up as follows. Take ϕ · f = f on ZAGk\GA and of moderate growth
of exponent λ in Siegel sets. Then αf is of moderate growth of exponent λ for all α ∈ Ug, and f − cP f is
of moderate growth of exponent λ − 1. Then α(f − cP f) is of moderate growth of exponent λ − 1 for all
α ∈ Ug, and (f − cP f)− cP (f − cP f) is of moderate growth of exponent (λ− 1)− 1. But

(f − cP f)− cP (f − cP f) = f − cP f − cP f + cP cP f = f − cP f − cP f + cP f = f − cP f

By induction, f − cP f is of moderate growth of exponent λ− ` for every ` ∈ Z. ///

8.3 SL3(Z), SL4(Z), SL5(Z), . . .

For these larger examples, for simplicity continue the archimedean aspects are emphasized. The general
case is a superposition of copies of the archimedean, as in the previous section. The proofs for SLr(Z) are
in essence mild extensions of those of [6.1], repeated for intelligibility, with appropriate modifications.

Let G = SLr(R), Γ = SLr(Z), and

A = {

 ∗ . . .

∗

 ∈ SLr(R)}
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and let A+ be the connected component of the identity in A, namely, diagonal matrices with positive entries.
Let B be the standard minimal parabolic (Borel subgroup) of upper triangular matrices, so A is its standard
Levi component. Let NB be the unipotent radical of B, namely, the upper-triangular unipotent matrices.
With K = SOn(R), an Iwasawa decomposition of G is G = NB · A+ ·K. The function g → ag defined by
expressing g = nagk with n ∈ NB , ag ∈ A+, k ∈ K is well-defined.

Let log : A+ → a be the inverse of the Lie exponential map α → eα from the Lie algebra a of A+ to A+

itself. For λ in the space of characters a∗ of a, write

aλ = eλ(log a)

The roots of A+ or a on the Lie algebra g of G are the characters λ such that the λ-eigenspace

gλ = {x ∈ g : axa−1 = aλ · x, for all a ∈ A+}

is non-zero, and then the eigenspace is called the λ-rootspace. The non-trivial roots are

χij


m1

m2

. . .

mn

 =
mi

mj
(for i 6= j)

As in [3.3], [3.10], [3,12], for G = SLr the standard simple roots are χi,i+1. A left NB ∩Γ-invariant C-valued
function f on G is of moderate growth of exponent λ on a fixed standard Siegel set

S = St = {x ∈ G : aαx ≥ t for all simple roots α}

when |f(g)| �S aλg for g ∈ S. Such f is of rapid decay on a standard Siegel set S when |f(g)| �S,λ a
λ
g for

all characters λ ∈ a∗.
Recall that, for standard parabolic P with unipotent radical NP , for left (Γ ∩NP )-invariant f on G, the

constant term of f along P is

cP f(x) =

∫
(NP∩Γ)\NP

f(nx) dn

Left-invariance under a larger subgroup of P than just Γ ∩ NP is inherited by the constant term, since
NP is normal in P . In particular, left (Γ ∩ NB)-invariance is inherited. For f left Γ ∩ NB-invariant,
of moderate growth of exponent λ in standard Siegel sets, for maximal proper standard parabolic P , the
constant term cP f is also of moderate growth of exponent λ in standard Siegel sets: normalizing the measure
of (NP ∩ Γ)\NP to be 1,

|cP f(x)| ≤
∫

(NP∩Γ)\NP
|f(nx)| dn �f,S

∫
(NP∩Γ)\NP

aλnx dn =

∫
(NP∩Γ)\NP

aλx dn = aλx

Similarly, for f of rapid decay in standard Siegel sets, the constant term cP f is also of rapid decay.
Standard maximal proper parabolics P have the convenient feature that their unipotent radicals NP are

abelian. Further, the standard maximal proper parabolics are in bijection with simple roots, as follows. For
two roots λ, µ, write λ ≥ µ if λ− µ is a linear combination of simple roots with non-negative coefficients. In
G = SLr, we have χij ≥ χi′j′ if and only if i ≤ i′ and j ≥ j′. Then the maximal proper parabolic associated
to a simple root α is specified by saying that the Lie algebra n of its unipotent radical N = NP is the sum
of root-spaces gβ for β ≥ α. In terms of matrix entries, for α = χi,i+1, the parabolic has diagonal blocks of
sizes i× i and (r− i)× (r− i), and the unipotent radical N consists of an i× (r− i) block in the upper right.

For f ∈ Co(G), write

(ϕ · f)(x) =

∫
G

ϕ(g) f(xg) dg (for ϕ ∈ D(G))
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This converges at least as a C-valued integral, for each x ∈ G.

[8.3.1] Theorem: Let f be a left NB ∩ Γ-invariant C-valued function on G, of moderate growth on every
standard Siegel set. Suppose that there is ϕ ∈ D(G) such that ϕ · f = f . Then for each simple root α and
associated standard maximal parabolic P , f − cP f is of rapid decay in the direction α, in the sense that
f − cP f �S a−`·α for all ` ∈ Z.

[8.3.2] Corollary: For a left NB ∩ Γ-invariant C-valued function f on G, of moderate growth on every
standard Siegel set, with ϕ ∈ D(G) such that ϕ · f = f , if cP f = 0 for every standard maximal compact P ,
then f is of rapid decay in standard Siegel sets. ///

Proof: The proof of the theorem is in stages. First, show that the action of D(G) preserves moderate growth
on standard Siegel sets:

[8.3.3] Claim: For any ϕ ∈ D(G), if f on (NB ∩ Γ)\G is of moderate growth of exponent λ on standard
Siegel sets, then ϕ · f is of moderate growth of exponent λ on standard Siegel sets.

Proof: (of claim) For a compact set C containing the support of ϕ,

ϕ · f(x) =

∫
G

f(xg)ϕ(g) dg =

∫
G

f(g)ϕ(x−1g) dg =

∫
xC

f(g)ϕ(x−1g) dg

The proof of the following is identical to the proof of [8.1.3]:

[8.3.4] Lemma: Let C be a compact set in G, x ∈ G. Then there is a compact subset CA of A+ such that
y ∈ xC implies ay ∈ ax · CA. ///

Take x in a standard Siegel set

S = St = {x ∈ G : aαx ≥ t for all simple roots α}

For y in the support xC of the integral, for simple root α,

aαy = ∈ {(ax · a)α : a ∈ CA} = aαx · {aα : a ∈ CA}

Let
µ = inf

α
inf
a∈CA

aα σ = sup
a∈CA

aλ

Take compact C ′′N ⊂ NB large enough to surject to (NB ∩ Γ)\NB . Then, up to adjustment by NB ∩ Γ,
x ∈ S and y ∈ xC implies that y is in the Siegel set S′ = CN ′′Aµ·tK . Invoking the moderate growth of f on
S′,

|ϕ · f(x)| ≤ sup |ϕ|
∫
xC

|f(y)| dy �f,S sup |ϕ| ·
∫
xC

η(y)λ dy � sup |ϕ| · σ ·
∫
xC

η(x)λ dy

= sup |ϕ| · σ · η(x)λ ·meas (C) �ϕ aλx (for x ∈ S)

This argument applies for every standard Siegel set S, giving the moderate growth of f . ///

[8.3.5] Claim: For f of moderate growth of exponent λ, if ϕ · f = f for some ϕ ∈ D(G), then f is smooth,
and is of uniform moderate growth of exponent λ, in the sense that for any L in the universal enveloping
algebra Ug of the Lie algebra g of G, the derivative Lf is of moderate growth with exponent λ on standard
Siegel sets.

Proof: The image ϕ · f is smooth, by [14.5]. The key mechanism is that the left-G-invariant differential
operators X acting on the right attached to the right regular representation of G, arising from X in the Lie
algebra of G by

Xf(x) =
∂

∂s

∣∣∣
s=0

f(x · esX)

interact intelligibly with the action of ϕ ∈ D(G) on f , as follows.

X(ϕ · f)(x) =
∂

∂s

∣∣∣
s=0

∫
G

f(x · esXg)ϕ(g) dg =
∂

∂s

∣∣∣
s=0

∫
G

f(g)ϕ(e−sXx−1g) dg
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by replacing g by e−sXx−1g. This is∫
G

f(x)
∂

∂s

∣∣∣
s=0

ϕ(e−sXx−1g) dg =

∫
G

f(x)X leftϕ(x−1g) dg

where X left is the (right-G-invariant) differential operator attached to X via the left regular representation.
[59] Thus, since ϕ · f = f ,

Xf(x) = X(ϕ · f)(x) = ((X leftϕ) · f)(x)

which is of moderate growth of exponent λ, by the previous. By induction on the degree of the differential
operator L, Lf is of moderate growth of exponent λ. ///

[8.3.6] Claim: Let P be a maximal (proper) parabolic attached to simple root α. Let f be smooth and
left (N ∩ Γ)-invariant. Suppose that for all Y ∈ g the (right) Lie derivative Y f is of moderate growth of
exponent λ in Siegel sets. Then

|(f − cP f)(x)| � aλ−αx

Proof: Normalizing the measure of (NP ∩ Γ)\NP to be 1,

(f − cP f)(x) =

∫
(NP∩Γ)\NP

f(nx)− f(x) dn =

∫
[0,1]k

f(et1X1+···+tkXk · x)− f(x) dt1 . . . dtk

where X1, . . . , Xk is a basis for the Lie algebra of N so that

{t1X1 + · · ·+ tkXk : 0 ≤ ti ≤ 1, 1 ≤ i ≤ k}

maps bijectively to (NP∩Γ)\NP , using the abelian-ness to see that this is easily possible. By the fundamental
theorem of calculus, for X in the Lie algebra,

f(etX · x)− f(x) =

∫ t

0

∂

∂r

∣∣∣
r=0

f(e(r+s)X · x) ds =

∫ t

0

−X leftf(esX · x) ds

where X left is the natural right-G-invariant operator attached to X. For X in the β rootspace gβ in the Lie
algebra nP of NP , writing Ad(g)(X) for gXg−1,

Ad (a−1
x )(X) = a−βx ·X

and
Ad (θ−1

x a−1
x )(X) = a−βx ·Ad (θ−1

x )(X) = a−βx ·
∑

1≤i≤k

ci(θx)Yi

where the ci are continuous functions (depending upon X) on K and {Yi} is a basis for the Lie algebra of G.
Since the ci are continuous on the compact K, they have a uniform bound c (depending on X). Altogether,∫

0≤t≤1

f(eY+tX · x)− f(eY · x) dt = β(ax)−1 ·
∑

1≤i≤k

ci(θx)

∫
0≤t≤1

∫
0≤s≤t

(−Yif)(eY+sX · x) ds dt

We need

[8.3.7] Lemma: For x in a fixed standard Siegel set S = St,

a−βx �S a−αx (for roots β with gβ ⊂ nP )

[59] As usual, the interchange of differentiation and integration is justified by observing that the integral is compactly

supported, continuous, and takes values in a quasi-complete locally convex topological vector space on which

differentiation is a continuous linear map. See [14.1] and [14.2].
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Proof: Since gβ ⊂ nP , in an expression β =
∑
j cjαj for β in terms of the simple roots α1, . . . , αn−1, all

coefficients are non-negative, and the coefficient of α is 1. Thus, letting α = αjo ,

a−βx = a−αx ·
∏
j 6=jo

a−cjαjx ≤ a−αx ·
∏
j 6=jo

t−cj �t a
−α
x

because of the inequalities αj(ax) ≥ t characterizing the Siegel set S = St. ///

Continuing the proof of the claim, using the exponent λ of moderate growth of all of the functions Yif ,∫
0≤t≤1

f(eY+tX · x)− f(eY · x) dt = O(aλ−αx )

or, ∫
0≤t≤1

f(et1X1+···+tiXi · x)− f(et1X1+···+ti−1Xi−1 · x) dti = O(aλ−αx )

Integrating in dt1, . . . , dti−1 and in dti+1, . . . , dtk over copies of [0, 1] gives the same estimate for the k-fold
integral: ∫

[0,1]k
f(et1X1+···+tiXi · x)− f(et1X1+···+ti−1Xi−1 · x) dt1 . . . dtk = O(aλ−αx )

This is the assertion. ///

Continuing in this context, returning to the proof of the theorem, the previous claim shows that since
every Xf is of exponent λ, f − cP f is of exponent λ− α. The uniform moderate growth assures that every
X(f − cf ) is of exponent λ− α, as well. Applying the last claim again,

(Xf −XcP f)− cP (Xf −XcP f) = Xf −XcP f = X(f − cP f)

is of exponent λ− 2 · α, beginning an induction which proves the theorem. ///

[8.3.8] Corollary: For f = ϕ · f of moderate growth, if cP f = 0 for all maximal proper parabolics P , then
f is of rapid decay in standard Siegel sets S. ///

8.4 Moderate growth of convergent Eisenstein series

Now that the importance of the moderate growth property is clearer, we use an even simpler version of
the approximation methods of [3.11] to prove moderate growth of convergent Eisenstein series, at least for
parameters sufficiently far into the region of convergence. Chapter 11 will use this partial result to prove
that Eisenstein series meromorphically continue as functions of moderate growth, therefore are of moderate
growth everywhere.

We carry out the argument in detail for the maximal proper parabolic cuspidal-data Eisenstein series
EPs,f on SLr(Z)\SLr(R)/SOn(R). After that proof, we indicate how to obtain a corresponding result more
generally.

[8.4.1] Theorem: With maximal proper parabolic P in SLr and cuspidal data f = f1 ⊗ f2 on MP with fj
cuspforms in a strong sense on the factors of MP , the Eisenstein series EPs,f is of moderate growth on Siegel
sets, and uniformly so for s in compacts.

Proof: From chapter 7, strong-sense cuspforms are bounded, so as in [3.11] it suffices to treat potentially
degenerate Eisenstein series EPs =

∑
γ∈Pk\GLr(k) ϕ

P
σ ◦ γ formed from

ϕPσ (nmk) = |detm1|σ1 · | detm2|σ2 (with n ∈ NP , k ∈ K, and m =

(
m1 0
0 m2

)
∈MP )

where P = P r1,r2 with r1+r2 = r, σ = (sig1, σ2). For convergence, it suffices to take σ1 � σ2. Allowing non-
trivial central character in the notation and computations helps avoid some needless concern over artifactual
details.
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We reduce to the case of parabolics of the form P r−1,1. Given P = P q,r ⊂ GLp+q, let ρ : GLp+q → GLN
where N =

(
q+r
r

)
, by acting on ∧r(kq+r). The parabolic P q,r maps to the stabilizer P ′ in GLN of the line

generated by vo = eq+1 ∧ . . . ∧ eq+r in ∧r(kq+r). Certainly

(eq+1 ∧ . . . ∧ eq+r) · ∧r
(

1q 0
0 m2

)
= (eq+1 ∧ . . . ∧ eq+r) · detm2

for m2 ∈ GLr, and det(∧rg) = (det g)r for g ∈ GLq+r. Thus, for diagonal m1 ∈ GLq and m2 ∈ GLr,

ϕP
q,r

σ1,σ2

(
m1 0
0 m2

)
= |detm1|σ1 · | detm2|σ2 =

∣∣∣det

(
m1 0
0 m2

) ∣∣∣σ1

· | detm2|σ2−σ1

=
∣∣∣ det(∧r

(
m1 0
0 m2

)
)
∣∣∣σ1·r/(q+rr )

· | ∧r m2|σ2−σ1

which in turn can be written in the corresponding form ϕP
′

τ1,τ2 on GLN for suitable τ1, τ2, whose precise form
is inessential. Since ρ(P q,r) ⊂ P ′, there is the immediate domination for g ∈ GLq+r:∑

γ∈P q,rk \GLq+r(k)

ϕP
q,r

σ1,σ2
(γ · g) ≤

∑
γ′∈P ′k\GLN (k)

ϕP
′

τ1,τ2(γ′ · ρ(g))

Thus, it suffices to prove

[8.4.2] Claim: Let | · | be the usual norm on Rr.

Φσ(g) =
∑

06=v∈Zr

1

|v · g|2σ
(with 1� σ ∈ R)

is bounded on Siegel sets.

Proof: Indeed, up to powers of absolute value of the determinant, the indicated sum dominates the sum for
a degenerate Eisenstein series attached to the P r−1,1 parabolic in GLr. We can take Siegel sets to be of the
form

St,CN = {nmk : n ∈ CN ⊂ NB , m =

m1

. . .

mr

 ∈MB , k ∈ K, |mj/mj+1| ≥ t}

where CN is compact and t > 0. With operator norm || · ||, letting g = nmk with n ∈ CN , we have

|v · g| = |v · nmk| = |v · nm| = |v ·m ·m−1nm|

From

|v ·m| = |v ·m ·m−1nm ·m−1n−1m| ≤ |v ·m ·m−1nm| · ||m−1n−1m|| = |v ·m ·m−1nm| · ||n−1||

for σ > 0 we have

1

|v · nmk|2σ
≤ 1

|v ·m|2σ
· ||n−1||2σ ≤ 1

|v ·m|2σ
· sup
n∈CN

||n−1||2σ �CN

1

|v ·m|2σ

since the operator norm is continuous and CN is compact. Thus,

Φσ(nmk) �CN

∑
06=v∈Zr

1

|v ·m|2σ
=

∑
06=v∈Zr

1(
(v1m1)2 + . . .+ (vrmr)2

)σ
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Without loss of generality, take mr = 1. With αj = |mj/mj+1| ≥ t > 0, this is∑
06=v∈Zr

1(
(v1α1α2 · · ·αr−1m1)2 + . . .+ (vr−2αr−2αr−1)2 + (vr−1αr−1)2 + v2

r

)σ ≤ 1

min (t, 1)2σ

∑
0 6=v∈Zr

1

|v|2σ

This is finite for 2σ > r, and proves that Φσ is bounded on Siegel sets. ///

Powers of determinants are certainly of uniformly moderate growth on Siegel sets, so the theorem is proven.
///

The same type of argument gives a more general result, as follows.
From chapter 7, strong-sense cuspforms are bounded, so as in [3.11] it suffices to treat potentially degenerate

Eisenstein series EPs =
∑
γ∈Pk\GLr(k) ϕ

P
σ ◦ γ formed from

ϕPσ (nmk) = |detm1|σ1 · | detm2|σ2 · . . . (with n ∈ NP , k ∈ K, and m =

m1

m2

. . .

 ∈MP )

where P = P r1,r2,... with r1 + r2 + . . . = r, σ = (sig1, σ2, . . .), and mj ∈ GLrj . For easy convergence, it
suffices to take σ1 � σ2 � . . ..

In Iwasawa coordinates for the minimal parabolic B, such ϕPσ can readily be expressed as a product of
analogous functions attached to maximal proper parabolics. For example, given σ1 � σ2 � σ3,

|detm1|σ1 · | detm2|σ2 · | detm3|σ3 =
(
|detm1 · detm2|a · | detm3|b

)
·
(
|detm1|a

′
· | detm2 · detm3|b

′
)

is the requirement
a+ b = σ1 a+ b′ = σ2 a′ + b′ = σ3

This is readily satisfied by taking b′ large negative, so that the a′ determined from the last equation satisfies
a′ � b′, then a determined from the second equation and b determined from the first satisfy a � b. Thus,
we write

ϕPσ =
∏
j

ϕP
j,r−j

τj1 ,τ
j
2

where j indexes maximal proper parabolics and τ j1 � τ j2 for all j. There is an immediate domination∑
γ∈Pk\GLr(k)

ϕPσ ◦ γ ≤
∏
j

∑
γ∈P j,r−jk \GLr(k)

ϕP
j,r−j

τj1 ,τ
j
2

◦ γ

Certainly moderate growth is preserved by products. Thus, it suffices to prove moderate growth for
degenerate Eisenstein series attached to maximal proper parabolics.

A similar, complementary device reduces to the case of groundfield k = Q, thus essentially reducing to
the case explicitly treated.

8.5 Integral operators on cuspidal-data Eisenstein series

Having seen the significance of the property ϕ · f = f for some test function ϕ, the analogous property
[7.2.20] for cuspforms f1, f2 on GLr1 × GLr2 ⊂ GLr1+r2 can be invoked to prove a similar property for
Eisenstein series EPs,f with f = f1 ⊗ f2 and P = P r1,r2 .

As in the computation [3.11.9] of the general form of constant terms, we need to assume a multiplicity-one
property of f1 and f2, namely, that each is the unique cuspform on respective SLrj (Z)\SLrj (R)/SO(rj ,R)
with given Laplacian eigenvalue, up to constant multiples.

Let M1 = SLr1 × SLr2 ⊂MP , and

ϕs,f (nm′zyk) = ys · f(m′) (with n ∈ NP , m′ ∈M1, k ∈ K)
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and with

zy =

(
y

1
r1r2 · 1r1 0

0 1r2

)
Let Es,f =

∑
γ∈(Γ∩P )\Γ ϕs,f ◦ γ, for Re(s)� 1 for convergence.

[8.5.1] Claim: For every η ∈ C∞c (K\G/K), there is an entire C-valued function s → µs,f (η) such that
η · ϕs,f = µ(η) · ϕs,f . At least in Re(s) > 1, similarly, η · Es,f = µs,f · Es,f . Given s, f , there is η such that
µs,f (η) is not identically 0.

Proof: In the region of convergence, Es,f is a sum of left translates of ϕs,f , so it suffices to prove the
eigenfunction property of ϕs,f . The eigenfunction property for meromorphically-continued Es,f will follow
by the identity principle from complex analysis.

Certainly the right action of such η preserves left N -invariance. Since η is K-bi-invariant, it preserves right
K-invariant functions, as well. Computing directly, using an Iwasawa decompositionG = P ·K = NP ·MP ·K,
noting that P ∩K is compact, for mo ∈MP ,

(η · ϕs,f )(mo) =

∫
G

η(h)ϕs,f (moh) dh =

∫
NP

∫
MP

∫
Kη(nmk)ϕs,f (monmk) δ(m)−1 dn dm dk

with modular function δ on P . Continuing, this is∫
NP

∫
MP

∫
K

η(nmk)ϕs,f (monm
−1
o ·mom) δ(m)−1 dn dm dk

=

∫
MP

(
δ(m)−1

∫
NP

η(nm) dn
)
· ϕs,f (mo ·m) dm

As a function of m ∈MP , the inner integral η′(m) is left and right K∩MP -invariant, smooth, and compactly
supported. Action of η′ ∈ C∞c ((K ∩MP )\MP /(K ∩MP )) on functions on MP commutes with Casimir
operators on the factors of MP , and preserves central equivariance u(mzt) = |t|s · u(m). The right action
on functions m′ay → ys · f(m′) with f = f1 ⊗ f1 preserves cuspidality of f . Since f = f1 ⊗ f1 is assumed to
be the unique cuspform with its eigenvalue, the action of η′ sends ys · f(m′) to a multiple of itself, by scalar
µs,f (η). Since s→ ϕs,f is a holomorphic Co(G)-valued function (for example), and since the integral giving
the action of η or η′ exists as a Gelfand-Pettis integral, the function s→ µs,f (η) is holomorphic in s.

For a sequence {ηj} of functions forming an approximate identity, µs,f (η) · f = ηj · f → f . Thus, for f
not the zero vector, µs,f (ηj) 6= 0 for sufficiently large j. ///

8.A Appendix: joint continuity of bilinear maps

This is a corollary of Banach-Steinhaus [13.12.3], useful in removing ambiguities in considering averaged
actions, for example, the action C∞c (R)× V → V of test functions.

[8.A.1] Corollary: Let β : X × Y → Z be a bilinear map on Fréchet spaces X,Y, Z, continuous in each
variable separately. Then β is jointly continuous.

Proof: Fix a neighborhood N of 0 in Z Let xn → xo in X and yn → yo in Y . For each x ∈ X, by continuity
in Y , β(x, yn) → β(x, yo). Thus, for each x ∈ X, the set of values β(x, yn) is bounded in Z. The linear
functionals x → β(x, yn) are equicontinuous, by Banach-Steinhaus, so there is a neighborhood U of 0 in X
so that bn(U) ⊂ N for all n. In the identity

β(xn, yn)− β(xo, yo) = β(xn − xo, yn) + β(xo, yn − yo)

we have xn − xo ∈ U for large n, and β(xn − xo, yo) ∈ N . Also, by continuity in Y , β(xo, yn − yo) ∈ N
for large n. Thus, β(xn, yn)− β(xo, yo) ∈ N +N , proving sequential continuity. Since X × Y is metrizable,
sequential continuity implies continuity. ///

[8.A.2] Corollary: The same conclusion holds when X is an LF-space.

Proof: Continuous linear functionals from an LF-space are exactly given by compatible families of continuous
maps from the limitands. ///
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9. Unbounded operators on Hilbert spaces

1. Unbounded symmetric operators on Hilbert spaces
2. Friedrichs self-adjoint extensions of semi-bounded operators
3. Example: incommensurable self-adjoint extensions
4. Unbounded self-adjoint operators with compact resolvents
5. Example: ∆ on L2(T) and Sobolev spaces
6. Example: exotic eigenfunctions on T
7. Example: usual Sobolev spaces on R
8. Example: discrete spectrum of −∆ + x2 on R
9. Essential self-adjointness
10. Example: essentially self-adjoint operator
Appendix A: compact operators
Appendix B: closed graph theorem
Appendix C: irreducibles of compact groups
Appendix D: spectral theorem, Schur’s lemma, multiplicities
Appendix E: Tietze-Urysohn-Brouwer extension theorem

This is preparation for eigenfunction decompositions of Hilbert spaces by operators closely related to
invariant Laplacians.

Amazingly, resolvents Rλ = (T − λ)−1 can exist, as everywhere-defined, continuous linear maps on a
Hilbert space, even for T unbounded and only densely-defined. Further hypotheses on T are needed, but these
hypotheses are met in useful situations occurring in practice. In particular, we need that T is symmetric, in
the sense that 〈Tv,w〉 = 〈v, Tw〉 for v, w in the domain DT of T , and semi-bounded in the sense that there
is a constant C such that either 〈Tv, v〉 ≥ C · 〈v, v〉 for all v in DT or 〈Tv, v〉 ≤ C〈v, v〉 for all v in DT . In
that circumstance, T has a self-adjoint Friedrichs extension, with several good features, described explicitly
below.

In practice, anticipating that a given unbounded operator is self-adjoint when extended suitably, a simple
version of the operator is defined on an easily described, small, dense domain, specifying a symmetric
operator. Then a self-adjoint extension is shown to exist, as in Friedrichs’ theorem below.

For example, [9.5] gives a simple application, recovering the standard fact that the Hilbert space L2(T)
on the circle T = R/2πZ has an orthogonal Hilbert-space basis of exponentials einx with n ∈ Z, using
ideas still applicable to situations lacking analogues of Dirichlet or Fejér kernels. These exponentials are
eigenfunctions for the Laplacian ∆ = d2/dx2, so it would suffice to show that L2(T) has an orthogonal basis
of eigenfunctions for ∆. Two technical issues must be overcome: the most awkward is that ∆ does not
map L2(T) to itself. Second, there is no guarantee that infinite-dimensional Hilbert spaces have Hilbert-
space bases of eigenfunctions for a given linear operator. Indeed, reasonable operators on infinite-dimensional
spaces may fail to have any eigenvectors. For example, on L2[a, b], the multiplication operator Tf(x) = x·f(x)
is continuous, possesses the symmetry property 〈Tf, g〉 = 〈f, Tg〉, but has no eigenvectors. That is, the
spectrum of operators on infinite-dimensional Hilbert spaces typically includes more than eigenvalues.

Natural operators like d2/dx2 on L2[a, b] are not bounded, that is, not continuous operators. Not-
necessarily-bounded operators are called unbounded, despite the inconsistency of language.

Self-adjoint operators on Hilbert spaces generally do not give orthogonal Hilbert-space bases of
eigenvectors, but an important special class does have a spectral theory imitating finite-dimensional
spectral theory: the compact self-adjoint operators, which always give an orthogonal Hilbert-space basis
of eigenvectors, as in [9.A].

Genuinely unbounded operators such as ∆ are never continuous, much less compact, but in happy
circumstances they may have compact resolvent (1 − ∆)−1. Often, this compactness can be proven by a
Sobolev imbedding lemma, a Rellich compactness lemma, and Friedrichs’ construction, recovering a good
spectral theory, as in examples below.
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9.1 Unbounded symmetric operators on Hilbert spaces

The natural differential operator ∆ = d2

dx2 on R has no sensible definition as mapping all of the Hilbert
space L2(R) to itself, whatever else can be said. The possibility of thinking of ∆ as differentiating L2

functions distributionally is useful, but sacrifices information if it abandons the L2 behavior too completely.
There is substantial motivation to accommodate discontinuous (unbounded) linear maps on Hilbert spaces,
under some reasonable technical hypotheses, as apply to operators like ∆. At the most cautious, ∆ certainly
maps C∞c (R) to itself, and, by integration by parts,

〈∆f, g〉 = 〈f,∆g〉 (for both f, g ∈ C∞c (R))

This is symmetry of ∆.
A not-necessarily continuous, that is, not-necessarily bounded, linear operator T , defined on a dense

subspace DT of a Hilbert space V , is called an unbounded operator on V , even though it is likely not
defined or definable on all of V . We consider mostly symmetric unbounded operators T , meaning that
〈Tv,w〉 = 〈v, Tw〉 for v, w in the domain DT of T . For example, the Laplacian is symmetric on C∞c (R), by
integration by parts.

For unbounded operators on V , description of the domain is critical: an unbounded operator T on V
is a subspace D of V and a linear map T : D −→ V . Nevertheless, explicit naming of the domain of an
unbounded operator is often suppressed, instead writing T1 ⊂ T2 when T2 is an extension of T1, in the
sense that the domain of T2 contains that of T1, and the restriction of T2 to the domain of T1 agrees with
T1. Unlike self-adjoint operators on finite-dimensional spaces, and unlike self-adjoint bounded operators on
Hilbert spaces, symmetric unbounded operators, even when densely defined, usually need to be extended in
order to behave more like self-adjoint operators in finite-dimensional and bounded-operator situations.

An operator T ′, D′ is a sub-adjoint to a symmetric operator T,D when

〈Tv,w〉 = 〈v, T ′w〉 (for v ∈ D, w ∈ D′)

For dense domain D, for given D′ there is at most one T ′ meeting the sub-adjointness condition.
In various useful circumstances there is a unique maximal element, in terms of domain, among all sub-

adjoints to T , the adjoint T ∗ of T . Uniqueness of a maximal sub-adjoint is proven below for T symmetric.
Perhaps surprisingly, we see below that the adjoint T ∗ of a symmetric operator T is not symmetric unless
already T is self-adjoint, that is, unless T = T ∗. In particular, existence of adjoints for symmetric, densely-
defined operators T does not immediately imply existence of (T ∗)∗. Paraphrasing the notion of symmetry:
a densely-defined operator T is symmetric when T ⊂ T ∗, and self-adjoint when T = T ∗. These comparisons
refer to the domains of these not-everywhere-defined operators. In the following claim and its proof, the
domain of a map S on V is incorporated in a reference to its graph

graph S = {v ⊕ Sv : v ∈ domain S} ⊂ V ⊕ V

The direct sum V ⊕ V is a Hilbert space with natural inner product 〈v ⊕ v′, w ⊕ w′〉 = 〈v, v′〉 + 〈w,w′〉.
Define an isometry U : V ⊕ V → V ⊕ V by v ⊕ w → −w ⊕ v.

[9.1.1] Claim: Given T with dense domain D, there is a unique maximal T ∗, D∗ among all sub-adjoints
to T,D. The adjoint T ∗ is closed, in the sense that its graph is closed in V ⊕ V . In fact, the adjoint is
characterized by its graph, the orthogonal complement in V ⊕ V to the image of the graph of T under U ,
namely,

graph T ∗ = orthogonal complement of U(graph T )

Proof: The adjointness condition 〈Tv,w〉 = 〈v, T ∗w〉 for given w ∈ V is an orthogonality condition

〈w ⊕ T ∗w, U(v ⊕ Tv)〉 = 0 (for all v in the domain of T )

The graph of any sub-adjoint is a subset of X = U(graph T )⊥. Since T is densely-defined, for given w ∈ V
there is at most one possible value w′ such that w ⊕ w′ ∈ X, so this orthogonality condition determines
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a well-defined function T ∗ on a subset of V , by T ∗w = w′ if there exists w′ ∈ V such that w ⊕ w′ ∈ X.
Linearity of T ∗ is immediate. It is maximal among sub-adjoints to T because the graph of any sub-adjoint
is a subset of the graph of T ∗. Orthogonal complements are closed, so T ∗ has a closed graph. ///

[9.1.2] Corollary: For T1 ⊂ T2 with dense domains, T ∗2 ⊂ T ∗1 . ///

[9.1.3] Corollary: T ⊂ T ∗∗ for densely-defined, symmetric T .

Proof: Since T is symmetric, and by uniqueness of the adjoint, T ∗ ⊃ T . In particular, T ∗ is densely defined.
Hence, from above, T ∗ has an adjoint T ∗∗. The description of the adjoint in terms of orthogonality in V ⊕V
shows that T ∗∗ ⊃ T . ///

[9.1.4] Corollary: A densely-defined self-adjoint operator has a closed graph.

Proof: Self-adjointness of densely-defined T includes equality of domains T = T ∗. Again, since the graph of
T ∗ is an orthogonal complement, it is closed. ///

Closed-ness of the graph of a self-adjoint operator is essential in proving existence of resolvents, below.
[60]

[9.1.5] Corollary: The adjoint T ∗ of a symmetric densely-defined operator T is also symmetric if and only
if T = T ∗. ///

The use of the term symmetric in this context is potentially misleading. The notation T = T ∗ allows
an inattentive reader to forget non-trivial assumptions on the domains of the operators. The equality of
domains of T and T ∗ is critical for legitimate computations.

[9.1.6] Proposition: Eigenvalues for symmetric operators T,D are real.

Proof: Suppose 0 6= v ∈ D and Tv = λv. Then

λ〈v, v〉 = 〈λv, v〉 = 〈Tv, v〉 = 〈v, T ∗v〉 (because v ∈ D ⊂ D∗)

Because T ∗ agrees with T on D, 〈v, T ∗v〉 = 〈v, λv〉 = λ〈v, v〉. Thus, λ〈v, v〉 = λ〈v, v〉. ///

The resolvent of T is Rλ = (T−λ)−1 for λ ∈ C, when this inverse exists as a continuous, everywhere-defined
linear operator on V .

[9.1.7] Theorem: Let T be self-adjoint with dense domain D. For λ ∈ C, λ 6∈ R, the image (T − λ)D is the
whole Hilbert space V . The resolvent Rλ exists. For T positive, for λ 6∈ [0,+∞), the image (T − λ)D is the
whole space V , and Rλ exists.

Proof: For λ = x+ iy off the real line and v in the domain of T ,

|(T − λ)v|2 = |(T − x)v|2 + 〈(T − x)v, iyv〉+ 〈iyv, (T − x)v〉+ y2|v|2

= |(T − x)v|2 − iy〈(T − x)v, v〉+ iy〈v, (T − x)v〉+ y2|v|2

By the symmetry of T , and the fact that the domain of T ∗ contains that of T , 〈v, Tv〉 = 〈T ∗v, v〉 = 〈Tv, v〉.
Thus,

|(T − λ)v|2 = |(T − x)v|2 + y2|v|2 ≥ y2|v|2

For y 6= 0 and v 6= 0, (T − λ)v 6= 0, so T − λ is injective. We must show that (T − λ)D is the whole Hilbert
space V . If

0 = 〈(T − λ)v, w〉 (for all v ∈ D)

then the adjoint of T − λ can be defined on w simply as (T − λ)∗w = 0, since

〈(T − λ)v, w〉 = 0 = 〈v, 0〉 (for all v ∈ D)

[60] In general, the graph-closure of an operator need not be the graph of an operator! An operator whose graph-

closure is the graph of an operator is close-able. A broader discussion of unbounded operators would consider such

issues at greater length, but such a discussion is not necessary here.
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Thus, T ∗ = T is defined on w, and Tw = λw. For λ not real, this implies w = 0. Thus, (T − λ)D is dense
in V .

Since T is self-adjoint, it is closed, so T − λ is closed. The equality

|(T − λ)v|2 = |(T − x)v|2 + y2|v|2

gives
|(T − λ)v|2 �y |v|2

Thus, for fixed y 6= 0, the map
F : v ⊕ (T − λ)v −→ (T − λ)v

respects the metrics, in the sense that

|(T − λ)v|2 ≤ |(T − λ)v|2 + |v|2 �y |(T − λ)v|2 (for fixed y 6= 0)

The graph of T − λ is closed, so is a complete metric subspace of V ⊕ V . Since F respects the metrics, it
preserves completeness. Thus, the metric space (T −λ)D is complete, so is a closed subspace of V . Since the
closed subspace (T − λ)D is dense, it is V . Thus, for λ 6∈ R, Rλ is everywhere-defined. Its norm is bounded
by 1/|Imλ|, so it is a continuous linear operator on V .

Similarly, for T positive, for Re(λ) < 0,

|(T − λ)v|2 = |Tv|2 − λ〈Tv, v〉 − λ〈v, Tv〉+ |λ|2 · |v|2 = |Tv|2 + 2|Reλ|〈Tv, v〉+ |λ|2 · |v|2 ≥ |λ|2 · |v|2

Then the same argument proves the existence of an everywhere-defined inverse Rλ = (T − λ)−1, with
||Rλ|| < 1/|λ| for Reλ < 0. ///

[9.1.8] Theorem: (Hilbert) For T self-adjoint, for points λ, µ off the real line, or, for T positive self-adjoint
and λ, µ off [0,+∞),

Rλ −Rµ = (λ− µ)RλRµ

For the operator-norm topology, λ→ Rλ is holomorphic at such points.

Proof: From the previous theorem, for such T, λ, the image (T −λ)D is the whole Hilbert space V . Applying
Rλ to

1V − (T − λ)Rµ =
(
(T − µ)− (T − λ)

)
Rµ = (λ− µ)Rµ

gives
Rλ(1V − (T − λ)Rµ) = Rλ

(
(T − µ)− (T − λ)

)
Rµ = Rλ(λ− µ)Rµ

Then
Rλ −Rµ
λ− µ

= RλRµ

For holomorphy, with λ→ µ,

Rλ −Rµ
λ− µ

−R2
µ = RλRµ −R2

µ = (Rλ −Rµ)Rµ = (λ− µ)RλRµRµ

Taking operator norm, using ||Rλ|| ≤ 1/|Imλ| from the previous computation,∣∣∣∣∣∣Rλ −Rµ
λ− µ

−R2
µ

∣∣∣∣∣∣ ≤ |λ− µ|
|Imλ| · |Imµ|2

Thus, for µ 6∈ R, as λ→ µ, this operator norm goes to 0, demonstrating the holomorphy.
For positive T , the estimate ||Rλ|| ≤ 1/|λ| for Reλ ≤ 0 yields holomorphy on the negative real axis by the

same argument. ///
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9.2 Friedrichs’ self-adjoint extensions of semi-bounded operators

Semi-bounded operators are more tractable than general unbounded symmetric operators. A densely-
defined symmetric operator T,D is positive (or non-negative), denoted T ≥ 0, when 〈Tv, v〉 ≥ 0 for all v ∈ D.
All the eigenvalues of a positive operator are non-negative real. Similarly, T is negative when 〈Tv, v〉 ≤ 0 for
all v in the (dense) domain of T . Generally, if there is a constant c ∈ R such that 〈Tv, v〉 ≥ c · 〈v, v〉 (written
T ≥ c), or 〈Tv, v〉 ≤ c · 〈v, v〉 (written T ≤ c), say T is semi-bounded. The following argument for positive
operators can easily be adapted to the general semi-bounded situation.

For positive, symmetric T on V with dense domain D, define a hermitian form 〈, 〉1 and corresponding

norm | · |1 by [61]

〈v, w〉1 = 〈v, w〉+ 〈Tv,w〉 = 〈v, (1 + T )w〉 = 〈(1 + T )v, w〉 (for v, w ∈ D)

The symmetry and positivity of T make 〈, 〉1 positive-definite hermitian on D, and 〈v, w〉1 has sense whenever
at least one of v, w is in D. Let V 1 be the Hilbert-space completion of D with respect to the metric d1

induced by the norm | · |1 on D. The completion V 1 continuously maps to V : for vi a d1-Cauchy sequence
in D, vi is Cauchy in V in the original topology, since |vi − vj | ≤ |vi − vj |1. For two sequences vi, wj with
the same d1-limit v, the d1-limit of vi − wi is 0, so |vi − wi| ≤ |vi − wi|1 → 0.

[9.2.1] Theorem: (Friedrichs) A positive, densely-defined, symmetric operator T with domain D dense in

Hilbert space V has a positive self-adjoint extension T̃ with domain D̃ ⊂ V 1, characterized by

〈(1 + T )v, (1 + T̃ )−1w〉 = 〈v, w〉 (for v ∈ D and w ∈ V )

The bound 〈T̃ v, v〉 ≥ 0 for v in the domain D̃ of T̃ is preserved. The resolvent (1 + T̃ )−1 : V → V 1 is
continuous with the finer topology on V 1.

Proof: First, let j be the continuous linear map j : V 1 → V obtained by extending by continuity the identity
map D → D, with the source being given the | · |1 topology and the target being given the | · | topology. We
claim that j is an injection. By construction, 〈v, w〉1 = 〈jv, Tw〉 for v ∈ V 1 and w ∈ D. For 0 6= v ∈ V 1,
since D is dense in V 1, there exists w ∈ D such that 〈v, w〉1 6= 0. For that v,

0 6= 〈v, w〉V 1 = 〈jv, Tw〉

Thus, jv 6= 0 for 0 6= v ∈ V 1, and j is indeed injective. We may identify V 1 with its image in V , noting that
V 1 has a finer topology than that induced from V .

For h ∈ V and v ∈ V 1, the functional λh : v → 〈v, h〉 has a bound

|λhv| ≤ |v| · |h| ≤ |v|1 · |h|

so the norm of the functional λh on V 1 is at most |h|. By Riesz-Fréchet, there is unique Bh in the Hilbert
space V 1 with |Bh|1 ≤ |h|, such that λh(v) = 〈v,Bh〉1 for v ∈ V 1, and then |Bh| ≤ |Bh|1 ≤ |h|. The map
B : V → V 1 is verifiably linear. There is an obvious symmetry of B:

〈Bv,w〉 = λw(Bv) = 〈Bv,Bw〉1 = 〈Bw,Bv〉1 = λv(Bw) = 〈Bw, v〉 = 〈v,Bw〉 (for v, w ∈ V )

Positivity of B is similar:

〈v,Bv〉 = λv(Bv) = 〈Bv,Bv〉1 ≥ 〈Bv,Bv〉 ≥ 0

B is injective: for Bw = 0, for all v ∈ V 1

0 = 〈v, 0〉1 = 〈v,Bw〉1 = λw(v) = 〈v, w〉

[61] This is a slightly abstracted version of a Sobolev norm, as in [9.5] and [9.7].
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Since V 1 is dense in V , this gives w = 0. The image of B is dense in V 1: if w ∈ V 1 is such that
〈Bv,w〉1 = λv(w) = 0 for all v ∈ V , taking v = w gives

0 = λw(w) = 〈w,Bw〉1 = 〈Bw,Bw〉

and by injectivity w = 0. Thus, B : V → V 1 ⊂ V is bounded, symmetric, positive, injective, with dense
image. In particular, B is self-adjoint.

Thus, B has a possibly unbounded positive, symmetric inverse A. Since B injects V to a dense subset
V 1, necessarily A surjects from its domain (inside V 1) to V . We claim that A is self-adjoint. Let
S : V ⊕ V → V ⊕ V by S(v ⊕ w) = w ⊕ v. Then graph A = S(graph B). In computing orthogonal
complements X⊥, clearly

(S X)⊥ = S
(
X⊥
)

From the obvious U ◦ S = −S ◦ U , compute

graph A∗ = (U graph A)⊥ = (U ◦ S graph B)⊥ = (−S ◦ U graph B)⊥

= −S
(
(U graph B)⊥

)
= − graphA = graph A

since the domain of B∗ is the domain of B. Thus, A is self-adjoint.
We claim that for v in the domain of A, 〈Av, v〉 ≥ 〈v, v〉. Indeed, letting v = Bw,

〈v,Av〉 = 〈Bw,w〉 = λwBw = 〈Bw,Bw〉1 ≥ 〈Bw,Bw〉 = 〈v, v〉

Similarly, with v′ = Bw′, and v ∈ V 1,

〈v,Av′〉 = 〈v, w′〉 = λw′v = 〈v,Bw′〉1 = 〈v, v′〉1 (v ∈ V 1, v′ in the domain of A)

Last, prove that A is an extension of S = 1 + T . On one hand, as above,

〈v, Sw〉 = λSwv = 〈v,BSw〉1 (for v, w ∈ D)

On the other hand, by definition of 〈, 〉1,

〈v, Sw〉 = 〈v, w〉1 (for v, w ∈ D)

Thus,
〈v, w −BSw〉1 = 0 (for all v, w ∈ D)

Since D is d1-dense in V 1, BSw = w for w ∈ D. Thus, w ∈ D is in the range of B, so is in the domain of
A, and

Aw = A(BSw) = Sw

Thus, the domain of A contains that of S and extends S, so the domain of A is dense in V 1 in the d1-topology.
In fact, B = (1 + T̃ )−1 maps V → V 1 continuously even with the finer 〈, 〉1-topology on V 1: the relation
〈v,Bw〉1 = 〈v, w〉 for v ∈ V 1 with v = Bw gives

|Bw|21 = 〈Bw,Bw〉1 = 〈Bw,w〉 ≤ |Bw| · |w| ≤ |Bw|1 · |w|

The resulting |Bw|1 ≤ |w| is continuity in the finer topology. ///

Continuity of (1 + T̃ )−1 : V → V 1 with the finer topology on V 1 is a useful property of Friedrichs’ self-
adjoint extensions not shared by the other self-adjoint extensions of a given symmetric operator. It has an
important corollary:

[9.2.2] Corollary: When the inclusion V 1 → V is compact, the resolvent (1 + T̃ )−1 : V → V is compact.

Proof: In the notation of the proof of the theorem, B : V → V 1 → V is the composition of this continuous
map with the injection V 1 → V where V 1 has the finer topology. The composition of a continuous linear
map with a compact operator is compact, so compactness of V 1 → V with the finer topology on V 1 suffices
to prove compactness of the resolvent. ///
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9.3 Example: incommensurable self-adjoint extensions

The differential operator d2

dx2 on L2[a, b] or L2(R) is a prototypical natural unbounded operator. It is

undeniably not continuous in the L2 topology: on L2[0, 1] the norm of f(x) = xn is 1/
√

2n+ 1, and the
second derivative of xn is n(n−1)xn−2, so the ratio of L2 norms |(xn)′′|/|xn| goes to +∞ as n→ +∞. Since
the operator is unbounded on polynomials, it certainly has no bounded extension to L2[0, 1].

Just below, we exhibit a continuum of mutually incomparable self-adjoint extensions of the restriction T

of − d2

dx2 to smooth functions on [a, b] vanishing at the endpoints. As this will illustrate, it is unreasonable
to expect naturally-occurring positive/negative, symmetric operators to have unique self-adjoint extensions.
In brief, for unbounded operators arising from differential operators, varying boundary conditions gives
mutually incomparable self-adjoint extensions. In that situation, the graph-closure T = T ∗∗ is not self-
adjoint. Equivalently, T ∗ is not symmetric, proven as follows.

In general, the graph-closure of an unbounded operator need not be the graph of an operator, but this
potential problem does not exist for a semi-bounded operator T , since the Friedrichs self-adjoint extension
T̃ exists, and the graph of T̃ contains the graph-closure of T .

Suppose positive, symmetric, densely-defined T has positive, symmetric extensions A,B admitting no
common symmetric extension. Let A = A∗∗, B = B∗∗ be the graph-closures of A,B. Friedrichs’ construction
T → T̃ applies to T,A,B. The inclusion-reversing property of S → S∗ gives a diagram of extensions, where
ascending lines indicate extensions:

T ∗

rrrrrrrrrrr

LLLLLLLLLLL

A∗ B∗

Ã = Ã∗ T̃ = T̃ ∗
??

B̃ = B̃∗

A B

A

LLLLLLLLLLLL T

ssssssssssss

KKKKKKKKKKKK
B

rrrrrrrrrrrr

T

Since T ∗ is a common extension of A,B, but A,B have no common symmetric extension, T ∗ cannot be
symmetric. Thus, any such situation gives an example of non-symmetric adjoints of symmetric operators.
Equivalently, T cannot be self-adjoint, because its adjoint is T ∗, which cannot be symmetric.

Further, although the graph closures A and B are (not necessarily proper) extensions of T , neither of their
Friedrichs extensions can be directly comparable to that of T without being equal to it, since comparable
self-adjoint densely-defined operators are necessarily equal: a densely-defined self-adjoint operator cannot
be a proper extension of another such: for S ⊂ T with S = S∗ and T = T ∗, the inclusion-reversing property
gives T = T ∗ ⊂ S∗ = S. By hypothesis, A,B have no common symmetric extension, so both equalities
cannot hold.

Let V = L2[a, b], T = −d2/dx2, with domain

DT = {f ∈ C∞c [a, b] : f vanishes at a, b}

The sign on the second derivative makes T positive: using the boundary conditions, integrating by parts,

〈Tv, v〉 = −〈v′′, v〉 = −v′(b)v(b) + v′(a)v(a) + 〈v′, v′〉 = 〈v′, v′〉 ≥ 0 (for v ∈ DT )
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Integration by parts twice proves symmetry:

〈Tv,w〉 = −〈v′′, w〉 = −v′(b)w(b) + v′(a)w(a) + 〈v′, w′〉 = 〈v′, w′〉

= v(b)w′(b)− v(a)w′(a)− 〈v, w′′〉 = 〈v, Tw〉 (for v, w ∈ DT )

For each pair α, β of complex numbers, an extension Tα,β = −d2/dx2 of T is defined by taking a larger
domain, by relaxing the boundary conditions:

Dα,β = {f ∈ C∞c [a, b] : f(a) = α · f(b), f ′(a) = β · f ′(b)}

Integrating by parts,

〈Tα,βv, w〉 = v′(b)w(b) · (1− βα) + v(b)w′(b) · (1− αβ) + 〈v, Tα,βw〉 (for v, w ∈ Dα,β)

The values v′(b), v(b), w(b), and w′(b) can be arbitrary, so the extension Tα,β is symmetric if and only if
αβ = 1, and in that case T is positive, since again

〈Tα,βv, v〉 = −〈v′′, v〉 = 〈v′, v′〉 ≥ 0 (for αβ = 1 and v ∈ Dα,β)

For two values α, α′, taking β = 1/α and β′ = 1/α′, for the symmetric extensions Tα,β and Tα′,β′ to have a

common symmetric extension T̃ requires that the domain of T̃ include both Dα,β ∪Dα′,β′ . The integration
by parts computation gives

〈T̃ v, w〉 = v′(b)w(b) · (1− βα) + v(b)w′(b) · (1− αβ) + 〈v, Tα,βw〉

= v′(b)w(b)(1− βα′) + v(b)w′(b) · (1− αβ′) + 〈v, T̃w〉 (for v ∈ Dα,β , w ∈ Dα′,β′)

Thus, the required symmetry 〈T̃ v, w〉 = 〈v, T̃w〉 holds only for α = α′ and β = β′. That is, the original
operator T has a continuum of distinct symmetric extensions, no two of which admit a common symmetric
extension. In particular, no two of these symmetric extensions have a common self-adjoint extension. Yet,
each does have at least the Friedrichs positive, self-adjoint extension. Thus, T has infinitely-many distinct
positive, self-adjoint extensions.

For example, the two similar boundary-value problems on L2[0, 2π]u′′ = λ · u and u(0) = u(2π), u′(0) = u′(2π)

u′′ = λ · u and u(0) = 0 = u(2π)

(provably) have eigenfunctions and eigenvalues 1, sin(nx), cos(nx) n = 1, 2, 3, . . . eigenvalues 0, 1, 1, 4, 4, 9, 9, . . .

sin(nx2 ) n = 1, 2, 3, . . . eigenvalues 1
4 , 1, 9

4 , 4, 25
4 , 9, 49

4 , . . .

Half the eigenfunctions and eigenvalues are common, while the other half of eigenvalues of the first are shifted
upward for the second. Both collections of eigenfunctions give orthogonal bases for L2[0, 2π]. Expressions
of the unshared eigenfunctions of one in terms of those of the other are not trivial, despite considerable
mythology suggesting the contrary.
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9.4 Unbounded self-adjoint operators with compact resolvents

The following unsurprising claim and its proof are standard:

[9.4.1] Claim: For a not-necessarily-bounded self-adjoint operator T , if T−1 exists and is compact, then
(T − λ)−1 exists and is a compact operator for λ off a discrete set in C, and is meromorphic in λ. Further,
the spectrum of T and non-zero spectrum of T−1 are in the bijection λ↔ λ−1.

Proof: The set of eigenvalues or point spectrum of a possibly-unbounded operator T consists of λ ∈ C such
that T − λ fails to be injective. The continuous spectrum consists of λ with T − λ injective and with dense
image, but not surjective. Further, for possibly unbounded operators, we require a bounded (=continuous)
inverse (T − λ)−1 on (T − λ)DT for λ to be in the continuous spectrum. The residual spectrum consists of
λ with T − λ injective, but (T − λ)DT not dense.

The description of continuous spectrum simplifies for closed T , that is, for T with closed graph: we claim
that for (T −λ)−1 densely defined and continuous, (T −λ)DT is the whole space, so (T −λ)−1 is everywhere
defined, so λ cannot be in the residual spectrum. Indeed, the continuity gives a constant C such that
|x| ≤ C · |(T − λ)x| for all x ∈ DT . Then (T − λ)xi Cauchy implies xi Cauchy, and T closed implies
T (limxi) = limTxi. Thus, (T − λ)DT is closed. Then density of (T − λ)DT implies it is the whole space.

Now prove that for T−1 compact, the resolvent (T − λ)−1 exists and is compact for λ off a discrete set,
and is meromorphic in λ. The non-zero spectrum of the compact self-adjoint operator T−1 is point spectrum,
from basic spectral theory for such operators, as in [9.A]. We claim that the spectrum of T and non-zero
spectrum of T−1 are in the obvious bijection λ↔ λ−1. From the algebraic identities

T−1 − λ−1 = T−1(λ− T )λ−1 T − λ = T (λ−1 − T−1)λ

failure of either T − λ or T−1 − λ−1 to be injective forces the failure of the other, so the point spectra are
identical.

For (non-zero) λ−1 not an eigenvalue of compact T−1, T−1 − λ−1 is injective and has a continuous,
everywhere-defined inverse. That S − λ is surjective for compact self-adjoint S and λ 6= 0 not an eigenvalue
follows from the spectral theorem for self-adjoint compact operators. For such λ, inverting the relation
T − λ = T (λ−1 − T−1)λ gives

(T − λ)−1 = λ−1(λ−1 − T−1)−1T−1

from which (T −λ)−1 is continuous and everywhere-defined. That is, λ is not in the spectrum of T . Finally,
λ = 0 is not in the spectrum of T , because T−1 exists and is continuous. This establishes the bijection.

Thus, for T−1 compact self-adjoint, the spectrum of T is countable, with no accumulation point in C.
Letting Rλ = (T − λ)−1, the resolvent relation

Rλ = (Rλ −R0) +R0 = (λ− 0)RλR0 +R0 = (λRλ + 1) ◦R0

expresses Rλ as the composition of a continuous operator with a compact operator, proving its compactness.
///

As earlier, continuity is immediate from Hilbert’s relation

(T − λ)−1(λ− µ)(T − µ)−1 = (T − λ)−1
(

(T − µ)− (T − λ)
)

(T − µ)−1 = (T − λ)−1 − (T − µ)−1

Then dividing through by λ− µ gives

(T − λ)−1 − (T − µ)−1

λ− µ
= (T − λ)−1(T − µ)−1

proving differentiability.
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9.5 Example: ∆ on L2(T) and Sobolev spaces

There are many ways to understand and prove that exponentials x→ eiξx give an orthogonal basis for L2

of the circle. Here, we use Friedrichs extensions and compact resolvents.
On the circle T = R/2πZ or R/Z, there are no boundary terms in integration by parts, so ∆ has the

symmetry
〈∆f, g〉 = 〈f,∆g〉 (with usual 〈f, g〉 =

∫
T f · g, for f, g ∈ C∞(T))

Friedrichs’ self-adjoint extension ∆̃ of ∆ is essentially described by the relation

〈(1− ∆̃)−1x, (1−∆)y〉 = 〈x, y〉 (for x ∈ L2(T) and y ∈ C∞(T))

The compactness of the resolvent (∆̃−z)−1, proven below, and the spectral theorem for compact, self-adjoint

operators, yield an orthogonal Hilbert-space basis for L2(T) consisting of ∆̃-eigenfunctions. Further, these
eigenfunctions will be proven eigenfunctions for ∆ itself.

The compactness of the resolvent will follow from Friedrichs’ construction of ∆̃ via the continuous linear
map (1 − ∆̃)−1, itself a continuous linear map L2(T) −→ H1(T), where the Sobolev space H1(T) is the
completion of C∞(T) with respect to the Sobolev norm

|f |H1(T) =
(
|f |2L2(T) + |f ′|2L2(T)

) 1
2

= 〈(1−∆)f, f〉 1
2

Compactness of the resolvent is Rellich’s lemma: the inclusion H1(T) → L2(T) is compact. The map

(1 − ∆̃)−1 of L2(T) to itself is compact because it is the composition of the continuous map (1 − ∆̃)−1 :
L2(T)→ H1(T) and the compact inclusion H1(T)→ L2(T).

The eigenfunctions for the extension ∆̃ certainly include the ∆-eigenfunctions ψn(x) = einx with n ∈ Z,

but the issue is exactly to show that there are no other eigenfunctions for ∆̃ than for ∆. The genuine
possibility of exotic eigenfunctions is illustrated in the following section. That is, while we can solve the
differential equation ∆u = λ · u on R and identify λ having 2πZ-periodic solutions, more must be done to
assure that there are no further ∆̃-eigenfunctions in the orthogonal basis promised by the spectral theorem.
We hope that the natural heuristic, of straightforward solution of the differential equation ∆u = λ · u, gives
the whole orthogonal basis, but this is exactly the issue.

The kth Sobolev space Hk(T) is the Hilbert space completion of C∞(T) with respect to kth Sobolev norm
given by

|f |2Hk(T) = 〈(1−∆)kf, f〉L2 (for 0 ≤ k ∈ Z, for f ∈ C∞(T))

There are other useful, slightly different, expressions for a kth Sobolev norm, such as(
|f |2L2(T) + |f ′|2L2(T) + . . .+ |f (k)|2

) 1
2

The two are comparable: with uniform implied constants, [62](
|f |2L2(T) + |f ′|2L2(T) + . . .+ |f (k)|2

) 1
2 � 〈(1−∆)kf, f〉 1

2 (for 0 ≤ k ∈ Z)

but they are not constant multiples of each other. In fact, precise comparison of constants between the two
versions of the Sobolev norms proves irrelevant, as we will see that the exponentials ψn(x) = einx give an
orthogonal basis for any/all versions of the Hilbert-space structure.

The Sobolev imbedding theorem below [9.5.4] shows that Hk+1(T) is inside the Banach space Ck(T) with
norm

|f |Ck(T) = sup
0≤i≤k

sup
x∈T
|f (i)(x)|

[62] Here a � b means that there are positive, finite constants c, c′ such that c · a ≤ b ≤ c′ · a.
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by showing the dominance relation∣∣f ∣∣
Hk(T)

�
∣∣f ∣∣

Ck(T)
�

∣∣f ∣∣
Hk+1(T)

giving Hk+1(T) ⊂ Ck(T) ⊂ Hk(T)

The inclusions Ck(T) ⊂ Hk(T) follow from the density of C∞(T) in every Ck(T). Letting
H∞(T) = limkH

k(T), the intersection C∞(T ) of Banach spaces Ck(T) is an intersection of Hilbert spaces

H∞(T) =
⋂
k

Hk(T) =
⋂
k

Hk+1(T) ⊂
⋂
k

Ck(T) = C∞(T) ⊂ H∞(T)

For f ∈ C∞(T), let f → f be the value-wise conjugation. Extend this by continuity to f → f on L2(T),
and let (Λf)(g) = 〈g, f 〉L2 . From the Riesz-Frechet theorem, Λ is an isomorphism of L2(T) to itself. For
1 ≤ k ∈ Z, let H−k(T) be the Hilbert-space dual of Hk(T), not identified with Hk(T) itself via Riesz-Frechet.
With i : H1(T) → L2(T) the inclusion, let i∗ : L2(T)∗ → H−1(T) be the adjoint. Similarly, the adjoint of
the inclusion Hk+1(T)→ Hk(T) is H−k(T)→ H−(k+1)(T). Thus, suppressing the reference to T, we have

H∞
(( '' ''

. . . // H2 // H1 i // L2 ≈
Λ
// L2 i∗ // H−1 // H−2 // . . .

Let H−∞(T) =
⋃
k≥0H

−k(T) = colimkH
−k(T). Assuming Sobolev imbedding [9.5.4], we have

[9.5.1] Corollary: The dual space C∞(T)∗ to C∞(T) of distributions on T is H−∞(T).

Proof: C∞(T) = H∞(T) by Sobolev. In general, the dual of a limit is not the colimit of the duals of
the limitands, but when the limitands are normed and the transition maps have dense images, as with
Hk+1(T)→ Hk(T), [13.14.4] shows that (limkH

k)∗ = colimk (Hk)∗ = colimkH
−k. ///

[9.5.2] Corollary: For f in the domain of ∆̃, the image ∆̃f is the genuine distributional derivative ∆f , and

the domain of ∆̃ is H2(T).

Proof: For g ∈ C∞(T) and f in the domain of ∆̃, by the characterization of the Friedrichs extension

f = (1 − ∆̃)−1F for some F in L2. The characterization 〈(1 − ∆̃)−1F, g〉H1 = 〈F, g〉L2 gives 〈f, g〉H1 =

〈(1− ∆̃)f, g〉L2 . Then

〈(1− ∆̃)f, g〉L2 = 〈f, g〉H1 = 〈f, (1−∆)g〉L2 = = 〈f, (1−∆)g〉H−∞×H∞ = 〈(1−∆)f, g〉H−∞×H∞

where we restrict the hermitian pairing on L2 × L2 to a hermitian pairing L2 ×H∞, and then extend it to
H−∞ ×H∞. This holds for all g ∈ C∞(T), so (1− ∆̃)f = (1−∆)f as distributions. Thus, for f ∈ H1(T)

in the domain of ∆̃, ∆f ∈ L2(T). Thus, 〈(1−∆)2f, f〉L2 is finite, so f ∈ H2(T). ///

[9.5.3] Corollary: ∆̃-eigenvectors are smooth, and are ∆-eigenvectors.

Proof: A λ-eigenfunction u for ∆̃ is in the domain of ∆̃, and by the previous ∆̃u = ∆u, so ∆u = λu. Thus,
(1−∆)u = (1− λ)u. By design, (1−∆) is a continuous map Hk+2 → Hk: for f ∈ C∞(T),

|(1−∆)f |2Hk = 〈(1−∆)k(1−∆)f, (1−∆)f〉L2 = 〈(1−∆)k+2f, f〉L2 = |f |2Hk+2

Each Hk is the completion of C∞(T), so (1 − ∆) is an isomorphism Hk+2 → Hk, and (1 − ∆)−1 is an
isomorphism Hk → Hk+2, so

u = (1−∆)−1(1− λ)u ∈ (1−∆)−1H2(T) ⊂ H4(T)

By induction, u ∈ H∞(T) = C∞(T). ///

Of course, granting the above, to find smooth ∆-eigenfunctions, solve the differential equation

λ · u = ∆̃u = ∆u = u′′
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on R: for λ 6= 0, the solutions are linear combinations of u(x) = e±
√
λ·x; for λ = 0, the solutions are linear

combinations of u(x) = 1 and u(x) = x. The 2πZ-periodicity is equivalent to λ ∈ iZ in the former case, and
eliminates u(x) = x in the latter. As usual, uniqueness is proven via the mean-value theorem. This would
prove that the exponentials {einx : n ∈ Z} are a Hilbert-space basis for L2(T).

Now we prove Sobolev imbedding and Rellich compactness.

[9.5.4] Theorem: (Sobolev imbedding) Hk+1(T) ⊂ Ck(T).

Proof: This is the fundamental theorem of calculus and the Cauchy-Schwarz-Bunyakowsky inequality. The
case k = 0 adequately illustrates the causality: prove that the H1 norm dominates the Co norm, namely,
sup-norm, on C∞(T). Use coordinates from the real line, with T = R/Z. For 0 ≤ x ≤ y ≤ 1, the difference
between maximum and minimum values of f ∈ C∞[0, 1] is constrained:

|f(y)− f(x)| =
∣∣∣ ∫ y

x

f ′(t) dt
∣∣∣ ≤ ∫ 1

0

|f ′(t)| dt ≤
(∫ 1

0

|f ′(t)|2 dt
)1/2

·
(∫ y

x

1 dt
)1/2

= |f ′|L2 · |x− y| 12

Let y ∈ [0, 1] be such that |f(y)| = min x|f(x)|. Using the previous inequality,

|f(x)| ≤ |f(y)|+ |f(x)− f(y)| ≤
∫ 1

0

|f(t)| dt+ |f(x)− f(y)|

≤
∫ 1

0

|f | · 1 + |f ′|L2 · 1 ≤ |f |L2 + |f ′|L2 � 2(|f |2 + |f ′|2
)1/2

= 2|f |H1

Thus, on C∞c (T) the H1 norm dominates the sup-norm. Thus, this comparison holds on the H1 completion
H1(T), and H1(T) ⊂ Co(T). The same argument applies to the H1-norm and Co-norm of successive
derivatives. ///

The space C∞(T) of smooth functions on T is the nested intersection of the spaces Ck(T), an instance of
a (projective) limit of Banach spaces:

C∞(T) =

∞⋂
k=0

Ck(T) = lim
k
Ck(T)

so it has a uniquely-determined Fréchet space topology, as in [13.5]. Similarly,

H∞(T) =

∞⋂
k=0

Hk(T) = lim
k
Hk(T)

[9.5.5] Corollary: C∞(T) = H∞(T).

Proof: The interlacing property Ck+1(T) ⊂ Hk+1(T) ⊂ Ck(T) gives (dashed) compatible maps from H∞(T)
to the spaces Ck(T) inducing a unique (dotted) map to the limit C∞(T):

C∞(T)
++ **

. . . // Ck+1(T) // Ck(T) // . . .

H∞(T) 33 44

55kkkkkkkk

33gggggggggggggg

OO

. . . // Hk+1(T) //

99ttttttttt
Hk(T) //

<<yyyyyyyyy
. . .

Oppositely, we obtain a unique (dotted) map of C∞(T) to limkH
k(T):

C∞(T)
++ **

))SSSSSSSS

++WWWWWWWWWWWWWW

��

. . . // Ck+1(T) //

��

Ck(T) //

��

. . .

H∞(T) 33 44. . . // Hk+1(T) // Hk(T) // . . .
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Thus, the two dotted maps must be mutual inverses. ///

Rellich’s lemma on T uses some finer details from the discussion just above, namely, the Lipschitz property
|f(x)−f(y)| � |x−y| 12 for |f |H1 ≤ 1, and the related fact that the map H1(T )→ Co(T) has operator norm
at most 2.

[9.5.6] Theorem: (Rellich compactness) The inclusion Hk+1(T)→ Hk(T) is compact.

Proof: The causality is adequately illustrated by the k = 0 case, showing that the unit ball in H1(T) is totally
bounded in L2(T). Approximate f ∈ H1(T) in L2(T) by piecewise-constant functions

F (x) =



c1 for 0 ≤ x < 1
n

c2 for 1
n ≤ x <

2
n

. . .

cn for n−1
n ≤ x ≤ 1

The sup norm of |f |H1 ≤ 1 is bounded by 2, so we only need ci in the range |ci| ≤ 2.
Given ε > 0, take N large enough such that the disk of radius 2 in C is covered by N disks of radius less

than ε, with centers C. Given f ∈ H1(T) with |f |1 ≤ 1, choose constants ck ∈ C such that |f(k/n)−ck| < ε.
Then

|f(x)− ck| ≤ |f
(k
n

)
− ck|+

∣∣∣f(x)− f
(k
n

)∣∣∣ < ε+
∣∣∣x− k

n

∣∣∣ 1
2 ≤ ε+

1√
n

(for k
n ≤ x ≤

k+1
n )

Then ∫ 1

0

|f − F |2 ≤
n∑
k=1

∫ (k+1)/n

k/n

(
ε+

1√
n

)2

≤ n · 1

n
·
(
ε+

1√
n

)2

=
(
ε+

1√
n

)2

For ε small and n large, this is small. Thus, the image in L2(T) of the unit ball in H1(T) is totally bounded,
so has compact closure. This proves that the inclusion H1(T) ⊂ L2(T) is compact. ///

This completes the arguments for Sobolev imbedding and Rellich compactness, which are used to prove
that a ∆̃-eigenfunction is actually smooth, so is in the natural domain C∞(T) of ∆, justifying determination
of the orthogonal basis for L2(T) by solving the differential equations u′′ = λ·u in classical (non-distributional
terms).

Because the exponentials are smooth eigenfunctions for this self-adjoint extension of ∆,

[9.5.7] Corollary: The exponentials ψn(x) = einx are an orthogonal basis for every Sobolev space Hk(T).

Proof: The exponentials are smooth, so are inside every Hk(T). The Hk norm of ψn is (1 +n2)k/2 times the
L2 norm:

|ψn|2Hk = 〈(1−∆)kψn, ψn〉L2 = 〈(1 + n2)kψn, ψn〉L2 = (1 + n2)k〈ψn, ψn〉L2

They are mutually orthogonal in every Hk(T):

〈ψm, ψn〉Hk = 〈(1−∆)kψm, ψn〉L2 = 〈(1 +m2)kψm, ψn〉L2 = (1 +m2)k · 〈ψm, ψn〉L2

For f ∈ Hk(T) ⊂ L2(T), orthogonality

0 = 〈ψn, f〉Hk = 〈(1−∆)kψn, f〉L2 = 〈(1 + n2))kψn, f〉L2 = (1 + n2))k〈ψn, f〉L2

gives orthogonality in L2, so completeness of the exponentials in L2 gives completeness in Hk. ///

Granting that the exponentials are an orthogonal basis for every Hk(T), we have the spectral
characterization of Hk(T):

[9.5.8] Corollary: For f ∈ C∞(T), for every 0 ≤ k ∈ Z,

|f |2Hk =
1

2π

∑
n∈Z
|〈f, ψn〉L2 |2 · (1 + n2)k
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The Fourier series 1
2π

∑
n〈F,ψn〉Hk · ψn of a function F in Hk(T) converges to F in the Hk topology, and

u
( 1

2π

∑
n

〈F,ψn〉Hk · ψn
)

=
1

2π

∑
n

〈F,ψn〉Hk · u(ψn) (for u ∈ Hk(T)∗ = H−k(T))

Proof: Starting with Plancherel for Hilbert spaces,

|f |2Hk =
1

2π

∑
n

|〈f, ψn〉Hk |2

〈ψn, ψn〉Hk
=

1

2π

∑
n∈Z

|〈f, (1 + n2)kψn〉L2 |2

(1 + n2)k
=

1

2π

∑
n∈Z
|〈f, ψn〉L2 |2 · (1 + n2)k

Completing, the same holds for F ∈ Hk. In particular, the partial sums of the Fourier series of F converge
to F in Hk. Thus, by the continuity of u in the dual,

u(F ) = u
(

lim
M,N

1

2π

∑
−M≤n≤N

〈F,ψn〉 · ψn
)

= lim
M,N

1

2π

∑
−M≤n≤N

〈F,ψn〉 · u(ψn) =
1

2π

∑
n

〈F,ψn〉 · u(ψn)

a convergent series. ///

The spectral characterization allows extension to a definition of the sth Sobolev norm for real s:

|f |2Hs =
1

2π

∑
n∈Z
|〈f, ψn〉L2 |2 · (1 + n2)s (for f ∈ C∞(T))

It would be natural to declare that Hs(T) is the completion of C∞(T) with respect to the sth norm, for
all s ∈ R, but one potential issue is that H−k(T) is already described as the dual of Hk(T), so there is
consistency to be checked. First, for duality, the L2 Plancherel assertion

〈f, g〉L2 =
1

2π

∑
n

〈f, ψn〉 · 〈g, ψn〉

can be desymmetrized:

[9.5.9] Corollary: With Sobolev spaces described as completions of C∞(T), for f ∈ Hs(T) and g ∈ H−s(T),
the pairing 〈f, g〉Hs×H−s defined by

〈f, g〉Hs×H−s =
1

2π

∑
n

〈f, ψn〉Hs · 〈g, ψn〉H−s (for f, g ∈ C∞(T))

gives a (conjugate-linear) isomorphism of H−s to the Hilbert-space dual of Hs, for all real s.

Proof: It suffices to prove that this pairing matches the L2 pairing for f, g ∈ C∞(T), since the smooth
functions are dense in every Hs(T). Indeed, for f, g ∈ C∞(T),

〈f, g〉Hs×H−s =
1

2π

∑
n

〈f, ψn〉Hs · 〈g, ψn〉H−s =
1

2π

∑
n

(1 + n2)s〈f, ψn〉L2 · (1 + n2)−s〈g, ψn〉L2

=
1

2π

∑
n

〈f, ψn〉L2 · 〈g, ψn〉L2 = 〈f, g〉L2

by ordinary Plancherel for L2. ///

Granting that the Sobolev spaces defined as completions of C∞(T) are in suitable duality,

[9.5.10] Claim: For a distribution u, if
∑
n |u(ψn)|2 · (1 + n2)−s < ∞ then u ∈ H−s(T), and we have the

Fourier expansion

u =
1

2π

∑
n

u(ψn) · ψn =
1

2π

∑
n

〈u, ψn〉Hs×H−s · ψn (in Hs(T))
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Proof: For f ∈ Hs(T),

u(f) = lim
M,N

u
( 1

2π

∑
−M≤n≤N

〈f, ψn〉Hs ·ψn
)

= lim
M,N

1

2π

∑
−M≤n≤N

〈f, ψn〉Hs ·u(ψn) =
1

2π

∑
n

〈f, ψn〉Hs ·u(ψn)

and by Cauchy-Schwarz-Bunyakowsky

∣∣∣ 1

2π

∑
n

〈f, ψn〉Hs · u(ψn)
∣∣∣2 =

∣∣∣ 1

2π

∑
n

〈f, ψn〉L2 · (1 + n2)s/2 · u(ψn)

(1 + n2)s/2

∣∣∣2

≤ 1

2π

∑
n

|〈f, ψn〉|2L2 · (1 + n2)s · 1

2π

∑
n

|u(ψn)|2

(1 + n2)s
= |f |2Hs ·

∣∣∣∑
n

u(ψn) · ψn
∣∣∣2
H−s

Thus, u is a continuous linear functional on Hs, so is in the dual H−s. Accommodation of complex
conjugation by u(ψn) = 〈u, ψ−n〉H−s×Hs and replacing n by −n gives the second form of the Fourier
expansion. ///

Sobolev imbedding becomes simpler and sharper on the spectral side:

[9.5.11] Corollary: For s > k + 1
2 , Hs(T) ⊂ Ck(T).

Proof: As earlier, it suffices to treat k = 0, and prove that the Ck-norm is dominated by the Hs-norm, on
C∞-functions f . Indeed,

|f |Co = sup
x
|f(x)| = sup

x

∣∣∣ 1

2π

∑
n

〈f, ψn〉L2 · einx
∣∣∣ ≤ 1

2π

∑
n

|〈f, ψn〉L2 |

=
1

2π

∑
n

|〈f, ψn〉L2 |(1 + n2)s/2 · (1 + n2)−s/2 ≤ 1

2π

(∑
n

|〈f, ψn〉L2 |2(1 + n2)s
) 1

2 ·
(∑

n

(1 + n2)−s
) 1

2

by Cauchy-Schwarz-Bunyakowsky. For s > 1
2 , the latter sum is finite. Similarly, for general k,

|f |Ck �s |f |Hs (for any s > 1
2 + k, for f ∈ C∞(T))

Thus, the completion Hs(T) has a canonical inclusion to Ck(T). ///

Similarly, granting that the exponentials form an orthonormal basis for every Hs, proof of an extended
form of Rellich’s lemma becomes easier:

[9.5.12] Corollary: For real t > s, the inclusion Ht(T) ⊂ Hs(T) is compact. For t > s+ 1
2 , this inclusion is

Hilbert-Schmidt, and for t > s+ 1 it is trace-class.

Proof: The inclusion maps one orthogonal basis to another, but the lengths change. That is, ignoring the
constant 2π, |ψn|Hs = (1 + n2)s/2. Thus, letting esn = ψn/(1 + n2)s/2/

√
2π be an orthonormal basis for Hs,

the inclusion map maps etn → esn · (1 + n2)s−t.
Generally, a map T : V →W of Hilbert spaces with orthonormal bases {en}, {fn}, of the form Ten = λnfn,

is compact when λn → 0, is Hilbert-Schmidt when
∑
n |λn|2 < ∞, and is trace-class when

∑
n |λn| < ∞.

///

[9.5.13] Corollary: H∞(T) = C∞(T) is nuclear Fréchet, in the sense that it is a (projective) limit of Hilbert
spaces Vn, with transition maps Vn → Vn−1 Hilbert-Schmidt. ///

Sobolev imbedding and Rellich compactness on Tn can be proven either by reducing to the case of a single
circle T, or by repeating analogous arguments directly on Tn. Sobolev norms and spaces Hs(Tn) can be
defined for real s. The index-shift in the Sobolev imbedding is easy to understand in the spectral form:

[9.5.14] Theorem: (Sobolev imbedding) Hs(Tn) ⊂ Ck(Tn) for s > k + n
2 .

Proof: Index the characters on Tn by ψξ(x) = eiξ·x, where ξ · x is the usual pairing on Rn × Rn. For k = 0,
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|f |Co = sup
x
|f(x)| = sup

x

∣∣∣ 1

(2π)n

∑
ξ∈Zn
〈f, ψξ〉L2 · ψξ(x)

∣∣∣ ≤ 1

(2π)n

∑
ξ

|〈f, ψξ〉L2 |

=
1

(2π)n

∑
ξ

|〈f, ψξ〉L2 |(1+|ξ|2)s/2 ·(1+|ξ|2)−s/2 ≤ 1

(2π)n

(∑
ξ

|〈f, ψξ〉L2 |2(1+|ξ|2)s
) 1

2 ·
(∑

ξ

(1+|ξ|2)−s
) 1

2

by Cauchy-Schwarz-Bunyakowsky, where |ξ| = (ξ · ξ) 1
2 . For s > n

2 , the latter sum is finite. ///

[9.5.15] Theorem: (Rellich compactness) Ht(Tn) ⊂ Hs(Tn) is compact for t > s, Hilbert-Schmidt for
t > s+ n

2 , and trace-class for t > s+ n. ///

[9.5.16] Corollary: H∞(Tn) = C∞(Tn) is nuclear Fréchet. ///

The relevance of the nuclearity property is the Schwartz kernel theorem [Schwartz 1950] for this situation:
every continuous linear map T : C∞(Tm)→ C∞(Tn)∗ from smooth functions to distributions has a Schwartz
kernel K(x, y) ∈ C∞(Tm+n)∗, meaning that

(Tϕ)(ψ) = K(ϕ⊗ ψ) (for ϕ ∈ C∞(Tm) and ψ ∈ C∞(Tn))

9.6 Exotic eigenfunctions on T
In this example, the exotic eigenfunctions are not truly exotic, but do illustrate the possibility that

eigenfunctions for a Friedrichs self-adjoint extension of a slight restriction of an otherwise natural differential
operator like ∆ may fail to be smooth.

Let δ be the Dirac delta distribution at 0 in T ≈ R/2πZ. The Sobolev imbedding H1(T) ⊂ Co(T)
essentially shows that δ ∈ H−s for every s > 1

2 :

∣∣∣∑
n

δψn · ψn
∣∣∣2
H−s

=
∑
n

|δψn|2

(1 + n2)s
=
∑
n

1

(1 + n2)s
< +∞ (for s > 1

2 )

Thus, ker δ is a closed subspace of H1(T). Let S be the restriction of ∆ to the space DS of smooth functions
f such that δf = 0. A functional on L2(T) is continuous if and only if its kernel is closed, so DS is dense in

L2(T). Let S̃ be its Friedrichs extension.

[9.6.1] Claim: The domain of S̃ is

{f ∈ H1(T) : ∆f ∈ L2(T) + C · δ, and δf = 0}

and S̃f = u if and only if ∆f = u + c · δ for some c ∈ C, and δf = 0. In particular, f ∈ H1(T) such that

(∆− λ)f = δ and δf = 0 is an eigenfunction for S̃.

Proof: Since S is non-positive, by the Friedrichs characterization, a function in the domain of S̃ is expressible
as f = (1 − S̃)−1F for some F ∈ L2(T). The H1 completion of the domain DS is the H1-closed subspace

ker δ|H1 . The characterization 〈(1− S̃)−1F, g〉ker δ|H1 = 〈F, g〉L2 gives 〈f, g〉H1 = 〈(1− S̃)f, g〉L2 . Then

〈(1− S̃)f, g〉L2 = 〈f, g〉H1 = 〈f, (1−∆)g〉L2 = = 〈f, (1−∆)g〉H−∞×H∞ = 〈(1−∆)f, g〉H−∞×H∞

where we restrict the hermitian pairing on L2 × L2 to a hermitian pairing L2 ×H∞, and then extend it to
H−∞×H∞. Thus, S̃ −∆ = 0 on DS . This does not quite imply that S̃ −∆ = 0 as a distribution, since DS

is the kernel of δ on C∞(T). Recall [13.14.5] that a continuous linear functional vanishing on the kernel of

a (continuous) linear function is a scalar multiple of it. Thus, for f in the domain of S̃, there is a constant
cf such that

〈(S̃ −∆)f, g〉H−∞×H∞ = cf · δg (for all g ∈ C∞(T))

which gives (S̃ −∆)f = cf · δ. Thus, S̃f = u if and only if ∆f + cfδ = u, which is ∆f = u− cfδ.
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On the other hand, if ∆f = u + c · δ and δf = 0, then (1 − ∆)f = f − u − cδ, and the Friedrichs

characterization of f = (1− S̃)−1(f − u) is satisfied: essentially running the earlier computation in reverse,
for g ∈ DS ,

〈f, g〉H1 = 〈f, (1−∆)g〉L2 = 〈f, (1−∆)g〉H−∞×H∞ = 〈(1−∆)f, g〉H−∞×H∞ = 〈f − u− cδ, g〉H−∞×H∞

= 〈f − u, g〉H−∞×H∞ − c〈δ, g〉H−∞×H∞ = 〈f − u, g〉H−∞×H∞ + 0 = 〈f − u, g〉L2

The condition δf = 0 is necessary for f to be in the H1-closure of the original domain DS . If δf 6= 0, then
f cannot be (1− S̃)−1F for any F ∈ L2(T). ///

Explicitly, while the ∆-eigenfunctions un(x) = sinnx for n = 0, 1, 2, . . . satisfy δun = 0, the ∆-

eigenfunctions cosnx for n > 0 do not, so cannot be S̃-eigenfunctions. In effect, they are replaced by
exotic S̃-eigenfunctions, essentially sin(nx/2) with n = 1, 3, 5, 7, . . . made 2π-periodic by force. That is,
vn(x) = sin(nx/2) for x ∈ [0, 2π], and made 2π-periodic. That is, given x ∈ R, for ` ∈ Z such that
x − ` · 2π ∈ [0, 2π), put [x] = x − ` · 2π, and vn(x) = sin(n[x]/2). These are mildly exotic since the forced
2π-periodicity gives their graphs corners at 2πZ on R/2πZ, and

∆vn = −
(n

2

)2 · vn + n · δ

The differential equation (∆ − λ)u = δ can be solved by division, using Fourier expansions of distributions
on T: let u = 1

2π

∑
n cnψn,

1

2π

∑
n

(−n2 − λ)ψn = (∆− λ)u = δ =
1

2π

∑
n

ψn (convergent in H−1(T))

Thus,

u =
∑
n

ψn
−n2 − λ

(convergent in H1(T))

For λ 6= −n2 this has a unique solution u ∈ H1. The condition δu = 0 is

0 = δu =
1

2π

∑
n

δψn
−n2 − λ

=
1

2π

∑
n

1

−n2 − λ

It is perhaps not obvious that this has solutions exactly for λ = −(n/2)2 for n = 1, 3, 5, . . ..

9.7 Example: usual Sobolev spaces on R
In contrast to ∆ on T, there are no square-integrable ∆-eigenfunctions on R: the eigenfunction condition

u′′ = λ · u is an explicitly solvable constant-coefficient differential equation, all whose solutions are linear

combinations of e±
√
λ·x, and none of these is square-integrable on R. There cannot be an orthogonal basis

for L2(R) consisting of ∆-eigenfunctions, although Fourier transform and inversion

f̂(ξ) =

∫
R
e−iξx f(x) dx f(x) =

1

2π

∫
R
eiξx f̂(ξ) dξ (for f ∈ S (R))

do express functions as superpositions of ∆-eigenfunctions. For 0 ≤ k ∈ Z, the usual Sobolev spaces are
completions of C∞c (R) with respect to the the kth Sobolev norm given by

|f |2Hk =

∫
R

(1−∆)kf(x) · f (x) dx (for f ∈ C∞c (R))

By the Plancherel theorem for the Fourier transform, this is

|f |2Hk =

∫
R

(1−∆)kf(x) · f (x) dx =
1

2π

∫
R

(1 + ξ2)k |f̂(ξ)|2 dξ (for f ∈ C∞c (R))
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This also gives an sth Sobolev norm for all real s:

|f |2Hs =
1

2π

∫
R

(1 + ξ2)s |f̂(ξ)|2 dξ (for s ∈ R, for f ∈ C∞c (R))

The same sort of arguments as for T prove Sobolev imbedding here:

[9.7.1] Claim: Hs(R) ⊂ Ckc (R) for any s > 1
2 + k, because the semi-norm νk(f) = sup0≤i≤k supx∈R |f (i)(x)|

is dominated by the Hs-norm for s > k + 1
2 .

Proof: The semi-norm comparison implies that the Hs-completion of C∞c (R) is contained in the νk-
completion, which consists of Ck-functions whose k derivatives all vanish at ∞. First, the case k = 0
illustrates the key idea. By Cauchy-Schwarz-Bunyakowsky, for f ∈ C∞c (R), by Fourier inversion,

sup
x∈R
|f(x)| = sup

x∈R

∣∣∣ 1

2π

∫
R
f̂(ξ) · eiξx dξ

∣∣∣ ≤ 1

2π

∫
R
|f̂(ξ)| dξ =

1

2π

∫
R
|f̂(ξ)| · (1 + ξ2)s/2 · 1

(1 + ξ2)s/2
dξ

≤
( 1

2π

∫
R
|f̂(ξ)|2 · (1 + ξ2)s dξ

) 1
2 ·
( 1

2π

∫
R

1

(1 + ξ2)s
dξ
) 1

2 �s |f |Hs

since for any s > 1
2 the last integral is finite. For k ≥ 0, use Gelfand-Pettis corollaries [14.3] to justify moving

the differentiation inside the integral:

sup
x∈R
|f (k)(x)| = sup

x∈R

∣∣∣ ∂k
∂xk

1

2π

∫
R
f̂(ξ) · eiξx dξ

∣∣∣ = sup
x∈R

∣∣∣ 1

2π

∫
R

∂k

∂xk
f̂(ξ) · eiξx dξ

∣∣∣
= sup

x∈R

∣∣∣ 1

2π

∫
R

(iξ)k f̂(ξ) · eiξx dξ
∣∣∣ ≤ 1

2π

∫
R

(1 + ξ2)k/2 · |f̂(ξ)| dξ

=
1

2π

∫
R
|f̂(ξ)| · (1 + ξ2)s/2 · 1

(1 + ξ2)(s−k)/2
dξ

≤
( 1

2π

∫
R
|f̂(ξ)|2 · (1 + ξ2)s dξ

) 1
2 ·
( 1

2π

∫
R

1

(1 + ξ2)s−k
dξ
) 1

2 �s |f |Hs (for s− k > 1
2 )

again because the latter integral is convergent for s− k > 1
2 . ///

However, there is no Rellich compactness here: the inclusion H1(R) → L2(R) is not compact, and the

Friedrichs extension ∆̃ of the restriction of ∆ to S (R) does not have compact resolvent. The non-compactness
of H1(R) ⊂ L2(R) follows easily from the spectral characterization, together with Plancherel for Fourier
transform on L2(R): letting V 1 be the image of H1(R) under Fourier transform, that is, the Hilbert space
of f on R such that

∫
R |f(x)|2 · (1 + x2) dx <∞, we have a commutative diagram, where vertical maps are

isometries given by Fourier transform or inversion,

L2(R)

≈
��

(1−∆̃)−1

// H1(R)
inc // L2(R)

≈
��

L2(R)
1/(1+x2)

// V 1

inc
//

≈

OO

L2(R)

where the map on the bottom left is multiplication by 1/(1 + x2). If the inclusion H1(R) → L2(R) were
compact, then the composition

H1(R)
inc // L2(R)

≈
��

L2(R)
1/(1+x2)

// V 1

≈

OO

L2(R)
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would be compact, so the multiplication operator L2(R)→ L2(R) by multiplication by 1/(1 + x2) would be
compact. This operator is continuous and self-adjoint, but has no eigenvectors, and has continuous spectrum
[0, 1], so cannot be compact.

9.8 Example: discrete spectrum of −∆ + x2 on L2(R)

To obtain an operator on R related to ∆ but with compact resolvent, add the confining potential x2,
construed as a multiplication operator, obtaining a Schrödinger operator

S = −∆ + x2 = − d2

dx2
+ x2 Sf(x) = −f ′′(x) + x2 · f(x)

This operator is also called the quantum harmonic oscillator. We will see that the resolvent S̃−1 of the
Friedrichs extension S̃ of S is compact, so S̃ has entirely discrete spectrum.

The eigenfunctions for S are somewhat less well-known than those for ∆, the latter easy to obtain from
solving the constant-coefficient equation u′′ = λu. The standard device to obtain eigenfunctions is as follows.
The relevant Dirac operator here [63] is

D = i
∂

∂x
so that D2 = −∆

the factorization

−∆ + x2 = (D− ix)(D + ix) + [ix,D] = (D− ix)(D + ix) + 1 (with [ix,D] = ix ◦ D− D ◦ ix)

allows determination of many S-eigenfunctions, although proof that all are produced requires some effort.
The eigenfunctions will be smooth, but not compactly supported, so it is not optimal to declare the natural
domain of the operator to be C∞c (R). Instead, we take the Schwartz functions S (R), as in [13.7], to be the
domain.

The raising and lowering operators are

R = raising = D− ix L = lowering = D + ix

[9.8.1] Claim: The operator S = −∆ + x2 satisfies S ≥ 1, in the sense that 〈Sf, f〉 ≥ 〈f, f〉 for f ∈ S (R).

Proof: This follows from the Dirac factorization:

〈Sf, f〉 = 〈
(
(D− ix)(D + ix) + 1

)
f, f〉 = 〈(D− ix)(D + ix)f, f〉+ 〈f, f〉

= 〈(D + ix)f, (D + ix)f〉+ 〈f, f〉 ≥ 〈f, f〉

from the integration-by-parts fact (D− ix)∗ = D + ix on Schwartz functions. ///

Rather than attempting a direct solution of the differential equation Su = λu, special features are
exploited. First, a smooth function u annihilated by D+ ix will be an eigenfunction for S with eigenvalue 1:

Su =
(

(D− ix)(D + ix) + 1
)
u = (D− ix) 0 + u = 1 · u (for (D + ix)u = 0)

Dividing through by i, the equation (D + ix)u = 0 is( ∂
∂x

+ x
)
u = 0

[63] Conveniently, the Dirac operator in this situation has complex coefficients. In two dimensions, Dirac operators

have Hamiltonian quaternion coefficients, a special case of the general situation, that Dirac operators have coefficients

in Clifford algebras.
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That is, u′ = −xu or u′/u = −x, so log u = −x2/2 + C for arbitrary constant C. With C = 1

u(x) = e−x
2/2

Conveniently, this is in L2(R), and in fact is in the Schwartz space [13.7] S (R) on R. The alternative
factorization

S = −∆ + x2 = (D + ix)(D− ix)− [ix,D] = (D + ix)(D− ix)− 1

does also lead to an eigenfunction u(x) = ex
2/2, but this grows too fast. It is unreasonable to expect such

luck in general, but here the raising and lower operators map S-eigenfunctions to other eigenfunctions: for
Su = λu, noting that S = RL+ 1 = LR− 1,

S(Ru) = (RL+ 1)(Ru) = RLRu+Ru = R(LR)u+Ru = R(LR− 1)u+ 2Ru

= RSu+ 2Ru = Rλu+ 2Ru = (λ+ 2) ·Ru (for Su = λu)

Similarly, S(Lu) = (λ− 2) · Lu. Many eigenfunctions are produced by application of Rn to u1(x) = e−x
2/2:

Rne−x
2/2 = (2n+ 1)− eigenfunction for −∆ + x2

Repeated application of R to e−x
2/2 produces polynomial [64] multiples of e−x

2/2

Rne−x
2/2 = Hn(x) · e−x

2/2 (with polynomial Hn(x) of degree n)

The commutation relation shows that application of LRnu is just a multiple of Rn−1u, so application of L
to the eigenfunctions Rnu produces nothing new.

We can almost prove that the functions Rnu are all the square-integrable eigenfunctions. We saw above
that 〈(−∆ + x2)f, f〉 ≥ |f |2L2 , so an L2 eigenfunction has real eigenvalue λ ≥ 1. Granting that repeated
application of L to a λ-eigenfunction u stays in L2(R), the function Lnu has eigenvalue λ − 2n, and the
requirement λ − 2n ≥ 1 on L2(R) implies that Lnu = 0 for some n. Then L(Ln−1u) = 0, but we already

have shown that the only L2(R)-function in the kernel of L is u1(x) = e−x
2/2.

To make this discussion a proof requires some preparation, since in general a Friedrichs extension can have
eigenvectors outside the original domain, as in [9.6].

[9.8.2] Sobolev norms associated to the Schrödinger operator A Friedrichs extension S̃ requires
specification of a domain for S. The space C∞c (R) of test functions is universally reasonable, but we have
already seen the not-compactly-supported eigenfunctions for the differential operator S. Happily, those
eigenfunctions are in the Schwartz space S (R), confirming specification of S (R) as the domain of S.

There is a hierarchy of Sobolev-like norms

|f |B` =
〈

(−∆ + x2)`f, f
〉 1

2

L2(R)
(for f ∈ S (R))

with corresponding Hilbert-space completions

B` = completion of S (R) with respect to |f |B`

and B0 = L2(R). The Friedrichs extension S̃ is characterized via its resolvent S̃−1, the resolvent characterized
by

〈S̃−1f, Sg〉 = 〈f, g〉 (for f ∈ L2(R) and g ∈ S (R))

[64] The polynomials Hn are the Hermite polynomials, but everything needed about them can be proven from this

spectral viewpoint.

274



Garrett: Modern Analysis of Automorphic Forms

and S̃−1 maps L2(R) continuously to B1. Thus, an eigenfunction u for S̃ is in B∞ =
⋂
`B

` = lim`B
`. We

will see that

B∞ = S (R)

In particular, S̃-eigenfunctions are in the presumed-natural domain S (R) of S, so evaluation of S̃ on them is

evaluation of S. Thus, S̃-eigenfunctions are S-eigenfunctions. Further, repeated application of the lowering
operator stabilizes S (R), so the near-proof above becomes a proof that all eigenfunctions in L2(R) are of

the form Rn e−x
2/2.

To prove that these eigenfunctions are a Hilbert space basis for L2(R), we will prove that the resolvent
is compact, so the eigenfunctions for the resolvent form an orthogonal Hilbert-space basis, and these are
eigenfunctions for S̃ itself, and then for S. That is, there is an orthogonal basis for L2(R) consisting of
S-eigenfunctions, all obtained as

(2n+ 1)− eigenfunction = Rne−x
2/2 =

(
i
∂

∂x
− ix

)n
e−x

2/2

On R, the compactness result depends on both smoothness and decay properties of the functions, in
contrast to T, where smoothness was the only issue.

[9.8.3] Theorem: (Rellich compactness) The injection B`+1 → B` is compact.

Proof: The mechanism is well-illustrated by the ` = 0 case. We show compactness of B1 → L2(R) by showing
total boundedness [14.7.1] of the image of the unit ball. Let ϕ be a smooth cut-off function, with

ϕN (x) =


1 (for |x| ≤ N)

smooth, between 0 and 1 (for N ≤ |x| ≤ N + 1)

0 (for |x| ≥ N + 1)

The derivatives of ϕN in N ≤ |x| ≤ N + 1 can easily be arranged to be independent of N . For |f |1 ≤ 1,
write f = f1 + f2 with

f1 = ϕN · f f2 = (1− ϕN ) · f

The function f1 on [−N − 1, N + 1] can be considered as a function on a circle T, by sticking ±(N + 1)
together. Then the Rellich compactness lemma on T [9.5.6] shows that the image of the unit ball from B1

is totally bounded in L2(T), which we can identify with L2[−N − 1, N + 1]. The L2 norm of the function f2

is directly estimated

|f2|2L2(R) =

∫
|x|≥N

ϕ2
N (x) · |f2(x)|2 dx ≤ 1

N2

∫
|x|≥N

|f2(x) · x|2 dx

≤ 1

N2

∫
R
x2f(x) · f (x) dx ≤ 1

N2

∫
R

(− d2

dx2
+ x2)f(x) · f (x) dx =

1

N2
|f |21 ≤

1

N2

Thus, given ε > 0, for N large the tail f2 lies within a single ε-ball in L2(R). This proves total boundedness
of the image of the unit ball, and compactness. ///

[9.8.4] Corollary: The Friedrichs extension S̃ of S = − d2

dx2 + x2 has compact resolvent.

Proof: The map S̃−1 of L2(R) to itself is compact because it is the composition of the continuous map

S̃−1 : L2(R)→ B1 and the compact inclusion B1 → B0 = L2(R). ///

[9.8.5] Corollary: The spectrum of S = − d2

dx2 + x2 is discrete. There is an orthonormal basis of L2(R)

consisting of eigenfunctions for S̃.

Proof: Self-adjoint compact operators have discrete spectrum with finite multiplicities for non-zero
eigenvalues. From above, these eigenfunctions are exactly the eigenfunctions for the Friedrichs extension
S̃. Since these eigenfunctions give an orthogonal Hilbert-space basis, S̃ has no further spectrum. ///
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It remains to show that the eigenfunctions are in S (R), to know that they are eigenfunctions of S itself,

rather than only of the extension S̃.

[9.8.6] Theorem: B∞ = S (R)

Proof: It is clear that S (R) ⊂ B∞. The issue is the other containment. The Weyl algebra A = A1 of
operators, generated over C by the multiplication x and derivative ∂ = d/dx, is also generated by R = i∂−ix
and L = i∂+ ix. The Weyl algebra is filtered by degree in R and L: let A≤n be the C-subspace of A spanned
by all non-commuting monomials in R,L of total degree at most n, with A≤0 = C. Note that R and L
commute modulo A≤0: as operators, ∂ ◦ x = 1 + x ◦ ∂, and the commutation relation is obtained again, by

[R,L] = RL− LR = (i∂ − ix)(i∂ + ix)− (i∂ + ix)(i∂ − ix) = −(∂ − x)(∂ + x) + (∂ + x)(∂ − x)

= −(∂2 − x∂ + ∂x− x2) + (∂2 + x∂ − ∂x− x2) = 2(x∂ − ∂x) = −2

[9.8.7] Claim: For a monomial w2n in R and L of degree 2n,

|〈w2n · f, f〉L2(R)| �n |f |2Bn (for f ∈ C∞c (R))

Proof: Induction. First,

〈RLf, f〉 = 〈(RL+ 1)f, f〉 − 〈f, f〉 ≤ 〈(RL+ 1)f, f〉 = 〈Sf, f〉 = |f |2B1

A similar argument applies to LR. For the length-two word L2,

|〈L2f, f〉| = |〈Lf,Rf〉| ≤ |Lf | · |Rf | = 〈Lf, Lf〉 1
2 · 〈Rf,Rf〉 1

2

= 〈RLf, f〉 1
2 · 〈LRf, f〉 1

2 ≤ 〈Sf, f〉 = |f |2B1

A similar argument applies to R2, completing the argument for n = 1. For the induction step, any word w2n

of length 2n is equal to RaLb mod A≤2n−2 for some a+ b = 2n, so, by induction,

|〈w2nf, f〉| = |〈RaLbf, f〉|+ |f |2Bn−1

In the case that a ≥ 1 and b ≥ 1, by induction

|〈RaLbf, f〉| = |〈Ra−1Lb−1(Lf), Lf〉| �n = |Lf |2Bn−1 = 〈Sn−1Lf, Lf〉 = 〈RSn−1Lf, f〉

Since RSn−1L is Sn mod A≤2n−2, by induction

〈RSn−1Lf, f〉 �n 〈Snf, f〉+ |f |2Bn−1 = |f |2Bn + |f |2Bn−1 � |f |2Bn

In the extreme case a = 0,

〈L2nf, f〉 = 〈Lnf,Rnf〉 ≤ |Lnf | · |Rnf | = 〈Lnf, Lnf〉 1
2 · 〈Rnf,Rnf〉 1

2 = 〈RnLnf, f〉 1
2 · 〈LnRnf, f〉 1

2

which brings us back to the previous case. The extreme case b = 0 is similar. ///

[9.8.8] Corollary: For a monomial wn in R and L of degree n,

|〈wn · f, f〉L2(R)| �n |f |Bn · |f |L2 (for f ∈ C∞c (R))

Proof: By Cauchy-Schwarz-Bunyakowsky and the claim,

|〈wn · f, f〉L2 | ≤ |wnf |L2 · |f |L2 = 〈w∗n wn f, f〉
1
2 · |f |L2 ≤ |f |Bn · |f |L2

as claimed. ///

276



Garrett: Modern Analysis of Automorphic Forms

[9.8.9] Corollary: The limit B∞ = limkB
k is contained in S (R).

Proof: This is the same idea as in [9.7.1] and its proof. Use the density of test functions in S (R), whose
completion in the Bk norm gives Bk, for every k. Thus, test functions are dense in B∞. For f ∈ C∞c (R),
by Fourier inversion,

sup
x∈R
|(1 + x2)m f (n)(x)| = sup

x∈R

∣∣∣ 1

2π

∫
R

(
(1 + x2)m f (n)

)̂(ξ) · eiξx dξ
∣∣∣

= sup
x∈R

∣∣∣ 1

2π

∫
R

(
(1−∆)m · (−iξ)n · f̂(ξ)

)
· eiξx dξ

∣∣∣ ≤ 1

2π

∫
R

∣∣∣(1−∆)m · ξn · f̂(ξ)
∣∣∣ dξ

=
1

2π

∫
R

∣∣∣(1−∆)m · ξn · f̂(ξ)
∣∣∣(1 + ξ2)s/2 · 1

(1 + ξ2)s/2
dξ

≤ 1

2π

∣∣∣(1 + ξ2)s/2 · (1−∆)m · ξn · f̂(ξ)
∣∣∣
L2
·
∣∣∣ 1

(1 + ξ2)s/2

∣∣∣
L2

=
1

2π

∣∣∣(1−∆)s/2 · (1 + x2)m · f (n)
∣∣∣
L2
·
∣∣∣ 1

(1 + ξ2)s/2

∣∣∣
L2

taking s ∈ 2Z, by Plancherel and Cauchy-Schwarz-Bunyakowsky. The L2-norm of 1/(1 + ξ2)s/2 is finite for
large-enough s, and the L2-norm of (1−∆)s/2(1 + x2)f (n)(x) is dominated by a finite linear combination of

the seminorms µw(f) = |〈wf, f〉| 12 . ///

We return to the proof that all eigenfunctions of S̃ are in S (R), and, therefore, in the domain of the

original operator S. An eigenfunction u for S̃ lies in B1, by Friedrichs’ construction. Friedrichs’ extensions
preserve semi-boundedness, so S̃ ≥ 1, and the inverse S̃−1 exists as a bounded operator, and is self-adjoint.
An eigenvector relation S̃u = λ · u entails λ 6= 0, and gives u = λ−1S̃−1u. Any S̃-eigenfunction u is in the
domain of S̃, inside B1, by construction. By induction, u ∈ B∞ = S (R). ///

That is, again, the heuristic above that appears to determine an orthogonal basis of eigenfunctions for S
does succeed: there is an orthogonal basis of eigenfunctions for S̃, and we have shown that all eigenfunctions
for S̃ are actually in the domain of S.

Up to a constant, the nth Hermite polynomial Hn(x) is characterized by

Hn(x) · e−x
2/2 = Rn e−x

2/2 = (i
∂

∂x
− ix)n e−x

2/2

The above discussion shows that H0, H1, H2, . . . are orthogonal on R with respect to the weight e−x
2

, and
give an orthogonal basis for the weighted L2-space

{f :

∫
R
|f(x)|2 · e−x

2

dx < ∞}

9.9 Essential self-adjointness

The simple examples that exhibit non-symmetric adjoints to symmetric operators show that there can be
many self-adjoint extensions, incomparable in the partial ordering on operators. While Friedrichs extensions
are canonical positive self-adjoint extension TFr ⊃ T of a positive, symmetric, densely-defined operator T , we
are interested in clarifying the conditions under which symmetric, densely-defined T has a unique self-adjoint
extension.

A symmetric, densely-defined operator T with a unique self-adjoint extension is essentially self-adjoint.
Although this use of essential is approximately compatible with the colloquial sense of the word, unfortunately
there is some risk that its use in this context be mistaken for the more ambiguous colloquial sense.

In brief, for unbounded operators arising from differential operators, imposition of various boundary
conditions often gives rise to mutually incomparable self-adjoint extensions. Thus, free-space situations,
lacking boundary conditions, are the best candidates for essential self-adjointness.
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Since a self-adjoint operator is (graph-) closed, any self-adjoint extension of symmetric T must extend the
(graph-) closure T .

As above, symmetric T has no non-real complex eigenvalues λ, that is, that T −λ is injective on DT . This
allows definition of an operator U on the image (T − λ)DT by

U = (T − λ)(T − λ)−1 (for λ 6∈ R, on the image (T − λ)DT )

[9.9.1] Claim: The operator U defined on the image (T−λ)DT is unitary, in the sense that 〈Uv,Uw〉 = 〈v, w〉
for v, w in the domain of U .

Proof: For v, w in the image (T − λ)DT , let v′ = (T − λ)−1v and w′ = (T − λ)−1w. Then

〈Uv,Uw〉 = 〈(T − λ)v′, (T − λ)w′〉

while
〈v, w〉 = 〈(T − λ)v′, (T − λ)w′〉

Thus, we want to show that

〈(T − λ)v′, (T − λ)w′〉 = 〈(T − λ)v′, (T − λ)w′〉

This follows from the symmetry of T . ///

[9.9.2] Theorem: For (graph-) closed, symmetric, densely-defined T , if for some non-real λ both (T −λ)DT

and (T − λ)DT are dense, then T is self-adjoint.

Proof: First, claim that for (graph-) closed and symmetric T , for non-real λ the image (T − λ)DT is closed.
To see this, let (T − λ)vi be Cauchy, with vi in the domain of T . By the unitariness of U , the sequence

U
(
(T − λ)vi

)
= (T − λ)vi

is also Cauchy. Subtracting one sequence from the other, (λ − λ)vi is Cauchy. Since λ 6∈ R, vi is Cauchy.
Similarly, adding the two sequences, (2T + λ+ λ)vi is Cauchy. Because vi is Cauchy, (λ+ λ)vi is Cauchy, so
2Tvi and Tvi are Cauchy. Since the graph of T is closed, the sequence vi ⊕ Tvi converges to some v ⊕ Tv
in the graph of T . Thus, (T − λ)vi certainly converges to (T − λ)v, and verifies the claim that (T − λ)DT is
closed. By hypothesis, the closed subspaces (T − λ)DT and (T − λ)DT are also dense, so each is the whole
space V .

Given v in the domain DT∗ of the adjoint T ∗, we show that v ∈ DT . Since (T − λ)DT = V , there is
v′ ∈ DT such that

(T − λ)v′ = (T ∗ − λ)v

Thus,

〈v′, (T ∗ − λ)w〉 = 〈(T − λ)v′, w〉 = 〈(T ∗ − λ)v, w〉 = 〈v, (T − λ)w〉 (for all w ∈ DT )

Since (T − λ)DT is dense, v′ = v. That is, v ∈ DT . ///

[9.9.3] Corollary: For symmetric, densely-defined T , suppose that for some non-real λ both (T −λ)DT and
(T − λ)DT are dense. Then the closure T of T is self-adjoint, and is the unique self-adjoint extension of T .
In particular, T is essentially self-adjoint.

Proof: The closure T extends T , and is symmetric for symmetric T . Certainly (T −λ)DT contains (T −λ)D,
so when the latter is dense the former is dense. Thus, T meets the hypothesis of the theorem, and is
self-adjoint.

Any self-adjoint extension S = S∗ of T is closed, since adjoints are closed. Thus, any self-adjoint extension
S of T contains the closure T = T ∗∗, for topological reasons. Taking adjoints is inclusion-reversing,
so, S = S∗ ⊂ (T ∗∗)∗ = T ∗ from characterization of adjoints in terms of graphs as above. Therefore,
S = T ∗∗ = T . ///
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[9.9.4] Claim: For a symmetric, densely-defined operator T , density of (T − λ)DT is equivalent to the
assertion that T ∗ does not have eigenvalue λ.

Proof: From earlier examples, T ∗ need not be symmetric, so the natural argument that eigenvalues of
symmetric operators must be real does not apply to T ∗. Apart from that, the argument is the natural one.
The density of (T −λ)DT implies that 〈(T −λ)v, w〉 = 0 for all v ∈ DT if and only if w = 0. If (T ∗−λ)v = 0,
then

0 = 〈(T ∗ − λ)v, w〉 = 〈v, (T − λ)w〉 (for all w ∈ DT )

Since (T − λ)DT is dense, this implies w = 0. Conversely, if (T − λ)DT were not dense, then its closure
would not be the whole space, so would be orthogonal to some v 6= 0. Then

0 = 〈v, (T − λ)w〉 = 〈(T ∗ − λ)v, w〉 (for every w ∈ DT , for v ∈ DT∗)

Thus, since DT is dense, we imagine that it would be consistent to define T ∗v = λv. In fact, by [9.1.1], the
graph of T ∗ is the orthogonal complement in V ⊕ V of the image of the graph of S under the isometry J , so
0 = 〈(T − λ)DT , v〉 implies that the pair (v, λv) is in the graph of the adjoint. Thus, if (T − λ)DT were not
dense, then T ∗ would have eigenvalue λ. ///

Thus, we have a variant form of the criterion for the closure of T being self-adjoint:

[9.9.5] Corollary: For symmetric, densely-defined T , if for some non-real λ, neither λ nor λ is an eigenvalue
for the adjoint T ∗, then the closure T of T is the unique self-adjoint extension of T . In particular, T is
essentially self-adjoint. ///

In the situation of the corollary, since T = T ∗∗, and T ∗∗∗ = T ∗, in fact T
∗

= T ∗.

9.10 Example: essentially self-adjoint operator

In fact, [9.5.2] proved that the domain of the Friedrichs extension S̃ of the restriction S of ∆ to C∞(T) is
H2(T), which says that the graph-closure of S is its Friedrichs extension. Since every self-adjoint extension
contains the graph-closure, and distinct self-adjoint extensions are not comparable, the graph-closure must be
the only self-adjoint extension. That is, the restriction of ∆ to C∞(T) is essentially self-adjoint. Nevertheless,
we want to practice application of the criterion above.

Let S = d2

dx2 on T = R/2πZ with domain DS = C∞(T). Since S is non-positive, there is at least one

meaningful self-adjoint extension, the Friedrichs extension. However, we want the (graph-) closure S of S to
be that self-adjoint extension, giving uniqueness in a strong, unambiguous fashion.

We do not directly characterize the domain DS∗ of S∗, apart from the fact that it contains the
domain of S. It is convenient that S stabilizes DS . The translation action of T on functions on T is
(Rx f)(y) = f(y + x). This action is unitary, and gives a (jointly) continuous map T× L2(T) −→ L2(T). A
constant-coefficient differential operator such as S commutes with the translation action, at least on DS : in
symbols, Rt ◦ T = T ◦ Rt for all t ∈ T. Indeed, this invariance allows such operators to descend from R to
the quotient T. Certainly DS is stable under translation.

[9.10.1] Claim: The domain DS∗ of S∗ is stable under translation.

Proof: Let J(x⊕ y) = −y ⊕ x be the usual map on L2(T)⊕ L2(T). The map J is an isometry with respect
to the usual inner product 〈x+ x′, y + y′〉 = 〈x, y〉+ 〈x′, y′〉 on L2(T)⊕ L2(T). The graph of the adjoint is
characterized as the orthogonal complement of the image by J of the graph of S. Thus, for y ⊕ S∗y in the
graph of S∗, for all x⊕ Sx in the graph of S, because S commutes with Rt on DS ,

〈Rty ⊕RtS∗y, J(x⊕ Sx)〉 = 〈Rty ⊕RtS∗y,−Sx⊕ x〉

= 〈y ⊕ S∗y,−R−1
t Sx⊕R−1

t x〉 = 〈y ⊕ S∗y,−SR−1
t x⊕R−1

t x〉 = 0

because R−1
t x ∈ DS . Thus, Rty ∈ DS∗ , as claimed. ///

The action of ϕ ∈ C∞(T) on L2(T) is by the integral operator

Rϕv =

∫
T
ϕ(t) ·Rt v dt
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Since t→ ϕ(t)·Rtv is a compactly-supported, continuous, L2(T)-valued function on T, it has a Gelfand-Pettis
integral. Further, DS is stable under this action, and the translation action

T× C∞(T) −→ C∞(T)

is continuous with respect to the Fréchet-space topology. For ϕ ∈ C∞(T), the corresponding integral operator
Rϕ maps L2(T) to C∞(R), by smoothing of distributions [14.5].

[9.10.2] Claim: The operators Rϕ for ϕ ∈ C∞(T) commute with S∗.

Proof: Since the operators S on DS and S∗ on DS∗ are not continuous on L2(T), the properties of Gelfand-
Pettis integrals must be used scrupulously. For ϕ ∈ C∞(T), v ∈ DS∗ , and w ∈ DS , using the commutativity
of Gelfand-Pettis integrals with continuous maps, a sensible computation succeeds:

〈RϕS∗v, w〉 = 〈
∫
T
ϕ(t)RtS

∗v dt, w〉 =

∫
T
〈ϕ(t)RtS

∗v, w〉 dt =

∫
T
ϕ(t)〈RtS∗v, w〉 dt

=

∫
T
ϕ(t)〈S∗v,R−1

t w〉 dt =

∫
T
ϕ(t)〈v, S R−1

t w〉 dt =

∫
T
ϕ(t)〈v,R−1

t Sw〉 dt

=

∫
T
ϕ(t)〈Rtv, Sw〉 dt = 〈

∫
T
ϕ(t)Rtv dt, Sw〉 = 〈Rϕv, Sw〉 = 〈S∗Rϕv, w〉

This is the desired commutativity. ///

Now we can prove that S∗ has no non-real eigenvalues, so S meets the hypotheses of the theorem of
the previous section, and its closure S is the unique self-adjoint extension of S. Suppose v ∈ DS∗ and
(S∗ − λ)v = 0. Then, for any ϕ ∈ C∞(T),

0 = Rϕ · 0 = Rϕ(S∗ − λ)v = (S∗ − λ)Rϕv = (S − λ)Rϕv

the last equality because Rϕ maps everything to C∞(T), on which S∗ acts by S. Although S∗ is not assured
to be symmetric (unless S∗ = S = S∗∗, which is the sought-after essential self-adjointness of S itself!), the
operator S is symmetric, so has no non-real eigenvalues, giving Rϕv = 0. For given ϕ, taking ϕ sufficiently
far along in an approximate identity gives Rϕv 6= 0 for v 6= 0. Thus, we conclude that v = 0, and S∗ has no
non-real eigenvalues. ///

Thus, the closure S of S is the unique self-adjoint extension of S. Restricted to the graph of S, the metric
on L2(T)⊕ L2(T) gives norm-squared

|x⊕ Sx|2 = |x|2 + |Sx|2 ≥ |x|2 + |〈Sx, x〉|+ |Sx|2 − 1
2 · (|x|+ |Sx|)

2 ≥ 1
2 ·
(
|x|2 + 〈−Sx, x〉+ |Sx|2

)
since Cauchy-Schwarz-Bunyakowsky and 2ab ≤ (a+ b)2 give

|〈Sx, x〉| ≤ |Sx| · |x| ≤ 1
2 · (|x|+ |Sx|)

2

Thus, the completion H2(T) of DS with respect to the norm attached to the hermitian inner product

〈x, y〉+ 〈−Sx, y〉+ 〈S2x, y〉 � 〈x, y〉H2 (for x, y ∈ DS)

is exactly the domain of S. In the 〈, 〉H2 topology, S is continuous on DS , and S is the extension by continuity
to H2(T).

9.A Appendix: compact operators

The spectrum σ(T ) of a continuous linear operator T : X → X on a Hilbert space X is the collection of
complex numbers λ such that T −λ does not have a continuous linear inverse. The discrete spectrum σdisc(T )
is the collection of complex numbers λ such that T − λ fails to be injective. In other words, the discrete
spectrum is the collection of eigenvalues. The continuous spectrum σcont(T ) is the collection of complex
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numbers λ such that T − λ · 1X is injective, does have dense image, but fails to be surjective. The residual
spectrum σres(T ) is everything else: neither discrete nor continuous spectrum. That is, the residual spectrum
of T is the collection of complex numbers λ such that T − λ · 1X is injective, and fails to have dense image
(so is certainly not surjective).

To see that there are no other possibilities for failure of existence of an inverse, note that the closed graph
theorem [9.B.3] implies that a bijective, continuous, linear map T : X → Y of Banach spaces has continuous
inverse. Indeed, granting that the inverse exists as a linear map, its graph is

graph of T−1 = {(y, x) ∈ Y ×X : (x, y) in the graph of T ⊂ X × Y }

Since the graph of T is closed, the graph of T−1 is closed, and by the closed graph theorem T−1 is continuous.
As usual, the adjoint T ∗ of a continuous linear map T : X → Y from one Hilbert space is defined by

〈Tx, y〉Y = 〈x, T ∗y〉Y

[9.A.1] Claim: An (bounded) normal operator T : X → X, that is, with TT ∗ = T ∗T , has empty residual
spectrum. That is, for λ not an eigenvalue, T − λ has dense image.

Proof: The adjoint of T − λ is T ∗ − λ, so consider λ = 0 to lighten the notation. Suppose that T does not
have dense image. Then there is non-zero z such that

0 = 〈z, Tx〉 = 〈T ∗z, x〉 (for every x ∈ X)

Therefore T ∗z = 0, and the 0-eigenspace Z of T ∗ is non-zero. Since T ∗(Tz) = T (T ∗z) = T (0) = 0 for z ∈ Z,
T ∗ stabilizes Z. That is, Z is both T and T ∗-stable. Therefore, T = (T ∗)∗ acts on Z by (the complex
conjugate of) 0, and T has non-trivial 0-eigenvectors, contradiction. ///

A set in a topological space is pre-compact when its closure is compact. A linear operator T : X → Y
on Hilbert spaces is compact when it maps the unit ball in X to a pre-compact set in Y . Equivalently, T is
compact if and only if it maps bounded sequences in X to sequences in Y with convergent subsequences.

[9.A.2] Claim: An operator-norm limit of compact operators is compact. A compact operator T : X → Y
with Y a Hilbert space is an operator norm limit of finite rank operators.

Proof: Let Tn → T in uniform operator norm, with compact Tn. Given ε > 0, let n be sufficiently large such
that |Tn − T | < ε/2. Since Tn(B) is pre-compact, there are finitely many y1, . . . , yt such that for any x ∈ B
there is i such that |Tnx− yi| < ε/2. By the triangle inequality

|Tx− yi| ≤ |Tx− Tnx|+ |Tnx− yi| < ε

Thus, T (B) is covered by finitely many balls of radius ε. ///

A continuous linear operator is of finite rank when its image is finite-dimensional. A finite-rank operator
is compact, since all balls are pre-compact in a finite-dimensional Hilbert space.

[9.A.3] Theorem: A compact operator T : X → Y with Y a Hilbert space is an operator norm limit of
finite rank operators.

Proof: Let B be the closed unit ball in X. Since T (B) is pre-compact it is totally bounded, so for given
ε > 0 cover T (B) by open balls of radius ε centered at points y1, . . . , yn. Let p be the orthogonal projection
to the finite-dimensional subspace F spanned by the yi and define Tε = p ◦ T . Note that for any y ∈ Y and
for any yi

|p(y)− yi| ≤ |y − yi|

since y = p(y) + y′ with y′ orthogonal to all yi. For x in X with |x| ≤ 1, by construction there is yi such
that |Tx− yi| < ε. Then

|Tx− Tεx| ≤ |Tx− yi|+ |Tεx− yi| < ε+ ε

Thus, Tε → T in operator norm as ε→ 0. ///
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Hilbert-Schmidt operators are an important concrete class of compact operators, as is verified in the claim
below. Originally Hilbert-Schmidt operators on function spaces L2(X) arose as operators given by integral
kernels: for X and Y σ-finite measure spaces, and for integral kernel K ∈ L2(X × Y ), the associated
Hilbert-Schmidt operator T : L2(X) −→ L2(Y ) is

Tf(y) =

∫
X

K(x, y) f(x) dx

By Fubini’s theorem and the σ-finiteness, for orthonormal bases ϕα for L2(X) and ψβ for L2(Y ), the collection
of functions ϕα(x)ψβ(y) is an orthonormal basis for L2(X × Y ). Thus, for some scalars cij ,

K(x, y) =
∑
ij

cij ϕi(x) ψj(y)

Square-integrability is ∑
ij

|cij |2 = |K|2L2(X×Y ) < ∞

The indexing sets may as well be countable, since an uncountable sum of positive reals cannot converge.
Given f ∈ L2(X), the image Tf is in L2(Y ), since

Tf(y) =
∑
ij

cij〈f, ϕi〉ψj(y)

has L2(Y ) norm easily estimated by

|Tf |2L2(Y ) ≤
∑
ij

|cij |2|〈f, ϕi〉|2 |ψj |2L2(Y ) ≤ |f |
2
L2(X)

∑
ij

|cij |2 |ϕi|2L2(X) |ψj |
2
L2(Y )

= |f |2L2(X)

∑
ij

|cij |2 = |f |2L2(X) · |K|
2
L2(X×Y )

The adjoint T ∗ : L2(Y )→ L2(X) has kernel

K∗(y, x) = K(x, y)

by computing

〈Tf, g〉L2(Y ) =

∫
Y

(∫
X

K(x, y)f(x) dx
)
g(y) dy =

∫
X

f(x)
(∫

Y

K(x, y) g(y) dy
)
dx

The intrinsic characterization of Hilbert-Schmidt operators V → W on Hilbert spaces V,W is as the
completion of the space of finite-rank operators V → W with respect to the Hilbert-Schmidt norm, whose
square is

|T |2HS = tr(T ∗T ) (for T : V →W and T ∗ : W ∗ → V ∗)

The trace of a finite-rank operator from a Hilbert space to itself can be described in coordinates and then
proven independent of the choice of coordinates, or trace can be described intrinsically, obviating need for
proof of coordinate-independence. First, in coordinates, for an orthonormal basis ei of V , and finite-rank
T : V → V , define

tr(T ) =
∑
i

〈Tei, ei〉 (with reference to orthonormal basis {ei})

With this description, one would need to show independence of the orthonormal basis. For the intrinsic
description, consider the map from V ⊗ V ∗ to finite-rank operators on V induced from the bilinear map

v × λ −→
(
w → λ(w) · v

)
(for v ∈ V and λ ∈ V ∗)
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Trace is easy to define in these terms tr(v ⊗ λ) = λ(v), and

tr
(∑
v,λ

v ⊗ λ
)

=
∑
v,λ

λ(v) (finite sums)

Expression of trace in terms of an orthonormal basis {ej} is easily obtained from the intrinsic form: given a
finite-rank operator T and an orthonormal basis {ei}, let λi(v) = 〈v, ei〉. We claim that T =

∑
i Tei ⊗ λi.

Indeed, (∑
i

Tei ⊗ λi
)

(v) =
∑
i

Tei · λi(v) =
∑
i

Tei · 〈v, ei〉 = T
(∑

i

ei · 〈v, ei〉
)

= Tv

Then the trace is

trT = tr
(∑

i

Tei ⊗ λi
)

=
∑
i

tr(Tei ⊗ λi) =
∑
i

λi(Tei) =
∑
i

〈Tei, ei〉

Similarly, adjoints T ∗ : W → V of maps T : V → W are expressible in these terms: for v ∈ V , let λv ∈ V ∗
be λv(v

′) = 〈v′, v〉, and for w ∈W let µw ∈W ∗ be µw(w′) = 〈w′, w〉. Then

(w ⊗ λv)∗ = v ⊗ µw (for w ∈W and v ∈ V )

since
〈(w ⊗ λv)v′, w′〉 = 〈λv(v′)w,w′〉 = 〈v′, v〉〈w,w′〉 = 〈v′, 〈w′, w〉 · v〉 = 〈v′, (v ⊗ µw)w′〉

Since it is defined as a completion, the collection of all Hilbert-Schmidt operators T : V →W is a Hilbert
space, with the hermitian inner product 〈S, T 〉 = tr(T ∗S).

[9.A.4] Claim: The Hilbert-Schmidt norm | |HS dominates the uniform operator norm | |op, so Hilbert-
Schmidt operators are compact.

Proof: Given ε > 0, let e1 be a vector with |e1| ≤ 1 such that |Tv1| ≥ |T |op − ε. Extend {e1} to an
orthonormal basis {ei}. Then

|T |2op = sup
|v|≤1

|Tv|2 ≤ |Tv1|2 + ε ≤ ε+
∑
j

|Tvj |2 = |T |2HS

Thus, Hilbert-Schmidt norm limits of finite-rank operators are operator-norm limits of finite-rank operators,
so are compact. ///

It is already nearly visible that the L2(X×Y ) norm on kernels K(x, y) is the same as the Hilbert-Schmidt
norm on corresponding operators T : V →W , yielding

[9.A.5] Claim: Operators T : L2(X)→ L2(Y ) given by integral kernels K ∈ L2(X×Y ) are Hilbert-Schmidt,
that is, are Hilbert-Schmidt norm limits of finite-rank operators.

Proof: To prove properly that the L2(X × Y ) norm on kernels K(x, y) is the same as the Hilbert-Schmidt
norm on corresponding operators T : V → W , T should be expressed as a limit of finite-rank operators Tn
in terms of kernels Kn(x, y) which are finite sums of products ϕ(x)⊗ ψ(y). Thus, first claim that

K(x, y) =
∑
i

ϕi(x)Tϕi(y) (in L2(X × Y ))

Indeed, the inner product in L2(X × Y ) of the right-hand side against any ϕi(x)ψj(y) agrees with the inner
product of the latter against K(x, y), and we have assumed K ∈ L2(X × Y ). With K =

∑
ij cijϕi ⊗ ψj ,

Tϕi =
∑
j

cij ψj
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Since
∑
ij |cij |2 converges,

lim
i
|Tϕi|2 = lim

i

∑
j

|cij |2 = 0

and
lim
n

∑
i>n

|Tϕi|2 = lim
n

∑
i>n

|cij |2 = 0

so the infinite sum
∑
i ϕi ⊗ Tϕi converges to K in L2(X × Y ). In particular, the truncations

Kn(x, y) =
∑

1≤i≤n

ϕi(x)Tϕi(y)

converge to K(x, y) in L2(X × Y ), and give finite-rank operators

Tnf(y) =

∫
X

Kn(x, y) f(x) dx

We claim that Tn → T in Hilbert-Schmidt norm. It is convenient to note that by a similar argument
K(x, y) =

∑
i T
∗ψi(x)ψi(y). Then

|T − Tn|2HS = tr
(

(T − Tn)∗ ◦ (T − Tn)
)

=
∑
i,j>n

tr
((
T ∗ψi ⊗ ψi

)
◦
(
ϕj ⊗ Tϕj

))

=
∑
i,j>n

〈T ∗ψi, ϕj〉L2(X) · 〈Tϕj , ψi〉L2(Y ) =
∑
i,j>n

|cij |2 −→ 0 (as n→∞)

since
∑
ij |cij |2 converges. Thus, Tn → T in Hilbert-Schmidt norm. ///

Now we come to the spectral theorem for self-adjoint compact operators. Again, the λ-eigenspace Vλ of a
self-adjoint compact operator T on a Hilbert space T is

Vλ = {v ∈ V : Tv = λ · v}

We have already shown that eigenvalues, if any, of self-adjoint T are real.

[9.A.6] Theorem: Let T be a self-adjoint compact operator on a non-zero Hilbert space V .
• The completion of ⊕Vλ is all of V . In particular, there is an orthonormal basis of eigenvectors.
• For infinite-dimensional V , 0 is the only accumulation point of the set of eigenvalues.
• Every eigenspaces Xλ for λ 6= 0 is finite-dimensional. The 0-eigenspace may be {0}, finite-dimensional, or
infinite-dimensional.
• (Rayleigh-Ritz) One or the other of ±|T |op is an eigenvalue of T , with operator norm | · |op.

Proof: An alternative expression for the operator norm is needed:

[9.A.7] Lemma: |T |op = sup|x|≤1 |〈Tx, x〉| for T a self-adjoint continuous linear operator on a Hilbert space.

Proof: Let s be that supremum. By Cauchy-Schwarz-Bunyakowsky, s ≤ |T |op. For any x, y, by polarization

2|〈Tx, y〉+ 〈Ty, x〉| = |〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉|

≤ |〈T (x+ y), x+ y〉|+ |〈T (x− y), x− y〉| ≤ s|x+ y|2 + s|x− y|2 = 2s(|x|2 + |y|2)

With y = t · Tx with t > 0, because T = T ∗,

〈Tx, y〉 = 〈Tx, t · Tx〉 = t · |Tx|2 ≥ 0 (for y = t · Tx with t > 0)

and

〈Ty, x〉 = 〈t · T 2x, t · x〉 = t · 〈Tx, Tx〉 = t · |Tx|2 ≥ 0 (for y = t · Tx with t > 0)
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Thus,

|〈Tx, y〉|+ |〈Ty, x〉| = 〈Tx, y〉+ 〈Ty, x〉 = |〈Tx, y〉+ 〈Ty, x〉| (for y = t · Tx with t > 0)

From this, and from the polarization identity divided by 2,

|〈Tx, y〉|+ |〈Ty, x〉| = |〈Tx, y〉+ 〈Ty, x〉| ≤ s(|x|2 + |y|2) (with y = t · Tx)

Divide through by t to obtain

|〈Tx, Tx〉|+ |〈T 2x, x〉| ≤ s

t
· (|x|2 + |Tx|2)

Minimize the right-hand side by taking t = |x|/|Tx|, and note that 〈T 2x, x〉 = 〈Tx, Tx〉, giving

2|〈Tx, Tx〉| ≤ 2s · |x| · |Tx| ≤ 2s · |x|2 · |T |op

Thus, |T |op ≤ s. ///

The last assertion of the theorem is the starting point of the proof and uses |T | = sup|x|≤1 |〈Tx, x〉| and
the fact that any value 〈Tx, x〉 is real, by self-adjointness. Choose a sequence {xn} so that |xn| ≤ 1 and
|〈Tx, x〉| → |T |. Replacing it by a subsequence if necessary, the sequence 〈Tx, x〉 of real numbers has a limit
λ = ±|T |. Then

0 ≤ |Txn − λxn|2 = 〈Txn − λxn, Txn − λxn〉 = |Txn|2 − 2λ〈Txn, xn〉+ λ2|xn|2

≤ λ2 − 2λ〈Txn, xn〉+ λ2

The right-hand side goes to 0. By compactness of T , replace xn by a subsequence so that Txn converges
to some vector y. The previous inequality shows λxn → y. For λ = 0, we have |T | = 0, so T = 0. For
λ 6= 0, λxn → y implies xn −→ λ−1y. For x = λ−1y, we have Tx− λx and x is the desired eigenvector with
eigenvalue ±|T |.

Now use induction. The completion Y of the sum of non-zero eigenspaces is T -stable. We claim that the
orthogonal complement Z = Y ⊥ is T -stable, and the restriction of T to is a compact operator. Indeed, for
z ∈ Z and y ∈ Y , 〈Tz, y〉 = 〈z, Ty〉 = 0, proving stability. The unit ball in Z is a subset of the unit ball B
in X, so has pre-compact image TB ∩Z in X. Since Z is closed in X, the intersection TB ∩Z of Z with the
pre-compact TB is pre-compact, proving T restricted to Z = Y ⊥ is still compact. Self-adjoint-ness is clear.

By construction, the restriction T1 of T to Z has no eigenvalues on Z, since any such eigenvalue would
also be an eigenvalue of T on Z. Unless Z = {0} this would contradict the previous argument, which showed
that ±|T1| is an eigenvalue on a non-zero Hilbert space. Thus, it must be that the completion of the sum of
the eigenspaces is all of X.

To prove that eigenspaces Vλ for λ 6= 0 are finite-dimensional, and that there are only finitely-many
eigenvalues λ with |λ| > ε for given ε > 0, let B be the unit ball in Y =

∑
|λ|>εXλ. The image of B by T

contains the ball of radius ε in Y . Since T is compact, this ball is pre-compact, so Y is finite-dimensional.
Since the dimensions of the Xλ are positive integers, there can be only finitely-many of them with |λ| > ε,
and each is finite-dimensional. It follows that the only possible accumulation point of the set of eigenvalues
is 0, and, for X infinite-dimensional, 0 must be an accumulation point. ///

[9.A.8] Corollary: For a self-adjoint compact operator T : X → X on a Hilbert space X, for λ 6= 0 not an
eigenvalue, (T − λ)X = X.

Proof: By the spectral theorem, (T − λ)−1 exists. ///
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9.B Appendix: open mapping and closed graph theorems

[9.B.1] Theorem: (Open Mapping Theorem) For a continuous linear surjection T : X → Y of Banach
spaces, there is δ > 0 such that for all y ∈ Y with |y| < δ there is x ∈ X with |x| ≤ 1 such that Tx = y. In
particular, T is an open map.

[9.B.2] Corollary: A bijective continuous linear map of Banach spaces is an isomorphism. ///

Proof: In the corollary the non-trivial point is that T is open, which is the point of the theorem. The linearity
of the inverse is easy.

For every y ∈ Y there is x ∈ X so that Tx = y. For some integer n we have n > |x|, so Y is the union of
the sets TB(n), with usual open balls

B(n) = {x ∈ X : |x| < n}

By Baire category [15.A], the closure of some one of the sets TB(n) contains a non-empty open ball

V = {y ∈ Y : |y − yo| < r}

for some r > 0 and yo ∈ Y . Since we are in a metric space, the conclusion is that every point of V occurs as
the limit of a Cauchy sequence consisting of elements from TB(n). Certainly

{y ∈ Y : |y| < r} ⊂ {y1 − y2 : y1, y2 ∈ V }

Thus, every point in the ball B′r of radius r centered at 0 in Y is the sum of two limits of Cauchy sequences
from TB(n). Thus, surely every point in B′r is the limit of a single Cauchy sequence from the image TB(2n)
of the open ball B(2n) of twice the radius. That is, the closure of TB(2n) contains the ball B′(r).

Using the linearity of T , the closure of TB(ρ) contains the ball B′(rρ/2n) in Y .
Given |y| < 1, choose x1 ∈ B(2n/r) so that |y − Tx1| < ε. Choose x2 ∈ B(ε · 2n

r ) so that
|(y − Tx1)− Tx2| < ε/2. Choose x3 ∈ B( ε2 ·

2n
r ) so that

|(y − Tx1 − Tx2)− Tx3| < ε/22

Choose x4 ∈ B( ε22 · 2n
r ) so that

|(y − Tx1 − Tx2 − Tx3)− Tx4| < ε/23

and so on. The sequence
x1, x1 + x2, x1 + x2 + x3, . . .

is Cauchy in X. Since X is complete, the limit x of this sequence exists in X, and Tx = y. We find that

x ∈ B(
2n

r
) +B(ε

2n

r
) +B(

ε

2
· 2n

r
) +B(

ε

22
· 2n

r
) + . . . ⊂ B((1 + 2ε)

2n

r
)

Thus,

TB((1 + ε)
2n

r
) ⊃ {y ∈ Y : |y| < 1}

This proves open-ness at 0. ///

It is straightforward to show [65] that a continuous map f : X → Y of Hausdorff topological spaces has
closed graph

Γf = {(x, y) : f(x) = y} ⊂ X × Y

[65] To show that a continuous map f : X → Y of topological spaces with Y Hausdorff has closed graph Γf , show

the complement is open. Take (x, y) 6∈ Γf . Let V1 be a neighborhood of f(x) and V2 a neighborhood of y such that

V1 ∩ V2 = φ, using Hausdorff-ness. By continuity of f , for x′ in a suitable neighborhood U of x, the image f(x′) is

inside V1. Thus, the neighborhood U × V2 of (x, y) does not meet Γf .
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Similarly, a topological space X is Hausdorff if and only if the diagonal X∆ = {(x, x) : x ∈ X} is closed in

X ×X. [66]

[9.B.3] Theorem: (Closed Graph Theorem) A linear map T : V → W of Banach spaces is continuous if it
has closed graph Γ = {(v, w) : Tv = w}.
Proof: The direct sum V ⊕W with norm |v ⊕w| = |v|+ |w| is a Banach space. Since Γ is a closed subspace
of V ⊕W , it is a Banach space itself with the restriction of this norm. The projection πV : V ⊕W → V is
a continuous linear map. The restriction πV |Γ of πV to Γ is still continuous, and still surjective, because it
T is an everywhere-defined function on V . By the open mapping theorem, πV |Γ is open. Thus, the bijection
πV |Γ is a homeomorphism. Letting πW : V ⊕W →W be the projection to W ,

T = πW ◦
(
πV |Γ

)−1
: V −→ W

expresses T as a composition of continuous functions. ///

9.C Appendix: irreducibles of compact groups

As usual, now specifically for compact topological groups K, a representation of K on a quasi-complete,
locally convex topological vector space V is a continuous map K×V → V making K act by continuous linear
maps on V . Such a representation V is (topologically) irreducible when there are no K-stable (topologically)
closed subspaces of V except {0} and V itself. A K-homomorphism ϕ : V → W of K-representations is a
continuous linear map which respects the action of K: ϕ(k · v) = k · ϕ(v).

[9.C.1] Claim: Every representation of compact K on a Hilbert space V is isomorphic to a unitary
representation of K on V . That is, there is another inner product 〈, 〉′ on V , comparable to the original
inner product 〈, 〉 in the sense that there are finite constants 0 < c1, c2 such that

c1 · 〈v, v〉 ≤ 〈v, v〉′ ≤ c2 · 〈v, v〉

for all v ∈ V , and such that 〈k · v, k · v〉 = 〈v, v〉′ for all v ∈ V and k ∈ K.

Proof: The natural idea to average the original inner product by the action of K succeeds, because K is
compact: let

〈v, v〉′ =

∫
K

〈k · v, k · v〉 dk

Since K is compact, for each v ∈ V the orbit K · v = {k · v : k ∈ K} is compact, so bounded. By Banach-
Steinhaus (uniform boundedness) [13.12.3], the action of elements k ∈ K are uniformly equicontinuous: given
ε > 0, there is δ > 0 such that

|v| < δ =⇒ |k · v| < ε

With ε = 1, |v| ≤ 1 implies |k ·v| < δ−1. That is, the operator norm of v → k ·v is at most δ−1 for all k ∈ K.
That is, |k · v| ≤ δ−1 · |v| for all k, v. Replacing k by k−1 and v by k · v, we similarly have |v| ≤ δ−1|k · v|,
which gives δ|v| ≤ |k · v|. Thus, integrating,

δ2 · |v|2 ·meas (K) ≤
∫
K

|k · v|2 dk ≤ δ−2 · |v|2 ·meas (K)

Not every norm arises from an inner product. To see that the new norm-squared |v|2new =
∫
K
|k · v|2 dk does

arise from an inner product, it suffices to prove the polarization identity

|v + w|2new − |v − w|2new = 2|v|2new + 2|w|2new

[66] To show that closed-ness of the diagonal X∆ in X × X implies X is Hausdorff, let x1 6= x2 be points in X.

Then there is a neighborhood U1 × U2 of (x1, x2), with Ui a neighborhood of xi, not meeting the diagonal. That is,

(x, x′) ∈ U1 × U2 implies x 6= x′. That is, U1 ∩ U2 = φ.
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This follows by integrating the polarization identity for the original norm. ///

The action of K on L2(K) by right translation is unitary, because the measure is invariant. The continuity
of this action follows by a simpler form of the argument of [6.1] and [6.2]. As there, K acts continuously
on Coc (K) by right translation. The density of Coc (K) in L2(K), and the domination of the L2 norm by the
sup-norm, give the continuity.

For λ ∈ V ∗ and v ∈ V , let cv,λ(k) = λ(k · v) for k ∈ K. The function cv,λ on K is a (matrix) coefficient
function.

[9.C.2] Claim: Every Hilbert space irreducible V of K has a K-homomorphism to L2(K), by the map

v −→ cv,λ (for fixed 0 6= λ ∈ V ∗)

Proof: Without loss of generality, we can assume V is unitary, by the previous. The function k× v → k · v is
a (jointly) continuous function K × V → V , by assumption. Composing with λ gives a continuous function
K ×V → C. We claim that v → (k → cv,λ(k)) is a continuous Co(K)-valued function on V : for |v− v′| < δ,

|cv,λ(k)− cv′,λ(k′)| = |λ(k · v − k′ · v′)| = |λ(k · v − k′ · v) + λ(k′ · v − k′ · v′)|

≤ |λ|V ∗ ·
(

(k · v − k′ · v|V + (k′ · v − k′ · v′|V
)

By unitariness, |k′ · (v− v′)| = |v− v′|. By the continuity of the action of K on V , |k · v− k′ · v| < ε for given
v for k′ sufficiently close to k.

To see that v → cv,λ is a K-homomorphism, for x, y ∈ K,

cx·v,λ(y) = λ(y · (x · v)) = λ((y · x) · v) = cv,λ(yx)

This proves the claim. ///

As usual [14.1], ϕ ∈ Coc (K) acts on a K-representation W by integral operators

ϕ · w =

∫
K

ϕ(k) k · w dk

Thus, such W becomes a Coc (K)-representation, as discussed in somewhat greater generality in [9.D].
Potential issues about multiplicities are clarified in [9.D.14].

[9.C.3] Claim: L2(K) is the completion of an orthogonal direct sum ⊕VmV · V of orthogonal sums
mV · V = V ⊕ . . .⊕ V︸ ︷︷ ︸

mV

of Coc (K)-irreducibles V , each occurring with finite multiplicity mV .

[9.C.4] Remark: This claim is an extreme case of [7.B]’s treatment of compact Γ\G, where now Γ = {1}.
The argument simplifies, as well. Potential ambiguities about the notion of multiplicity are resolved in
[9.D.14].

Proof: On L2(K) this is

(ϕ · f)(x) =

∫
K

ϕ(y) f(xy) dy =

∫
K

ϕ(x−1y) f(y) dy

The function x × y → ϕ(x−1y) is continuous on K × K, so is in L2(K × K) by the compactness of K.
Thus, ϕ gives a Hilbert-Schmidt operator [9.A.5] on L2(K). The adjoint of the operator given by ϕ is easily
determined, and is again in Coc (K). This action is non-degenerate, in the sense that for given f ∈ L2(K),
there is ϕ ∈ Coc (K) such that ϕ · f 6= 0, from [14.1.5]. That is, the ring of operators on L2 is adjoint-stable,
non-degenerate, and consists of compact operators, so [7.2.18] applies: L2(K) is the completion of a direct
sum of irreducible Coc (K)-representations, each occurring with finite multiplicity. ///

[9.C.5] Corollary: The Coc (K)-irreducible subrepresentations in L2(K) are exactly the K-irreducible
subrepresentations. Thus, L2(K) is the completion of an orthogonal direct sum of K-irreducibles V , each
occurring with finite multiplicity mV .
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Proof: This is a special case of [14.1.6] and [14.1.7]: irreducible Coc (K)-subrepresentations of a K-
representation are irreducible K-subrepresentations. ///

[9.C.6] Remark: With a little more effort, one can prove that mV = dimC V , and more (for example, Schur
inner-product relations), but the assertion of the claim is all we need for our immediate purposes.

[9.C.7] Corollary: All Hilbert-space irreducibles of compact K are finite-dimensional.

Proof: A copy of every K-irreducible appears inside L2(K), where all irreducibles are finite-dimensional.
///

[9.C.8] Corollary: For two compact groups K1 and K2, the Hilbert-space irreducibles of K1×K2 are tensor
products of Hilbert-space irreducibles of K1 and of K2.

Proof: Let V be an irreducible Hilbert-space representation ofK1×K2. From above, without loss of generality,
the representation is unitary. From the previous corollary, V is finite-dimensional. Forgetting the action of
K2, V is a finite-dimensional representation of K1, so is a finite orthogonal direct sum of irreducibles.

For an irreducible W of K appearing in V , the W -isotype VW of V is the (not necessarily direct) sum of all
copies of W in V . By [9.D.14], this sum is expressible an orthogonal direct sum. We claim that K2 stabilizes
VW . If not, the orthogonal projection from some image k2 ·VW to some other isotype VW

′
would be non-zero.

But the orthogonal projections to K1-isotypes are K1-homomorphisms, as are the orthogonal projections
to copies of W inside VW . The kernel and image of K1-homomorphisms W → W ′ are subrepresentations,
since in finite-dimensional spaces all subspaces are (topologically) closed. Thus, if the kernel is not all of W ,
the map is an injection, so has non-zero image, so is all of W ′, giving an isomorphism W → W ′, which is
impossible for non-isomorphic irreducibles. Thus, K2 stabilizes VW . Thus, K1 ×K2 stabilizes VW , so by
irreducibility of V this (non-zero) isotype is all of V , that is, V = VW .

In any case, HomK1
(W,V ) has a K2-representation structure given by post-application of the action of k2:

(k2 · ϕ)(w) = k2 · ϕ(w)

The map W ⊗C HomK1
(W,V ) −→ V by w⊗ϕ→ ϕ(w) is a non-zero K1×K2-homomorphism to V , so must

surject to V , by the irreducibility of V .
For the converse: let W1,W2 be unitary irreducibles of K1,K2, and claim that V = W1 ⊗ W2 is an

irreducible K1 ×K2-representation. For a K1 ×K2-subrepresentation W ⊂ V , the orthogonal projections
to W and W⊥ are K1 × K2-homomorphisms. Thus, if V is reducible, then it has non-scalar K1 × K2-
endomorphisms. Proving that any endomorphism ϕ of V is scalar will prove that V is irreducible. For fixed
w2 ∈W2 and λ2 ∈W ∗2 , we can map W1 ⊗W2 →W1 by w1 ⊗ w2 −→ λ2(w2) · w1, and then consider

w1 −→ w1 ⊗ w2 −→ ϕ(w1 ⊗ w2) −→ W1

This is a K1-homomorphism, so is a scalar cw2,λ2
by (the finite-dimensional version of) Schur’s lemma. The

map W2 → W ∗∗2 ≈ W2 by w2 → (λ2 → cw2,λ2) is a K2-homomorphism, so by Schur’s lemma there is a
constant c such that cw2,λ2 = c · λ2(w2). Then, for all λ1 ∈W ∗1 and λ2 ∈W ∗2 ,

(λ1 ⊗ λ2)(ϕ(w1 ⊗ w2)) = λ1(cw2,λ2 · w1) = λ1(w1) · c · λ2(w2) = c · (λ1 ⊗ λ2)(w1 ⊗ w2)

Thus, any K1 ×K2-endomorphism ϕ acts by a scalar, so V is irreducible. ///

9.D Appendix: spectral theorem, Schur’s lemma, multiplicities

A portion of a spectral theorem for bounded self-adjoint operators on Hilbert spaces is necessary to
prove a form of Schur’s lemma [9.D.12], itself used to remove ambiguities about multiplicities of irreducible
representations [9.D.14].

The present discussion continues in the context of [9.A]. Let T be a continuous self-adjoint linear map
V → V for a (separable) Hilbert space V , with spectrum

σ(T ) = {λ ∈ C : (T − λ)−1 does not exist}
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[9.D.1] Claim: For self-adjoint T , the spectrum σ(T ) is a non-empty compact subset of R.

Proof: First, we show that T − λ is invertible for |λ| > |T |op. The natural heuristic expands a geometric
series:

(T − λ)−1 = −λ−1 · (1− T

λ
)−1 = −λ−1 ·

(
1 +

T

λ
+ (

T

λ
)2 + . . .

)
Since |T/λ|op < 1, the latter infinite sum does converge in operator norm. Then, just as with geometric
series of real or complex numbers, it is easy to check that this infinite sum converges to (T − λ)−1.

To prove that σ(T ) is closed, show that µ ∈ C sufficiently close to λ 6∈ σ(T ) is also not in σ(T ). Again, this
uses geometric series expansions as a natural heuristic to obtain an expression for (T −µ)−1 as a convergent
series:

(T − µ)−1 = ((T − λ)− (µ− λ))−1 =
(

1− (µ− λ)(T − λ)−1
)
◦ (T − λ)−1

=
(

1 + (µ− λ)(T − λ)−1 +
(
(µ− λ)(T − λ)−1)2 + . . .)

)
◦ (T − λ)−1

For |µ−λ| small enough that |(µ−λ) · (T −λ)−1| = |µ−λ| · |(T −λ)−1|op < 1, the geometric series converges,
and is readily checked to give (T − µ)−1.

To show that σ(T ) ⊂ R, show that T−λ is both injective and surjective for λ 6∈ R. Then the open mapping
theorem [9.B.1] shows that the inverse is continuous. For injectivity, note that 〈Tv, v〉 = 〈v, Tv〉 = 〈Tv, v〉
implies that 〈Tv, v〉 is real. Then (T − λ)v = 0 with v 6= 0 implies 〈(T − λ)v, v〉 = 0, from which λ ∈ R. For
surjectivity, suppose 〈(T − λ)v, w〉 = 0 for some w 6= 0. In particular, 〈(T − λ)w,w〉 = 0. Again using the
fact that 0 6= 〈Tw,w〉 ∈ R, this would require that λ ∈ R.

Liouville’s theorem on bounded entire functions implies that the spectrum of a continuous linear operator
on a Hilbert space is not empty, as follows. If a continuous Rλ = (T − λ)−1 exists for every complex λ,
then for 0 6= v ∈ V , Rλv ∈ V is never 0 ∈ V . Take w ∈ V such that 〈Rλov, w〉 6= 0 for some λo ∈ C. Then
f(λ) = 〈Rλv, w〉 is a not-identically 0 entire function. At the same time, for large |λ|, the operator norm of
Rλ is small. Thus, f(λ) is small for large |λ|, and must be identically 0, by Liouville, contradiction. ///

For a self-adjoint continuous operator S on V , write S ≥ 0 when 〈Sv, v〉 ≥ 0 for all v ∈ V . For self-
adjoint S, T , write S ≤ T when T − S ≥ 0. At the outset, with a ≤ −|T |op and b ≥ |T |op, we have,
〈a · v, v〉 ≤ 〈Tv, v〉 ≤ 〈b · v, v〉. That is, a ≤ T ≤ b, where the scalars refer to scalar operators on V . Here all
functions are real-valued, and Co[a, b] refers to real-valued continuous functions on [a, b].

[9.D.2] Theorem: The map R[x]→ R[T ] on polynomials given by f → f(T ) is continuous, where R[x] has
the sup-norm on [a, b] and R[T ] has the uniform operator norm. Thus, by Weierstraß approximation, this
map extends to a continuous map Co[a, b] → R[T ], the latter being the operator-norm completion of R[T ].
This map factors through Co(σ(T )):

Co[a, b] −→ Co(σ(T )) −→ R[T ]

and the map Co(σ(T ))→ R[T ] is an isometric isomorphism, where Co(σ(T )) has sup-norm.

Proof: We claim that for f ∈ R[x] with f(x) ≥ 0 on [a, b], then f(T ) ≥ 0. From the following lemma on
polynomials, f is expressible as a finite sum of the form

f =
∑
i

P 2
i + (x− a)

∑
j

Q2
j + (b− x)

∑
k

R2
k

for polynomials Pi, Qj , Rk in R[x]. Incidentally,

[9.D.3] Lemma: For commuting self-adjoint S, T with T ≥ 0, also S2T ≥ 0.

Proof: 〈S2Tv, v〉 = 〈TSv, S∗v〉 = 〈T (Sv), (Sv)〉 ≥ 0. ///

Thus, since a ≤ T ≤ b, and all these operators commute (being polynomials in T ), each P 2
i (T ) ≥ 0, each

(T − a)Q2
j (T ) ≥ 0, and (b− T )R2

k(T ) ≥ 0. Thus, f(T ) ≥ 0, proving the claim.
Since g(x) = sup[a,b] |f | ± f(x) ≥ 0 on [a, b], sup[a,b] |f | ± f(T ) ≥ 0. That is, − sup[a,b] |f | ≤ f(T ) ≤

sup[a,b] |f |, which gives

|f(T )|op = sup
|v|≤1

|f(T )v| ≤ sup
|v|≤1

| sup
[a,b]

|f | · |v| = | sup
[a,b]

|f |
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which is the desired inequality. Thus, we can extend by continuity to the sup-norm closure of R[x] in Co[a, b],
which by Weierstraß is the whole Co[a, b], giving Co[a, b]→ R[T ], the latter being the operator-norm closure
of R[T ], with |f(T )|op ≤ |f |C[a,b]. Since R[x] → R[T ] is a ring homomorphism, the extension by continuity
is also a ring homomorphism.

[9.D.4] Corollary: (Existence of square roots of positive operators) For T ≥ 0, there is S ∈ R[x] such that
S ≥ 0 and S2 = T .

Proof: Since T ≥ 0, we can take [a, b] = [0, b] in the previous discussion. The function f(x) =
√
x ∈ Co[0, b]

is non-negative on [0, b], and f(T )2 = f2(T ) = T . Take S = f(T ). ///

[9.D.5] Corollary: (Positivity of products of commuting positive operators) For S ≥ 0 and T ≥ 0 with
ST = TS, also ST ≥ 0.

Proof: From the previous corollary, there is R ∈ R[S] such that R ≥ 0 and R2 = S. Also, R commutes with
T , by continuity. Thus,

〈STv, v〉 = 〈R2Tv, v〉 = 〈RTRv, v〉 = 〈TRv,Rv〉 ≥ 0

because T ≥ 0. ///

The kernel I of Co[a, b]→ R[T ] is an ideal in Co[a, b], and is (topologically) closed because Co[a, b]→ R[T ]
is continuous. Let τ(T ) ⊂ [a, b] be the simultaneous zero-set of all the functions in I. Shortly, we will see
that τ(T ) = σ(T ), but we cannot use this yet.

[9.D.6] Claim: The restriction map Co[a, b]→ Co(τ(T )) has kernel I. That is, if f |τ(T ) = 0, then f(T ) = 0.
More precisely, f ≥ 0 on τ(T ) if and only if f(T ) ≥ 0.

Proof: It suffices to show that f(T ) ≥ 0 implies f ≥ 0 on τ(T ). For f not non-negative on τ(T ), there is
xo ∈ τ(T ) where f(xo) < 0. Using the continuity of f , take a small neighborhood N of xo in [a, b] such that
f(x) < 0 on N . Let g ∈ Co[a, b] be supported inside N , non-negative, and strictly positive at xo. Then
fg ≤ 0, and fg(xo) < 0, so −fg(T ) ≥ 0. But f(T ) ≥ 0 and g(T ) ≥ 0, so by the corollary on positivity
of commuting positive operators, fg(T ) ≥ 0. Thus, fg(T ) = 0, so fg ∈ I, and fg|τ(T ) = 0, contradiction.
Thus, f ≥ 0 on τ(T ). Thus, if f = 0 on τ(T ), both f ≥ 0 and −f ≥ 0 on τ(T ), so both f(T ) ≥ 0 and
−f(T ) ≥ 0, so f(T ) = 0, and f ∈ I. ///

[9.D.7] Corollary: Co[a, b]→ R[T ] factors through Co(τ(T )), giving a commutative diagram

Co[a, b] //
%%

Co(τ(T )) // R[T ]

The induced map Co(τ(T ))→ R[T ] is a bijection, and |f(T )|op ≥ |f |Co(τ(T )).

Proof: By the Tietze-Urysohn-Brouwer extension theorem [9.E.1], every continuous function on τ(T ) has
an extension to a continuous function on [a, b], with the same sup-norm. This gives the surjectivity of
Co[a, b]→ Co(τ(T )). By the claim, Co(τ(T )) ≈ Co[a, b]/I, giving the injectivity to R[T ].

Given the positivity, since |f(T )|op ± f(T ) ≥ 0, from the previous claim |f(T )op ± f(x) ≥ 0 for x ∈ τ(T ).
Thus, supx∈τ(T ) |f(x)| ≤ |f(T )|op. ///

Now a refinement of the earlier argument gives the other inequality on norms:

[9.D.8] Corollary: The induced map Co(τ(T ))→ R[T ] is an isometric isomorphism. That is, the map is a
bijection, and |f(T )|op = |f |Co(τ(T )).

Proof: For f ≥ 0 on τ(T ), again by Tietze-Urysohn-Brouwer, there is an extension g ≥ 0 of f to [a, b] with
the same sup norm. The first claim of the proof showed that |f(T )|op ≤ |g|Co[a,b], so

|f |Co(τ(T )) ≤ |f(T )|op ≤ |g|Co[a,b] = |f |Co(τ(T ))

giving the isometry. In particular, for fn(T ) a Cauchy sequence in the operator norm (for fn ∈ Co(τ(T ))),
the sequence fn is Cauchy in Co(τ(T )), so converges to some f ∈ Co(τ(T )). By the isometry, fn(T )→ f(T ),
giving the surjection to the closure. ///

It remains to show τ(T ) = σ(T ).
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First, we reprove the fact that σ(T ) ⊂ R. For λ ∈ C such that there is no (T − λ)−1, the polynomial
f(x) = (x − λ)(x − λ) is non-zero on R, so certainly on τ(T ), so has an inverse h(x) = 1/g(x) ∈ Co(τ(T )).
Then h(T )(T − λ) would be an inverse for T − λ, contradiction. Thus, σ(T ) ⊂ R.

For λ real and not in τ(T ), x− λ is invertible on τ(T ) with inverse h ∈ Co(τ(T )), so

h(T ) ◦ (T − λ) = (h · (x− λ))(T ) = 1(T ) = 1

and similarly (T − λ) ◦ h(T ) = 1, so T − λ is invertible. For λ ∈ τ(T ), for n > 0, let fn(x) ∈ C [a, b] be

fn(x) =


N (for |x− λ| ≤ 1

N )

1
|x−λ| (for |x− λ| ≥ 1

N )

Thus, |(x− λ) · fn|Co(τ(T )) ≤ 1, and (T − λ)fn(T )|op ≤ 1. If T − λ had an inverse S, then for all n

n ≤ |fn|Co(τ(T )) = |fn(T )|op = |1 ·fn(T )|op = |S · (T −λ) ·fn(T )|op ≤ |S|op · |(T −λ) ·fn(T )|op ≤ |S|op

This is impossible, so there is no inverse. This proves that τ(T ) = σ(T ). ///

Now we prove the peculiar lemma on polynomials:

[9.D.9] Lemma: Let f ∈ R[x] be non-negative-valued on a finite interval [a, b]. Then f is expressible as a
finite sum of the form

f =
∑
i

P 2
i + (x− a)

∑
j

Q2
j + (b− x)

∑
k

R2
k

for polynomials Pi, Qj , Rk in R[x].

Proof: It suffices to consider monic f , since positive constants can be absorbed. Factor f into irreducibles
over R, show that each of the linear and quadratic factors can be expressed in the given form, and then show
that a product of such expressions can be re-written in the same form.

For quadratic irreducibles with complex-conjugate roots z, z, by completing the square,

(x− z)(x− z) = x2 − (z + z)x+ zz = (x− z + z

2
)2 + (zz − (

z + z

2
)2)

Since

zz − (
z + z

2
)2 = zz − 1

4
(z2 + 2zz + z2) = −1

4
(z − z)2 = (

z − z
2i

)2 = (Imz)2 > 0

we have the desired expression for (x− z)(x− z).
A linear factor x − α with a < α < b must occur to an even power, since otherwise f(x) would take

opposite signs on the two sides of α, contradicting the positivity of f on [a, b].
A linear factor x− α with α ≤ a can be rewritten as

x− α = (x− a) + (a− α) = (x− a) · 1 + (a− α)

Since a − α ≥ 0, it is a square of an element of R, and this gives the desired expression. Similarly, a linear
factor α− x with α ≥ b can be rewritten as

α− x = (b− x) + (α− b)

Thus, all the factors of f can be written in the desired form. As for products, we can inductively rewrite
them by

P 2 ·Q2 = (PQ)2 (x− a)P 2 ·Q2 = (x− a) · (PQ)2 (x− a)P 2 · (x− a)Q2 = ((x− a)PQ)2

(b− x)P 2 ·Q2 = (b− x) · (PQ)2 (b− x)P 2 · (b− x)Q2 = ((b− x)PQ)2

292



Garrett: Modern Analysis of Automorphic Forms

The only possible issue is the form (x− a)P 2 · (b− x)Q2. By luck,

(x− a)(b− x) = (x− a)(b− x) · (b− x) + (x− a)

(b− x) + (x− a)
=

(x− a) · (b− x)2 + (b− x) · (x− a)2

b− a

which is of the desired form. Iterating these rewritings gives the lemma. ///

[9.D.10] Corollary: If σ(T ) = {λ}, then T is the scalar operator λ.

Proof: Because the function f(x) = x restricted to {λ} is equal to the restriction of the constant function
g(x) = λ,

T = f(T ) = g(T ) = λ

meaning the scalar operator. ///

[9.D.11] Remark: Certainly the converse is not true: there easily can be eigenvalues imbedded in continuous
spectrum.

[9.D.12] Corollary: (Schur’s lemma) Let R be a set of continuous linear operators on a Hilbert space V ,
and suppose V is R-irreducible, in the sense that there is no R-stable closed subspace of V other than {0}
and V itself. Let T be a self-adjoint operator commuting with all operators from R. Then T is scalar.

Proof: Suppose that σ(T ) contains at least two distinct points x1, x2, and show that V is not R-irreducible.
Let f, g be continuous functions with disjoint supports, such that f(x1) = 1 and g(x2) = 1. Thus, fg = 0,
and f(T )g(T ) = g(T )f(T ) = 0, but neither f(T ) nor g(T ) is 0, because they are not the zero function on
σ(T ). The image f(T )(V ) is not 0, because f(T ) 6= 0. Also, f(T )(V ) is inside the kernel of g(T ), because
g(T )f(T ) = (gf)(T ) = 0. By continuity of g(T ), the closure W of f(T )(V ) is also inside the kernel of g(T ).
Since g(T ) 6= 0, necessarily W 6= V .

Since T commutes with all operators in R, R[T ] commutes with R, and by continuity of operators in R,
R[T ] commutes with R. Thus, R commutes with f(T ) and g(T ), so for S ∈ R,

S(f(T )(V )) = f(T )(SV ) ⊂ f(T )(V )

That is, R stabilizes f(T )(V ). By continuity of operators in R, R stabilizes the closure W of f(T )(V ). But
W is a proper closed subspace of V , so V is not R-irreducible. Since σ(T ) 6= φ, it is a singleton {λ}. By the
previous corollary, T is the scalar operator λ. ///

Suppose that W is another Hilbert space on which R acts, and let

HomR(V,W ) = {C-linear maps ϕ : V →W such that ϕ(r · v) = r · ϕ(v) for all r ∈ R, v ∈ V }

In the situation of the previous corollary, let R act on the orthogonal direct sum V n = V ⊕ . . .⊕W︸ ︷︷ ︸
n

in the

natural fashion, by
r · (v1, . . . , vn) = (rv1, . . . , rvn)

[9.D.13] Corollary: dimC HomR(V, V n) = n for R-irreducible V .

Proof: Let pi : V n → V be the projection to the ith component. For ϕ ∈ HomR(V, V n), each pi ◦ϕ : V → V
respects the action of R, so by Schur’s lemma is scalar. Thus, there are scalars c1, . . . , cn so that

ϕ(v) = (c1 · v, c2 · v, . . . , cn · v)

as claimed. ///

For the following, assume that R has an involution r → r∗, and that the action of R on all vector spaces
respects this involution: we only consider actions of R on Hilbert spaces with the property that the adjoint
of v → r · v is v → r∗ · v. [67] Also, now we only consider linear maps V → W that respect this additional
structure on R, still referring to these as R-homomorphisms.

[67] When R has a structure of ring or group that is reflected in its action on the vector space, the involution r → r∗

should be an anti-automorphism, in the sense that (r1r2)∗ = r∗2 · r∗1 , since the adjoint map on continuous/bounded

endomorphisms of a Hilbert space has that behavior.
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[9.D.14] Corollary: Suppose that there is an injection in HomR(V n,W ). Then

dimC HomR(V,W ) ≥ n

Further, if there is no injection in HomR(V n+1,W ), then

dimC HomR(V,W ) = n

Proof: Certainly if there is a copy of V n inside W , then we can map V to any one of the n summands,
respecting the action of R. The converse needs Schur’s lemma: suppose dimC HomR(V,W ) = n. Let
ϕ1, . . . , ϕn be n linearly independent homomorphisms. The image ϕ1(V ) + ϕ2(V ) + . . . + ϕn(V ) need not
be an orthogonal direct sum, but we claim that there is another collection of n maps in HomR(V,W ) that
does produce an orthogonal direct sum inside W . In effect, this is a version of a Gram-Schmidt process that
refers to copies of the irreducible V rather than to individual vectors.

A key point is that, because of the involution ∗, the orthogonal complement X⊥ to an R-stable subspace
X of W is also R-stable. Indeed. For y ∈ X⊥,

〈r · y, x〉 = 〈y, r∗ · x〉 ∈ 〈y,X〉 = {0}

This immediately implies that the orthogonal projection W → X is an R-homomorphism.
Thus, given ϕ1 and ϕ2, the orthogonal projection p from ϕ2(V ) to ϕ1(V ) is an R-homomorphism. Since

ϕ1, ϕ2 are non-zero, ϕ1(V ) and ϕ2(V ) are R-irreducible, so ϕ1 and ϕ2 are R-isomorphisms. If the images
ϕ1(V ) and ϕ2(V ) are orthogonal, we are done. If not, the map p is not 0, so must be an R-isomorphism, by
R-irreducibility. Thus, the composition

V
ϕ1 // ϕ2(V )

p // ϕ1(V )
ϕ−1

1 // V

is an R-isomorphism V → V . By Schur’s lemma, it is a non-zero constant map. That is, there is a uniform
constant c such that p(ϕ2(v)) = c ·ϕ1(v) for all v ∈ V . That is, c ·ϕ1−p◦ϕ2 = 0 as element of HomR(V,W ).
Then

p ◦ (c · ϕ1 − p ◦ ϕ2) = c · p ◦ ϕ1 − p2 ◦ ϕ2 = p ◦ ϕ1 − p ◦ ϕ2 = 0

so the image (c · ϕ1 − p ◦ ϕ2)(V ) is orthogonal to ϕ1(V ), as desired. Continue by induction to modify all
ϕi(V ) to be mutually orthogonal. ///

9.E Appendix: Tietze-Urysohn-Brouwer extension theorem

Granting Urysohn’s lemma [9.E.2], the extension result is not difficult:

[9.E.1] Theorem: For X a normal space (meaning that any two disjoint closed sets have disjoint open
neighborhoods), closed subset E ⊂ X, every continuous, bounded, real-valued f on E extends to F on X
such that supX |F | = supE |f |.
Proof: Without loss of generality, the image of f is contained in [0, 1]. Urysohn’s lemma [9.E.2] will be
repeatedly invoked: given disjoint, closed Bn, Cn in X, there is continuous gn on X taking values in
[0, 1

2 (2/3)n] such that gn = 0 on Bn and gn = 1
2 (2/3)n on Cn. Specify the subsets Bn, Cn (n = 1, 2, . . .) of

E inductively by

B1 = {x ∈ E : f(x) ≤ 1

3
} C1 = {x ∈ E : f(x) ≥ 2

3
}

and

Bn = {x ∈ E : f(x)−
n−1∑
i=1

gi(x) ≤ 2n−1

3n
} Cn = {x ∈ E : f(x)−

n−1∑
i=1

gi(x) ≥ 2n

3n
}

These are disjoint closed subsets of E, so are closed in X. The sum F =
∑∞
i=1 gi converges uniformly, so is

continuous. On E, 0 ≤ f − F ≤ (2/3)n for all n, so F = f on E. ///
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[9.E.2] Theorem: (Urysohn) In a locally compact Hausdorff topological space X, given a compact subset
K contained in an open set U , there is a continuous function 0 ≤ f ≤ 1 which is 1 on K and 0 off U .

Proof: First, we prove that there is an open set V such that

K ⊂ V ⊂ V ⊂ U

For each x ∈ K let Vx be an open neighborhood of x with compact closure. By compactness of K, some
finite subcollection Vx1

, . . . , Vxn of these Vx cover K, so K is contained in the open set W =
⋃
i Vxi which

has compact closure
⋃
i V xi since the union is finite.

Using the compactness again in a similar fashion, for each x in the closed set X − U there is an open Wx

containing K and a neighborhood Ux of x such that Wx ∩ Ux = φ.
Then ⋂

x∈X−U
(X − U) ∩W ∩W x = φ

These are compact subsets in a Hausdorff space, so (again from compactness) some finite subcollection has
empty intersection, say

(X − U) ∩
(
W ∩W x1 ∩ . . . ∩W xn

)
= φ

That is,
W ∩W x1

∩ . . . ∩W xn ⊂ U

Thus, the open set
V = W ∩Wx1

∩ . . . ∩Wxn

meets the requirements.
Using the possibility of inserting an open subset and its closure between any K ⊂ U with K compact

and U open, we inductively create opens Vr (with compact closures) indexed by rational numbers r in the
interval 0 ≤ r ≤ 1 such that, for r > s,

K ⊂ Vr ⊂ V r ⊂ Vs ⊂ V s ⊂ U

From any such configuration of opens we construct the desired continuous function f by

f(x) = sup{r rational in [0, 1] : x ∈ Vr, } = inf{r rational in [0, 1] : x ∈ V r, }

It is not immediate that this sup and inf are the same, but if we grant their equality then we can prove the
continuity of this function f(x). Indeed, the sup description expresses f as the supremum of characteristic

functions of open sets, so f is at least lower semi-continuous. [68] The inf description expresses f as an
infimum of characteristic functions of closed sets so is upper semi-continuous. Thus, f would be continuous.

To finish the argument, we must construct the sets Vr and prove equality of the inf and sup descriptions
of the function f .

To construct the sets Vi, start by finding V0 and V1 such that

K ⊂ V1 ⊂ V 1 ⊂ V0 ⊂ V 0 ⊂ U

Fix a well-ordering r1, r2, . . . of the rationals in the open interval (0, 1). Supposing that Vr1 , . . . , vrn have
been chosen. let i, j be indices in the range 1, . . . , n such that

rj > rn+1 > ri

[68] A (real-valued) function f is lower semi-continuous when for all bounds B the set {x : f(x) > B} is open. The

function f is upper semi-continuous when for all bounds B the set {x : f(x) < B} is open. It is easy to show that

a sup of lower semi-continuous functions is lower semi-continuous, and an inf of upper semi-continuous functions is

upper semi-continuous. As expected, a function both upper and lower semi-continuous is continuous.
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and rj is the smallest among r1, . . . , rn above rn+1, while ri is the largest among r1, . . . , rn below rn+1. Using
the first observation of this argument, find Vrn+1 such that

Vrj ⊂ V rj ⊂ Vrn+1
⊂ V rn+1

⊂ Vri ⊂ V ri

This constructs the nested family of opens.
Let f(x) be the sup and g(x) the inf of the characteristic functions above. If f(x) > g(x) then there are

r > s such that x ∈ Vr and x 6∈ V s. But r > s implies that Vr ⊂ V s, so this cannot happen. If g(x) > f(x),
then there are rationals r > s such that

g(x) > r > s > f(x)

Then s > f(x) implies that x 6∈ Vs, and r < g(x) implies x ∈ V r. But Vr ⊂ V s, contradiction. Thus,
f(x) = g(x). ///
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10. Discrete decomposition of pseudo-cuspforms

1. Compact resolvents in simplest examples
2. Compact resolvents for SL3(Z), SL4(Z), SL5(Z), . . .
3. Density of domains of operators
4. Tail estimates: simplest example
5. Tail estimates: three further small examples
6. Tail estimates: SL3(Z), SL4(Z), SL5(Z), . . .
7. Compact B1

a −→ L2
a in four simple examples

8. Compact B1
a −→ L2

a for SL3(Z), SL4(Z), SL5(Z), . . .
9. Compact resolvents and discrete spectrum

Applications of idiosyncracies of Friedrichs self-adjoint extensions of restrictions of Laplace-Beltrami
operators are illustrated here, as exploited in [Lax-Phillips 1976] and [ColinDeVerdière 1981/2/3], for
example, and as illustrated in the next chapter. This device is essentially archimedean, related to differential
operators.

On any one of the four simple unicuspidal quotients Γ\G/K of chapter 1, the space of pseudo-cuspforms
L2
a(Γ\G/K) with cut-off height a is the space of L2 functions whose constant terms vanish above height

η(g) = a. The case a = 0 is the usual space of L2 cuspforms. We will show that L2
a(Γ\G/K) decomposes

discretely for ∆̃a, the Friedrichs extension [9.2] of the restriction ∆a of ∆ to the space

Da = C∞c (Γ\G/K) ∩ L2
a(Γ\G/K)

of test functions inside L2
a(Γ\G/K). The proof proceeds by showing that ∆̃a has compact resolvent (∆̃a−λ)−1

for λ off a discrete set, and then verifying the obvious plausible bijection between the spectrum and
eigenfunctions of ∆̃a and those of (∆̃a − λ)−1 in [10.7]. Then the spectral theorem for self-adjoint compact

operators [10.10] yields an orthonormal basis for L2
a(Γ\G/K) consisting of eigenfunctions for ∆̃a, with finite

multiplicities.
Further, in those four examples, for a� 1, the space of pseudo-cuspforms L2

a(Γ\G/K) includes not only

cuspforms but infinitely-many ∆̃a-eigenfunctions which are (necessarily) not ∆-eigenfunctions. Existence of
further eigenfunctions in L2

a(Γ\G/K) is clear from the spectral decomposition of the orthogonal complement
of cuspforms L2

o(Γ\G/K) in L2(Γ\G/K), in terms of integrals of Eisenstein series and residues of Eisenstein
series, as in [1.12]. In [11.6], we show that all but finitely-many of the the new eigenfunctions are the truncated
Eisenstein series whose constant term vanishes at y = a.

For the examples SL3(Z), SL4(Z), SL5(Z), . . ., the notion of pseudo-cuspform is more complicated, but
the general pattern of the argument is the same. Again, certain truncated Eisenstein series comprise most
of the new discrete spectrum.

In all examples, the critical point is the estimate on tails of pseudo-cuspforms, in [10.3], [10.4], [10.5].
This is used to prove a Rellich-type compactness lemma, from which the compactness of the resolvent of the
Friedrichs extensions follows. The seeming paradox of this discretization of the continuous spectrum of ∆ on
L2(Γ\G/K) is essential to [Colin de Verdière 1981]’s proof of meromorphic continuation of Eisenstein series,
which we recapitulate in examples in chapter 11.

10.1 Compact resolvents in simplest examples

The statements of the theorems are easier for the four simplest examples Γ\G/K of chapter 1. For a ≥ 0,
consider a space of square-integrable pseudo-cuspforms including the space of cuspforms: these are functions
in L2(Γ\G/K) whose constant terms cP f vanish above height a:

L2
a(Γ\G/K) = {f ∈ L2(Γ\G/K) : cP f(g) = 0 for η(g) ≥ a}

where the height function is η(nmyk) = yr with n ∈ N , my =

(√
y 0

0 1/
√
y

)
, k ∈ K, and r = 1, 2, 3, 4

in the respective examples. As for cuspforms, vanishing of the constant term cP f above height a can be
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expressed precisely as orthogonality 〈f,Ψϕ〉 = 0 to all pseudo-Eisenstein series Ψϕ with test-function data
ϕ ∈ C∞c (0,∞) supported on [a,+∞). Let

Da = C∞c (Γ\G/K) ∩ L2
a(Γ\G/K)

and ∆a the restriction of ∆ to Da. In [10.3] we prove that Da is dense in L2
a(Γ\G/K), so ∆a has a Friedrichs

extension ∆̃a. The main result is:

[10.1.1] Theorem: ∆̃a has compact resolvent. The space L2
a(Γ\G/K) of square-integrable pseudo-cuspforms

with constant term vanishing above height η(g) = a has an orthonormal basis of ∆̃a-eigenfunctions, and
eigenvalues have finite multiplicities. (Proof in [10.7].)

A seeming paradox: Of course, the space L2
a(Γ\G/K) contains the space L2(Γ\G/K) of L2 cuspforms,

for every a ≥ 0. For a� 1, the corresponding space of pseudo-cuspforms it is demonstrably properly larger,
containing part of the continuous spectrum for ∆, namely, an infinite-dimensional space of pseudo-Eisenstein
series Ψϕ. For example, take a′ < a, with a′ still large enough so that the Siegel set

S = Sa′ = {g ∈ G/K : η(g) > a′}

has the property that γS∩S 6= φ implies γ ∈ Γ∩P . Then, for any test function ϕ supported on [a′, a], the
pseudo-Eisenstein series Ψϕ is identically 0 in the region η(g) > a. From the spectral decomposition [1.12],

these pseudo-Eisenstein series are integrals of Eisenstein series. Yet the Friedrichs extension ∆̃a is proven
to have entirely discrete spectrum. Evidently, some part of the continuous spectrum of ∆ becomes discrete
for ∆̃a. That is, some integrals of Eisenstein series Es become L2 eigenfunctions for ∆̃a: in the four simple
examples:

[10.1.2] Theorem: For a� 1, truncated Eisenstein series ∧aEs such that cPEs(g) = 0 for η(g) = a become

∆̃a-eigenfunctions. (Proof in [11.6].)
From the theory of the constant term [8.1], the truncation ∧aEs is in L2. However, ∧aEs is not smooth.

The possibility that non-smooth functions can be eigenfunctions for ∆̃a can be understood in terms of the
behavior of Friedrichs extensions, and exploited, as in [ColinDeVerdière 1981/2/3]. We give the application
to meromorphic continuation of Eisenstein series in the next chapter.

Conversely, in these examples, we will show that

[10.1.3] Theorem: All non-cuspforms with ∆̃a-eigenvalues λw < −1/4 are truncated Eisenstein series ∧aEs
such that cPEs(g) = 0 for η(g) = a. (Proof in [11.6].)

10.2 Compact resolvents for SL3(Z), SL4(Z), SL5(Z), . . .

Now consider Γ = SLr(Z), G = SLr(R), and K = SOr(R). Again, we will prove that a certain space
of square-integrable functions on Γ\G/K with all constant terms vanishing beyond fixed heights has purely
discrete spectrum with respect to the Friedrichs extension of the restriction of the invariant Laplacian to
(test functions in) this space.

Because we have not discussed a sufficiently general form of truncations for automorphic forms on GLr, we
cannot make as strong a statement as we might like. Namely, we will not prove that the L2 closure of a space
of test functions Da, the initial domain for a restriction ∆a, is as large as we might imagine. Nevertheless,
the application to meromorphic continuation of cuspidal-data Eisenstein series in [11.10], [11.12] does not
need the strongest density assertions, so we will have a complete proof of that meromorphic continuation.

As in the simpler examples, the proof will proceed by showing that the resolvent of the Friedrichs extension
of a restriction of the invariant Laplacian is compact. Specifically, let A be the standard maximal torus
consisting of diagonal real matrices, and A+ its subgroup of positive real diagonal matrices. A standard
choice of positive simple roots is

Φ = {αi(a) =
ai
ai+1

: i = 1, . . . , r − 1} (with a =

 a1

. . .

ar

)
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Let Nmin be the unipotent radical of the standard minimal parabolic Pmin consisting of upper-triangular
elements of G. For g ∈ G, let g = ngmgkg be the corresponding Iwasawa decomposition with respect to
Pmin , with mg ∈ A+. By reduction theory [3.3], there is a sufficiently small to > 0 such that the standard
Siegel set

S = Sto = {nmk : n ∈ Nmin , m ∈ A+, k ∈ K, α(m) ≥ to for all α ∈ Φ}

satisfies Γ ·S = G. Fix such S for the following discussion. For real a� 1, specify a subset of S by

Ya = {nmk ∈ S : α(m) ≥ a for some α ∈ Φ}

where again n ∈ Nmin , m ∈ A+, and k ∈ K. Let ∆ be the Casimir operator for G descended to G/K and
to Γ\G/K as in [4.2], [4.4]. Let ∆a be the restriction of the invariant Laplace-Beltrami operator ∆ to the
domain

Da = {f ∈ C∞c (Γ\G/K) : for g ∈ Ya, cP f(g) = 0, for all standard parabolics P}

Let Va be the closure of Da in L2(Γ\G/K). As usual [6.5] integration by parts shows that ∆a is symmetric
and non-positive, in the sense that 〈∆f, f〉 ≤ 0 for test functions f . Since Da is dense in Va, it has a

Friedrichs extension ∆̃a, a self-adjoint unbounded operator on Va.

[10.2.1] Theorem: ∆̃a has compact resolvent. The space Va has an orthonormal basis of ∆̃a-eigenfunctions,
and eigenvalues occur with finite multiplicities. (Proof in [10.8], [10.9].)

Define the B1 norm on Da by
|f |B1 = 〈(1−∆)f, f〉L2(Γ\G/K)

and let B1 be the completion of Da with respect to this norm. As in the discussion [9.2] of Friedrichs
extensions, we have a natural imbedding B1 ⊂ Va. As in the simpler examples, for sufficiently high cut-off
heights η, we will see that there must be infinitely-many eigenfunctions for ∆̃a that were not eigenfunctions
for ∆, by exhibiting some pseudo-Eisenstein series in the B1-closure of Da. Specifically, we consider pseudo-
Eisenstein series attached to maximal proper parabolics P = P r,r ⊂ SL2r, with cuspidal data [3.9], with test
function data supported just below the cut-off. Via reduction theory [3.3], the P -constant term vanishes for
α(a) ≥ a. From [3.9], all other constant terms along standard parabolics are 0. Similarly, as explicit examples

of eigenfunctions for ∆̃a that are not eigenfunctions for ∆, we again find certain truncated Eisenstein series.
The simplest case is the following.

Let P = P r,r ⊂ SL2r, and f cuspidal data on the Levi component M = MP . Let Es,f be the corresponding
cuspidal-data Eisenstein series as in [3.11], with constant term cPEs,f as in [3.11.9]. Let AP be the center

of M , and M1 the subgroup of M consisting of matrices in r-by-r blocks

(
a 0
0 d

)
with det a = 1 = det d.

[10.2.2] Theorem: For s ∈ C such that cPEs,f (mm1) = 0 for m ∈ AP with αr(m) = a and for all m1 ∈M1,

the truncation ∧aEs,f of Es,f is a ∆̃a-eigenfunction in Va. (Proof in [11.11].)

10.3 Density of domains of operators

For an unbounded operator to have a well-defined adjoint, its domain must be dense in the ambient Hilbert
space. Of course, we could shrink the Hilbert space to be the closure of the domain of the operator, but then
there would be the issue of determining that closure, apart from other complications. Test functions are
dense in L2(Γ\G/K) for general reasons [6.1], [14.5], [14.6]: for an approximate identity ψn in C∞c (K\G/K),
the averaged action images ψn · f of f ∈ L2

a(Γ\G/K) are smooth. However, each such averaging smears
out the support of the constant term of f somewhat, depending on the support of ψn. Let Xn be a nested
sequence of compact subsets of Γ\G/K whose union is Γ\G/K, and αn ∈ C∞c (Γ\G/K) identically 1 on Xn,
and 0 ≤ αn(g) ≤ 1. Thus, smoothly cut off ψn ·f by multiplying by αn. Thus, fn = (ψn ·f) ·αn is a sequence
in C∞c (Γ\G/K) approaching f in L2.

However, it is not as trivial to understand the interaction with constant-term vanishing conditions. In
these simple examples, density of Da in L2

a(Γ\G/K) is relatively easily proven for a � 1, in which case
the natural smooth cutting-off of the constant term near the given height a interacts with constant-term
vanishing in a controlled manner.
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The condition a� 1 refers to a great-enough height a so that the standard Siegel set Sa has the property
that Sa ∩ γSa 6= φ implies γ ∈ Γ ∩ P . By reduction theory [1.5] there exists such a. For the simplest case
of SL2(Z) ⊂ SL2(R), the explicit bound a > 1 suffices, for example. Again, as expected, first approximate
f ∈ L2

a(Γ\G/K) by functions fn in C∞c (Γ\G/K) by general methods, and then use the condition a� 1 to
consider a family of smooth cut-offs of the constant term near height a, with the width of the cut-off region
shrinking to 0:

[10.3.1] Lemma: For a� 1, Da is dense in L2
a(Γ\G/K).

Proof: As just above, we take a � 1 so that the Siegel set Sa− 1
t

meets its translates γSa− 1
t

only for
γ ∈ Γ ∩ P , for all sufficiently large t. This allows separation of variables in Sa− 1

t
, since the cylinder

Ca− 1
t

= (Γ ∩ P )\Sa− 1
t

injects to Γ\G/K. Let

|f |2C
a− 1

t

=

∫
Ca− 1

t

|f(z)|2 dx dy
yr+1

≤
∫

Γ\G/K
|f(z)|2 dx dy

yr+1
= |f |2L2

Let fn ∈ C∞c (Γ\G/K) with fn → f in L2. Since f ∈ L2
a(Γ\G/K), we naturally expect that the constant

term is not too far from that of f , so that smooth truncations of the constant terms of fn should produce
functions also approaching f .

Use the Iwasawa coordinates x, y on G/K with x ∈ Rr and y > 0 as in [1.3], so the height is η(x, y) = yr.
Let β be a smooth function on R such that β(y) = 0 for y < −1, 0 ≤ β(y) ≤ 1 for −1 ≤ y ≤ 0, and β(y) = 1
for y ≥ 0. For t > 1, put βt(y) = β(t(y − a)), and define a smooth function on N\G/K by

ϕn,t(x, y) =

βt(y
r) · cP fn(y) (for yr ≥ a− 1

t )

0 (for yr < a− 1
t )

For t > 0 large enough so that Sa− 1
t

does not meet any of its own translates by γ ∈ Γ except γ ∈ Γ ∩ P ,
let Ψn,t = Ψϕn,t be the pseudo-Eisenstein series made from ϕn,t. The assumption on t assures that in the
region yr > a − 1

t we have Ψn,t = cPΨn,t = ϕn,t . Thus, as intended, cP (fn − Ψn,t) vanishes in y ≥ a, so
fn −Ψn,t ∈ L2

a(Γ\G/K).
By the triangle inequality,

|f − (fn −Ψn,t|L2 ≤ |f − fn|L2 + |Ψn,t|L2

and |f − fn|L2 −→ 0. Thus, it suffices to show that the L2 norm of the pseudo-Eisenstein series Ψn,t goes to
0 for large n, t. Since a� 1,

|Ψn,t|L2 = |Ψn,t|C
a− 1

t

= |ϕn,t)C
a− 1

t

= |β(t(y − a)) · cP fn|C
a− 1

t

≤ |cP fn|C
a− 1

t

The cylinder Ca− 1
t

admits a natural action of the product of circle groups Tr = (Γ∩N)\N , by translation,
inherited from the translation of the x-component in coordinates x, y. This induces a continuous action of Tr
on L2(Ca− 1

t
) with the norm |·|C

a− 1
t

. Thus, the map F → cPF , is given by a continuous, compactly-supported

L2(Ca− 1
t
)-valued integrand, so from [14.1] exists as a Gelfand-Pettis integral. Thus, unsurprisingly, the

restriction of cP fn to Ca− 1
t

goes to cP f in L2(Ca− 1
t
). Since cP f is supported in the range η(g) ≤ a, and

the measure of Ca − Ca− 1
t

goes to 0 as t→ +∞, the Ca− 1
t
-norm of cP f goes to 0 as t→ +∞, since cP f is

locally integrable.
Thus, for example, Ψn,n goes to 0 in L2 norm, so the elements fn−Ψn,n in L2

a go to f in L2 norm, proving
the density of Da in L2

a. ///
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10.4 Tail estimates: simplest example

The computation for Γ = SL2(Z), G = SL2(R), and K = SO2(R) can take advantage of some convenient
technical coincidences. Let the B1 norm be defined on test functions C∞c (Γ\G/K) by

|f |2B1 = 〈(1−∆)f, f〉 = 〈f, f〉+ 〈(−∆)f, f〉

Let B1 be the completion of C∞c (Γ\G/K) with respect to the B1 norm. With

Da = C∞c (Γ\G/K) ∩ L2
a(Γ\G/K)

let B1
a be the B1-completion of Da. Note that while it is clear that B1

a ⊂ B1 ∩ L2
a(Γ\G/K), it is not clear

that equality holds. We do not need to address this for the moment. As in [10.1], let ∆a be the restriction

of ∆ to Da, and ∆̃a its Friedrichs extension. The Friedrichs extension ∆̃a maps from L2
a(Γ\G/K) to B1

a.
Let B be the unit ball in B1

a. As in all cases, the crucial estimate is

[10.4.1] Claim: Given ε > 0, a cut-off c ≥ a can be made sufficiently large so that the image of B in
L2(Γ\G/K) cut off at height c lies in a single ε-ball in L2(Γ\G/K). That is, for f ∈ B1

a,

lim
c→∞

∫
y>c

|f(z)|2 dx dy
y2

−→ 0 (uniformly for |f |B1
a

= |f |B1 ≤ 1)

[10.4.2] Remark: To be careful, we note that the inequality of the claim does not directly address the issue
of smooth truncations of f in B1

a near height c, nor whether a collection of smooth truncations ϕ∞ · f of
all heights c � a can be chosen with B1-norms uniformly bounded for f ∈ B. These somewhat secondary
points are addressed just below in [10.4.3]: nothing surprising happens.

Proof: This computation roughly follows [Lax-Phillips 1976], pages 204-6. To legitimize the following
computation, we should be sure that f ∈ B1 has first derivatives in an L2 sense. This is a local fact,
and thus follows from the discussion on tori Tn in [9.5].

Let the Fourier coefficients of f(x + iy) be f̂(n), functions of y. Take c > a so that the 0th Fourier

coefficient f̂(0) vanishes identically. Use Plancherel for the Fourier expansion in x, and then elementary
inequalities: integrating over the part of Y∞ above y = c, letting F be Fourier transform in x,∫ ∫

y>c

|f |2 dx dy
y2

≤ 1

c2

∫ ∫
y>c

|f |2 dx dy =
1

c2

∑
n 6=0

∫
y>c

|f̂(n)|2 dy

≤ 1

c2

∑
n 6=0

(2πn)2

∫
y>c

|f̂(n)|2 dy =
1

c2

∑
n 6=0

∫
y>c

∣∣∣F ∂f
∂x

(n)
∣∣∣2 dy =

1

c2

∫ ∫
y>c

∣∣∣∂f
∂x

∣∣∣2 dx dy
=

1

c2

∫ ∫
y>c

−∂
2f

∂x2
· f (x) dx dy ≤ 1

c2

∫ ∫
y>c

−∂
2f

∂x2
· f (x)− ∂2f

∂y2
· f (x) dx dy

=
1

c2

∫ ∫
y>c

−∆f · f dx dy

y2
≤ 1

c2

∫ ∫
Γ\G/K

−∆f · f dx dy

y2
≤ 1

c2
· |f |2B1 ≤

1

c2

giving the uniform bound as claimed. ///

Now we prove the reassuring lemma that the B1-norms of systematically specified families of smooth tails
of functions in B1 are uniformly dominated by the B1-norms of the original functions. Let ϕ be a smooth
real-valued function on (0,+∞) with

ϕ(y) = 0 (for 0 < y ≤ 1)

0 ≤ ϕ(y) ≤ 1 (for 1 < y < 2)

1 ≤ ϕ(y) (for 1 ≤ y)
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[10.4.3] Claim: For fixed η, for t ≥ 1, the smoothly cut-off tail f [t](x+ iy) = ϕ
(y
t

)
· f(x+ iy) has B1-norm

dominated by that of f itself:

|f [t]|B1 �ϕ |f |B1 (implied constant independent of f and of t ≥ 1)

Proof: This is essentially elementary. Since |a + bi|2 = a2 + b2 and ∆ has real coefficients, it suffices to
treat real-valued f . Since 0 ≤ ϕ ≤ 1, certainly |ϕf |L2 ≤ |f |L2 . For the other part of the B1-norm, letting
S1 ≈ R/Z be the circle,

〈−∆f [t], f [t]〉 = −
∫
S1

∫
y≥t

( ∂2

∂x2
+

∂2

∂y2

)
f [t] · f [t] dx dy

= −
∫
S1

∫
y≥t

ϕ2
(y
t

)
fxxf +

1

t2
ϕ′′
(y
t

)
ϕ
(y
t

)
f2 +

2

t
ϕ′
(y
t

)
ϕ
(y
t

)
fyf + ϕ

(y
t

)2

fyyf dx dy

Some terms are easy to estimate: using the fact that ϕ′ and ϕ′′ are supported on [1, 2],∫
S1

∫
y≥t
−ϕ
(y
t

)2

fxxf +
∣∣∣ 1

t2
ϕ′′
(y
t

)
ϕ
(y
t

)
f2
∣∣∣− ϕ(y

t

)2

fyyf dx dy

�ϕ

∫
S1

∫
t≤y≤2t

f2

t2
− (fxxf + fyyf) dx dy ≤

∫
S1

∫
t≤y≤2t

(2t)2 f2

t2
− y2

(
fxx + fyy

)
f
dx dy

y2

≤ 4|f |2L2 +

∫
Γ\G/K

(−∆)f · f dx dy

y2
� |f |2B1

with uniform implied constants. Transform the remaining term by integration by parts:∫
S1

∫
y≥t

2

t
ϕ′
(y
t

)
ϕ
(y
t

)
fyf dx dy =

∫
S1

∫
t≤y≤2t

1

t
ϕ′
(y
t

)
ϕ
(y
t

)
· ∂
∂y

(f2) dx dy

=

∫
S1

∫
t≤y≤2t

∂

∂y

(1

t
ϕ′
(y
t

)
ϕ
(y
t

))
· f2 dx dy

This is dominated by∫
S1

∫
t≤y≤2t

∣∣∣ ∂
∂y

(1

t
ϕ′
(y
t

)
ϕ
(y
t

))∣∣∣ · f2 dx dy ≤
∫
S1

∫
t≤y≤2t

∣∣∣ ∂
∂y

(1

t
ϕ′
(y
t

)
ϕ
(y
t

))∣∣∣ · f2 · (2t)2 dx dy

y2

= 4

∫
S1

∫
t≤y≤2t

∣∣∣ϕ′′(y
t

)
ϕ
(y
t

)
+ ϕ′

(y
t

)2∣∣∣ · f2 dx dy

y2
�ϕ |f |2L2

with implied constant independent of f and t ≥ 1. ///

10.5 Tail estimates: three further small examples

Now we see how to adapt the previous argument to the other three examples from chapter 1. Most of
the work involves skirting the needless (but convenient) exploitation of coincidences used in that simplest
example: the y2 in the coordinate expression for the invariant Laplacian and in the invariant measure in the
SL2(R) seem to need to cancel to make the computation succeed. Our main point in this section is seeing
that that coincidence is irrelevant.

For all four examples from chapter 1, use the coordinates and conventions there. The coordinates are the
Iwasawa coordinates x, y with x ∈ Rr for r = 1, 2, 3, 4 (with the previous section’s example being the case
r = 1), and 0 < y ∈ R. The invariant Laplacian is

∆ = y2
( ∂2

∂x2
+

∂2

∂y2

)
− (r − 1)y

∂

∂y
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and the invariant measure is dx dy/yr+1. The [Lax-Phillips 1976] argument as in [10.4] requires not only
that −∆ itself is non-negative, but that the two natural summands of −∆ in Iwasawa coordinates are both
non-negative. For example, the seemingly-extra term (r−1)y ∂

∂y is not only harmless, but necessary, possibly

contrary to a visual appraisal. The −y2 ∂2

∂x2 summand is non-negative, because the partial derivative in x
does not interact with either the leading coefficient y2 or the denominator yn in the measure.

[10.5.1] Claim: ∫
−
(
y2 ∂

2

∂y2
− (r − 1)y

∂

∂y

)
f · f dx dy

yr+1
≥ 0

Proof: Integrating by parts once in the second-order derivative,∫
−y2 ∂

2

∂y2
f · f dx dy

yr+1
=

∫
− ∂2

∂y2
f · y1−rf dx dy =

∫
∂

∂y
f · ∂

∂y
(y1−rf ) dx dy

=

∫
∂

∂y
f ·

(
(1− r)y−rf + y1−r ∂

∂y
f
)
dx dy

The ∂
∂yf · (1− r)y

−rf term cancels the corresponding term in the original expression, so∫
−
(
y2 ∂

2

∂y2
− (r − 1)y

∂

∂y

)
f · f dx dy

yr+1
=

∫
y
∂

∂y
f · y ∂

∂y
f
dx dy

yr+1

Thus, for example, with invariant Laplacian ∆,∫
−∆f · f dx dy

yr+1
=

∫ (
y
∂f

∂x

)2

+
(
y
∂f

∂y

)2 dx dy

yr+1

This is the desired positiviity. ///

We grant ourselves that the subordinate issue about uniform estimates on families of smooth cut-offs is
resolved, as in [10.4.3]. Let ξ run over characters of (Γ ∩ N)\N ≈ Tr, and take c ≥ co � 1. In Iwasawa
coordinates x, y, write the Fourier expansion in x as

f(x, y) =
∑
ξ

f̂(ξ)(y)

Toward the compactness of B1
a → L2

a(Γ\G/K), the critical point is the tail estimate:

[10.5.2] Claim: For smooth f with support in y ≥ c ≥ co � 1,∫
(N∩Γ)\N

∫
y≥c
|f |2 dx dy

yr+1
� 1

c2
· |f |2B1

with implied constants independent of f and of c.

Proof: By Plancherel in x, ∫
(N∩Γ)\N

∫
y≥c
|f |2 dx dy

yr+1
=
∑
ξ

∫
y≥c
|f̂(ξ)(y)|2 dy

yr+1

When f̂(0)(y) = 0 for y ≥ co, since |ξ| � 1 for ξ 6= 0,∑
ξ

∫
y≥c
|f̂(ξ)(y)|2 dy

yr+1
�
∑
ξ

∫
y≥c
|ξ|2 · |f̂(ξ)(y)|2 dy

yr+1

With ∆x the Euclidean Laplacian in x,

|ξ|2 · f̂(ξ, y) =
1

4π2

(
−∆xf

)̂(ξ)(y)
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Applying this, and going back by Plancherel,

∑
ξ

∫
y≥c
|ξ|2 · |f̂(ξ)(y)|2 dy

yr+1
�
∑
ξ

∫
y≥c

(
−∆xf

)̂(ξ)(y) · f̂ (ξ)(y)
dy

yr+1
=

∫
(N∩Γ)\N

∫
y≥c
−∆xf ·f

dx dy

yr+1

Since y ≥ c ≥ co � 1,∫
(N∩Γ)\N

∫
y≥c
−∆xf · f

dx dy

yr+1
≤ 1

c2

∫
(N∩Γ)\N

∫
y≥c
−y2∆xf · f

dx dy

yr+1

From the positivity result just above,∫
−
(
y2 ∂

2

∂y2
− (r − 1)y

∂

∂y

)
f · f dx dy

yr+1
≥ 0

so ∫
(N∩Γ)\N

∫
y≥c
−y2∆xf · f

dx dy

yr+1
≤ 1

c2

∫
(N∩Γ)\N

∫
y≥c

(
− y2∆xf − y2 ∂

2f

∂y2
+ (r − 1)y

∂f

∂y

)
· f dx dy

yr+1

Thus, for smooth f with support in y ≥ c ≥ co,

1

c2

∫
(N∩Γ)\N

∫
y≥c

|f |2 dx dy
yr+1

� 1

c2

∫
(N∩Γ)\N

∫
y≥c

−∆f · f dx dy

yr+1
≤ 1

c2
· |f |2B1

as claimed. ///

10.6 Tail estimate: SL3(Z), SL4(Z), SL5(Z), . . .

As in the smaller examples, the global automorphic Sobolev space B1 is the completion of C∞c (Γ\G/K)
with respect to the B1-norm

|f |2B1 =

∫
Γ\G/K

(1−∆)f · f

Let S be a sufficiently large standard Siegel set so that it surjects to the quotient Γ\G. For a > 0, the set

Xa = {g ∈ S : α(mg) ≤ a for all α ∈ Φ}

has compact image Γ\(Γ ·Xa). For α in the set Φ of simple roots and c ≥ a, let

Y αc = {g ∈ S : α(mg) ≥ a}

and Ya =
⋃
α Y

α
a . Certainly

S = Xa ∪ Ya

Let
L2
a(Γ\G/K) = {f ∈ L2(Γ\G/K) : cP f(g) = 0, for all g ∈ Ya, for all parabolics P}

and
Da = D ∩ L2

a(Γ\G/K)

It suffices to require the constant-term vanishing just for standard maximal proper parabolics, because
cQ∩P f = cQcP f for two standard parabolics, and every standard parabolic is an intersection of maximal
ones. Let B1

a be the B1 completion of C∞c (ZΓ\G/K) ∩ L2
a in the B1 norm.
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To eventually show that the injection B1
a → L2

a is compact, as in the simpler examples, we will show that
the image of the unit ball of B1

a is totally bounded in L2
a. The crucial point is an estimate on the tails of

functions in the unit ball B in B1
a, as follows.

We grant ourselves a suitable analogue of [10.4.3], that we can control the B1-norm of smoothly cut-off
versions of f ∈ B when any single simple root becomes large:

[10.6.1] Lemma: Fix a positive simple root α. Given c ≥ a+ 1, there are real-valued smooth functions ϕo
and ϕ1, taking values in [0, 1], summing to 1, such that ϕ1 is supported in Y αc , and so that there is a bound
C uniform in c ≥ a+ 1, such that |f · ϕ1|B1 ≤ C · |f |B1 . ///

The key point is a bound going to 0 when any simple root α becomes large:

[10.6.2] Claim: For α ∈ Φ,

lim
c→+∞

(
sup

f∈B1
a and sptf⊂Y αc

|f |L2

|f |B1

)
= 0

Proof: Fix α = αi ∈ Φ, and f ∈ B1
c with support inside Y αc for c � a. Let N = Nα, P = Pα, and let

M = Mα be the standard Levi component of P . Use exponential coordinates coordinates

nx =

(
1i x
0 1r−i

)
In effect, the coordinate x is in the Lie algebra n of N . Let Λ ⊂ n be the lattice which exponentiates to
N ∩P . Give n the natural inner product 〈, 〉 invariant under the (Adjoint) action of M ∩K that makes root
spaces mutually orthogonal. Fix a non-trivial character ψ on R/Z. We have the Fourier expansion

f(nxm) =
∑
ξ∈Λ′

ψ〈x, ξ〉 f̂ξ(m) (with n ∈ N and m ∈M)

where Λ′ is the dual lattice to Λ in n with respect to 〈, 〉, and

f̂ξ(m) =

∫
n/Λ

ψ〈x, ξ〉 f(nxm) dx

Let ∆n be the flat Laplacian on n associated to the inner product 〈, 〉, normalized so that

∆nψ〈x, ξ〉 = −〈ξ, ξ〉 · ψ〈x, ξ〉

Let U = M ∩Nmin , and MS = M ∩S. Abbreviating Au = Adu,

|f |2L2 ≤
∫
S

|f |2 =

∫
MS

∫
(U∩Γ)\U

∫
A−1
u Λ\n

|f(unxm)|2 dx du dm

δ(m)

with Haar measures dx, du, dm, where δ is the modular function of P . Using the Fourier expansion,

f(unxm) = f(unxu
−1 · um) =

∑
ξ∈Λ′

ψ〈Aux, ξ〉 · f̂ξ(um) =
∑
ξ∈Λ′

ψ〈x,A∗uξ〉 · f̂ξ(um)

Then
−∆nf(unxm) =

∑
ξ∈Λ′

〈A∗uξ, A∗uξ〉 · ψ〈x,A∗uξ〉 · f̂ξ(um)

The compact quotient (U ∩ Γ)\U has a compact set R of representatives in U , so there is a uniform lower
bound for 0 6= ξ ∈ Λ′:

0 < b ≤ inf
u∈R

inf
0 6=ξ∈Λ′

〈A∗uξ, A∗uξ〉

By Plancherel applied to the Fourier expansion in x, using the hypothesis that f̂0 = 0 in Xα
a ,
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10. Discrete decomposition of pseudo-cuspforms∫
A−1
u Λ\n

|f(unxm)|2 dx =

∫
A−1
u Λ\n

|f(unxu
−1 · um)|2 dx =

∑
ξ∈Λ′

|f̂ξ(um)|2

≤ b−1
∑
ξ∈Λ′

〈A∗uξ, A∗uξ〉 · |f̂ξ(um)|2 =
∑
ξ∈Λ′

−∆̂nfξ(um) · f̂ (um)

=

∫
u−1Λu\n

−∆nf(unxu
−1 · um) · f (unxu

−1 · um) dx =

∫
A−1
u Λ\n

−∆nf(unxm) · f (unxm) dx

Thus, for f with f̂(0) = 0 on Y αa ,

|f |2L2 �
∫
MS

∫
(U∩Γ)\U

∫
A−1
u Λ\n

−∆nf(unxm) · f (unxm) dx du
dm

δ(m)

Next, we compare ∆n to the invariant Laplacian ∆. Let g be the Lie algebra of GR, with non-degenerate
invariant pairing 〈u, v〉 = tr(uv). The Cartan involution v → vθ = −v> has +1 eigenspace the Lie algebra k
of K, and −1 eigenspace s, the space of symmetric matrices.

Let ΦN be the set of positive roots β whose root-space gβ appears in n. For each β ∈ ΦN , take xβ ∈ gβ
such that xβ +xθβ ∈ s, xβ −xθβ ∈ k, and 〈xβ , xθβ〉 = −1: for β(a) = ai/aj with i < j, xβ has a single non-zero

entry, at the ijth place. Let

Ω′ = −
∑
β∈ΦN

(xβx
θ
β + xθβxβ) (in the universal enveloping algebra Ug)

Let Ω′′ ∈ Ug be the Casimir element for the Lie algebra m of MR, normalized so that Casimir Ω for g is the
sum Ω = Ω′ + Ω′′. We rewrite Ω′ to fit the Iwasawa coordinates: for each β,

xβx
θ
β + xθβxβ = −2x2

β + 2xβ(xβ + xθβ) + [xθβ , xβ ] ∈ −2x2
β + [xθβ , xβ ] + k

Thus,

Ω′ =
∑
β∈ΦN

2x2
β − [xθβ , xβ ] (modulo k)

The commutators [xθβ , xβ ] are in m. In the coordinates unxa with Ug acting on the right, xβ ∈ n is acted on
by a before translating x, by

unxa · etxβ = unx · etβ(a)·xβ · a = unx+β(a)xβa

That is, xβ acts by β(a) · ∂
∂xβ

.

For two symmetric operators S, T on a not-necessarily-complete inner product space V , write S ≤ T when

〈Sv, v〉 ≤ 〈Tv, v〉 (for all v ∈ V )

Say a symmetric operator T is non-negative when 0 ≤ T . Since m ∈ MS, there is an absolute constant so
that α(m) ≥ c implies β(m)� c. Thus,

−∆n = −
∑
β∈ΦN

∂2

∂x2
β

≤ 1

c2
·
(
−
∑
β∈ΦN

x2
β

)
(operators on C∞c (Y αa )K)

where C∞c (Y αa ) has the L2 inner product. We claim that∑
β∈ΦN

[xθβ , xβ ]− Ω′′ ≥ 0 (operators on C∞c (Y αa ))
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From this, it would follow that

−∆n � 1

c2
·
(
−
∑
β∈ΦN

x2
β

)
≤ 1

c2
·
(
−
∑
β∈ΦN

x2
β +

∑
β∈ΦN

[xθβ , xβ ]− Ω′′
)

=
1

c2
· (−∆)

Then for f ∈ B1
a with support in Xα

a we would have

|f |2L2 �
∫
S

−∆nf · f � 1

c2

∫
S

−∆f · f � 1

c2

∫
Γ\G
−∆f · f � 1

c2
· |f |2B1

Taking c large makes this small.
To prove the claimed non-negativity of T =

∑
β∈ΦN [xθβ , xβ ]− Ω′′, exploit the Fourier expansion along N

and the fact that x ∈ n does not appear in T : noting that the order of coordinates nxu differs from that
above, ∫

MS

∫
(U∩Γ)\U

∫
Λ\n

Tf(nxum) f (nxum) dx du
dm

δ(m)

=

∫
MS

∫
(U∩Γ)\U

∫
Λ\n

T
(∑

ξ

ψ〈x, ξ〉 f̂ξ(um)
) ∑

ξ′

ψ〈x, ξ′〉 f̂ ξ(um) dx du
dm

δ(m)

Only the diagonal summands survive the integration in x ∈ n, and the exponentials cancel, so this is∫
MS

∫
(U∩Γ)\U

∑
ξ

T f̂ξ(um) · f̂ ξ(um) du
dm

δ(m)

Let Fξ be a left-N -invariant function taking the same values as f̂ξ on UA+K, defined by

Fξ(nxumk) = f̂ξ(umk) (for nx ∈ N , u ∈ U , m ∈M+, k ∈ K)

Since T does not involve n, and since Fξ is left N -invariant,

T f̂ξ(um) = TFξ(nxum) = −∆Fξ(nxum)

and then∫
MS

∫
(U∩Γ)\U

∑
ξ

T f̂ξ(um) · f̂ ξ(um) du
dm

δ(m)
=

∫
MS

∫
(U∩Γ)\U

∑
ξ

−∆Fξ(um) · F ξ(um) du
dm

δ(m)

The individual summands are not left-U ∩ Γ-invariant. Since f̂ξ(γg) = f̂A∗γξ(g) for γ normalizing n, we
can group ξ ∈ Λ′ by (U ∩Γ) orbits to obtain (U ∩Γ) subsums, and then unwind. Pick a representative ω for
each orbit [ω], and let Uω be the isotropy subgroup of ω in (U ∩ Γ), so∫

(U∩Γ)\U

∑
ξ

−∆Fξ(um) · F ξ(um) du =
∑
[ω]

∫
(U∩Γ)\U

∑
ξ∈[ω]

−∆Fξ(um) · F ξ(um) du

=
∑
ω

∫
(U∩Γ)\U

∑
γ∈Uω\(U∩Γ)

−∆FA∗γω(um) · FA∗γω(um) du =
∑
ω

∫
Uω\U

−∆Fω(um) · Fω(um) du

Then ∫
MS

∫
(U∩Γ)\U

∑
ξ

−∆Fξ(um) · F ξ(um) du =
∑
ω

∫
MS

∫
Uω\U

−∆Fω(um) · Fω(um) du
da

δ(a)

Since −∆ is a non-negative operator on functions on every quotient NUω\G/K of G/K, each double integral
is non-negative, proving T is non-negative. This completes the estimate of the tails. ///
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10.7 Compact B1
a −→ L2

a in four simple examples

As remarked above, the discrete decomposition of L2
a(Γ\G/K), for the Friedrichs extension ∆̃a of

a restriction ∆a of the differential operator ∆ to the dense subspace Da of L2
a(Γ\G/K), will follow

from compactness of the resolvent (1 − ∆̃a)−1, which will follow from the compactness of the inclusion
B1
a → L2

a(Γ\G/K), demonstrated just below.

[10.7.1] Theorem: With a� 1, the inclusion B1
a(Γ\G/K)→ L2

a(Γ\G/K) is compact.

Proof: Again, we are roughly following [Lax-Phillips 1976], pages 204-6. The total boundedness criterion for
pre-compactness [14.7.1] requires that, given ε > 0, the image of the unit ball B in B1

a in L2
a(Γ\G/K) can

be covered by finitely-many balls of radius ε.
The idea is that the usual Rellich compactness lemma, asserting compactness of proper inclusions of

Sobolev spaces on (multi-)tori as in [9.5.12] and [9.5.15], reduces the issue to estimates [10.4], [10.5] on the
tails. In more detail: let S be a fixed Siegel set that surjects to the quotient Γ\G. Given c ≥ a, let Yo be the
image of {g ∈ S : η(g) ≤ c+ 1} in Γ\G/K, and cover it by opens U1, . . . , Un in Γ\G/K with small compact
closures, and take one open U∞ covering the image Y∞ of η ≥ c. Compactness of Yo produces a finite
sub-cover. Choose a smooth partition of unity {ϕi} subordinate to the finite subcover and U∞, letting ϕ∞
be a smooth function that is identically 1 for y ≥ c. That is, ϕ∞ +

∑
i ϕi = 1, and ϕi has compact support

inside the open Ui. Note that [10.4.3] showed that we can choose a family of smooth cut-off functions ϕ∞
so that ϕ∞ · f has a uniform B1 bound in terms of both f and the family.

Maps among function spaces on the compact part Yo behave well for more general reasons, as we see now.
Let B1

a(Yo) be the closure of C∞c (Yo)∩L2
a(Γ\G/K) in B1

a, and L2
a(Yo) the closure of C∞c (Yo)∩L2

a(Γ\G/K)
in L2

a(Γ\G/K).

[10.7.2] Theorem: For Γ = SL2(Z) and G = SL2(R), B1
a(Yo)→ L2

a(Yo) is compact.

Proof: To take advanatage of some fortunate, simplifying (but not strictly necessary) coincidences, we first
carry out this part of the argument just for Γ = SL2(Z) and G = SL2(R).

For finite j, without loss of generality take the opens Uj to be small rectangles in the upper half-plane, and
the coordinate maps ψj simply the inclusions. Fix j, and let Uj = {z = x+ iy : x1 < x < x2, y1 < y < y2}.
On Uj , the measure dx dy/y2 and the coefficients of the differential operator ∆ = y2( ∂2

∂x2 + ∂2

∂y2 ) differ by

bounded amounts from the Euclidean dx dy and ∆E = ∂2

∂x2 + ∂2

∂y2 . Thus, the corresponding B1 and L2 norms
are comparable, as follows. Let

L2
a(Uj) = closure of C∞c (Uj) ∩ L2

a(Γ\G/K) in L2
a(Γ\G/K)

and

B1
a(Uj) = closure of C∞c (Uj) ∩ L2

a(Γ\G/K) in B1
a(Γ\G/K)

Letting

|f |2L2(ψjUj)
=

∫
ψjUj

|f |2 dx dy |f |2B1(ψjUj)
=

∫
ψjUj

(
|f |2 −∆Ef · f

)
dx dy

there are easy comparisons

1

y2
· |f |L2(ψjUj) ≤ |f |L2(Uj) ≤

1

y1
· |f |L2(ψjUj) (for f ∈ C∞c (Uj) ∩ L2

a(Γ\G/K))

1

y2
· |f |B1(ψjUj) ≤ |f |B1(Uj) ≤

1

y1
· |f |L2(ψjUj) (for f ∈ C∞c (Uj) ∩ L2

a(Γ\G/K))

Identification of opposite edges of the rectangles ψiUi produces a two-torus Tj , with L2(Tj) and B1(Tj)
defined from the Euclidean measure and Euclidean Laplacian. The usual Rellich Lemma asserts the
compactness of the inclusion B1(Tj)→ L2(Tj). We will repeatedly use

308



Garrett: Modern Analysis of Automorphic Forms

[10.7.3] Lemma: Let A,B,C,D be Hilbert spaces, with a commutative diagram of continuous linear maps

A //

��

B

��
C

S
// D

with B → D compact, and S : C → D with constant m > 0 such that |v|C ≤ m · |Sv|D for all v ∈ C. Then
A→ C is also compact.

Proof: (of lemma) Let X be the closed unit ball in A, with image Y in C. By continuity, the image of X in
B is inside a finite-radius ball Z. By compactness of B → D, given ε > 0, the image of Z in D is covered
by finitely-many ε

m -balls V1, . . . , Vn. The condition on S assures that the inverse images S−1(SY ∩ Vj) are
contained in ε-balls in C. Thus, Y is covered by finitely-many ε-balls in C. This holds for every ε > 0, so
the image Y is pre-compact, and A→ C is compact. ///

The lemma applies to the situation

B1
a(ψjUj) //

��

B1(Tj)

��
L2
a(ψjUj) // L2(Tj)

The standard Rellich lemma is that B1(Tj) → L2(Tj) is compact, and the inclusion L2
a(Uj) → L2(Tj)

satisfies the hypothesis of the lemma with m = 1, so B1
a(Uj)→ L2

a(Uj) is compact.
Map B1

a(Yo) to
⊕n

j=1 B
1
a(Uj) by f →

⊕
j ϕj · f , and similarly for L2. Applying the lemma to

B1
a(Yo) //

��

⊕n
j=1 B

1
a(Uj) //⊕n

j=1 B
1(ψjUj)

��
L2
a(Yo) //⊕n

j=1 L
2
a(Uj) //⊕n

j=1 L
2(ψjUj)

yields the compactness of B1
a(Yo)→ L2

a(Yo). ///

Returning to the proof of the theorem: let B be the unit ball in B1
a(Γ\G/K). Given ε > 0, take c ≥ a

sufficiently large and smooth cut-off function ϕ∞ such that ϕ∞ · B lies in a single ε/2-ball in L2
a(Γ\G/K).

By compactness of B1
a(Yo)→ L2

a(Yo), the image of B in

B −→ (1− ϕ∞) ·B ⊂ B1
a(Yo) −→ L2

a(Yo)

is pre-compact, so can be covered by finitely-many ε/2-balls in L2
a(Γ\G/K). Thus, B = ϕ∞ ·B+(1−ϕ∞) ·B

can be covered by finitely-many ε-balls in L2
a(Γ\G/K), so is pre-compact there. This proves the compactness

of the inclusion B1
a(Γ\G/K)→ L2

a(Γ\G/K). ///

Now we give an argument for compactness applicable more generally. To cope more sanely with
comparisons of norms, we want a sort of gradient operator ∇ on functions on Γ\G/K such that there
is an integration by parts property∫

Γ\G/K
−∆f · f =

∫
Γ\G/K

〈∇f,∇f〉s

with an inner product on the vector space s in which ∇ takes values. This can be accomplished quite
generally as follows.

Let γ → γθ be an involutive automorphism [69] on the Lie algebra of G as g = s + k such that the Lie
algebra of K is the +1 eigenspace, and let s be the −1 eigenspace. For example, for G = SL2(R) we can

[69] This is a Cartan involution.
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take γθ = −γ>. Let 〈, 〉s be a positive-definite real-valued inner product on s, invariant under the action of
K:

〈kαk−1, kβk−1〉s = 〈α, β〉s (for all α, β ∈ s and k ∈ K)

In all these examples, 〈, 〉s can be obtained by restricting the trace form [70]

〈α, β〉trace = Retr(α · β) (for α, β ∈ g)

where tr is matrix trace. Let x ∈ g act on functions on G or Γ\G by differentiating right translation Xx,
as in chapters 4, 6, and subsequently. We need a name for this map, so let ρ(x) = Xx. It is K-equivariant.
To describe ∇ independently of coordinates, consider a sequence of K-equivariant maps, reminiscent of the
analogue in the coordinate-independent description [4.2] of the Casimir operator:

EndR(s) // s⊗R s∗
〈,〉s // s⊗R s

ρ⊗1s // ρ(s)⊗R s

1s //__________________ ∇

where s ⊗ s∗ → EndR(s) is the natural map (x ⊗ λ)(y) = λ(y) · x, and where s∗ is identified with s via
x→ 〈−, x〉s. Thus,

[10.7.4] Lemma: The image ∇ of the identity automorphism 1s of s is K-equivariant. ///

Thus, for any orthonormal basis {xj} of s, in coordinates

∇ =
∑
j

Xxj · xj ∇f =
∑
j

Xxjf · xj (for f ∈ C∞(G))

Since ∇ is right K-equivariant, it descends to an operator on functions on G/K and Γ\G/K.

[10.7.5] Lemma: For f ∈ C∞c (Γ\G/K) = C∞c (Γ\G)K ,∫
Γ\G
−∆f · f =

∫
Γ\G
〈∇f, ∇f〉s

Proof: Now write simply x for the operator Xx = ρ(x). Let {θj} be a basis for k such that 〈θi, θj〉trace = −δij
with Kronecker δ and the trace pairing. As in [4.2], the Casimir operator is (the image of)

∑
j x

2
j −

∑
i θ

2
i

in the universal enveloping algebra. Thus, on right K-invariant functions it is
∑
j x

2
j . Thus, integrating by

parts, ∫
Γ\G
−∆f · f =

∫
Γ\G
−
∑
j

x2
jf · f =

∫
Γ\G

∑
j

xjf · xjf

=

∫
Γ\G

∑
j

〈
xjf · xj , xjf · xj

〉
s

=

∫
Γ\G
〈∇f, ∇f〉s

as desired. ///

Using ∇, now we can give a more general proof of compactness, as follows. As above, let S be a fixed
Siegel set that surjects to the quotient Γ\G/K. Given c ≥ a, let Yo be the image of {g ∈ S : η(g) ≤ c+ 1}
in Γ\G/K, and cover it by opens U1, . . . , Un in Γ\G/K with small compact closures, and take one open U∞
covering the image Y∞ of η ≥ c. Compactness of Yo produces a finite sub-cover. Choose a smooth partition
of unity {ϕi} subordinate to the finite subcover and U∞, letting ϕ∞ be a smooth function identically 1 for
y ≥ c. That is, ϕ∞+

∑
i ϕi = 1, and ϕi has compact support inside the open Ui. A general version of [10.4.3]

shows that we can choose a family of smooth cut-off functions ϕ∞ so that ϕ∞ · f has a uniform B1 bound
in terms of both f and the family. Now we have the somewhat more general version of [10.7.2]: as above,

[70] This trace form is a concrete instantiation of the Cartan-Killing form.
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let B1
a(Yo) be the closure of C∞c (Yo) ∩ L2

a(Γ\G/K) in B1
a, and L2

a(Yo) the closure of C∞c (Yo) ∩ L2
a(Γ\G/K)

in L2
a(Γ\G/K).

[10.7.6] Theorem: B1
a(Yo)→ L2

a(Yo) is compact.

Proof: As earlier, let r = 1, 2, 3, 4 in the respective cases. For finite j, without loss of generality take the opens
Uj to be small rectangles in Iwasawa coordinates x, y on G/K with x ∈ Rr and y > 0, and the coordinate
maps ψj the inclusions. As in the simplest case, on Uj , the measure dx dy/yr+1 differs by a bounded amount
from from the Euclidean invariant measure dx dy.

Identifying s with the tangent space at every point of G/K, on a subset U with compact closure the
inner product 〈, 〉s differs from the Euclidean inner product 〈, 〉E by bounded amounts, simply because
continuous functions on compacts are uniformly bounded. Similarly, the coefficients of ∇ differ from those
of the Euclidean gradient ∇E by bounded amounts, for the same reason. Thus, the B1 and L2 norms are
comparable to the Euclidean ones on each of the finitely-many Uj . Specifically, let

L2
a(Uj) = closure of C∞c (Uj) ∩ L2

a(Γ\G/K) in L2
a(Γ\G/K)

and
B1
a(Uj) = closure of C∞c (Uj) ∩ L2

a(Γ\G/K) in B1
a(Γ\G/K)

As earlier in the simplest case, denote the Euclidean versions by

|f |2L2(ψjUj)
=

∫
ψjUj

|f |2 dx dy |f |2B1(ψjUj)
=

∫
ψjUj

(
|f |2 + 〈∇Ef, ∇Ef 〉E

)
dx dy

Then the comparisons, less explicit than in the proof of [10.7.2], are

|f |L2(ψjUj) � |f |L2(Uj) � |f |L2(ψjUj) (for f ∈ C∞c (Uj) ∩ L2
a(Γ\G/K))

and
|f |B1(ψjUj) � |f |B1(Uj) � |f |L2(ψjUj) (for f ∈ C∞c (Uj) ∩ L2

a(Γ\G/K))

with implied constants uniform in f . The rest of the argument proceeds as in [10.7.2]: first, identification
of opposite edges of the rectangles ψiUi produces an (r + 1)-torus Tj , with L2(Tj) and B1(Tj) defined from
the Euclidean measure and Euclidean Laplacian. The usual Rellich Lemma asserts the compactness of the
inclusion B1(Tj)→ L2(Tj). Use the lemma [10.7.3] in the situation

B1
a(ψjUj) //

��

B1(Tj)

��
L2
a(ψjUj) // L2(Tj)

As in the proof of [10.7.2], the standard Rellich lemma asserts that B1(Tj) → L2(Tj) is compact, and the
inclusion L2

a(Uj)→ L2(Tj) satisfies the hypothesis of the lemma, so B1
a(Uj)→ L2

a(Uj) is compact.
As in the proof of [10.7.2], map B1

a(Yo) to
⊕n

j=1 B
1
a(Uj) by f →

⊕
j ϕj ·f , and similarly for L2. Applying

the lemma [10.7.3] to

B1
a(Yo) //

��

⊕n
j=1 B

1
a(Uj) //⊕n

j=1 B
1(ψjUj)

��
L2
a(Yo) //⊕n

j=1 L
2
a(Uj) //⊕n

j=1 L
2(ψjUj)

yields the compactness of B1
a(Yo)→ L2

a(Yo). ///
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10.8 Compact B1
a −→ L2

a for SL3(Z), SL4(Z), SL5(Z), . . .

Now let Γ = SLr(Z), G = SLr(R), and K = SOr(R). As in the smaller examples, the global automorphic
Sobolev space B1 is the completion of C∞c (Γ\G/K) with respect to the B1-norm

|f |2B1 =

∫
Γ\G/K

(1−∆)f · f

For a cut-off height a � 1, let B1
a be the B1 completion of C∞c (ZΓ\G/K) ∩ L2

a in the B1 norm. The
resolvent of the Friedrichs extension maps continuously from L2

a to an automorphic Sobolev space B1
a with

its finer topology. Thus, it suffices to show that the injection B1
a → L2

a is compact. As in the simpler
examples, to prove this compactness, we will show that the image of the unit ball of B1

a is totally bounded
in L2

a.

[10.8.1] Theorem: The Friedrichs self-adjoint extension ∆̃a of the restriction of the symmetric operator ∆
to test functions Da in L2

a has compact resolvent, thus has purely discrete spectrum.

Proof: First, we grant that we can control smooth cut-off functions:

[10.8.2] Lemma: Fix a positive simple root α. Given µ ≥ η(α)+1, there are smooth functions ϕαa for α ∈ Φ
and ϕoa such that: all these functions are real-valued, taking values between 0 and 1, ϕo is supported in Cµ+1

and ϕαµ is supported in Xα
a , and ϕoa +

∑
α ϕ

α
a = 1. Further, there is a bound C uniform in µ ≥ η(α) + 1,

such that |f · ϕoa|B1 ≤ C · |f |B1 and

|f · ϕαa |B1 ≤ C · |f |B1 (for all µ ≥ η(α) + 1)

(Proof almost identical to [10.4.3].)
The key point is the estimation of tails as in [10.3] and [10.4]. To prove total boundedness of B1

a → L2
a,

given ε > 0, take µ ≥ η(α) + 1 for all α ∈ Φ, large enough so that |f ·ϕαa |L2 < ε for all α ∈ Φ, for all f ∈ B1
a

with |f |B1 ≤ 1. This covers the images {f ·ϕαa : f ∈ B1
a} with α ∈ Φ with card(Φ) open balls in L2 of radius

ε.
The remaining part {f · ϕoa : f ∈ B1

a} consists of smooth functions supported on the compact Ca. The
latter can be covered by finitely-many coordinate patches ψi : Ui → Rd. Take smooth cut-off functions ϕi for
this covering. The functions (f ·ϕi)◦ψ−1

i on Rd have support strictly inside a Euclidean box, whose opposite
faces can be identified to form a flat d-torus Td. As in the proof of [10.7.6], because continuous functions
on compacts are uniformly continuous, the flat gradient and the gradient inherited from G admit uniform
comparison on each ψ(Ui), as do the measures, so the B1(Td)-norm of (f · ϕi) ◦ ψ−1

i is uniformly bounded
by the B1-norm. The classical Rellich lemma asserts compactness of B1(Td)→ L2(Td). By restriction, this
gives the compactness of each B1 · ϕi → L2. A finite sum of compact maps is compact, so B1 · ϕoa → L2 is
compact. In particular, the image of the unit ball from B1 admits a cover by finitely-many ε-balls for any
ε > 0.

Combining these finitely-many ε-balls with the card(Φ) balls covers the image of B1
a in L2 by finitely-many

ε-balls, proving that B1
a → L2 is compact. ///

10.9 Compact resolvents and discrete spectrum

The over-all corollary in all these examples:

[10.9.1] Corollary: For λ off a discrete set X of points in C, the inverse (∆̃a − λ)−1 exists, is a compact
operator, and

λ −→
(

(∆̃a − λ)−1 : L2
a(Γ\G/K) −→ L2

a(Γ\G/K)
)

is meromorphic in λ ∈ C−X. The decomposition of L2
a(Γ\G/K) with respect to ∆̃a is discrete: there is an

orthogonal basis of L2
a(Γ\G/K) consisting of ∆̃a-eigenvectors. The eigenvectors of ∆̃a are eigenvectors of

(1−∆̃a)−1, and eigenvalues λ of ∆̃a are in bijection with non-zero eigenvalues of (1−∆̃a)−1 by λ←→ (1−λ)−1.

Proof: The previous preparations and [9.4.1]. ///

312



Garrett: Modern Analysis of Automorphic Forms

11. Meromorphic continuation of Eisenstein series

1. Up to the critical line: four simple examples
2. Re-characterization of Friedrichs extensions
3. Distributional characterization of pseudo-Laplacians
4. Key density lemma: simple cases
5. Beyond the critical line: four simple examples
6. Exotic eigenfunctions: four simple examples
7. Up to the critical line: SLr(Z)
8. Distributional characterization of pseudo-Laplacians
9. Density lemma for P r,r ⊂ SL2r(Z)
10. Beyond the critical line: P r,r ⊂ SL2r(Z)
11. Exotic eigenfunctions: P r,r ⊂ SL2r(Z)
12. Non-self-associate cases
Appendix A: distributions supported on submanifolds

This proof of meromorphic continuation of various Eisenstein series is in part an elaboration of
[Colin de Verdière 1981], and parts of [Colin de Verdière 1982,83]. The less-simple examples [11.7-11.12]
of cuspidal-data Eisenstein series for maximal proper parabolics in GLr constitute a natural extension.

In the four simplest examples, the compactness [10.7] of the inclusion map of B1
a → L2

a(Γ\G/K) of pseudo-

cuspforms yields [10.9] the compactness of the resolvent of the Friedrichs self-adjoint extension [9.2] ∆̃a of
the restriction of the invariant Laplacian to (a dense subspace of) that subspace, giving its meromorphy.

Eisenstein series differ by elementary functions from Eisenstein-series-like functions in the domain of ∆̃a,
giving the meromorphic continuation of the Eisenstein series.

A noteworthy preliminary result, reminiscent of [Avakumović 1956], [Roelcke 1956], [Selberg 1956],
immediately extends Eisenstein series Es up to the critical line Re(s) = 1

2 . Analytic continuation of the zeta
function ζ(s) to Re(s) > 0 is a corollary of this preliminary result, the simplest example of the arguments of
[Langlands 1967/76], [Langlands 1971], and [Shahidi 1978] about meromorphic continuation of automorphic
L-functions.

11.1 Up to the critical line: four simple examples

In this section, we consider the four simplest cases of chapter 1, with Iwasawa coordinates x, y with x ∈ Rr
with r = 1, 2, 3, 4 respectively, and y > 0.

Precise discussion of an unbounded operator and its resolvent requires a specified domain [9.1]. Let ∆̃ be
the Friedrichs extension [9.2] of the restriction of ∆ to C∞c (Γ\G/K). The Friedrichs construction shows that

the domain of ∆̃ is contained in a Sobolev space:

domain ∆̃ ⊂ B1 =
(

completion of C∞c (Γ\G/K) under 〈v, w〉B1 = 〈(1−∆)v, w〉
)

The domain of ∆̃ contains the smaller Sobolev space

B2 =
(

completion of C∞c (Γ\G/K) under 〈v, w〉B2 = 〈(1−∆)2v, w〉
)

As in the previous chapter, the quotient Γ\G/K is a union of a compact part Xcpt, whose (conceivably
complicated) geometry does not matter, and a geometrically simpler non-compact part:

Γ\G/K = Xcpt ∪X∞ (compact Xcpt, cusp neighborhood X∞)

where, with a� 1, with normalized height function η(nmyk) = yr as in [1.9],

X∞ = image of {g ∈ G/K : η(g) ≥ a} = Γ∞
∖
{g ∈ G/K : η(g) ≥ a} ≈ Zr\Rr × [a,+∞)
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Define a smooth cut-off function τ as usual: fix a′′ < a′ large enough so that the image of {(x, y) ∈ G/K :
y > a′′} in the quotient is in X∞, and let

τ(g) =

 1 (for η(g) > a′)

0 (for η(g) < a′′)

Form a pseudo-Eisenstein series hs by winding up the smoothly cut-off function τ(g) · η(g)s:

hs(g) =
∑

γ∈Γ∞\Γ

τ(γg) · η(γg)s

Since τ is supported on η ≥ a′′ for large a′′, for any g ∈ G/K there is at most one non-vanishing summand
in the expression for hs, and convergence is not an issue. Thus, the pseudo-Eisenstein series hs is entire as
a function-valued function of s. Let

Ẽs = hs − (∆̃− λs)−1 (∆− λs)hs (where λ = r2 · s(s− 1) with r = 1, 2, 3, 4)

[11.1.1] Claim: Ẽs − hs is a holomorphic B1-valued function of s for Re(s) > 1
2 and Im(s) 6= 0.

Proof: From Friedrichs’ construction [9.2], the resolvent (∆̃ − λs)
−1 exists as an everywhere-defined,

continuous operator for s ∈ C for λs not a non-positive real number, because of the non-positive-ness
of ∆. Further, for λs not a non-positive real, this resolvent is a holomorphic operator-valued function. In
fact, for such λs, the resolvent (∆̃− λs)−1 injects from L2(Γ\G/K) to B1. ///

[11.1.2] Remark: The smooth function (∆ − λs)hs is supported on the image of b ≤ y ≤ b′ in Γ\G/K,

which is compact. Thus, it is in L2(Γ\G/K). It might seem Ẽs vanishes, if it is forgotten that the indicated

resolvent maps to the domain of ∆̃ inside L2(Γ\G/K), and that hs is not in L2(Γ\G/K) for Re(s) > 1
2 .

Indeed, since hs is not in L2(Γ\G/K) and (∆̃ − λs)−1(∆ − λs)hs is in L2(Γ\G/K), the difference cannot
vanish.

[11.1.3] Theorem: With λs = r2 · s(s− 1) not non-positive real, u = Ẽs − hs is the unique element of the

domain of ∆̃ such that
(∆̃− λs)u = −(∆− λs)hs

Thus, Ẽs is the usual Eisenstein series Es of [1.9] for Re(s) > 1, and gives an analytic continuation of Es−hs
as B1-valued function to Re(s) > 1

2 with s 6∈ ( 1
2 , 1].

Proof: Uniqueness follows from Friedrichs’ construction [9.2] and construction of resolvents, because ∆̃− λs
is a bijection of its domain to L2(Γ\G/K).

On the other hand, for Re(s) > 1
2 and s 6∈ ( 1

2 , 1], Ẽs − hs is in L2(Γ\G/K), is smooth, and

∆(Ẽs − hs) = (∆− λs)(Ẽs − hs) + λs · (Ẽs − hs) = (∆− λs)hs + λs · (Ẽs − hs)

= (smooth, compactly-supported) + λs · (Ẽs − hs)

so is in B2, so certainly in the domain of ∆̃. Abbreviating Hs = (∆− λs)hs, it is legitimate to compute

(∆̃− λs)(Ẽs − hs) = (∆̃− λs)
(

(hs − (∆̃− λs)−1Hs)− hs
)

= (∆̃− λs)
(
− (∆̃− λs)−1Hs

)
= −Hs

Thus, Ẽs − hs is a solution. Also, Es − hs is a solution:

(∆− λs)(Es − hs) = (∆− λs)Es − (∆− λs)hs = 0 − (∆− λs)hs

By uniqueness, we are done. ///
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[11.1.4] Remark: Thus, the Eisenstein series Es has an analytic continuation to Re(s) > 1
2 and s 6∈ ( 1

2 , 1] as
an hs + B1-valued function. Further, the Friedrichs construction gives a bound for the L2-norm of Es − hs
via an estimate on the operator norm of (∆̃−λs)−1. The L2-norm of (∆−λs)hs is not difficult to estimate,
since its support is b ≤ y ≤ b′:

|(∆− λs)hs|2L2 ≤
∫ 1

0

∫ b′

b

(|∆hs|+ |λshs|)2 dx dy

y2
�b,b′ |λs|2

Since ∆̃ is negative-definite, as in the proof of [9.17], with λs = a+ bi

|(∆̃− λs)v|2 = |(∆̃− a)v|2 − ib〈(T − a)v, v〉+ ib〈v, (T − a)v〉+ b2|v|2 ≥ b2|v|2

Thus, the operator norm of the resolvent is estimated by

||(∆̃− λs)−1|| ≤ 1

Im(λs)2
=

1

2r2(Re(s)− 1
2 ) · Im(s)

(for Re(s)σ > 1
2 , Im(s) 6= 0)

Thus,

|Es − hs|L2 ≤ ||(∆̃− λs)−1|| · |(∆− λs)hs|L2 �b,b′
1

(Re(s)− 1
2 ) · Im(s)

· |λs|

=
1

(Re(s)− 1
2 ) · Im(s)

·
(
(Re(s)− 1

2 )2 + Im(s)2
) 1

2

[11.1.5] Remark: From [1.9.4], the Eisenstein series Es has constant term of the form ηs+csη
1−s. Thus, the

analytic continuation of Es to Re(s) > 1
2 analytically continues cs to Re(s) > 1

2 . In the case Γ = SL2(R),

since cs = ξ(2s − 1)/ξ(2s) with ξ(s) the completed zeta-function ξ(s) = π−s/2 Γ(s/2) ζ(s) this yields the
analytic continuation of ζ(s) to Re(s) > 0, off the interval [0, 1]. A similar conclusion holds for Γ = SL2(Z[i])
and the zeta function of Z[i] ⊂ Q(i).

11.2 Re-characterization of Friedrichs extensions

Friedrichs extensions of restrictions of ∆ admit simple alternative descriptions facilitating finer analysis in
terms of distributions. Up to a point, this can be done abstractly, in the same context as the construction
of the Friedrichs extension [9.2].

Let V be a Hilbert space with a complex conjugation map v → v, with expected behavior with respect
to the hermitian inner product. This gives a complex-linear isomorphism c : V → V ∗ of V to its dual V ∗

via Riesz-Fréchet composed with complex conjugation, by c : v → 〈−, v〉. Let S be a symmetric operator on
V with dense domain D, with 〈Sv, v〉 ≥ 〈v, v〉 for v ∈ D. Suppose that S commutes with the conjugation
map. Put 〈x, y〉V 1 = 〈Sx, y〉 for x, y ∈ D, and let V 1 be the completion of D with respect to this norm. The
identity map D → D induces a continuous injection j : V 1 → V with dense image. This much is the same
as in [9.2].

Write V −1 for the Hilbert-space dual (V 1)∗ of V 1, with hermitian inner product 〈, 〉V −1 . Let j∗ be the
adjoint map j∗ : V ∗ → (V 1)∗ = V −1 of j, so composition with complex conjugation c gives

V 1 j // V
c // V

j∗ // V −1

D

OO >>}}}}}}}}

There is a continuous linear map S# : V 1 −→ V −1, with the respective topologies, given by

S#(x)(y) = 〈x, y〉V 1 (for x, y ∈ V 1)
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By Riesz-Fréchet, this map is a topological isomorphism.

[11.2.1] Claim: The restriction of S# to the domain of the Friedrichs extension S̃ is j∗ ◦ c ◦ S̃. The domain

of S̃ is
domain S̃ = D̃ = {x ∈ V 1 : S#x ∈ (j∗ ◦ c)V }

Proof: By construction [9.2] of the Friedrichs extension S̃, its domain is exactly D̃ = S̃−1V . Thus, for

x = S̃−1x′ with x′ ∈ V , for all y ∈ V 1

(S#x)(y) = (S#S̃−1x′)(y) = 〈S̃−1x′, y〉V −1 = 〈x, y〉 = ((j∗ ◦ c)x′)(y) = ((j∗ ◦ c ◦ S̃)x)(y)

Thus, the restriction of S# to the domain D̃ of S̃ is essentially S̃, namely,

S#
∣∣∣
D̃

= (j∗ ◦ c ◦ S̃)
∣∣∣
D̃

Thus, S# : V 1 → V −1 extends S̃. On the other hand, for S#x = (j∗ ◦ c)y with y ∈ V , for all z ∈ V 1

〈z, x〉V 1 = (S#x)(z) = ((j∗ ◦ c)y)(z) = (λy)(jz) = 〈jz, y〉 = 〈z, S̃−1y〉V 1

Thus, x = S̃−1y. Thus, the domain of S̃ is as claimed. ///

Let Θ ⊂ D be stable under conjugation, and stable under S. For subsequent application, in the simplest
examples we are thinking of the collection of pseudo-Eisenstein series Ψϕ with ϕ ∈ C∞c (a,∞). Let VΘ be
the orthogonal complement to Θ in V . Let SΘ be S restricted to DΘ = D∩VΘ. The S-stability assumption
on Θ gives S(DΘ) ⊂ VΘ. Certainly DΘ ⊂ V 1∩VΘ, so the V 1 closure of DΘ is a subset of V 1∩VΘ. However,
V 1-density of DΘ in V 1 ∩ VΘ equality is not clear in general: we must assume that DΘ is V 1-dense in
V 1∩VΘ. In the cases of interest, we have proven this under mild hypotheses [10.3]. This density assumption
legitimizes the natural sequel: SΘ with domain DΘ is densely defined and symmetric on VΘ, so has Friedrichs
extension S̃Θ, with domain D̃Θ.

The extension
(SΘ)# : V 1 ∩ VΘ −→ (V 1 ∩ VΘ)∗

is described by
(SΘ)#(x)(y) = 〈x, y〉V 1 (for x, y ∈ V 1 ∩ VΘ)

Let
iΘ : V 1 ∩ VΘ −→ V 1 i∗Θ : V −1 = (V 1)∗ −→ (V 1 ∩ VΘ)∗

be the inclusion and its adjoint, fitting into a diagram

V 1 j // V
j∗◦ c // V −1

i∗Θ
��

V 1 ∩ VΘ
//

iΘ

OO

VΘ

OO

(V 1 ∩ VΘ)∗

[11.2.2] Claim: (SΘ)# = i∗Θ ◦ S# ◦ iΘ, and the domain of S̃Θ is

D̃Θ = {x ∈ V 1 ∩ VΘ : (S# ◦ iΘ)x ∈ (j∗ ◦ c)V + Θ} = {x ∈ V 1 ∩ VΘ : S#
Θx ∈ (i∗Θ ◦ j∗ ◦ c)V }

and S̃Θx = y, with x ∈ V 1 ∩ VΘ and y ∈ V , if and only if (S# ◦ iΘ)x = (j∗ ◦ c)y + θ for some θ in the
V −1-closure of (j∗ ◦ c)Θ.

Proof: The assumption of denseness of DΘ in V 1 ∩ VΘ legitimizes formation of the Friedrichs extension as
an unbounded self-adjoint operator (densely defined) on V . For x, y ∈ V 1 ∩ V Θ

(i∗Θ ◦ S# ◦ iΘ)(x)(y) = S#(x)(y) = 〈iΘx, iΘy〉V 1 = 〈x, y〉V 1 = (SΘ)#(x)(y),
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which is the first statement of the claim.
From above, the Friedrichs extension S̃Θ is characterized by

〈z, S̃−1
Θ y〉V 1 = 〈z, y〉 (for z ∈ DΘ and y ∈ VΘ)

Given S#x = (j∗ ◦ c)y+ θ with x ∈ V 1 ∩ VΘ, y ∈ V , and θ in the V −1 closure of (j∗ ◦ c)Θ, take z ∈ DΘ and
compute

〈x, z〉V 1 = (S#x)(z) = ((j∗ ◦ c)y + θ)(z) = (j∗y)(z) + θ(z)

= 〈z, y〉+ 0 = 〈y, S̃−1
Θ Sz〉 = 〈S̃−1

Θ y, Sz〉 = 〈S̃−1
Θ y, z〉V 1

thus showing that S̃−1
Θ x = y. On the other hand, (SΘ)#x = (i∗Θ ◦ j∗ ◦ c)y if and only if (S# ◦ iΘ)x = y + θ

for some θ ∈ ker i∗Θ, and ker i∗Θ is the closure of Θ in V −1. ///

11.3 Distributional characterization of pseudo-Laplacians

The previous section applies to the pseudo-Laplacians ∆̃a of chapter 10 for a � 1 large enough so that
the density result [10.3.1] legitimizes the discussion. This re-characterization is needed for meromorphic
continuation of Eisenstein series beyond the critical line.

Refering to the notation of the previous section, take V = L2(Γ\G/K), use the pointwise conjugation
map c : L2(Γ\G/K)→ L2(Γ\G/K), let D = C∞c (Γ\G/K), put S = 1−∆|D, and let Θ = Θa be the space
of pseudo-Eisenstein series Ψϕ with ϕ ∈ C∞c (a,+∞) with a � 1 large enough so that the density lemma
[10.3.1] holds. Let V 1 = B1 be the completion of D with respect to the norm given by

|f |2B1 =

∫
Γ\G/K

(1−∆)f · f = 〈(1−∆)f, f〉

Let B−1 be the Hilbert space dual of B1. With inclusion j : B1 → V , let j∗ be its adjoint, and we have a
picture

B1 j // V
j∗◦ c // B−1

Let ηa be the functional on D which evaluates constant terms at height a.

[11.3.1] Remark: In the present context, we have to prove the following lemma without using any spectral
description of B1 or B−1, because we are in the process of proving meromorphic continuation of Eisenstein
series, which must be done (logically) prior to spectral decompositions. In the following chapter, we can
revisit spaces Bs for s ∈ R in a more congenial context, with spectral theory available.

Indeed, the proof of the following lemma uses the already-available spectral theory on multi-tori:

[11.3.2] Lemma: For a� 1 sufficiently large, ηa ∈ B−1.

Proof: As expected, take b′ � 1 large enough so that the standard Siegel set Sb′ meets no translate γSb′

with γ ∈ Γ unless γ ∈ N ∩ Γ, so that the cylinder Cb′ = (P ∩ Γ)\Sb′ injects to Γ\G/K. Take a > b′. Since
the support of ηa is compact and properly inside Sb′ , there is a test function ψ identically 1 on the support
of ηa, and supported inside Sb′ . Then ψ · ηa = ηa, in the sense that ηa(f) = ηa(ψf) for all test functions f .
Thus, it suffices to consider test functions with support in a subset X = (N ∩Γ)\N × (b′, b′′) of the cylinder
Cb′ = (N ∩ Γ)\N × (b′,+∞) ≈ (Z\R)r × (b′, b′′), with b′′ < +∞.

Identifying the endpoints of the finite interval (b′, b′′) ⊂ [b′, b′′] identifies it with another circle, thus
imbedding X ⊂ Tr+1. As in the proofs of [10.7.2] and [10.7.6], the B1 and L2 norms on X are uniformly
comparable to those on Tr+1 descended from the Euclidean versions. Thus, to prove ηa ∈ B−1, it suffices
to prove that the functional θ given by integration along Tr × {0} inside Tr+1 is in the corresponding B−1

space there. The advantage is that we can use Fourier series, since the spectral theory of T and Tn is already
available, as in [9.5], especially [9.5.9]. That is, parametrizing Tr+1 as Zr+1\Rr+1, let ψξ be ψ(x) = e2πiξ·x

for ξ, x ∈ R and ξ · x the usual inner product on Rr+1. Letting ξ = (ξ1, . . . , ξr+1), the Fourier coefficients of
θ are

θ̂(ξ) = θ(ψξ) =

∫
Tr×{0}

ψξ(x) dx =

 0 (for (ξ1, . . . , ξr) 6= (0, . . . , 0))

1 (for (ξ1, . . . , ξr) = (0, . . . , 0))
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Thus, the sth Sobolev norm of θ is∑
ξ∈Zr+1

|θ̂(ξ)|2 · (1 + |ξ|2)s =
∑

ξr+1∈Z
1 · (1 + |ξr+1|2)s

which is finite for Re(s) < − 1
2 . Certainly it is finite for s = −1, giving the desired conclusion. ///

In the previous lemma, on Tr+1, θ is certainly the suitable Sobolev space limit of its finite subsums, which
are smooth. This pulls back to an assertion that ηa is in the B1 closure of test functions. We need a stronger
assertion in order to use the re-characterization of the previous section:

[11.3.3] Lemma: ηa is in the B−1-closure of Θ.

Proof: Again, by the previous lemma, ηa is a B−1-limit of a sequence {fn} of test functions on Γ\G/K or
on the cylinder Cb′ . Much as in [10.3], we want to show that suitable smooth truncations of the fn, to put
them into Θ, still converge to ηa in B−1. As in the previous proof, using a� 1, we can convert the question
to one on Tr+1 or on Tr × R. Further, since nothing is happening in the first r coordinates, it suffices to
consider prove the following claim on R.

That is, in the standard Sobolev spaces Hs on R [9.7], we claim that the standard Dirac δ on R is an
H−1 limit of a sequence of test functions supported in [0,+∞). Let u be a test function on R which is 0 in
(−∞, 0], is non-negative with integral 1 on [0,+∞). For n = 1, 2, 3, . . ., let un(t) = n · u(nt). We claim that
un → δ in H−1. Taking Fourier transforms,

ûn(ξ) =

∫
R
e−2πiξt n · u(nt) dt =

∫
R
e−2πiξt/n u(t) dt = û(ξ/n)

The Fourier transform of δ is 1, since δ(t → e2πiξt) = 1 for all ξ ∈ R. The function û is still a Schwartz
function. We want to show that, as n→ +∞,∫

R

∣∣∣û(ξ/n)− 1
∣∣∣2 · (1 + ξ2)−1 dξ −→ 0

Certainly û is bounded, so, given ε > 0, there is N � 1 such that for all n∫
|ξ|≥N

∣∣∣û(ξ/n)− 1
∣∣∣2 · (1 + ξ2)−1 dξ < ε

By the differentiability of û,

û(ξ/n) = û(0) + (ξ/n) · û ′(to) (for some to between 0 and ξ/n)

Since the integral of u is 1, û(0) = 1. The derivative û ′ is continuous, so has a bound B on [−1, 1]. For
|ξ| ≤ N , take n large enough so that |ξ/n| < ε ≤ 1. Then∫

|ξ|≤N

∣∣∣û(ξ/n)− 1
∣∣∣2 · (1 + ξ2)−1 dξ =

∫
|ξ|≤N

∣∣∣(ξ/n) · û ′(to)
∣∣∣2 · (1 + ξ2)−1 dξ

≤
∫
|ξ|≤N

ε2 ·B2 · (1 + ξ2)−1 dξ ≤ ε2 ·B2

∫
R

(1 + ξ2)−1 dξ � ε

Thus, in the spectral-side description of the topology on H−1, we have the desired convergence. ///

In the four simplest cases, we have

[11.3.4] Corollary: ∆̃u = f for f ∈ L2
a(Γ\G/K) if and only if u ∈ B1 ∩ L2

a(Γ\G/K), and ∆u = f + c · ηa
for some constant c.

[11.3.5] Remark: In particular, the proof mechanisms just above show that u ∈ B1 ∩ L2
a(Γ\G/K) implies

that the constant term is in the Euclidean Sobolev space H1(R) as a function of the coordinate y. By Sobolev
imbedding [9.5.4], [9.5.11], 9.5.14], this implies continuity of the constant term, so vanishing in η > a implies
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ηau = 0. Conversely, if u ∈ B1 and ηau = 0, we could truncate u at height a without disturbing the condition
u ∈ B1, to put ∧au in B1 ∩L2

a(Γ\G/K). In fact, after we have the meromorphic continuation of Eisenstein
series in hand, and once we have a spectral form of global automorphic Sobolev spaces Bs, one can easily
prove that the conditions (∆− λ)u = ηa, u ∈ B1, and ηau = 0 imply ηb′u = 0 for all b′ ≥ a.

[11.3.6] Remark: For λw not the eigenvalue of a cuspform, the homogeneous equation (∆− λw)u = 0 has
no non-zero solution, so the constant c must be non-zero for non-zero u.

Proof: Use the characterization [11.2.2]. The previous lemma shows that ηa is in the B−1 closure Θ−1 of
Θ = Θa. Using a � 1, we must show that the intersection of that closure with the image ∆B1 is at most
C · ηa.

On one hand, because a� 1, Θ−1 consists of distributions which, on a Siegel set Sb′ with b′ just slightly less
than a, have support inside Sa ⊂ Sb′ . On the cylinder Cb′ = Γ∞\Sb′ , the product of circles (N∩Γ)\N ≈ Tr
acts by translations, descending to the quotient from G/K. By reduction theory, the restrictions to Ca′ of
every pseudo-Eisenstein series Ψϕ with ϕ ∈ C∞c [a,∞) are invariant under (N ∩ Γ)\N , so anything in the
B−1 closure is likewise invariant.

On the other hand, consider the possible images of B1 ∩ L2
a(Γ\G/K) by ∆. Certainly D ∩ V Θ consists

of functions with constant term vanishing in η ≥ a, and taking B1 completion preserves this property.
Since Θ−1 is (N ∩ Γ)\N -invariant and the Laplacian commutes with the group action, it suffices to look at
(N ∩ Γ)\N -integral averages restricted to the cylinder Cb′ . Such an integral is a restriction of the constant
term cP v to Cb′ , and vanishes in η > a.

Thus, the intersection of possible images by ∆̃a with Θ−1 consists of (N ∩ Γ)\N -invariant distributions
in B−1 supported on Z = {η ≤ a} ∩ {η ≥ a} ≈ (N ∩ Γ)\N . By [11.A], such distributions are obtained as
compositions of derivatives transverse to Z composed with a distribution supported on Z. By uniqueness
of invariant distributions [14.4], the only (N ∩ Γ)\N -invariant distribution on Z ≈ (N ∩ Γ)\N is (a scalar
multiple of) integration on (N ∩ Γ)\N .

Certainly ηa itself is among these functionals. No higher-order derivative (composed with ηa) gives a
functional in B−1, as is visible already on R: computing the sth Sobolev norm of the nth derivative δ(n) of
the Euclidean Dirac δ,

|δ(n)|2Hs =

∫
R
|δ̂(n)(ξ)|2 · (1 + ξ2)s dξ =

∫
R
|(−2πiξ)n|2 · (1 + ξ2)s dξ

This is finite only for s < −( 1
2 + n). ///

11.4 Key density lemma: simple cases

Similar to the description of Es as Ẽs above in [11.1], but with ∆̃a in place of ∆̃, with the pseudo-Eisenstein
series hs formed from the smooth cut-off τ · ηs of ηs as in [11.1], put

Ẽa,s = hs − (∆̃a − λs)−1 (∆− λs)hs

Since (∆− λs)hs is compactly supported, it is in L2
a(Γ\G/K). For λs not a non-positive real, (∆̃a − λs)−1

is a bijection of L2(Γ\G/K)a to the domain of ∆̃a, so u = Ẽs,a − hs is the unique element of the domain of

∆̃a satisfying
(∆̃a − λs)u = −(∆− λs)hs

Since the pseudo-Eisenstein series hs is entire, the meromorphy of the resolvent (∆̃a−λs)−1 [10.9] yields the

meromorphy of Ẽa,s − hs as B1 ∩ L2
a(Γ\G/K)-valued function.

Recall that, with D = C∞c (Γ\G/K) and Da = D ∩ L2(Γ\G/K), B1 is the B1-norm completion of D,

while B1
a is the B1-completion of Da. We are counting on Ẽa,s − hs to be in B1

a. This depends upon the
assumption a� 1, and it is critical to verify the following:

[11.4.1] Lemma: For a� 1, B1
a = B1∩L2

a(Γ\G/K). That is, for a� 1, Da is B1-dense in B1∩L2
a(Γ\G/K).

Proof: The containment B1
a ⊂ B1 ∩ L2(Γ\G/K) is immediate. For the opposite containment, given a

sequence {Ψϕi ∈ D} of pseudo-Eisenstein series converging to f ∈ B1 ∩L2
a(Γ\G/K) in the B1-topology, we
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must produce a sequence of pseudo-Eisenstein series in Da converging to f in the topology of B1. We will
do so by smooth cut-offs of the constant terms of the Ψϕi . Since the limit f of the Ψϕi has constant term
vanishing above height y = a and is in L2

a(Γ\G/K), that part of the constant terms of the Ψϕi becomes
small. More precisely, we proceed as follows.

Let F be a smooth real-valued function on R with F (t) = 0 for t < −1, 0 ≤ F (t) ≤ 1 for −1 ≤ t ≤ 0,
and F (t) = 1 for t ≥ 0. For ε > 0, let Fε(t) = F ((t − a)/ε). Fix real b with a > b > 1. Given
Ψϕi → f ∈ L2

a(Γ\G/K), the b-tail of the constant term of Ψϕi is τi(g) = cPΨϕi(g) for η(g) ≥ a′, and
τi(g) = 0 for 0 < η(g) ≤ a′′. By design, Ψϕi −ΨFε·τi ∈ Da for small ε. We will show that, as i→ +∞, for εi
sufficiently small depending on i, the B1-norms of ΨFεi ·τi go to 0, and Ψϕi −ΨFεi ·τi → f in the B1-norm.

Let S = Sb with b� 1, and put Cb = (N ∩Γ)\S. The cylinders Cb admit natural actions of the compact
abelian group (N∩Γ)\N , by translation. For b� 1, by reduction theory [1.5], the further quotient (Γ∩M)\Cb
injects to its image in Γ\G/K. Conveniently, Γ ∩M is finite in these examples, so, for f ∈ C∞c (Γ\G/K),
letting

|f |2B1(Cb)
=

∫
Cb

|f(z)|2 −∆f · f

we have

|f |2B1(Cb)
�
∫

Γ\G/K
|f(z)|2 −∆f · f

For each b > 1, let B1(Cb) be the completion of C∞c (Γ\G/K) with respect to the semi-norm | · |B1(Cb) (with
collapsing since the B1-norm ignores function values outside Cb).

As usual, we have a continuous action of (N ∩Γ)\N on B1(Cb). Thus, the map u→ cPu gives continuous
maps of the spaces B1(Cb) to themselves. Thus, cPΨϕi goes to cP f in B1(Cb), and cPΨϕi → cP f = 0 in
B1(Ca).

To have a Leibniz rule, write the norms as energy norms by integrating by parts: for f ∈ C∞c (Γ\G/K),
put

|f |2B1 = |f |2L2(Γ\G/K) + | |∇f |2s|L2(Γ\G/K)

where ∇ is the left G-invariant, right K-equivariant tangent-space-valued gradient on G, as in [10.7]. Thus,
∇ descends to G/K and to Γ\G/K, and | · |s is a K-invariant norm on the tangent space(s). Explicitly, as in
[10.7], for an involutive automorphism θ of the Lie algebra g with the Lie algebra k of K the +1-eigenspace,
the −1-eigenspace s can be identified with the tangent space at every point of G/K, via left translation of
the exponential map: for β ∈ s, the associated left G-invariant differential operator Xβ is

(Xβf)(g) =
∂

∂t

∣∣∣
t=0

f(get·β)

It is easy to describe ∇ in coordinates, even though it is independent of coordinates: for an orthonormal
basis {σi} for s,

∇f(g) =
∑
i

Xσif(g) · σi ∈ s⊗R C

Let | · |s be the K-invariant norm on s. The essential property is the integration by parts identity∫
Γ\G/K

〈∇F1,∇F2〉s =

∫
Γ\G/K

−∆F1 · F 2

for F1, F2 ∈ C∞c (Γ\G/K). Thus, extending ∇ by continuity in the B1 topology, ∇F exists (in an L2 sense)
for F ∈ B1(Cb). Likewise,

|f |2B1(Cb)
= |f |2L2(Cb)

+ | |∇f |2s|L2(Cb) � |f |2L2(Γ\G/K) + | |∇f |2s|L2(Γ\G/K)

Since a� 1, ΨFε·τi is just Fε · τi on Sb, and the support of Fε · τi is inside the image of the cylinder Ca−ε.
The map Ca−ε → Γ\G/K is (uniformly) finite-to-one, so

|ΨFε·τi |B1 � |Fε · τi|B1(Ca−ε) ≤ |(Fε − 1) · τi|B1(Ca−ε) + |τi − cP f |B1(Ca−ε) + |cP f |B1(Ca−ε)
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by the triangle inequality. The middle summand goes to 0: from above, by design,

|τi − cP f |B1(Ca−ε) � |cPΨϕi − cP f |B1 � |Ψϕi − f |B1 −→ 0

The first and third summands require somewhat more care. Estimate

|(Fε − 1) · τi|2B1(Ca−ε)
=

∫
Ca−ε

|(Fε − 1)τi|2 + |∇(Fε − 1)τi|2s

≤
∫

Ca−ε

|Fε − 1|2 · (|τi|2 + |∇τi|2s) +

∫
Ca−ε

|∇Fε|2s · |τi|2 +

∫
Ca−ε

2|Fε| · |∇Fε|s · |τi| · |∇τi|s

The first summand in the latter expression goes to 0 as ε→ 0+ because Fε − 1 = 0 when y ≥ a, and τi and
|∇τi|s are continuous.

We can take the orthonormal basis {σi} for s to have σ1 =

(
1 0
0 1

)
, and σi =

(
0 ∗
∗ 0

)
for i ≥ 2. Thus,

σi ∈ n + k for i ≥ 2, and in terms of the Iwasawa coordinates x = (x1, . . . , xr) ∈ Rr and 0 < y ∈ R, for a
smooth function ϕ on N\G/K, only the σ1 component is non-zero:

∇ϕ = y
∂ϕ

∂y
· σ1

Thus,

|∇Fε(x+ iy)|s = |1
ε
· y g′((y − a)/ε) · h|s =

1

ε
· |y g′((y − a)/ε)| �F

1

ε

Similarly, since τi is a function of y independent of x, ∇τi = yτ ′i(y) ·h. The fundamental theorem of calculus
and Cauchy-Schwarz-Bunyakowsky recover an easy instance of a Sobolev inequality:

|τi(a− v)| =
∣∣∣0− ∫ v

0

τ ′i(a− v) dv
∣∣∣ ≤ (∫ v

0

|τ ′i(a− v)|2 dv
) 1

2 ·
(∫ v

0

12 dv
) 1

2 ≤ o(1) ·
√
v

with Landau’s little-o notation, since τ ′i is locally L2. Thus,∫
Ca−ε

|Fε| · |∇Fε|s · |τi| · |∇τi|s ≤
1

ε
· o(1) ·

√
ε ·
∫ ε

0

|∇τi|s

≤ 1

ε
· o(1) ·

√
ε ·
(∫ ε

0

|τ ′i |2
) 1

2 ·
(∫ ε

0

12
) 1

2 �τi

1

ε
· o(1) ·

√
ε ·
√
ε = o(1)

That is, the summand
∫
Ca−ε

|Fε| · |∇Fε|s · |τi| · |∇τi|s goes to 0. By the same estimates,∫
Ca−ε

|∇Fε|2s · |τi|2 �
1

ε2

∫ ε

0

(
o(1) ·

√
v
)2
dv =

1

ε2
· o(1) · ε

2

2
−→ 0

Thus, taking the εi sufficiently small, the smooth truncations Ψφi −ΨFεi ·τi are in D∩L2
a(Γ\G/K), and still

converge to f in B1. ///

11.5 Beyond the critical line: four simple examples

We return to the continuation argument. Since (∆̃a− λs)−1 maps (∆− λs)hs to a function with constant

term vanishing above η = a, above η = a the constant term of Ẽa,s is that of hs, namely, ηs. More generally,

evaluate ∆̃a − λs distributionally by application of ∆− λs: for some constant Cs,

−(∆− λs)hs = (∆̃a − λs)(Ẽa,s − hs) = (∆− λs)(Ẽa,s − hs) + Cs · ηa (as distributions)
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Everything else in the latter equation is meromorphic in s, so Cs must be, as well. Thus, rearranging,

(∆− λs)Ẽa,s = −Cs · ηa (as distributions)

Since ∆ is G-invariant, it commutes with the constant-term map, and the distribution (∆− λs)cP Ẽa,s is 0
away from η = a. The distributional differential equation

(
y2 ∂

2

∂y2
− (r − 1)y

∂

∂y
− λs

)
u = 0 (on 0 < yr = η < a)

has solutions exactly of the form Asη
s + Bsη

1−s for constants As, Bs, so cP Ẽa,s must be of this form in

0 < η < a. Since Ẽa,s is meromorphic in s, so are As, Bs. In summary,

cP Ẽa,s =

 ηs (for η > a)

Asη
s +Bsη

1−s (for 0 < η < a)

By construction, hs is smooth, and (∆̃−λs)−1f ∈ B1 for all f ∈ L2
a(Γ\G/K). Thus, Ẽa,s is locally in B1 in

the sense that ψ ·Ẽa,s is in B1 for any smooth cut-off ψ ∈ C∞c (Γ\G/K). In particular, taking ψ with support
near η = a and identically 1 on a neighborhood of the set where η = a, since (N ∩Γ)\N acts continuously on

B1, the constant term cP (ψ · Ẽa,s) is in B1. Since that constant term is a function on the one-dimensional
N\G/K ≈ A+ ≈ (0,+∞), as in the previous section we can conclude that this constant term as a function
of t = log y is in the Euclidean Sobolev space B1 on R. By Sobolev’s imbedding on R [9.7], the constant

term is continuous. Since ψ was identically 1 near η = a, we conclude that cP Ẽa,s itself is continuous at
η = a, and

As · as +Bs · a1−s = as (for all s)

Let ch[a,∞) be the characteristic function of [a,∞), and

βa,s = ch[a,∞)(η) ·
(
Asη

s +Bsη
1−s − ηs

)
and form a pseudo-Eisenstein series

Φa,s(g) =
∑

γ∈Γ∞\Γ

βa,s(γg)

The support of βa,s is inside the set where η ≥ a, and a � 1, so for each g ∈ G/K the series has at most
one non-zero summand, so converges for all s ∈ C.

[11.5.1] Theorem: As · Es = Ẽa,s + Φa,s and Ẽa,s + Φa,s = Bs · E1−s. Thus, Es has a meromorphic
continuation and Es − hs is a meromorphic B1-valued function.

Proof: With ∆̃ as in [11.1], we have shown that u = Es − hs is the unique solution in B1 to

(∆̃− λs)u = −(∆− λs)hs

Thus, multiplying through by As, it suffices to prove that Ẽa,s + Φa,s −As · hs is in B1 and satisfies

(∆̃− λs) (Ẽa,s + Φa,s −As · hs) = −(∆− λs) (As · hs)

The fact that Ẽa,s − hs is in B1 ∩ L2
a(Γ\G/K) motivates the rearrangement

Ẽa,s + Φa,s −As · hs = (Ẽa,s − hs) + (Φa,s −As hs + hs)

Thus, we must show that the pseudo-Eisenstein series F = Φa,s −Ashs + hs is in B1.
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For integrability, by reduction theory, Φa,s is just ϕs = ch[a,∞)(η) ·
(
Asη

s +Bsη
1−s − ηs

)
on η > a, so on

η > a

F = Φa,s −Ashs + hs = (Asη
s +Bsη

1−s − ηs)−Asηs + ηs = Bsη
1−s (for η > a)

For Re(s) > 1, η1−s is square-integrable on η > a, so F is in L2(Γ\G/K).
To demonstrate the additional smoothness required for F to be in B1, from the rewriting of Sobolev norms

in [10.7], especially [10.7.5], it suffices to show that the right-translation derivatives αF are in L2(Γ\G) for
α ∈ g. By the left invariance of the right action of g, it suffices to prove square-integrability, on standard
Siegel sets, of the derivatives of the data βa,s − Asτ · ηs + τ · ηs used to form the pseudo-Eisenstein series.
This data is smooth everywhere but at η = a, where it is continuous, since Asa

s +Bsa
s − as = 0. Further,

it possesses continuous left and right derivatives at η = a, so is locally in a +1-index Sobolev space at η = a.
The data is left N -invariant and right K-invariant, and A+ normalizes N , so we need only consider the
differential operator y ∂

∂y coming from the Lie algebra of A+: the derivative of F is discontinuous at η = a,

and as a distribution it is, recalling that η = yr, so η′ = ryr−1, and ϕs = ch[a,∞) · (Asηs +Bsη
1−s − ηs),

y
∂

∂y
F = y

∂

∂y

(
Φa,s −Ashs + hs

)
= y

∂

∂y

(
βa,s −As · τ · ηs + τ · ηs

)

= y
∂

∂y



Bsη
1−s (for η > a)

−As · ηs + ηs (for a′ ≤ η < a)

−As · τ · ηs + τ · ηs (for a′′ ≤ η ≤ a′)

0 (for η ≤ a′′)

=



Bs · (1− s) · ∂η∂y · η
1−s (for η > a)

(1−As) · sηs (for a′ ≤ η < a)

(1−As)(∂τ∂y · η
s + τ · ∂η∂y · sη

s) (for a′′ ≤ η ≤ a′)

0 (for η ≤ a′)

On a′′ ≤ η ≤ a, this derivative is bounded, so the truly relevant behavior is in η > a: for Re(s) > 1
this derivative is square-integrable on standard Siegel sets. Thus, Φa,s − Ashs + hs is in B1, proving that

Ẽa,s + Φa,s −Ashs is in B1.

To show that Ẽa,s+Φa,s−Ashs satisfies the expected equation, we justify computing the effect of differential

operators on Ẽa,s + Φa,s − Ashs distributionally, as follows. For f ∈ C∞c (Γ\G/K), with ∆̃ the Friedrichs
extension of the restriction of ∆ to C∞c (Γ\G/K) as in [11.1],〈

(∆̃−λs)(Ẽa,s+Φa,s−Ashs), f
〉

=
〈
Ẽa,s+Φa,s−Ashs, (∆−λs)f

〉
=
〈

(∆−λs)(Ẽa,s+Φs,f −Ashs), f
〉

By design, using the invariance of ∆ and the local finiteness of the sum for Φs, it is legitimate to compute

(∆− λs)(Ẽa,s + Φa,s) = (∆− λs)Ẽa,s +
∑

γ∈Γ∞\Γ

(∆− λs)βa,s ◦ γ

= −Cs · ηa + Cs · ηa = 0 (as distributions)

Thus,
(∆̃− λs)(Ẽa,s + Φa,s −Ashs) = (∆− λs)(Ẽa,s + Φa,s −Ashs) = 0−As(∆− λs)hs

as desired, proving Ẽa,s + Φa,s = As · Es for Re(s) > 1. For Re(1− s) > 1, the same argument shows that

Ẽa,s + Φa,s = Bs ·E1−s. This proves the formulas in the claim. Since not both As and Bs can be identically
0, we obtain the meromorphic continuation of Es. ///

[11.5.2] Corollary: As · Es = Bs · E1−s. ///

In particular, neither As nor Bs is identically 0, and with a(s) = Bs/As, E1−s = a(s) · Es. The relation
cPEs = ηs + csη

1−s gives the meromorphic continuation of cs. Since cPE1−s = η1−s + c1−sη
s, apparently

cs = a(s) = Bs/As. Since 1− (1− s) = s, we obtain cs · c1−s = 1:
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[11.5.3] Corollary: cs has a meromorphic continuation, and cs · c1−s = 1. ///

On Im(s) = 0 and Re(s) > 1, Es and cPEs are real-valued. Thus, the two holomorphic functions Es and
Es agree on (1,+∞), so agree everywhere. That is, Es = Es. In particular, on Re(s) = 1

2 , where s = 1− s,

|cs|2 = cs · cs = cs · cs = cs · c1−s = 1 (on Re(s) = 1
2 )

proving

[11.5.4] Corollary: |cs| = 1 on Re(s) = 1
2 , and cs has no pole on Re(s) = 1

2 . ///

Further, we have

[11.5.5] Corollary: Es has no pole on Re(s) = 1
2 .

Proof: Suppose Es had a pole of order N > 0 at so on the critical line Re(s) = 1
2 . Then (s − so)N · Es is

holomorphic at s = so, gives a not identically automorphic form, and has vanishing constant term there.
From

∧a(s− so)NEs = (s− so)N ∧a Es

and using the Maass-Selberg relations [1.11] with s = so + ε and r = so + ε = 1 − so + ε with 0 < ε ∈ R,
since (s− so) · cs → 0 at s = so, suppressing measure-normalizations,

|(s− so)NEs|2 = ε2N ·
( as+r−1

s+ r − 1
+ cs

a(1−s)+r−1

(1− s) + r − 1
+ cr

as+(1−r)−1

s+ (1− r)− 1
+ cscr

a(1−s)+(1−r)−1

(1− s) + (1− r)− 1

)

= ε2N ·
(a2ε

2ε
+ cso+ε

a1−2so−2ε

1− 2so − 2ε
+ c1−so+ε

a2so−1+2ε

2so − 1 + 2ε
+ cso+εc1−so+ε

a−2ε

−2ε

)
−→ 0

contradiction. Thus, Es has no pole on the critical line. ///

Toward proving moderate growth of the meromorphic continuation of Es:

[11.5.6] Claim: Es meromorphically continues as a C∞(Γ\G/K)-valued function.

Proof: As earlier, let

χs

(
a 0
0 a−1

)
= |a|2s

and put

ϕs(nmk) = χs(m) (for n ∈ N , k ∈ K, and m ∈M)

Up to scalar multiples, ϕs is the unique function on G that is right K-invariant, left N -invariant, and
ϕs(mg) = χs(m) · ϕs(g). The function s → ϕs is a holomorphic Co(G/K)-valued function on C. For
ψ ∈ C∞c (K\G/K), the image

(ψ · ϕs)(g) =

∫
G

ϕ(h) ϕs(gh) dh

is again left N -invariant, left M,χs-equivariant, and right K-invariant. Thus, ψ · ϕs = µs(ψ) · ϕs for scalar
µs(ψ). Since s → ϕs is holomorphic Co(G/K)-valued, s → µs(ψ) is holomorphic C-valued for each such
ψ. By non-degeneracy [14.1.5], there exists ψ such that the function s → µs(ψ) is not identically 0. In the
region of convergence Re(s) > 1, from Es =

∑
γ∈(Γ∩P )\Γ ϕs ◦ γ, also ψ · Es = µs(ψ) · Es. Exactly what

we are missing at this point is knowledge of what topological vector space of functions (or distributions)
the meromorphically continued Eisenstein series may lie in, so we cannot directly assert much about ψ · Es
outside the region of convergence. (Otherwise we could apply the identity principle from complex analysis
to the latter identity.) Rather, we approach this a little indirectly, as follows.

Since ∆ commutes with G, B1 is stable under the action of ψ ∈ C∞c (K\G/K). From the meromorphic
continuation of Es − hs as B1-valued function, we have the meromorphic continuation of

ψ · (Es − hs) = µs(ψ) · Es − ψ · hs
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as B1-valued function. In fact, for F ∈ B1, by [14.5], ψ · F is in C∞(Γ\G/K). By construction,
hs ∈ C∞(Γ\G/K). Rearranging,

µs(ψ) · Es = ψ · (Es − hs) + ψ · hs

Dividing through by µs(η) for some η with µs(η) 6= 0 exhibits the meromorphically continued Es as a
smooth-function-valued function. ///

[11.5.7] Corollary: Es has a meromorphic continuation as Co(Γ\G/K)-valued function, so it makes sense
to address the issue of its moderate growth. ///

Finally, we have

[11.5.8] Theorem: Away from poles, the meromorphically continued Es is of moderate growth.

Proof: By [11.5.1] and [11.5.7], (at least) the pointwise values of the meromorphic continuation are given by

Es = A−1
s · (Ẽa,s + Φa,s)

where Ẽa,s = hs − (∆̃a − λs)
−1(∆ − λs)hs and Φa,s is the pseudo-Eisenstein series formed from βa,s =

ch[a,∞) · (Asηs + Bsη
1−s − ηs). Since a � 1, in the region η ≥ a the function Φa,s is just βa,s itself, which

is Asη
s +Bsη

1−s − ηs, which is of moderate growth in standard Siegel sets. The computation above shows
continuity at η = a. The pseudo-Eisenstein series hs of [11.1] made from τ · ηs with smooth cut-off τ is a
locally finite sum, so is smooth, so certainly continuous. For η ≥ a, its value is just ηs, which is of moderate
growth for all s. Thus, to show that Ẽa,s is of moderate growth even after meromorphic continuation, it

suffices to show that (∆̃a − λs)−1(∆− λs)hs is of moderate growth.
Again, the pseudo-Eisenstein series hs = Ψτ ·ηs is a locally finite sum, so it is legitimate to compute

(∆− λs)hs = (∆− λs)Ψτ ·ηs = Ψ(∆−λs)(τ ·ηs)

Since differential operators do not increase support, fs = (∆−λs)(τ ·ηs) is smooth and supported in [a′′, a′].
It is visibly a holomorphic C∞(0,+∞)-valued function of s ∈ C. Its uniform compact support in [a′′, a′]
implies that s → fs is certainly a holomorphic C∞c (Γ\G/K)-valued function of s, in fact taking values in
the Fréchet subspace of functions supported in [a′′, a′].

Given a uniformly compactly supported holomorphic family fs ∈ C∞c (N\G/K) ≈ C∞c (0,+∞), in light of
[11.3.4] we solve equations (∆− λs)u = fs + c · ηa with c ∈ C (depending on s) for u on N\G/K ≈ (0,+∞)
with sufficient decay at 0+ to form a pseudo-Eisenstein series Ψu, giving (∆ − λs)Ψus = Ψfs . In Iwasawa
coordinates, the equation is

y2 ∂
2

∂y2
u− (r − 2)

∂

∂y
u− λsu = fs + c · δa

Letting x = log y, with Fs(x) = fs(e
x) and v(x) = u(ex), this becomes

v′′ − (r − 1)v′ − λsv = F + c · δlog a

Taking Fourier transform in a normalization that suppresses some factors of 2π,

(−iξ)2v̂ − (r − 2)(−iξ)v̂ − λsv̂ = F̂s + c · a−iξ

or

v̂(ξ) = − F̂ (ξ) + c · a−iξ

ξ2 − (r − 2)iξ + λs

Since F is a test function, F̂ is an entire function such that F̂ (x+ iyo) is (uniformly) in the Schwartz space
for each fixed yo. (We need little more about Paley-Wiener spaces than this idea.) Division by a quadratic
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polynomial produces a function holomorphic in a strip along R not including either of the two poles. The
two poles occur at the zeros of the denominator:

(r − 2)i±
√
−(r − 2)2 − 4λs
2

Fix ε > 0. Given a bound |Re(s)| ≤ B, for Im(s) �B 1, those poles are outside the strip S = {z ∈ C :
|Im(z)| ≤ 1 + ε}. Thus, v̂ is holomorphic on an open set containing S and has decay like 1/ξ2 on horizontal
lines inside that strip. Thus, in the Fourier inversion integral

v(x) =
1

2π

∫
R
eiξx v̂(ξ) dξ

we can move the contour up to R + i(1 + ε), giving

v(x) =
1

2π

∫
R
ei(ξ+iε)x v̂(ξ + iε) dξ = e−εx

1

2π

∫
R
eiξx v̂(ξ + iε) dξ

Thus, v(x) � e−(1+ε)x, giving genuine exponential decrease for x → +∞. Similarly, moving the contour
down gives exponential decrease v(x) � e−(1+ε)|x| for x → −∞. Then u(y) = us(y) = v(log y) satisfies
us(y)� y1+ε as y → 0+, and u(y)� y−(1+ε) as y → +∞. Thus, the pseudo-Eisenstein series Ψus converges
absolutely since the sum for Ψus is dominated termwise by the sum for an absolutely convergent Eisenstein
series [1.9.1]. Further, as it is termwise dominated by an absolutely convergent Eisenstein series, by [1.9.1]
Ψus is continuous and of moderate growth.

Having available a choice of the constant c is necessary, since we must adjust Ψu to have constant term
vanishing above height η = a. Choose it so that cPΨu vanishes at η = a. Since a� 1, by reduction theory
the truncation ∧aΨu has constant term vanishing at and above height a. Since a � 1, this truncation is
itself a pseudo-Eisenstein series, and still (∆−λs)∧aΨu differs from Ψf only by a multiple of ηa. By [11.3.4],

(∆̃a − λs) ∧a Ψu = Ψf .
Thus, for a given bound |Re(s)| ≤ B, there is C sufficiently large so that for |Im(s)| ≥ C we have

meromorphic continuation of Es as a (continuous) moderate-growth function.
For |Im(s)| < C, we can express Es as a vector-valued Cauchy integral along a circular path γ that lies

inside the union U of regions Re(s) ≥ B, Re(s) ≤ 1 − B, and |Im(s)| ≥ C, and does not run through any
poles of Es. In Re(s) ≤ 1 − B the Eisenstein series is (continuous) of moderate growth, via the functional
equation. Thus, Es is of moderate growth throughout U , and in particular along γ. Let Z be the collection
of poles of Es (as meromorphic Co(Γ\G/K)-valued function) inside γ, and P (z) =

∏
zj∈Z(z − zj). For each

g ∈ G

P (s) · Es(g) =
1

2πi

∫
γ

P (z) · Ez(g)

z − s
dz

In fact, on γ, z → (s → P (z)Es/(z − s) is a compactly-supported, continuous, moderate-growth-function-
valued function of z, so the vector-valued Cauchy integral

P (s) · Es =
1

2πi

∫
γ

P (z) · Ez
z − s

dz

as in [15.2] exists as a Gelfand-Pettis integral [14.1] lying in that same space of functions. ///

11.6 Exotic eigenfunctions: four simple examples

In addition to cuspforms, there must be new, exotic eigenfunctions for the operators ∆̃a, which are not
eigenfunctions for ∆.

[11.6.1] Claim: Take a � 1. If aw + cwa
1−w = 0, then the truncation ∧aEw is an eigenfunction for ∆̃a.

Conversely, if ∧aEw is an eigenfunction for ∆̃a, then aw + cwa
1−w = 0. In particular, for aw + cwa

1−w = 0,
we have (∆− λw) ∧a Ew = 2(1− 2w)aw+ 1

r · ηa. (Proof just below.)
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Since ∆̃a is a non-positive self-adjoint operator, any eigenvalues are non-positive real, giving

[11.6.2] Corollary: If aw + cwa
1−w = 0, then either Re(w) = 1

2 or w ∈ [0, 1]. ///

[11.6.3] Remark: An argument-principle discussion shows that there are infinitely-many values w on
Re(w) = 1

2 such that aw + cwa
1−w = 0.

[11.6.4] Remark: Thus, zeros w of aw+cwa
1−w give eigenvalues λw = w(w−1) of ∆̃a for a� 1. A spectral

characterization of the global automorphic Sobolev spaces Bs will prove a converse, that for λw < −1/4,
the only eigenvalues arise from zeros of aw + cwa

1−w, and the corresponding exotic eigenfunctions are
corresponding trucated Eisenstein series.

Proof: With a � 1, in a fundamental domain, away from η = a we have (∆ − λw) ∧a Ew = 0 locally. In
η � 1, the differential operator annihilates all Fourier components of Ew but the constant term, and in the
lower part of a Siegel set the operator does also annihilate the constant term.

We first do the slightly simpler version of this computation for SL2(Z), in which case η = y. To compute
near y = a, let H be the Heaviside function H(y) = 0 for y < 0 and H(y) = 1 for y > 0. Thus, near y = a,
as functions of y independent of x,

(∆−λw)∧aEw = (∆−λw)
(
H(a− y) · (yw + cwy

1−w)
)

= (y2 ∂
2

∂y2
−w(w− 1))

(
H(a− y) · (yw + cwy

1−w)
)

= y2
(
H ′′(a− y)(yw + cwy

1−w) + 2H ′(a− y)(yw + cwy
1−w)′ +H(a− y)(yw + cwy

1−w)′′
)

−w(w − 1)H(a− y)(yw + cwy
1−w)

= y2
(
− δ′a · (yw + cwy

1−w)− 2δa · (wyw−1 + (1− w)cwy
−w)

)
For aw + cwa

1−w = 0, the term with δ′a vanishes, and the rest simplifies to

(∆− λw) ∧a Ew = −2aδa · (waw + (1− w)cwa
1−w) = −2δa · (2w − 1)aw+1

on functions of y independent of x. Thus, this is 2(2w − 1)aw+1 · ηa. If aw + cwa
1−w 6= 0, the term with δ′a

remains, and is not inside B−1, so in that case ∧aEw is not an eigenfunction.

More generally, with height η = yr with r = 1, 2, 3, 4, λw = r2 ·w(w−1), and ∆ = y2(∆x+ ∂2

∂y2 )−(r−1)y ∂
∂y ,

the truncated Eisenstein series ∧aEw is annihilated by ∆ except near (images of) η = a, at which a messier
computation gives

(∆− λw) ∧a Ew = (∆− λw)
(
H(a− y) · (yrw + cwy

r(1−w))
)

=
(
y2 ∂

2

∂y2
− r2w(w − 1)− (r − 1)y

∂

∂y

)(
H(a− y) · (yrw + cwy

r(1−w))
)

= y2
(
H ′′(a− y)(yrw + cwy

r(1−w)) + 2H ′(a− y)(yrw + cwy
r(1−w))′ +H(a− y)(yrw + cwy

r(1−w))′′
)

−(r−1)y
(
H ′(a−y)(yrw+cwy

r(1−w))+H(a−y)(yrw+cwy
r(1−w))′

)
−r2w(w−1)H(a−y)(yrw+cwy

r(1−w))

= y2
(
− δ′a · (yrw + cwy

r(1−w))−2δa · (rwyrw−1 + r(1−w)cwy
r(1−w)−1)

)
− (r−1)y

(
− δa(yrw + cwy

r(1−w))
)

At yr = η = a, for aw + cwa
1−w = 0, the term with δ′a vanishes, as does the (r− 1)y

(
− δa(yrw + cwy

r(1−w))
)

term, and the rest simplifies to the indicated expression. ///
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11.7 Up to the critical line: SLr(Z)

Now take G = SLr(R), Γ = SLr(Z), and K = SOr(R). At various moments, it is convenient to consider
G = Z\GLr instead, where Z is the center, but nothing we do depends on the distinction. We only consider
Eisenstein series for maximal proper parabolics, and with cuspidal data on the Levi components, as in [3.9]
and [3.11]. As in the four simplest cases, it is relatively easy to meromorphically continue these Eisenstein
series up to the critical line.

As in chapter 3, there are two qualitatively different types of maximal proper parabolics, namely, the
self-associate P = P r,r ⊂ GL2r, and non-self-associate P = P r1,r2 ⊂ GLr1+r2 with r1 6= r2, with associate
Q = P r2,r1 .

Fix a maximal proper parabolic P = P r1,r2 with Levi decomposition P = NM , and fix cuspidal data
f = f1⊗ f2 on the Levi component M ≈ GLr1 ×GLr2 . We assume that f1 and f2 are cuspforms in a strong
sense [: they are eigenfunctions for the corresponding invariant Laplacians, are of rapid decay in Siegel sets
(in particular, are bounded on the respective groups), and there exist test functions β1, β2 on the respective
groups such that βj · fj = fj . In particular, all derivatives (whether right invariant under maximal compacts
or not) have similarly good decay and smoothness. Recall [3.9] that pseudo-Eisenstein series with cuspidal
data f are formed from test functions ψ ∈ C∞c (0,+∞) as follows. Let

ϕ(znmk) = ϕψ,f (znmk) = ψ
( |detm1|r2
|detm2|r1

)
· f1(m1) · f2(m2)

and the corresponding pseudo-Eisenstein series is

Ψϕ = Ψψ,f =
∑

γ∈(P∩Γ)\Γ

ϕψ,f ◦ γ

By [3.11.1], because of the cuspidal data, the only non-vanishing constant terms cQΨP
ϕ are for Q = P ,

or Q = P r2,r1 when P is not self-associate. As in [3.16], these pseudo-Eisenstein series admit spectral
decompositions in terms of the (genuine) Eisenstein series Es,f = EPs,f for P with the same cuspidal data f :
with

ϕs,f (nmk) =

∣∣∣∣ (detm1)r2

(detm2)r1

∣∣∣∣s · f1(m1) · f2(m2)

with m =

(
m1 0
0 m2

)
∈MP , n ∈ N , k ∈ K, the corresponding Eisenstein series is

Es,f =
∑

γ∈(P∩Γ)\Γ

ϕs,f ◦ γ

Again from [3.11.3], cQE
P
s,f = 0 unless Q = P or Q is the associate of P . For f1 and f2 eigenfunctions of

the respective Laplacians, by [3.11.11] the function ϕPs,f is an eigenfunction for the invariant Laplacian on

G, and EPs,f is an eigenfunction. In particular, letting µj be the eigenvalue of fj for the Laplacian on GLrj
for j = 1, 2, letting

λs,f = r1r2(r1 + r2)(s2 − s) + µ1 + µ2

we have
∆ · EPs,f = λs,f · EPs,f

With this normalization, the eigenvalue is invariant under s −→ 1− s.
Let E(P, f) be the space of pseudo-Eisenstein series for P formed with the given cuspidal data f . An

analogue of [3.11.11] for pseudo-Eisenstein series with cuspidal data:

[11.7.1] Claim: E(P, f) is stable under ∆. Explicitly, using coordinate y > 0 on the ray (0,+∞),
∆Ψψ,f = Ψβ,f with test function β given in terms of ψ by

β =
(
r1r2(r1 + r2) y

∂

∂y

(
y
∂

∂y
− 1
)

+ µ1 + µ2

)
ψ
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Proof: This reduces to [3.11.11] via a primitive initial form of the spectral decomposition of Ψψ,f in terms
of Es,f in the proof of [3.16.1], not requiring any meromorphic continuation of Es,f :

Ψψ,f =
1

2πi

∫ σ+i∞

σ−i∞
Mψ(s) · Es,f ds (for σ � 1)

Applying ∆ multiplies Es,f by r1r2(r1 + r2)s(s− 1) +λ1 +λ2 by [3.11.11]. At the same time, y ∂
∂yy

s = s · ys,
so from Mellin inversion

s · Mψ = M
(
y
∂

∂y
ψ
)

This gives the assertion. ///

Let E0 be the completion of E(P, f) in L2(Γ\G/K). Let Tf be the restriction of ∆ to E(P, f), and S̃f its
Friedrichs extension. Let E1 be the completion of E(P, f) in the B1-norm given by

|f |2B1 = 〈(1−∆)f, f〉L2(Γ\G/K)

and E2 the completion of E(P, f) in the B2 norm

|f |2B2 = 〈(1−∆)2f, f〉L2(Γ\G/K)

The domain of any self-adjoint extension of Tf necessarily contains E2, and the domain of S̃f is contained
in E1. More generally, for non-negative integer k, let Ek be the completion of E(P, f) in the Bk norm

|f |2Bk = 〈(1−∆)kf, f〉L2(Γ\G/K)

Let B∞ =
⋂
kB

k = limkB
k.

[11.7.2] Corollary: For positive integer k, the Ek-norm of Ψψ,f is the L2 norm of Ψβ,f , where

β =
(

1−
(
r1r2(r1 + r2) y

∂

∂y

(
y
∂

∂y
− 1
)

+ µ1 + µ2

))k
ψ

(Immediate from [11.7.1].) ///

We grant the general form of the constant term along P (see [3.11.9]): this requires an assumption that
in the cuspidal data f = f1 ⊗ f2, both f1 and f2 are the unique cuspforms on GLr1 with their respective
eigenvalues (and right invariant under compacts, and left invariant under the respective groups SLri(Z), as
opposed to other subgroups). Then

cPE
P
s,f = ϕPs,f (for r1 6= r2 (not self-associate))

cPE
P
s,f = ϕPs,f + cs,fϕ

P
1−s,fw (for r1 = r2 (self-associate), meromorphic cs,f )

cQE
P
s,f = cQs,f · ϕ

Q
1−s,fw (for r1 6= r2, Q = P r2,r1 , meromorphic cQs,f )

In fact, we do not use the precise nature of cs,f .
Let

α(m) =
∣∣∣ (detm1)r2

(detm2)r1

∣∣∣ (for m =

(
m1 0
0 m2

)
∈M)

For 1�b a
′′ < a′, define a real-valued smooth cut-off function by

τ(y) =

 1 (for y > a′)

0 (for y < a′′)
(for y ∈ (0,+∞))
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Form a cuspidal-data pseudo-Eisenstein series hs,f by winding up a smoothly cut-off version of ϕs,f : with
ψ(y) = τ(y) · ys, put

hs,f = Ψψ,f

[11.7.3] Lemma: The sum for hs,f is absolutely convergent, uniformly on compacts, for all s ∈ C. Further,
hs,f ∈ B∞.

Proof: By reduction theory [3.3], for a� b large enough so that, for γ ∈ Γ, if γSa ∩Sb 6= φ then γ ∈ B ∩ Γ
with minimal parabolic B. We increase a′′ and a′ in the definition of τ , if necessary, so that this property
holds for them. Of course, Sa is not (MP ∩ Γ)-stable, so no (strong-sense) cuspform f on M could be
supported on any single copy of Sa. Thus, we need a type of Siegel set adapted to P : with B the standard
minimal parabolic, let

SP
a =

⋃
γ∈(Γ∩P )/(Γ∩B)

γSa

Then SP
a is P ∩ Γ-stable, and for γ ∈ Γ, if γSP

a ∩SP
b 6= φ then γ ∈ P ∩ Γ: Indeed, suppose γSP

a ∩SP
b 6= φ.

Then γγ1Sa ∩ γ2Sb 6= φ for some γ1, γ2 ∈ Γ ∩ P . By the choice of a� b, this implies that γ−1
2 γγ1 ∈ B ∩ Γ,

or
γ ∈ γ2

(
B ∩ Γ)γ−1

1 = γ2Bγ
−1
1 ∩ Γ ⊂ P ∩ Γ

Thus, for each g ∈ G there is at most one non-zero summand in the sum defining hs,f . The same is true of
its image under (1−∆)k for every k, so the sum converges in Bk for every k. ///

Thus, the pseudo-Eisenstein series hs,f is entire as a function-valued function of s. Let

Ẽs,f = hs,f − (S̃f − λs,f )−1 (∆− λs,f )hs,f

[11.7.4] Claim: Ẽs,f − hs,f is a holomorphic E1-valued function of s for Re(s) > 1
2 and Im(s) 6= 0.

Proof: From Friedrichs’ construction [9.2], the resolvent (∆̃ − λs,f )−1 exists as an everywhere-defined,
continuous operator for s ∈ C for λs,f not a non-positive real number, because of the non-positive-ness
of ∆. Further, for λs,f not a non-positive real, this resolvent is a holomorphic operator-valued function. In

fact, for such λs,f , the resolvent (S̃f − λs,f )−1 injects from L2(Γ\G/K) to E1. ///

[11.7.5] Theorem: With λs,f not non-positive real, u = Ẽs,f − hs,f is the unique element of the domain of

S̃f such that

(S̃f − λs,f )u = −(∆− λs,f )hs,f

Thus, Ẽs,f is the usual Eisenstein series Es,f of [3.11] for Re(s) > 1, and gives an analytic continuation of
Es,f − hs,f as E1-valued function to Re(s) > 1

2 with s 6∈ ( 1
2 , 1].

Proof: The proof is very similar to that of [11.1.3]. Uniqueness follows from Friedrichs’ construction [9.2]

and construction of resolvents, because S̃ − λs is a bijection of its domain to L2(Γ\G/K).

On the other hand, for Re(s) > 1
2 and s 6∈ ( 1

2 , 1], Ẽs,f − hs,f is in L2(Γ\G/K), is smooth, and

∆(Ẽs,f − hs,f ) = (∆− λs,f )(Ẽs,f − hs,f ) + λs,f · (Ẽs,f − hs,f ) = (∆− λs,f )hs,f + λs,f · (Ẽs,f − hs,f )

= (element of B∞) + λs,f · (Ẽs,f − hs,f )

so is in B2, so certainly in the domain of ∆̃. Abbreviating Hs,f = (∆− λs)hs,f , it is legitimate to compute

(S̃f − λs,f )(Ẽs,f − hs,f ) = (S̃f − λs,f )
(

(hs,f − (S̃f − λs,f )−1Hs,f )− hs,f
)

= (S̃f − λs,f )
(
− (S̃f − λs,f )−1Hs,f

)
= −Hs,f

Thus, Ẽs,f − hs,f is a solution. Also, Es,f − hs,f is a solution:

(∆− λs,f )(Es,f − hs,f ) = (∆− λs,f )Es,f − (∆− λs,f )hs,f = 0 − (∆− λs,f )hs,f

By uniqueness, we are done. ///

[11.7.6] Corollary: Es,f has an analytic continuation to Re(s) > 1
2 and s 6∈ ( 1

2 , 1] as an hs,f + E1-valued
function. ///

[11.7.7] Corollary: The function s→ cs,f has a meromorphic continuation to <(s) > 1
2 (off ( 1

2 , 1]). ///
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11.8 Distributional characterization of pseudo-Laplacians

First, we consider the self-associate maximal proper parabolic P = P r,r ⊂ G = SL2r, and cuspidal data
of the symmetrical form f = f1 ⊗ f1, so that fw = f . Further, without loss of generality f = f . Then the
argument is nearly identical to that for the simple examples in [11.3]. However, since strong-sense cuspforms
f1 are not likely to be compactly supported, the simple local argument for [11.3.2] requires some adaptation.
What we do have, from [7.3.19] (and from [7.2.20] and [7.1.20] for simpler situations), is that strong-sense
cuspforms are smooth, of rapid decay, that there are test functions ϕj such that ϕj · fj = fj , and that the fj
are eigenfunctions for the Laplacians on the factors of the Levi component. From the theory of the constant
term [8.2.5], relations ϕj · fj = fj imply that all derivatives of such cuspforms (with respect to the universal
enveloping algebra of the Lie algebra) are also of rapid decay.

Take symmetrical cuspidal data f = f1 ⊗ f1 on M = MP , with f1 a cuspform in a strong sense, and with
L2 norm 1. Put

E(P, f) = {ΨP
ψ,f : ψ ∈ C∞c (0,+∞)}

We recall some context from [10.6]. Let B be the standard minimal parabolic, with unipotent radical NB

and standard Levi component MB . Write Iwasawa decompositions g = nmgk with n ∈ NB , m ∈ MB . We
let S be a standard Siegel set stable under the (left) action of NB :

S = Sb = {g ∈ G : |αj(mg)| ≥ b, for all simple roots αj}

Take 0 < b� 1 such that Sb → Γ\G is a surjection. For a > b, let Xa be the subset of S where β(mg) ≤ a
for all simple roots β. The quotient (Γ ∩B)\Xa is compact, since (NB ∩ Γ)\N is compact. For each simple
root β, let

Y βa = {g ∈ S : β(mg) ≥ a}

and Ya =
⋃
β Y

β
a . Thus, S = Xa ∪ Ya. Parallel to [10.6], let

E(P, f)a = {F ∈ E(P, f) : cP ′F (g) = 0, for all g ∈ Ya, for all standard parabolics P ′}

and

E0
a = B0-closure of E(P, f)a E1

a = B1-closure of E(P, f)a E2
a = B2-closure of E(P, f)a

It suffices to require vanishing of constant terms for maximal proper parabolics P ′. Further, from [3.11.1],
since all pseudo-Eisenstein series in E(P, f) have cuspidal data, the vanishing condition is automatically
satisfied for all parabolics P ′ except P .

To be careful, since our unbounded operators should be densely defined, we note

[11.8.1] Lemma: For a� 1, E(P, f)a = E(P, f) ∩ E0
a is dense in E0

a.

Proof: Having restricted our attention to the relatively small space E(P, f), with a � 1, the observation
[11.6.2] essentially reduces the issue to a generic, local, one-dimensional issue of smooth cut-offs, much as
addressed in the proof of [10.3.1]. ///

Let Sa,f be ∆ restricted to E(P, f)a. Since ∆ΨP
ψ,f = ΨP

β,f from [11.6.1], and differential operators do not

enlarge supports, ∆ does stabilize E(P, f)a. Let S̃a,f be the Friedrichs extension of Sa,f to an unbounded
self-adjoint operator on E0

a, with domain contained in E1
a and containing E2

a.

[11.8.2] Corollary: (of [10.8]) S̃a,f has compact resolvent (S̃a,f − λs,f )−1 (away from poles).

Proof: As usual, the crucial point is that the inclusion E1
a → E0

a is a restriction of the inclusion B1
a → L2

a, the
latter shown to be compact in [10.8]. The restrictions of compact operators are compact. The resolvents of
the Friedrichs extension are continuous maps E0

a → E1
a composed with the inclusion E1

a → E0
a. Continuous

maps composed with compact maps are compact. ///

Let M1 be the copy of SLr × SLr inside M = MP , and ZM the center of M . We take representatives

za =

(
a

1

r2
1 · 1r 0
0 1r

)
(for 0 < a ∈ R×)
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for the connected component Z\ZM containing 1r, and let ηa be the functional on E(P, f) defined by

ηa(F ) =

∫
Z(Γ∩MP

1 )\M1

cPF (m′ · za) f (m′) dm′ (for F ∈ E(P, f))

Then F ∈ E(P, f)a if and only if ηb′(F ) = 0 for all b′ ≥ a.
As in [3.8.2], pointwise vanishing conditions for constant terms can be rewritten as L2 orthogonality to

corresponding pseudo-Eisenstein series. With

Θ = {ΨP
ψ,f : ψ ∈ C∞c (0,+∞) with support inside [a,+∞)}

E(P, f)a is the intersection of E(P, f) with the orthogonal complement to Θ in L2(Γ\G/K).
Let c be the pointwise conjugation map c : E0 → E0. Let E−1 be the Hilbert space dual of E1. Let j∗ be

the adjoint of the inclusion j : E1 → E0, let j∗ be its adjoint. Let E−1
a be the Hilbert space dual of E1

a, let
t : E1

a → E1 be the inclusion, with adjoint t∗ : E−1 → E−1
a , giving a picture

E1 j // E0 j∗◦ c // E−1

t∗

��
E1
a

t

OO

E−1
a

Let ∆a be ∆ restricted to C∞c (Γ\G/K) ∩ L2
a, with Friedrichs extension ∆̃a. Let S# : E1

a → E−1
a be as

in [11.2], namely, S#(x)(y) = 〈x, y〉E1 . Recall the re-characterization of Friedrichs extensions in [11.2]:

S̃a,fx = y for x ∈ E1
a and y ∈ E0

a if and only if S#x = t∗ ◦ (j∗ ◦ c)y, and we have

[11.8.3] Corollary: (of [11.2.2]) S̃a,fx = y for x ∈ E1
a and y ∈ E0

a if and only (∆ ◦ t)x = y+ θ for some θ in
the B−1-closure of Θ. ///

Thus, as in the simpler cases, the critical fact is

[11.8.4] Claim: For a�b 1, the intersection of the (∆ ◦ t)E1
a and the E−1-closure of Θ is at most C · ηa.

Proof: Use Siegel sets SP
b′ adapted to P , as in the proof of [11.7.3]. Take b′ < a but still b′ �b 1 so that SP

b′

has the same features as a. The compact abelian group A = (NP ∩ Γ)\NP acts on Ca′ = (NP ∩ Γ)\SP
a′ ,

and Ca′ contains the image Ca of SP
a in the quotient.

On one hand, by the choice of a �b 1, for a test function ψ supported in [a,+∞), on SP
b the pseudo-

Eisenstein series Ψψ,f ∈ Θ is just ϕψ,f . These distributions are NP -invariant on SP
a . Taking E−1 closure

does not increase support, and does not harm the NP -invariance. Thus, the E−1-closure of Θ consists of
A-invariant distributions supported in Ca ⊂ Cb′ .

On the other hand, A-invariants in E1
a are obtained as constant-term integrals, which are averaging integrals

over the compact A, which exist as Gelfand-Pettis integrals with values at least as distributions. For each
small ε > 0, there is a sequence Fi ∈ E1 supported in Ca−ε approaching θ ∈ E−1, with Fi = ∆u − f with
u ∈ E1

a and f ∈ E0
a, since a− ε� 1, in Cb′

Fi = cP θ = cP (∆u− f) = ∆(cPu)− cP f

and the intersection of Ca−ε with the supports of cPu and cP f is contained in the complement Ca−ε − Ca.
The differential operator ∆ does not enlarge supports. Thus, the support of θ is contained in the boundary
∂Ca.

Thus, for each ε > 0, we can approximate in E−1 such θ by a sequence Ψψi,f with ψi ∈ C∞c (0,+∞)
supported in [a − ε, a + ε]. For β ∈ C∞c (0,+∞), without loss of generality suppose the support of β is
similarly restricted. Since a− ε� 1, by reduction theory∫

Γ\G
Ψψi,f ·Ψβ,f =

∫
Ca−ε

ϕψi,f · ϕβ,f
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and this integral simplifies to
∫ a+ε

a−ε ψi · β with suitable measure on (0,+∞). Thus, such θ is specified
by a distribution θo on R supported at the point a. By the classification of distributions supported at a
point [13.14.3], θo must be a finite linear combination of Dirac delta δa and its derivatives. As in the local
computations in the proof of [11.3.2], the condition θ ∈ E−1 requires that θo be at worst in B−1(R), which
then requires that θo be a constant multiple of δa. Thus, the E−1-limit is a constant multiple of ηa. ///

Thus, the relatively simple characterization of the Friedrichs extension for a� 1:

[11.8.5] Corollary: With a� 1, S̃a,fx = y for x ∈ E1
a and y ∈ E0

a if and only (∆ ◦ t)x = y + c · ηa for some
constant c. ///

11.9 Density lemma for P r,r ⊂ SL2r

Similar to the description of Es,f as Ẽs,f above in [11.7], but with S̃a,f in place of S̃f , with the pseudo-
Eisenstein series hs,f formed from the smooth cut-off τ · ϕs,f of ϕs,f as in [11.7], put

Ẽa,s,f = hs,f − (S̃a,f − λs,f )−1 (∆− λs,f )hs,f

We already noted in [11.7] that hs,f is an entire, E1-valued function, for simple reasons, given reduction
theory.

For λs,f not a non-positive real, (S̃a,f−λs,f )−1 is a bijection of E0
a to the domain of S̃a,f , so u = Ẽa,s,f−hs,f

is the unique element of the domain of S̃a,f satisfying

(S̃a,f − λs,f )u = −(∆− λs,f )hs,f

Since s → hs,f is entire, the meromorphy of the resolvent (S̃a,f − λs,f )−1 [10.9] yields the meromorphy of

Ẽa,s − hs,f as E1
a-valued function, assuming that we have the following lemma, parallel to [11.4.1]:

[11.9.1] Lemma: For a � 1, E1
a = E1 ∩ L2

a(Γ\G/K). That is, for a � 1, E(P, f)a is E1-dense in
E1 ∩ L2

a(Γ\G/K).

Proof: The proof is also parallel to that of [11.4.1], with a few minor complications. Indeed, after suitable
set-up observations, the necessary estimates reduce to essentially one-dimensional estimates as in the proof
of [11.4.1].

Since E1
a is the E1-closure of E(P, f)a, the containment is E1

a ⊂ E1 ∩ L2
a(Γ\G/K) is immediate.

For the opposite containment, given a sequence {Ψϕi,f ∈ E1} of pseudo-Eisenstein series converging to
Ψ ∈ E1 ∩ L2

a(Γ\G/K) in the E1-topology, we produce a sequence of pseudo-Eisenstein series in E(P, f)a
converging to Ψ in the E1-topology, by smooth cut-offs of the constant terms of the Ψϕi,f . Again, by [3.11],
as noted in [10.6], all constant terms along parabolics other than P vanish entirely, because of the cuspidal
data f . As in [11.8], let

α(nmk) =
∣∣∣detm1

detm2

∣∣∣r (with n ∈ NP , k ∈ K, m =

(
m1 0
0 m2

)
)

The constant term along P of the limit Ψ of the Ψϕi,f vanishes above α(g) = a by definition, and is in
L2
a(Γ\G/K). We will show that this entails that the part of the constant terms of the Ψϕi,f above α(g) = a

must become small. Thus, smoothly cutting off the part of the constant terms above α(g) = a has a
vanishingly small effect on the Ψϕi,f . More precisely, proceed as follows.

Let F be a smooth real-valued function on R with F (t) = 0 for t < −1, 0 ≤ F (t) ≤ 1 for −1 ≤ t ≤ 0,
and F (t) = 1 for t ≥ 0. For ε > 0, let Fε(t) = F ((t − a)/ε). Fix real b with a > b > 1. Given
Ψϕi,f → Ψ ∈ L2

a(Γ\G/K), the b-tail of the P -constant term of Ψϕi,f is τi(g) = cPΨϕi,f (g) for α(g) ≥ a′,
and τi(g) = 0 for 0 < α(g) ≤ a′′. By design, Ψϕi,f − ΨFε·τi,f ∈ E(P, f)a for small ε. We will show
that, as i → +∞, for εi sufficiently small depending on i, the E1-norms of ΨFεi ·τi,f go to 0, while still

Ψϕi,f −ΨFεi ·τi,f → f in the E1-norm.

Let SP
a be Siegel sets adapted to P , as in [11.8], and put Ca = (P ∩ Γ)\SP

a . As in [11.8], by reduction
theory, for a� 1, Ca injects to Γ\G/K. For Φ ∈ C∞c (Γ\G/K), let

|Φ|2E1(Ca) =

∫
Ca

|Φ|2 −∆Φ · Φ
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We have

|Φ|2E1(Ca) �
∫

Γ\G/K
|Φ|2 −∆Φ · Φ

For each a > 0, let E1(Ca) be the completion of C∞c (Γ\G/K) with respect to the semi-norm | · |E1(Cb) (with
collapsing). In contrast to the four simpler examples, Γ ∩MP is not finite, so we need a slightly different
argument for estimates on tails of constant terms than in [11.4.1].

By reduction theory, there is 0 < b � 1 such that SP
b surjects to Γ\G/K. Then take a �b 1 such that,

for η ∈ C∞(0,+∞) with support in [a,+∞), on SP
b

Ψη,f (g) = ϕη,f (g) (for g ∈ SP
b )

Since ϕη,f , for such η, in SP
b the P -constant term is cPΨη,f = ϕη,f . Thus, for a�b 1,∫

Ca

|cPΨη,f |2 =

∫
Cb

|ϕη,f |2 =

∫
Ca

|ϕη,f |2 = |Ψη,f |2L2(Γ\G/K)

That is, for such η, the P -constant term has L2 norm dominated by (in fact, equal to) that of Ψη,f . By
[11.7.1],

∆Ψη,f = ΨTη,f ( with T = 2r3 y2 ∂2

∂y2 + µ1 + µ2)

and similarly for ϕη,f . Thus, we have similar inequalities for the E1(Ca)-norms for such η:

|cPΨη,f |2E1(Ca) = |ϕη,f |2E1(Ca) = |Ψη,f |2E1(Ca) ≤ |Ψη,f |2E1

That is, for fixed cuspidal data, for η supported in [a,+∞) with a�b 1, the E1 norm of the constant term
of Ψη,f is dominated by that of Ψη,f , as desired.

To an extent, we can dodge entirely rewriting the norms as energy norms, instead using the earlier
computations [3.11.11] and [11.7.1] which give ∆Ψψ,f = ΨTψ,f with

T = 2r3 y
∂

∂y

(
y
∂

∂y
− 1
)

+ µ1 + µ2 = 2r3 y2 ∂
2

∂y2
+ µ1 + µ2

to reduce to a one-dimensional computation more directly. As in the very simplest case of G = SL2(R), the

coefficient y2 on ∂2

∂y2 exactly cancels a denominator in an invariant measure in that coordinate, as we see in
the following.

Turning to the main argument: since a �b 1, ΨFε·τi,f is just ϕFε·τi,f on Sb, and the support of ϕFε·τi,f
is inside the image of the cylinder Ca−ε ⊂ Cb, by the triangle inequality,

|ΨFε·τi,f |E1 ≤ |ΨFε·τi,f |E1(Cb) = |ϕFε·τi,f |E1(Ca−ε)

≤ |ϕ(Fε−1)·τi,f |E1(Ca−ε) + |ϕτi,f − cPΨ|E1(Ca−ε) + |cPΨ|E1(Ca−ε)

From above, by design,

|τi − cPΨ|E1(Ca−ε) � |cPΨϕi,f − cPΨ|E1 � |Ψϕi,f −Ψ|E1 −→ 0

so the middle summand goes to 0. The first and third summands require somewhat more care.
Up to measure normalization constants, integrating away the cuspidal data,

|ϕ(Fε−1)·τi,f |
2
E1(Ca−ε)

=

∫ ∞
a−ε
|(Fε − 1)τi|2 − T (Fε − 1)τi · (Fε − 1)τi

dy

y2

Since T is of the form Ay2 ∂2

∂y2 + B for real constants A > 0 and B ≤ 0, it is a symmetric operator with

respect to the measure dy/y2, and the previous expression is dominated by∫ ∞
a−ε
|(Fε − 1)τi|2

dy

y2
+

∫ ∞
a−ε

∂

∂y
(Fε − 1)τi ·

∂

∂y
(Fε − 1)τi dy

≤
∞∫

a−ε

|Fε − 1|2 · (|τi|2 + |yτ ′i |2)
dy

y2
+

∫
Ca−ε

|F ′ε|2 · |τi|2 dy +

∫
Ca−ε

2|Fε| · |F ′ε| · |τi| · |τ ′i | dy
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by Leibniz’ rule for derivatives. The first summand in the latter expression goes to 0 as ε → 0+ because
Fε − 1 = 0 when y ≥ a, and τi and τ ′i are continuous. Thus,

|F ′ε(y)| = |1
ε
· F ′((y − a)/ε)| =

1

ε
· |F ′((y − a)/ε)| �F

1

ε

The fundamental theorem of calculus and Cauchy-Schwarz-Bunyakowsky recover an easy instance of a
Sobolev inequality:

|τi(a− v)| =
∣∣∣0− ∫ v

0

τ ′i(a− v) dv
∣∣∣ ≤ (∫ v

0

|τ ′i(a− v)|2 dv
) 1

2 ·
(∫ v

0

12 dv
) 1

2 ≤ o(1) ·
√
v

with Landau’s little-o notation, since τ ′i is locally L2. Thus,∫
Ca−ε

|Fε| · |F ′ε| · |τi| · |τ ′i | ≤
1

ε
· o(1) ·

√
ε ·
∫ ε

0

|τ ′i |

≤ 1

ε
· o(1) ·

√
ε ·
(∫ ε

0

|τ ′i |2
) 1

2 ·
(∫ ε

0

12
) 1

2 �τi

1

ε
· o(1) ·

√
ε ·
√
ε = o(1)

That is, the summand
∫
Ca−ε

|Fε| · |F ′ε|s · |τi| · |τ ′i |s goes to 0 as ε→ 0+. By the same estimates,∫
Ca−ε

|F ′ε|2s · |τi|2 �
1

ε2

∫ ε

0

(
o(1) ·

√
v
)2
dv =

1

ε2
· o(1) · ε

2

2
−→ 0

Thus, taking the εi sufficiently small, the smooth truncations Ψϕi,f −ΨFεi ·τi,f are in D ∩ L2
a(Γ\G/K), and

still converge to Ψ in the E1-topology. ///

11.10 Beyond the critical line: P r,r ⊂ SL2r

Returning to the meromorphic continuation, we continue to consider symmetrical cuspidal data, of the
symmetrical form f = f1 ⊗ f1. The discussion continues to resemble that for the four simple cases [11.5].

Since (S̃a,f − λs,f )−1 maps (∆ − λs,f )hs,f to a function with P -constant term vanishing above height

a, above that height the constant term of Ẽa,s,f is that of hs,f . More generally, evaluate S̃a,f − λs,f
distributionally by application of ∆− λs,f : for some constant Cs, by [11.8.5],

−(∆−λs,f )hs,f = (S̃a,f−λs,f )(Ẽa,s,f−hs,f ) = (∆−λs,f )(Ẽa,s,f−hs,f )+Cs ·ηa (as distributions)

Everything else in the latter equation is meromorphic in s, so Cs must be, as well. Rearranging,

(∆− λs,f )Ẽa,s,f = −Cs · ηa (as distributions)

Since ∆ is G-invariant, it commutes with the constant-term map, so the distribution (∆ − λs,f )cP Ẽa,s,f is
0 away from height a.

That constant term is of the form ϕψ,f for some function ψ on (0,+∞). By [11.7.1], in coordinates
m′ · zy, the distributional differential equation (∆− λs,f )ϕψ,f = 0 has solutions with ψ exactly of the form

Asy
sf(m′) +Bsy

1−sf(m′) with constants As, Bs, so cP Ẽa,s must be of this form in 0 < y < a. Since Ẽa,s,f
is meromorphic in s, so are As, Bs. Thus,

cP Ẽa,s,f (m′zy) =

 ys · f(m′) (for y > a)

Asy
sf(m′) +Bsy

1−sf(m′) (for 0 < y < a)

By construction, hs,f is smooth, and (S̃s,f − λs,f )−1Ψ ∈ E1
a for all Ψ ∈ E0

a.
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Next, we claim that the constant term of Ẽa,s,f is continuous, in particular along the set of values nm′za
with m′ ∈M1, n ∈ NP . To this end, for F ∈ C∞c ((NP ∩ Γ)\G/K), define a norm via

|F |2B1((NP∩Γ)\G/K) =

∫
(NP∩Γ)\G/K

(1−∆)F · F

and form the corresponding Hilbert space of functions by completion:

B1((NP ∩ Γ)\G/K) = B1-completion of C∞c ((NP ∩ Γ)\G/K)

Since the topological space (NP∩Γ)\G/K is a bit too large, we define a localized version of B1((NP∩Γ)\G/K)
via seminorms using smooth cut-offs β:

νβ(F ) = |β · F |B1((NP∩Γ)\G/K) (for β ∈ C∞c ((NP ∩ Γ)\G/K))

We can take larger-and-larger smooth cut-offs, so there is a countable co-final subset of these semi-norms so
they give a locally convex invariant-metric topology T , with completion a Fréchet space:

B1
loc = B1

loc((NP ∩ Γ)\G/K) = T -completion of C∞c ((NP ∩ Γ)\G/K)

As usual, the compact group (NP ∩ Γ)\N acts continuously on B1
loc, for general reasons. The smoothly

cut-off tail hs,f is an entire smooth-function-valued function, so is in B1
loc. Since Ẽa,s,f − hs,f is in

E1
a ⊂ B1((NP ∩ Γ)\G/K) ⊂ B1

loc, certainly Ẽa,s,f ∈ B1
loc. Thus, the constant term cP Ẽa,s,f exists as

a Gelfand-Pettis integral, so is in B1
loc.

Continuity is a local property, so to prove that the constant term is continuous, it suffices to show
that smooth cut-offs are continuous. For sufficiently small support of the smooth cut-offs, we can reduce
the local problem to functions on a multi-torus Tn. The dimension n = dimR(NP ∩ Γ)\G/K is too
high for local Sobolev imbedding theorems to promise that every element of B1

loc is continuous. Indeed,
Bk

loc ⊂ Co((NP ∩ Γ)\G/K) for k > n
2 [9.5.14]. Fortunately, with strong-sense cuspidal data f , the constant

term cP Ẽa,s,f is in a better situation, namely, it is smooth (or even constant) in all but one coordinate.
Indeed, it allows separation of variables, being of the form ϕψ,f (nm′zy) = ψ(y) · f(m′). Thus, we smoothly
truncate in a fashion that preserves the separation of variables, giving a function

F (x1, . . . , xn) = F1(x1) · F2(x2, . . . , xn)

on Tn, with F2 known to be C∞ in x′ = x2, . . . , xn. We claim that F ∈ B1(Tn) implies F1 ∈ B1(T). Since
F is a product, its Fourier coefficients likewise are products: letting ξ′ = (ξ2, . . . , ξn),

F̂ (ξ1, ξ2, . . . , ξn) =

∫
Tn
F1(x1)F2(x′) · e−2πi(x1ξ1+x′·ξ′) dx1 dx

′

=

∫
T
F1(x1)e−2πix1ξ1 dx1 ·

∫
Tn−1

F2(x′) · e−2πix′·ξ′ dx′ = F̂1(ξ1) · F̂2(ξ′)

The smoothness condition on F2 gives rapid decrease of F̂2, that is, for all N � 1

|F̂2(ξ′)| �N |ξ′|−N

Then the B1(Tn) condition gives∑
ξ1

|F̂1(ξ1)|2 · (1 + |ξ1|2) ≤
∑
ξ∈Zn

|F̂ (ξ)|2 · (1 + |ξ|2) =
∑
ξ1,ξ′

|F̂1(ξ1)|2 · |F̂2(ξ′)|2 · (1 + |ξ|2)

=
∑
ξ1

|F̂1(ξ1)|2 ·
(∑

ξ′

|F̂2(ξ′)|2
)
· (1 + |ξ|2) �

∑
ξ1

|F̂1(ξ1)|2 ·
(∑

ξ′

|ξ′|−N
)
· (1 + |ξ|2)
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Taking N > n− 1 gives convergence of the inner sum, so F1 is in the +1 Sobolev space on T. Then Sobolev
imbedding [9.5.4] implies that F1 is continuous. Thus, cP Ẽa,s,f is continuous at η = a, as claimed.

Thus, the values above and below y = a must match:

As · as · f(m′) +Bs · a1−s · f(m′) = as · f(m′) (for all s)

and since f(m′) is not identically 0,

As · as +Bs · a1−s = as (for all s)

As in the proof of [11.5] (with somewhat different notation), let ch[a,∞) be the characteristic function of
[a,∞), and

βa,s,f (nm′zy) = ch[a,∞)(y) ·
(
Asy

s +Bsy
1−s − ys

)
· f(m′)

and form a pseudo-Eisenstein series

Φa,s,f =
∑

γ∈Γ∞\Γ

βa,s,f ◦ γ

The support of βa,s,f is inside SP
a , and a� 1, so by reduction theory for each g ∈ G the series has at most

one non-zero summand, so converges for all s ∈ C.

[11.10.1] Theorem: As · Es,f = Ẽa,s,f + Φa,s,f and Ẽa,s,f + Φa,s,f = Bs · E1−s,f . Thus, Es,f has a
meromorphic continuation and Es,f − hs,f is a meromorphic E1-valued function.

Proof: With S̃ as in [11.7], we have shown that u = Es,f − hs,f is the unique solution u ∈ E1 to

(S̃ − λs,f )u = −(∆− λs,f )hs,f

Thus, multiplying through by As, it suffices to prove that Ẽa,s,f + Φa,s,f −As · hs,f is in E1 and satisfies

(S̃ − λs,f ) (Ẽa,s,f + Φa,s,f −As · hs,f ) = −(∆− λs,f ) (As · hs,f )

That Ẽa,s,f − hs,f is in E1
a motivates the rearrangement

Ẽa,s,f + Φa,s,f −As · hs,f = (Ẽa,s,f − hs,f ) + (Φa,s,f −As hs,f + hs,f )

We claim that the pseudo-Eisenstein series F = Φa,s,f −Ashs,f + hs,f is in E1.
Regarding integrability, by reduction theory, in SP

a , Φa,s,f is just

βa,s,f (nm′zy) = ch[a,∞)(y) ·
(
Asy

s +Bsy
1−s − ys

)
· f(m′)

so in SP
a

F = Φa,s,f−Ashs,f +hs,f =
(

(Asy
s+Bsy

1−s−ηs)−Asys+ys
)
·f(m′) = Bsy

1−s ·f(m′) (in SP
a )

For Re(s) > 1, y1−s · f(m′) is square-integrable on (P ∩ Γ)\SP
a , so F is in L2(Γ\G/K).

To demonstrate the additional smoothness required for F to be in E1, from the rewriting of Sobolev norms
in [10.7], especially [10.7.5], it suffices to show that the right-translation derivatives xF are in L2(Γ\G) for
x ∈ g. By the left invariance of the right action of g, it suffices to prove square-integrability on the adapted
standard Siegel sets SP

t of the derivatives of the data

βa,s,f −Asτ(y)ys · f(m′) + τ(y)ys · f(m′)

wound up to form F = Φa,s,f − Ashs,f + hs,f This data is smooth everywhere but along y = a, where it is
at least continuous, since Asa

s + Bsa
s − as = 0. Further, it possesses continuous left and right derivatives
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in y at y = a, and is smooth in all other directions on y = a, so is locally in a +1-index Sobolev space near
y = a.

Derivatives in the directions coming from the unipotent radical nP give 0. Since the cuspidal data f is
strong-sense, f is smooth, and all derivatives are still of uniform rapid decay in Siegel sets, by [7.3.19] and
[7.3.15]. Thus, for such derivatives, the L2 estimate above is sufficient.

In coordinates nm′zy as above, the remaining differential operator is y ∂
∂y . The derivative of F is

discontinuous at y = a, although it has left and right limits. As a distribution, it is

y
∂

∂y
F = y

∂

∂y

(
Φs,f −Ashs,f + hs,f

)
= y

∂

∂y

(
ϕs,f −As · τ(y) · ys · f(m′) + τ(y) · ys · f(m′)

)

= y
∂

∂y



Bsy
1−s · f(m′) (for y > a)

−As · ys · f(m′) + ys · f(m′) (for a′ ≤ y < a)

−As · τ(y) · ys · f(m′) + τ(y) · ys · f(m′) (for a′′ ≤ y ≤ a′)

0 (for y ≤ a′′)

=



Bs · (1− s) · y1−s · f(m′) (for y > a)

(1−As) · sys · f(m′) (for a′ ≤ y < a)

(1−As)(∂τ∂y · y
s + τ(y) · sys) · f(m′) (for a′′ ≤ y ≤ a′)

0 (for y ≤ a′′)

On a′ ≤ y ≤ a, this derivative is bounded, so the truly relevant behavior is in y > a: for Re(s) > 1 this
derivative is square-integrable on quotients (P ∩ Γ)\SP

b′ . Thus, Φs,f − Ashs,f + hs,f is in E1, proving that

Ẽa,s,f + Φs,f −Ashs,f is in E1.

To show that Ẽa,s,f + Φs,f − Ashs,f satisfies the expected equation, we justify computing the effect of

differential operators on Ẽa,s,f + Φa,s,f − Ashs,f distributionally, as follows. For F ∈ C∞c (Γ\G/K), with S̃
the Friedrichs extension of the restriction of ∆ to C∞c (Γ\G/K) as in [11.7],〈

(S̃ − λs,f )(Ẽa,s,f + Φa,s,f −Ashs,f ), F
〉

=
〈
Ẽa,s,f + Φa,s,f −Ashs,f , (∆− λs,f )F

〉
=
〈

(∆− λs,f )(Ẽa,s,f + Φa,s,f −Ashs,f ), F
〉

By design, using the invariance of ∆ and the local finiteness of the sum for Φs,f , it is legitimate to compute

(∆− λs,f )(Ẽa,s,f + Φa,s,f ) = (∆− λs,f )Ẽa,s,f +
∑

γ∈Γ∞\Γ

(∆− λs,f )βa,s,f ◦ γ

= −Cs · ηa + Cs · ηa = 0 (as distributions)

Thus,

(S̃ − λs,f )(Ẽa,s,f + Φa,s,f −Ashs,f ) = (∆− λs,f )(Ẽa,s,f + Φa,s,f −Ashs,f ) = 0−As(∆− λs,f )hs,f

as desired, proving Ẽa,s,f + Φa,s,f = As · Es,f for Re(s) > 1. For Re(1− s) > 1, the same argument shows

that Ẽa,s,f + Φa,s,f = Bs ·E1−s,f . This proves the formulas in the claim. Since not both As and Bs can be
identically 0, we obtain the meromorphic continuation of Es,f . ///

[11.10.2] Corollary: As · Es,f = Bs · E1−s,f . ///
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In particular, neither As nor Bs is identically 0, and with a(s) = Bs/As, E1−s,f = a(s) · Es,f . The
relation cPEs,f = (ys + cs,fy

1−s · f(m′) gives the meromorphic continuation of cs,f . Since cPE1−s,f =
(y1−s + c1−s,fy

s) · f(m′), apparently cs,f = a(s) = Bs/As. Since 1− (1− s) = s, we obtain cs,f · c1−s,f = 1:

[11.10.3] Corollary: cs,f has a meromorphic continuation, and cs,f · c1−s,f = 1. ///

On Im(s) = 0 and Re(s) > 1, Es,f and cPEs,f are real-valued. We assume without loss of generality that
f is real-valued. Thus, the two holomorphic functions Es,f and Es,f agree on (1,+∞), so agree everywhere.
That is, Es,f = Es,f . In particular, on Re(s) = 1

2 , where s = 1− s,

|cs,f |2 = cs,f · cs,f = cs,f · cs,f = cs,f · c1−s,f = 1 (on Re(s) = 1
2 )

proving

[11.10.4] Corollary: |cs,f | = 1 on Re(s) = 1
2 , and cs,f has no pole on Re(s) = 1

2 . ///

Further, we have

[11.10.5] Corollary: Es,f has no pole on Re(s) = 1
2 .

Proof: Suppose Es,f had a pole of order N > 0 at so on the critical line Re(s) = 1
2 . Then (s − so)N · Es,f

is holomorphic at s = so, gives a not identically automorphic form, and has vanishing constant term there.
From

∧a(s− so)NEs,f = (s− so)N ∧a Es,f

and using the Maass-Selberg relations [3.14.2] with s = so + ε and r = so + ε = 1− so + ε with 0 < ε ∈ R,
since (s− so) · cs → 0 at s = so, suppressing measure-normalizations,

|(s−so)NEs|2 = ε2N ·
( as+r−1

s+ r − 1
+cs,f

a(1−s)+r−1

(1− s) + r − 1
+cr,f

as+(1−r)−1

s+ (1− r)− 1
+cs,fcr,f

a(1−s)+(1−r)−1

(1− s) + (1− r)− 1

)

= ε2N ·
(a2ε

2ε
+ cso+ε,f

a1−2so−2ε

1− 2so − 2ε
+ c1−so+ε,f

a2so−1+2ε

2so − 1 + 2ε
+ cso+ε,fc1−so+ε,f

a−2ε

−2ε

)
−→ 0

contradiction. Thus, Es,f has no pole on the critical line. ///

Toward proving moderate growth of the meromorphic continuation of Es,f :

[11.10.6] Claim: Es,f meromorphically continues as a C∞(Γ\G/K)-valued function.

Proof: As we have assumed throughout, to know the form of the constant term of Es,f with f = f1 ⊗ f1,
as in [3.11.9] we need to assume that f1 is a ∆-eigenfunction on SLr(Z)\SLr(R)/SO(n,R), with eigenvalue
λ1, and up to scalar multiples is the only cuspform there with ∆-eigenvalue λ1. From the computation in
[3.11.11], it follows that Es,f is a ∆-eigenfunction, with eigenvalue λs,f = 2r3s(s − 1) + 2λ1. Thus, in the
region Re(s) > 1, there is at most a single s making λs,f assume a given value. As above, let

ϕs,f (nm′zyk) = ys · f(m′) (for n ∈ NP , k ∈ K, and m ∈M ′)

The computation in the proof of [3.11.11] also shows that ϕs,f is a ∆-eigenfunction with eigenvalue λs,f .
Let η ∈ C∞c (K\G/K) act on spaces of right K-invariant functions on G as usual, by integral operators.
From [8.4.1], for every η ∈ C∞c (K\G/K), there is µs,f (η) ∈ C such that η · ϕs,f = µs,f (η) · ϕs,f , and there
exists η giving µs,f (η) 6= 0. In the region of convergence Re(s) > 1, from Es,f =

∑
γ∈(Γ∩P )\Γ ϕs,f ◦ γ,

also η · Es,f = µs,f (η) · Es,f . Exactly what we are missing at this point is knowledge of what topological
vector space of functions (or distributions) the meromorphically continued Eisenstein series may lie in, so we
cannot directly assert much about η ·Es,f outside the region of convergence. (Otherwise we could apply the
identity principle from complex analysis to the latter identity.) Rather, we approach this a little indirectly,
as follows.

Since ∆ commutes with G, E1 is stable under the action of η ∈ C∞c (K\G/K). From the meromorphic
continuation of Es,f − hs,f as E1-valued function, we have the meromorphic continuation of

η · (Es,f − hs,f ) = µs,f (η) · Es,f − η · hs,f
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as E1-valued function. In fact, for F ∈ E1, by [14.5], η · F is in C∞(Γ\G/K). By construction,
hs,f ∈ C∞(Γ\G/K). Rearranging,

µs,f (η) · Es,f = η · (Es,f − hs,f ) + η · hs,f

Dividing through by µs,f (η) for some η with µs,f (η) 6= 0 exhibits the meromorphically continued Es,f as a
smooth-function-valued function. ///

[11.10.7] Corollary: Es has a meromorphic continuation as Co(Γ\G/K)-valued function, so it makes sense
to address the issue of its moderate growth. ///

Finally, we have

[11.10.8] Theorem: Away from poles, the meromorphically continued Es,f is of moderate growth.

Proof: By [11.10.1] and [11.10.7], (at least) the pointwise values of the meromorphic continuation are given
by

Es,f = A−1
s · (Ẽa,s,f + Φa,s,f )

Since a � 1, in SP
a the function Φa,s,f is just ϕa,s,f itself, which is (Asy

s + Bsy
1−s − ys) · f(m′), which

is of moderate growth in standard Siegel sets. The computation above shows continuity at y = a. The
pseudo-Eisenstein series hs,f of [11.7] made from τ · ys · f(m′) with smooth cut-off τ is a locally finite sum,
so is smooth, so certainly continuous. For η ≥ a, its value is just ηs, which is of moderate growth for all s.
Thus, to show that Ẽa,s,f is of moderate growth even after meromorphic continuation, it suffices to show

that (S̃a,f − λs,f )−1(∆− λs,f )hs,f is of moderate growth.
Let T be the operator determined in [11.7.1], such that ∆Ψψ,f = ΨTψ, f , namely, with µ1 the eigenvalue

of the cuspform f1,

T = 2r3y
∂

∂y

(
y
∂

∂y
− 1
)

+ 2µ1

Thus,

T − λs,f = 2r3y
∂

∂y

(
y
∂

∂y
− 1
)

+ 2µ1 − 2r3s(s− 1)− 2µ1 = 2r3 ·
(
y
∂

∂y

(
y
∂

∂y
− 1
)
− s(s− 1)

)
The constant 2r3 can be dropped without changing anything.

Again, the pseudo-Eisenstein series hs,f = Ψτ ·ys, f is a locally finite sum, so it is legitimate to compute

(∆− λs,f )hs,f = (∆− λs,f )Ψτ ·ys,f = Ψ(T−λs,f )(τ ·ys), f

and Hs = (T − λs,f )(τ · ys) is smooth and uniformly compactly supported. It suffices to demonstrate
solvability of the differential equation (T − λs,f )u = Hs for a function u of sufficient decay at both 0+

and +∞. Then hope to form a pseudo-Eisenstein series Ψu,f giving (S̃a,f − λs,f )Ψu,f = ΨHs,f . From the

distributional characterization [11.8] of S̃a,f , this equation is equivalent to

(S̃a,f − λs,f )Ψu,f = ΨHs,f + c · ηa (for some c ∈ C)

Thus, in the y-coordinate, given f ∈ C∞c (0,+∞), we solve equations (T − λs,f )u = Hs + c · δa with c ∈ C
for u in C∞(0,+∞), with behavior at 0+ and +∞ to be adjusted suitably.

From [11.7.1], the differential equation is

(y
∂

∂y

(
y
∂

∂y
− 1
)
− s(s− 1))u = Hs + c · δa

We can divide through by A to suppose without loss of generality that it is 1, and still the renormalized is
B < 0. Letting x = log y, with F (x) = Hs(e

x) and v(x) = u(ex), this becomes

v′′ − v′ − s(s− 1)v = F + c · δlog a
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Taking Fourier transform in a normalization that suppresses some factors of 2π,

(−iξ)2v̂ − (−iξ)v̂ − s(s− 1)v̂ = F̂ + c · a−iξ

or

v̂(ξ) = − F̂ (ξ) + c · a−iξ

ξ2 − iξ + s(s− 1)

Since F is a test function, F̂ is an entire function such that F̂ (x+ iyo) is (uniformly) in the Schwartz space
for each fixed yo. Division by a quadratic polynomial produces a function holomorphic in a strip along R
not including either of the two poles at the zeros of the denominator:

i±
√

(−i)2 − 4s(s− 1)

2

Fix ε > 0. Given a bound |Re(s)| ≤ B, for Im(s) �B 1, those poles are outside the strip S = {z ∈ C :
|Im(z)| ≤ 1 + ε}. Thus, v̂ is holomorphic on an open set containing S and has decay like 1/ξ2 on horizontal
lines inside that strip. Thus, in the Fourier inversion integral

v(x) =
1

2π

∫
R
eiξx v̂(ξ) dξ

we can move the contour up to R + i(1 + ε), giving

v(x) =
1

2π

∫
R
ei(ξ+iε)x v̂(ξ + iε) dξ = e−εx

1

2π

∫
R
eiξx v̂(ξ + iε) dξ

Thus, v(x) � e−(1+ε)x, giving genuine exponential decrease for x → +∞. Similarly, moving the contour
down gives exponential decrease v(x)� e−(1+ε)|x| for x→ −∞. Then u(y) = v(log y) satisfies u(y)� y1+ε

as y → 0+, and u(y) � y−(1+ε) as y → +∞. Thus, the pseudo-Eisenstein series Ψu,f converges absolutely,
being dominated termwise by the sum expressing an absolutely convergent Eisenstein series [3.9], [3.11].
Further, being termwise dominated by an absolutely convergent Eisenstein series, Ψu,f is continuous and of
moderate growth.

Having available a choice of the constant c is necessary, to adjust Ψu,f to have P -constant term vanishing
above height y = a. Choose the constant so that cPΨu vanishes at y = a. Since a� 1, by reduction theory
the truncation ∧aΨu,f has P -constant term vanishing at and above height a. Since a � 1, this truncation
is itself a pseudo-Eisenstein series, and still (∆ − λs,f ) ∧a Ψu,f differs from Ψu,f only by a multiple of ηa.

Again by the distributional characterization of S̃a,f , we have (S̃a,f − λs,f ) ∧a Ψu,f = ΨHs,f .
Thus, for a given bound |Re(s)| ≤ B, there is C sufficiently large so that for |Im(s)| ≥ C we have

meromorphic continuation of Es,f as a (continuous) moderate-growth function.
For |Im(s)| < C, we can express Es,f as a vector-valued Cauchy integral along a circular path γ that lies

inside the union U of regions Re(s) ≥ B, Re(s) ≤ 1 − B, and |Im(s)| ≥ C, and does not run through any
poles of Es,f . In Re(s) ≤ 1−B the Eisenstein series is (continuous) of moderate growth, via the functional
equation. Thus, Es,f is of moderate growth throughout U , and in particular along γ. Let Z be the collection
of poles of Es,f (as meromorphic Co(Γ\G/K)-valued function) inside γ, and P (z) =

∏
zj∈Z(z − zj). For

each g ∈ G

P (s) · Es,f (g) =
1

2πi

∫
γ

P (z) · Ez(g)

z − s
dz

In fact, on γ, z → (s→ P (z)Es,f/(z − s) is a compactly-supported, continuous, moderate-growth-function-
valued function of z, so the vector-valued Cauchy integral

P (s) · Es,f =
1

2πi

∫
γ

P (z) · Ez,f
z − s

dz

as in [15.2] exists as a Gelfand-Pettis integral [14.1] lying in that same space of functions. ///
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11.11 Exotic eigenfunctions: P r,r ⊂ SL2r

Since E(P, f) contained no eigenfunctions for ∆ except the finitely-many possible residues of EPs,f in

Re(s) > 1
2 (see [3.14]), the eigenfunctions for S̃a,f cannot be eigenfunctions for ∆, so must be exotic.

Continue to consider symmetrical cuspidal data f = f1⊗ f1, so that fw = f . On genuine Eisenstein series
Es,f the functional ηa makes sense: unwinding, and using the explicit form of the constant terms, we have
absolutely convergent integrals

ηa(Es,f ) =

∫
Z(Γ∩M1)\M1

cPEs,f (m′ · za) f (m′) dm′

=

∫
Z(Γ∩M1)\M1

(
as · f(m′) + cs,fa

1−s · fw(m′)
)
· f (m′) dm′ = as + cs,fa

1−s

[11.11.1] Claim: Take a � 1. For values of s such that as + cs,fa
1−s = 0 the truncation ∧aEs,f is an

eigenfunction for S̃a,f , and (∆− λs,f ) ∧a Es,f is a constant multiple of ηa.

Proof: Let H be the usual Heaviside function on R: identically 0 on (−∞, 0) and identically 1 on (0,+∞).
The truncation [3.14] (along P ) of EPs,f is a pseudo-Eisenstein series:

∧aEPs,f = ΨH(a−y)β,f (with β = cPE
P
s,f (zy), with zy =

(
y

1
r · 1r 0
0 1r

)
)

The identity [11.5.1] shows the effect of applying ∆ − λs,f to pseudo-Eisenstein series: at first for test
functions ψ,

(∆− λs,f )ΨP
ψ,f = ΨDsψ,f

where Ds is the differential operator

Ds =
(

2r3y
∂

∂y

(
y
∂

∂y
− 1
)

+ µ1 + µ2

)
−
(

2r3s(s− 1) + µ1 + µ2

)
= 2r3

( ∂
∂y

(
y
∂

∂y
− 1
)
− s(s− 1)

)
Extend the identity by continuity. Then

(∆− λs,f ) ∧a EPs,f = (∆− λs,f )ΨH(a−y)β,f = ΨDsH(a−y)β, f

Thus, this computation reduces to an elementary computation on (0,+∞):

Ds

(
H(a− y)β

)
= 2r3

( ∂
∂y

(
y
∂

∂y
− 1
)
− s(s− 1)

)(
H(a− y) · (ys + cs,fy

1−s)
)

Apart from the leading coefficient 2r3, this is the same expression appearing in the proofs in [11.6] for SL2(Z)
and for the other three simple cases. That is, a derivative of a Dirac δ appears unless ys + cs,fy

1−s = 0, in

which case the truncated Eisenstein series is indeed in E1, and is in the domain of S̃. ///

[11.11.2] Corollary: Let f1 have eigenvalue µ1 for the Laplacian on SLr(Z)\SLr(R)/SOr(R), rewritten as
µ1 = 1

4 − τ
2 with τ ≥ 0. For a� 1, if as + cs,fa

1−s = 0, then either Re(s) = 1
2 or s ∈ [ 1

2 − τ,
1
2 + τ ].

Proof: If as + cs,fa
1−s = 0, then the corresponding truncated Eisenstein series is an eigenfunction for the

the non-positive self-adjoint differential operator S̃a,f , so the corresponding eigenvalue computed in [3.11.11]
must be real and non-positive:

λs,f = 2r3(s2 − s) + µ1 + µ1 ≤ 0

Thus, s(s− 1) + 1
4 − τ

2 ≤ 0. ///
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11.12 Non-self-associate cases

The general argument for cuspidal-data Eisenstein series for maximal proper parabolics in SLr has the
same shape as in the four simple cases, and as for P r,r ⊂ SL2r with cuspidal data f = f1⊗f1, treated in [11.8],
[11.9], and [11.10]. For self-associate maximal proper parabolic P = P r,r ⊂ G = SL2r, the case opposite
to that already considered is f2 ⊥ f1, with strong-sense cuspforms f1, f2. We recapitulate the argument in
outline for r1 6= r2, highlighting only the complications and differences from the previous examples.

For non-self-associate P = P r1,r2 with r1 6= r2, let Q = P r2,r1 , and only consider cuspidal data f = f1⊗f2

with strong-sense cuspforms f1, f2, and put

E(P,Q, f) = {ΨP
ψ,f : ψ ∈ C∞c (0,+∞)}+ {ΨQ

ψ,fw : ψ ∈ C∞c (0,+∞)}

Again, recall context from [10.6]. Let B be the standard minimal parabolic, with unipotent radical NB

and standard Levi component MB . Write Iwasawa decompositions g = nmgk with n ∈ NB , m ∈ MB . We
let S be a standard Siegel set stable under the (left) action of NB :

S = Sb = {g ∈ G : |αj(mg)| ≥ b, for all simple roots αj}

Take 0 < b� 1 such that Sb → Γ\G is a surjection. For a > b, let Xa be the subset of S where β(mg) ≤ a
for all simple roots β. The quotient (Γ ∩B)\Xa is compact, since (NB ∩ Γ)\N is compact. For each simple
root β, let

Y βa = {g ∈ S : β(mg) ≥ a}

and Ya =
⋃
β Y

β
a . Thus, S = Xa ∪ Ya. Parallel to [10.6], let

E(P,Q, f)a = {F ∈ E(P,Q, f) : cP ′F (g) = 0, for all g ∈ Ya, for all standard parabolics P ′}

and

E0
a = B0-closure of E(P,Q, f)a E1

a = B1-closure of E(P,Q, f)a E2
a = B2-closure of E(P,Q, f)a

It suffices to require vanishing of constant terms for maximal proper parabolics P ′. Further, from [3.11.1],
since all pseudo-Eisenstein series in E(P,Q, f) have cuspidal data, the vanishing condition is automatically
satisfied for all parabolics P ′ except P (and Q, in case Q 6= P ).

As earlier, to be careful, since unbounded operators should be densely defined, we need

[11.12.1] Lemma: For a� 1, E(P,Q, f)a = E(P,Q, f) ∩ E0
a is dense in E0

a.

Proof: On the relatively small space E(P,Q, f), with a� 1, the observation [11.6.2] again reduces the issue
to a generic, local, one-dimensional issue of smooth cut-offs, as addressed in the proof of [10.3.1], but now
admitting the minor complication that constant terms along P and along Q are related. ///

Let Sa,f be ∆ restricted to E(P,Q, f)a. Since ∆ΨP
ψ,f = ΨP

β,f from [11.6.1], and similarly for ΨQ
ψ,fw ,

and differential operators do not enlarge supports, ∆ does stabilize E(P,Q, f)a. Let S̃a,f be the Friedrichs
extension of Sa,f to an unbounded self-adjoint operator on E0

a, with domain contained in E1
a and containing

E2
a.

[11.12.2] Corollary: S̃a,f has compact resolvents (S̃a,f − λs,f )−1 (away from poles).

Proof: As earlier, the point is that the inclusion E1
a → E0

a is a restriction of the inclusion B1
a → L2

a, the
latter compact from [10.8]. Restrictions of compact operators are compact. The resolvents of the Friedrichs
extension are continuous maps E0

a → E1
a composed with the inclusion E1

a → E0
a. Continuous maps composed

with compact maps are compact. ///

Let M1 be the copy of SLr1 × SLr2 inside M = MP , and ZM the center of M . We take representatives

za =

(
a

1
r1r2 · 1r1 0

0 1r2

)
(for 0 < a ∈ R×)
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for the connected component Z\ZM containing 1r, and let ηa be the functional on E(P,Q, f) defined by

ηa(F ) =

∫
Z(Γ∩MP

1 )\M1

cPF (m′ · za) f (m′) dm′ (for F ∈ E(P,Q, f))

Similarly, both for P self-associate and not, let M1 be the copy of SLr2 × SLr1 inside MQ, let

z′a =

(
a

1
r1r2 · 1r2 0

0 1r1

)
(for 0 < a ∈ R×)

and

ηwa (F ) =

∫
Z(Γ∩M1)\M1

cPF (m′ · za) fw(m′) dm′ (for F ∈ E(P,Q, f))

Then F ∈ E(P,Q, f)a if and only if ηb′(F ) = 0 = ηwb′(F ) for all b′ ≥ a. Certainly ηa and ηwa do also depend
on the cuspidal data.

On genuine Eisenstein series EPs,f and EQs,fw the functionals ηa and ηwa also make sense: unwinding, and
using the explicit form of the constant terms, we have absolutely convergent integrals

ηa(EPs,f ) =

∫
Z(Γ∩M1)\M1

cPEs,f (m′ · za) f (m′) dm′

=

∫
Z(Γ∩M1)\M1

(as · f(m′)) · f (m′) dm′ = as (for r1 6= r2)

Similarly,
ηwa (EPs,f ) = cQs,fa

1−s (for r1 6= r2)

As earlier in [11.3.4] and [11.8.5], the Friedrichs extension can be usefully recharacterized:

[11.12.3] Claim: S̃a,fx = y for x ∈ E1
a and y ∈ E0

a if and only if ∆x = y+A · ηa +B · ηwa for some constants
A,B. ///

As earlier, but now with two different tails to accommodate, form two smooth pseudo-Eisenstein series:
let hs,f be the smooth pseudo-Eisenstein series formed from a smooth tail of cPE

P
s,f , and hws,f a smooth

pseudo-Eisenstein series formed from a smooth tail of cQE
P
s,f . To subtract multiples of hs,f and hws,f from

EPs,f to obtain an element of E1
a, use a linear combination of hs,f and hws,f whose constant terms along both

P and Q are both eventually (that is, sufficiently high up in the corresponding Siegel sets) exactly those of
EPs,f .

From the computation of constant terms in [3.11.3] and [3.11.5], there is a tight relationship between

the constant terms of EPs,f and EQs,fw , which after meromorphic continuation gives the functional equation

E1−s,f = (cPs,fw)−1 · EQs,fw and cQ1−s,f · cPs,fw = 1. ///

11.A Appendix: distributions supported on submanifolds

The fact that distributions supported at a single point are finite linear combinations of Dirac delta and its
derivatives is the simplest special case of the following, which reduces questions about distributions supported
on smooth submanifolds to the local situation of Euclidean spaces.

[11.A.1] Theorem: A distribution u on Rm+n ≈ Rm × Rn supported on Rm × {0}, is uniquely expressible
as a locally finite sum of transverse differentiations followed by restriction and evaluations, namely, a locally
finite sum

u =
∑
α

uα ◦ ResR
m×Rn

Rm×{0} ◦ D
α

where α is summed over multi-indices (α1, . . . , αn), Dα is the corresponding differential operator on {0}×Rn,
and uα are distributions on Rm × {0}. Further,

sptuα × {0} ⊂ sptu (for all multi-indices α)
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Proof: For brevity, let
ρ = ResR

m×Rn
Rm×{0} : C∞c (Rm × Rn) −→ C∞c (Rm)

be the natural restriction map of test functions on Rm × Rn to Rm × {0}, by

(ρf)(x) = f(x, 0) (for x ∈ Rm)

The adjoint ρ∗ : C∞c (Rm)∗ → C∞c (Rm+n)∗ is a continuous map of distributions on Rm to distributions on
Rm × Rn, defined by

(ρ∗u)(f) = u(ρ(f))

First, if we could apply u to functions of the form F (x, y) = f(x) · yβ , and if u had an expression as a sum
as in the statement of the theorem, then

u
(
f(x) · y

α

α!

)
= (−1)|β| · uβ(f) · β!

since most of the transverse derivatives evaluated at 0 vanish. This is not quite legitimate, since yα is not
a test function. However, we can take a test function ψ on Rn that is identically 1 near 0, and consider
ψ(y) · yα instead of yα, and reach the same conclusion.

Thus, if there exists such an expression for u, it is unique. Further, this computation suggests how to
specify the uα, namely,

uβ(f) = u
(
f(x)⊗ yβ

β!
· ψ(y) · (−1)|β|

)
This would also show the containment of the supports.

Show that the sum of these uβ ’s does give u. Given an open U in Rm+n with compact closure, u on C∞c U

has some finite order k. As a slight generalization of the fact that distributions supported on {0} are finite
linear combinations of Dirac delta and its derivatives, we have

[11.A.2] Lemma: Let v be a distribution of finite order k supported on a compact set K. For a test function
ϕ whose derivatives up through order k vanish on K, v(ϕ) = 0. ///

For any test function F (x, y),

Φ(x, y) = F (x, y) −
∑
|α|≤k

(−1)|α|
yα

α!
ψ(y) (DαF )(x, 0)

has all derivatives vanishing to order k on the closure of U . Thus, by the lemma, u(Φ) = 0, which proves
that u is equal to that sum, and also proves the local finiteness. ///
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1. A simple pre-trace formula
2. Pre-trace formula for compact periods
3. Global automorphic Sobolev spaces H`

4. Spectral characterization of Sobolev spaces Hs

5. Continuation of solutions of differential equations
6. Example: automorphic Green’s functions
7. Whittaker models and a subquotient theorem
8. Meromorphic continuation of intertwining operators
9. Intertwining operators among principal series
Appendix A: a usual trick with Γ(s)

The pre-trace formulas below depend on estimates of eigenfunctions of integral operators on automorphic
forms, in terms of the eigenvalues for the invariant Laplacian. This is accomplished by two observations.
First, the eigenvalues depend only on the isomorphism class of the space generated by the group acting
by right translations on the given automorphic form, so that these eigenvalues can be computed on any
isomorphic copy of such a space, as representation space for G. Second, it happens that there are much-
simpler isomorphic copies of the relevant representations, parametrized essentially by one or more complex
numbers, namely, principal series representations. We emphasize the archimedean aspect in this chapter, for
which the general result is the subrepresentation theorem of [Casselman 1978/80], [Casselman Miličić 1982],
improving the subquotient theorem of [Harish-Chandra 1954]. A simple argument sufficient for the four
simple examples follows from older results on asymptotics for solutions of second-order ordinary differential
equations, recalled in an appendix (chapter sixteen).

The pre-trace formulas ground the discussion of global automorphic Sobolev spaces. Among other goals,
an important one is interpretation and legitimization of term-wise differentiation of L2 automorphic spectral
expansions, especially by the invariant Laplacian. Of course, Plancherel theorems refer to L2 expansions.
Significantly, Plancherel theorems do not refer to sup norms of the eigenfunctions (such as cuspforms)
entering in a spectral decomposition, nor sup norms of non-L2 eigenfunctions (such as Eisenstein series)
entering in the L2 decomposition. This is already manifest in Plancherel for Fourier inversion on L2(Rn).
Typically, L2 expansions do not produce continuous functions, and are not continuously differentiable, so
the goal cannot possibly be proving classical differentiability, since it does not hold. Especially with respect
to invariant operators such as Casimir operators, and in delicate situations such as automorphic forms,
Plancherel theorems most naturally yield corollaries about an extension by continuity of the classical limit-
of-difference-quotient notion of differentiation. This L2-differentiation is a usefully refined distributional
differentiation. Term-wise differentiability of L2 spectral expansions in a distributional sense is of course
correct, but needlessly very weak, and specifically too weak for many applications, since it is difficult to
return from the larger world of distributions to the smaller world of L2 functions.

Further, already for Fourier transforms on Rn, the apparent integral expressing Fourier inversion is not
a superposition of L2 functions, since the exponential functions are not in L2(Rn). Similarly, the spectral
decomposition of pseudo-Eisenstein series involves integrals of the corresponding non-L2 Eisenstein series.

The global-ness of the automorphic Sobolev spaces first refers to the expression of the norms (on
automorphic test functions) as integrals over the whole space Γ\G/K, rather than as a collection of
seminorms given by integrals over smaller sets. Equivalently, the norms have expressions in terms of L2

spectral expansions in terms of eigenfunctions for ∆. Global L2 Sobolev spaces balance the simplicity of
Hilbert space structures with extensions of notions of differentiability, insofar as solving more-or-less elliptic
partial differential equations of sufficiently high degree can move back to L2 from nearby Sobolev spaces of
distributions. That is, in terms of the basic processes of analysis, Sobolev spaces are within finite distance
of L2.

Among other applications of global automorphic Sobolev spaces, we can immediately write a spectral
expansion of an automorphic Green’s function.
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12.1 A simple pre-trace formula

Let G,Γ,K, P,M,N,A+ be as in the four examples from chapter one, with Iwasawa coordinates x, y [1.3]
with x ∈ Rr−1 and 0 < y ∈ R, with r = 2, 3, 4, 5 the dimension of G/K. From [4.5], [4.6], [4.7], [4.8], the
invariant Laplacian is

∆ = y2
( ∂2

∂x2
1

+ . . .+
∂2

∂x2
r

)
− (r − 2)y

∂

∂y

For complex s, let λs = (r− 1)2 · s(s− 1). For cuspforms F in an orthonormal basis, let sF ∈ C be such that
the ∆-eigenvalue of F is λsF , and let tF be the imaginary part of sF .

[12.1.1] Theorem: Fix zo = (x, y) ∈ G/K. Then

∑
F :|tF |≤T

|F (zo)|2 +

∫
|t|≤T

|E 1
2 +it(zo)|2 dt �C T r (for T → +∞)

with implied constant uniform for zo in a fixed compact C.

Proof: We consider integral operators attached to compactly supported (regular Borel) measures η on the
group G, and their operation on any reasonable representation space V for G, for example, Hilbert, Banach,
Fréchet, and LF (strict colimits of Fréchet), or, generally, quasi-complete, locally convex spaces. For a
continuous action G× V → V of G on such a space V , and compactly-supported measure η, the action is

η · v =

∫
G

g · v dη(g) (for v ∈ V )

as Gelfand-Pettis integral. The further non-trivial fact used in the proof [71] is that the eigenvalues of these
integral operators on automorphic forms on Γ\G/K depend only on their eigenvalues for the Laplacian. This
itself will follow from the fact that for ∆f = λs · f , a suitable topological vector space of functions on Γ\G
generated by right translates of f is isomorphic to a subquotient of the principal series representation Is
(below), a relatively elementary object. The same is true of Eisenstein series Es more immediately, since the
Eisenstein series is (the meromorphic continuation of) a wound-up function from Is (below).

Spaces V,W with continuous actions G× V → V and G×W →W are representations of G. Continuous
C-linear maps T : V →W among such spaces, respecting the action of G: T (g · v) = g · T (v) for v ∈ V and
g ∈ G, are G-homomorphisms or G-intertwinings. The eigenvalues and eigenvectors of integral operators are
preserved by G-homomorphisms:

[12.1.2] Lemma: Let T : V → W be a homomorphism of G-spaces. For η a compactly-supported measure
on G, the action of η commutes with T :

η · T (v) = T (η · v) (for all v ∈ V )

In particular, for η · v = λ · v with v ∈ V , the image Tv is also an eigenvector, with the same eigenvalue λ.

Proof: By properties of Gelfand-Pettis integrals and the fact that T commutes with the action of g,

T (η · v) = T

∫
G

g · v dη(g) =

∫
G

T (g · v) dη(g) =

∫
G

g · T (v) dη(g) = η · T (v)

as claimed. ///

For v in a G-representation V , the subrepresentation generated by v is the topological closure of the span
of finite linear combinations of images g · v of v by g ∈ G. Among K-invariant vectors in a G-representation,
eigenvectors for the spherical Hecke-algebra H occupy a privileged position:

[71] This is a very small instance of a subquotient theorem [Harish-Chandra 1954]. This was strengthened to the

subrepresentation theorem [Casselman 1978/80], [Casselman-Miličić 1982].
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[12.1.3] Claim: A strong-sense cuspform f , or Eisenstein series Es, is the unique K-invariant vector in the
representation it generates under right translation by G, up to a constant. More generally, for v 6= 0 a K-
fixed vector in a G-representation V with V quasi-complete and locally convex, for v also an H-eigenvector,
the subrepresentation generated by v has K-fixed vectors exactly C · v.

Proof: Let α be the average-over-K map v →
∫
K
k ·v dk, giving K total mass 1. This Gelfand-Pettis integral

maps V to the K-fixed vectors V K , and is the identity map on V K .
First, consider w =

∑n
i=1 ci gi · v a K-fixed vector in the (algebraic) span of images gi · v of v by gi ∈ G.

From a basic property [14.1.4] of Gelfand-Pettis integrals, ϕj · w → w, for any approximate identity {ϕj}.
Since α · w = w and α · v = v,

w = α · w = α · lim
j
ϕj · w = α lim

j
ϕj ·

∑
i

ci gi · α · v

By basic properties of Gelfand-Pettis integrals, the operator α commutes with the limit:

w = lim
j

(∑
i

ci α ◦ ϕj ◦ gi ◦ α
)
· v

The function
ηj =

∑
i

ci α ◦ ϕj ◦ gi ◦ α

is in Coc (G) and is left and right K-invariant, so is in the spherical Hecke algebra H. Since v is an H-
eigenvector, ηj · v = λj · v for some scalar λj . That is, λj · v → w, so w ∈ C · v. Next, for w = limj wj a limit
of wj of wj in the span of images gi · v, αw = α limwj = limαwj , and by the previous paragraph every αwj
is a scalar multiple of v, so w must be, as well.

Since Eisenstein series and strong-sense cuspforms are H-eigenfunctions, the conclusion applies to them,
as well. ///

Thus, for any left-and-right K-invariant compactly-supported measure η the integral operator action

(η · f)(x) =

∫
G

f(xy) · dη(y)

produces another right K-invariant vector in the representation space Vf generated by f . By the claim, η · f
is a scalar multiple of f . Let χf (η) denote the eigenvalue:

η · f = χf (η) · f (with χf (η) ∈ C)

By the lemma, this is an intrinsic representation-theoretic relation, meaning that the scalar χf (η) can be
computed in any image of Vf . As demonstrated subsequently, for ∆f = (r−1)2 · s(s−1), the representation

generated by f has a common image [72] with an unramified principal series

Is =
{
ϕ ∈ C∞(G) : ϕ(

(
a ∗
0 d

)
· g) =

∣∣∣a
d

∣∣∣(r−1)s

· ϕ(g)
}

(with s ∈ C)

under right translation action by G. The Iwasawa decomposition G = P ·K shows that the space of K-fixed
vectors is one-dimensional. Thus, by the lemma, we can compute eigenvalues of elements of H on Eisenstein
series or strong-sense cuspforms by computing eigenvalues on Is.

Choice of integral operators: let ||g|| be the square of the operator norm on G for a standard
representation of G on C2 or C4 (depending on cases) by matrix multiplication. In a Cartan decomposition,

||k1 ·
(
eρ/2 0

0 e−ρ/2

)
· k2|| = er (with k1, k2 ∈ K, ρ ≥ 0)

[72] As will be visible, this common image is inside a Whittaker space of smooth functions on G with suitable left

equivariance under N .
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This norm gives a left G-invariant metric d(, ) on G/K by

d(gK, hK) = log ||g−1h|| = log ||h−1g||

The triangle inequality follows from the submultiplicativity of the norm. Take η to be the characteristic
function of the left and right K-invariant set of group elements of operator norm at most eδ, with small
δ > 0. That is,

η(g) =

 1 (for ||g|| ≤ eδ)

0 (for ||g|| > eδ)

or

η
(
k1 ·

(
eρ/2 0

0 e−ρ/2

)
· k2

)
=

 1 (for ρ ≤ δ)

0 (for ρ > δ)
(with ρ ≥ 0)

Upper bound on a kernel: The map f → (η · f)(x) on automorphic forms f can be expressed as
integration of f against a sort of automorphic form qx by winding up the integral, as follows.

(η · f)(x) =

∫
G

f(xy) η(y) dy =

∫
G

f(y) η(x−1y) dy =

∫
Γ\G

(∑
γ∈Γ

f(γy) η(x−1γy)
)
dy

=

∫
Γ\G

f(y) ·
(∑
γ∈Γ

η(x−1γy)
)
dy

Thus, for x, y ∈ G put

qx(y) =
∑
γ∈Γ

η(x−1γy)

The norm-squared of qx, as a function of y alone, is

|qx|2L2(Γ\G) =

∫
Γ\G

∑
γ∈Γ

∑
γ′∈Γ

η(x−1γγy) η(x−1γ′y) dy =

∫
G

∑
γ∈Γ

η(x−1γy) η(x−1y) dy

after unwinding. For both η(x−1γy) and η(x−1y) to be non-zero, the distance from x to both y and γy must
be at most δ. By the triangle inequality, the distance from y to γy must be at most 2δ. For x in a fixed
compact C, this requires that y be in ball of radius δ, and that γy = y. Since K is compact and Γ is discrete,
the isotropy groups of all points in G/K are finite. Thus,

|qx|2L2(Γ\G) �
∫
d(x,y)≤δ

1 dy �C δr (as δ → 0+)

Lower bound on eigenvalues: let ∆f = (r − 1)2 · sf (sf − 1), with sf = 1
2 + itf . A non-trivial lower

bound for χf (η) can be given for δ � 1/tf , as follows. With spherical function

ϕos(

(
a ∗
0 d

)
· k) =

∣∣∣a
d

∣∣∣(r−1)s

in the sth principal series, the corresponding eigenvalue is

χs(η) =

∫
G

η(g)ϕos(g) dg =

∫
r≤δ

ϕos(k ·
(
er/2 0

0 e−r/2

)
) dg

In fact, a qualitative argument clearly indicates the outcome, although we will also carry out a more
explicit computation. For the qualitative argument, we need qualitative metrical properties of the Iwasawa
decomposition. Let g → nga

+
g kg be the Iwasawa decomposition. We claim that ||g|| ≤ δ implies ||nga+

g || � δ
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for small δ > 0. This is immediate, since the Jacobian of the map N × A+ → G/K near e ∈ NA+ is
invertible.

But, also, the Iwasawa decomposition is easily computed here for G = SL2(R) and SL2(C), and the
integral expressing the eigenvalue can be estimated explicitly: elements of K can be parametrized as

k =

(
α β
−β α

)
(where |α|2 + |β|2 = 1)

and let a = er/2. Then

k ·
(
a 0
0 a−1

)
=

(
∗ ∗
−aβ α/a

)
Right multiplication by a suitable element k2 of SU(2) rotates the bottom row to put the matrix into NA+:

k ·
(
a 0
0 a−1

)
· k2 =

 ∗ ∗

0
√

(−a|β|)2 + (|α|/a)2


Thus,

χs(η) =

∫
r≤δ

(
(−a|β|)2 + (|α|/a)2

)−s
dg

Rather than compute the integral exactly, make δ small enough to give a lower bound on the integrand, such
as would arise from∣∣∣((−a|β|)2 + (|α|/a)2

)−s
− 1

∣∣∣ < 1
2 (for all elements of K)

Since |α|2 + |β|2 = 1, for small ρ,

(−eρ/2|β|)2 + (|α|/eρ/2)2 = eρ|β|2 + |α|2/eρ � (1 + ρ)|β|2 + (1− ρ)|α|2 � 1 + ρ

Thus, for small 0 ≤ ρ ≤ δ, ∣∣(eρ|β|2 + |α|2/eρ
)−s − 1

∣∣ � |s| · ρ

Thus, 0 ≤ ρ ≤ δ � 1
|s| suffices to make this less than 1

2 .

From either a qualitative or quantitative approach, we see that with η the characteristic function of the
δ-ball, we have the lower bound

|χs(η)| =

∫
G

η(g)ϕos(g) dg �
∫
ρ≤δ

1 = vol (δ-ball) � δr (η char fcn of δ-ball, for |s| � 1/δ, )

Taking δ as large as possible compatible with δ � 1/|s| gives the lower bound

χs(η) � δr (for |s| � 1/δ, η the characteristic function of δ-ball)

Combining the estimates: From the L2 automorphic spectral expansion of qx, apply Plancherel,
dropping the finitely-many terms from residues of Eisenstein series, and dropping normalization constants,

∑
F

|〈qx, F 〉|2 +

∫ +∞

−∞
|〈qx, Es〉|2 dt ≤ |qx|2L2(Γ\G/K) � δr

Truncating this to Bessel’s inequality

∑
|tF |≤T

|〈qx, F 〉|2 +

∫ +T

−T
|〈qx, Es〉|2 dt � δr
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From the eigenvalue computation above,

〈qx, f〉 = χs(η) · f

and use the inequality χs(η)� δr from above for this restricted parameter range, obtaining

∑
|tF |≤T

(
δr · |F (x)|

)2
+

∫ +T

−T

(
δr · |Es(x)|

)2
dt � δr

Multiply through by T 2r � 1/δ2r to obtain the standard estimate or pre-trace formula

∑
|tF |≤T

|F (x)|2 +

∫ +T

−T
|Es(x)|2 dt � T r

as claimed above. Since the argument succeeds for both s and 1 − s, the ambiguity in determining s from
s(s− 1) is irrelevant. ///

12.2 Pre-trace formula for compact periods

The argument of the preceding section is a prototype. Now consider somewhat more general G, including
not only SL2(R), but also G = SLn(R) or SLn(C), with Γ = SLn(Z) or Γ = SLn(Z[i]), respectively. We
will not prove the corresponding subquotient or subrepresentation theorems: see [Harish-Chandra 1954],
[Casselman 1978/80], [Casselman-Miličić 1982].

For closed subgroup H of G, let Θ = H ∩ Γ, and suppose that Θ\H is compact. The Θ\Hx-period of f is

Θ\Hx-period of f = fΘ\Hx =

∫
Θ\H

f(hx) dh

Similarly, with ψ an automorphic form on Θ\H, the period of ψ ⊗ f is

〈f, ψ〉Θ\Hx =

∫
Θ\H

ψ(h) · f(hx) dh

[12.2.1] Theorem: Using abbreviated notation for the spectral expansions to implicitly include the
appropriate integrals of cuspidal-data Eisenstein series, as well as their residues,∑

cfmF :|tF |�T

|FΘ\Hx|2 + . . . �x,H T dimX−dimY

and, similarly ∑
cfmF :|tF |�T

|〈η · F,ψ〉|2 + . . . �x,H,ψ T dimX−dimY

Proof: The usual action of compactly-supported measures η on suitable f on Γ\G is (η · f)(x) =∫
G
η(g) f(xg) dg. The Θ\Hx-period of η · f admits a useful rearrangement

(η · f)Θ\Hx =

∫
Θ\H

(η · f)(hx) dh =

∫
Θ\H

∫
G

η(g) f(hxg) dg dh =

∫
Θ\H

∫
G

η(x−1h−1g) f(g) dg dh

=

∫
Θ\H

∫
Γ\G

∑
γ∈Γ

η(x−1h−1γg) f(g) dg dh =

∫
Γ\G

f(g)
(∫

Θ\H

∑
γ∈Γ

η(x−1h−1γg) dh
)
dg
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Denote the inner sum-and-integral by q(g) = qH,x(g).
Similarly, with ψ an automorphic form on Θ\H, the period of ψ ⊗ f rearranges to

〈η · f, ψ〉Θ\Hx =

∫
Γ\G

f(g)
(∫

Θ\H
ψ(h) ·

∑
γ∈Γ

η(x−1h−1γg) dh
)
dg

For η left-and-right K-invariant, for f the spherical vector in a copy of a principal series representation of
G, necessarily η · f = λf (η) · f for some constant λf (η). Thus, the action of such η changes the period by
the eigenvalue:

(η · f)Θ\Hx = λf (η) · fΘ\Hx

An upper bound for the L2(Γ\G) norm of q, and a lower bound for λf (η) contingent on restrictions on
the spectral parameter of f , yield, by Bessel’s inequality, an upper bound for a sum-and-integral of periods
〈f, ψ〉Θ\Hx:

Estimating the L2 norm,∫
Γ\G
|q(g)|2 dg =

∫
Γ\G

∫
Θ\H

∫
Θ\H

∑
γ∈Γ

∑
γ2∈Γ

η(x−1h−1γg) η(x−1h−1
2 γ2g) dh dh2 dg

=

∫
G

∫
Θ\H

∫
Θ\H

∑
γ∈Γ

η(x−1h−1γg) η(x−1h−1
2 g) dh dh2 dg

With C ⊂ H a large-enough compact to surject to Θ\H,∫
Γ\G
|q(g)|2 dg ≤

∫
G

∫
C

∫
C

∑
γ∈Γ

|η|(x−1h−1γg) |η|(x−1h−1
2 g) dh dh2 dg

Let η be the characteristic function of a small ball Bε in G/K, of geodesic radius ε > 0, for a G-invariant
metric d(x, y) = ν(x−1y) on G/K, where ν(g) = log sup(|g|, |g−1|), where | · | is operator norm on G. The
triangle inequality follows from submultiplicativity of operator norm.

Identify Bε with its pre-image Bε ·K in G. The set

Φ = ΦH,x,η = {γ ∈ Γ : η(x−1h−1γg) η(x−1h−1
2 g) 6= 0 for some h, h2 ∈ C and g ∈ G}

= {γ ∈ Γ : γ ∈ CxBεg−1, g ∈ CxBε} ⊂ Γ ∩ CxBε · (CxBε)−1 = discrete ∩ compact

is finite, and can only shrink as ε→ 0+.
For each γ ∈ Φ, for each h ∈ C, η(x−1h−1γg) 6= 0 only for g in a ball in X = G/K of radius ε, with

volume dominated by εdimX . For each h and g, η(x−1h−1
2 g) 6= 0 only for h2x in a ball in Y = HxK/K of

radius ε, with volume dominated by εdimY . Thus,∫
Γ\G
|q(g)|2 dg �

∫
C

εdimX+dimY dh �x,H εdimX+dimY

By Plancherel for L2(Γ\X), with η the characteristic function of the ε-ball,∑
cfmF

|λF (η)|2 · |FΘ\Hx|2 + . . . =
∑
cfmF

|(η · F )Θ\Hx|2 + . . . = |qH,x,η|2 �x,H εdimX+dimY

Similarly, ∑
cfmF

|λF (η)|2 · |〈η · F,ψ〉|2 + . . . �x,H,ψ εdimX+dimY

Next, a bound on the spectral data is determined to give a non-trivial lower bound for |λf (η)|. For f the
spherical vector in a copy of a principal series representation of G, left-and-right K-invariant η necessarily
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gives η · f = λf (η) · f , since up to scalars f is the unique spherical vector in the irreducible representation
it generates.

The eigenvalues λf (η) can be computed in the usual model of principal series, as η ·ϕos = λf (η) ·ϕos for ϕos
the normalized spherical vector for s ∈ a∗ ⊗R C, and ϕo(1) = 1. Thus,

λf (η) = (η · ϕos)(1) =

∫
G

η(g) · ϕos(g) dg =

∫
Bε

ϕos(g) dg

Let P+ be the connected component of the identity in the minimal parabolic. The Jacobian of the map
P+ × K → G is non-vanishing at 1, and ϕo(1) = 1, so a suitable bound in terms of ε on the spectral
parameter s ∈ a∗ ⊗R C will keep ϕos(g) near 1 on Bε. In the example of SLn(R), with

ϕos

 a1 . . . ∗

0
. . .

...
0 0 an

 = |a1|s1+ρ1 · · · |an|sn+ρn (for whatever normalizing constants ρj)

bounds of the form |sj | � 1/ε assure that Reϕos(g) ≥ 1
2 on Bε, which prevents cancellation in the real part

of ϕos(g) for g ∈ Bε, so

|λf (η)| =
∣∣∣ ∫
Bε

ϕos(g) dg
∣∣∣ � ∫

Bε

Reϕos(g) dg �
∫
Bε

1
2 dg � εdimX

Combining the upper bound on |q|2L2 with this lower bound on eigenvalues, letting T ∼ 1/ε,

(εdimX)2 ×
( ∑

cfmF :|tF |�T

|FΘ\Hx|2 + . . .
)
�x,H εdimX+dimY

proving the first assertion of the theorem. The proof of the second is essentially identical. ///

12.3 Global automorphic Sobolev spaces H`

Again, let G,Γ,K be any one of the archimedean examples, such as SL2(R), SL2(Z), SO2(R) or
SLn(R), SLn(Z), SOn(R) or SLn(C), SLn(Z[i]), SUn(C). Let ∆ be the invariant Laplacian on Γ\G/K.
Functions f in L2(Γ\G/K) decompose in an L2 sense [1.14], [3.18]. To write the spectral expansion succinctly,
let Ξ be a locally compact, Hausdorff, σ-compact topological space parametrizing cuspforms, Eisenstein series
appearing in the spectral decomposition and Plancherel, as well as their residues, with corresponding ∆-
eigenfunction Φξ ∈ C∞(Γ\G/K) for ξ ∈ Ξ, and a positive regular Borel measure dξ on Ξ, to write the
expansions of [1.14] and [3.18] uniformly as

f =

∫
Ξ

〈f,Φξ〉 · Φξ dξ (for f ∈ C∞c (Γ\G/K))

and Plancherel as

|f |2L2 =

∫
Ξ

|〈f,Φξ〉|2 dξ (for f ∈ C∞c (Γ\G/K))

For example, for SL2(Z), and similarly for the other three simplest examples, the explicit spectral expansion

f =
∑

cfm F

〈f, F 〉 · F +
〈f, 1〉 · 1
〈1, 1〉

+
1

4πi

∫
( 1

2 )

〈f,Es〉 · Es ds

for test functions f would parametrize the cuspform components by an infinite discrete set, the constant-
function component by a further point, and the integrals-of-Eisenstein series component by R or by [0,+∞).
For test functions f , the implied integrals 〈f,Es〉 against Eisenstein series do converge absolutely.
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Although many of the eigenfunctions Φξ are not in L2(Γ\G/K), they are all in C∞(Γ\G/K), and we can
easily arrange that ξ → Φξ is a continuous C∞(Γ\G/K)-valued function on Ξ. Integration of elements of
C∞(Γ\G/K) against a fixed f ∈ C∞c (Γ\G/K) is a continuous linear functional on C∞(Γ\G/K), so

ξ −→ Φξ −→ 〈f,Φξ〉 (for fixed f ∈ C∞c (Γ\G/K))

is a continuous C-valued function on Ξ, and thus has unambiguous pointwise values.

[12.3.1] Remark: For Ξ1 ⊂ Ξ2 ⊂ a sequence of compact subsets of Ξ whose union is Ξ, the integrals∫
Ξn

〈f,Φξ〉 · Φξ (for test functions f)

do exist as C∞(Γ\G/K)-valued Gelfand-Pettis integrals. However, already the case with ordinary Fourier
series on the circle, the fact that finite partial sums are invariably smooth tells little about the nature of the
limit. Based on other examples, and on folklore, we imagine that for test functions f the compactly-supported
integrals should converge to f in some topology finer than L2, but this requires proof, as below.

The implied literal integrals 〈f,Φξ〉 against Eisenstein series do not necessarily converge for all f in L2,
and certainly L2 expansions do not reliably converge pointwise. Nevertheless, the Plancherel theorem asserts
that the literal integrals f → (ξ → 〈f,Φξ〉) on test functions do extend to an isometry

F : L2(Γ\G/K) −→ L2(Ξ)

Similarly, the spectral synthesis integrals f =
∫

Ξ
c(ξ) ·Φξ dξ do make literal sense (in fact, as C∞(Γ\G/K)-

valued integrals) for test functions f . Then the integrals and pairings for f ∈ L2 are understood as extensions
by continuity of the literal integrals. The (extensions of the) integrals 〈f,Φξ〉 are the spectral coefficients of
f .

[12.3.2] Remark: Having said all that, just as is done with the Plancherel extension of the Fourier transform
and Fourier inversion on Rn, eventually we will write integrals and pairings which do not literally converge,
but do exist as extensions by continuity of those integrals and pairings.

[12.3.3] Remark: Notably, Plancherel neither needs nor asserts anything directly about pointwise values of
cuspforms or Eisenstein series or residues of Eisenstein series. This is fortunate, since already in the simplest
case, various pointwise values of Eisenstein series Es for SL2(Z) are ζk(s)/ζ(2s) for complex quadratic
extensions k of Q [2.C], and sharp pointwise bounds on the critical line presumably include the Lindelöf
Hypothesis.

[12.3.4] Claim: The eigenvalues λξ of ∆ on Φξ are real and non-positive.

Proof: For square-integrable eigenfunctions (such as cuspforms or square-integrable residues of Eisenstein
series), these eigenvalues are real because a suitable restriction of ∆ to a dense subspace of L2 is symmetric
and non-positive, so has a self-adjoint, non-positive Friedrichs extension.

In the four simple cases, the non-L2 eigenfunctions entering the spectral expansion and Plancherel are
Eisenstein series Es with eigenvalues s(s − 1) (up to real constants) and Re(s) = 1

2 , and residues of Es
with s ∈ (0, 1], with eigenvalue s(s − 1) (up to real constants). Somewhat more generally, [3.11.11] shows
that cuspidal-data Eisenstein series EPs,f for maximal proper parabolics P in GLn, with the cuspidal data
f = f1 ⊗ f2 eigenfunctions for Casimir operators on the Levi component, are eigenfunctions for Casimir on
GLn. The explicit formula for eigenvalues shows that they are real and non-positive for Re(s) = H, using
the corresponding fact for the cuspidal data on the Levi components. The part of the spectral decomposition
[3.16.1] and Plancherel [3.17.1], [3.17.4] corresponding to a given maximal proper parabolic uses Re(s) = 1

2
and residues (if any) on ( 1

2 , 1]. ///

[12.3.5] Remark: Another proof that these eigenvalues are real would follow from a suitable description of
the spectral decomposition of L2 and Plancherel in terms of Hilbert integrals of representations of G. This
would show that all representations appearing must be unitary, allowing various continuations proving the
previous claim, using some form of a subquotient theorem.

[12.3.6] Claim: The invariant Laplacian ∆ commutes with pointwise complex conjugation on functions on
G/K or on Γ\G/K.
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Proof: Any expression Ω =
∑
i xix

∗
i , with basis {xi} for g and dual basis {x∗i }, expresses Casimir Ω as a

real-linear combination of compositions of operators of the form

(xif)(g) =
∂

∂t

∣∣∣
t=0

f(g · etxi)

These visibly commute with pointwise complex conjugation. ///

[12.3.7] Claim: For f ∈ C∞c (Γ\G/K), the spectral coefficients of ∆f are

〈∆f,Φξ〉 = λξ · 〈f,Φξ〉 (for f ∈ C∞c (X))

Thus, for test functions,

∆f =

∫
Ξ

〈∆f,Φξ〉Φξ dξ =

∫
Ξ

λξ · 〈f,Φξ〉Φξ dξ

That is, succinctly,

∆f = F−1F∆f = F−1λξFf (for test functions f)

Proof: For test functions, integration by parts is legitimate:

〈∆f,Φξ〉 =

∫
X

f ∆Φξ = λξ ·
∫
X

f Φξ = λξ ·
∫
X

f Φξ (for f ∈ C∞c (X))

as asserted. ///

[12.3.8] Corollary: The differential operator ∆ differentiates spectral expansions of test functions term-
wise, in the sense of moving inside the integration and summation over Ξ giving the spectral synthesis.
///

For 0 ≤ ` ∈ Z, the `th Sobolev norm on C∞c (Γ\G/K) is given by

|f |2H` =

∫
Γ\G/K

f · (1−∆)`f

and
H` = H`(Γ\G/K) = completion of C∞c (Γ\G/K) with respect to | · |H`

[12.3.9] Claim: |f |Hk+1 ≥ |f |Hk for test functions f , for 0 ≤ k ∈ Z, and there is a canonical continuous
injection Hk+1(Γ\G/K)→ Hk(Γ\G/K) with dense image.

Proof: For all test functions f , 〈−∆f, f〉 ≥ 0. For a polynomial P with non-negative real coefficients, we
claim that P (−∆) is non-negative on test functions, in the sense that for all test functions f

〈P (−∆)f, f〉 ≥ 0

It suffices to prove this for monomials (−∆)n. For even n = 2m,

〈(−∆)2mf, f〉 = 〈(−∆)mf, (−∆)mf〉 ≥ 0

For odd n = 2m+ 1,
〈(−∆)2m+1f, f〉 = 〈(−∆)((−∆)mf), ((−∆)mf)〉 ≥ 0

For test functions f , the desired comparison is

|f |2Hk+1 = 〈(1−∆)k+1f, f〉L2 = 〈(1 + (−∆))kf, f〉L2 + 〈(1 + (−∆))k(−∆)f, f〉L2

≥ 〈(1 + (−∆))kf, f〉L2 + 0 = |f |2Hk
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Thus, the identity map C∞c (Γ\G/K)→ C∞c (Γ\G/K) extends to a continuous injection Hk+1 → Hk. Since
C∞c is dense in both, necessarily the image is dense. ///

The following result is true by design.

[12.3.10] Claim: The differential operator ∆ : C∞c (Γ\G/K) −→ C∞c (Γ\G/K) is continuous when the source
is given the H`+2 topology and the target is given the H` topology, for 0 ≥ ` ∈ Z.

Proof: Using the latter non-negativity propery of the previous proof,

|∆f |2H` = 〈(1−∆)`(∆f), (∆f)〉 = 〈(−∆)2(1 + (−∆))`f, f〉

≤ 〈(−∆)2(1 + (−∆))`f, f〉 + 〈(2(−∆) + 1)f, f〉 = 〈(1 + (−∆))`+2f, f〉 = |f |2H`+2

as asserted. ///

[12.3.11] Corollary: ∆ extends by continuity from test functions to a continuous linear map

∆ : H`+2(Γ\G/K) −→ H`(Γ\G/K) (for 0 ≤ ` ∈ Z)

Proof: That is, for test functions {fn} forming a Cauchy sequence in the H`+2 topology, the continuity in
the respective topologies on test functions means that the extension-by-continuity definition

∆
(
H`+2- lim

n
fn

)
= H`- lim

n
∆fn

is well defined and gives a continuous map in those topologies. ///

[12.3.12] Remark: This extension of ∆ is L2-differentiation for non-negative index Sobolev spaces. This
extension is a refined version of distributional differentiation. Nevertheless, to examine global automorphic
Sobolev spaces, the present discussion of L2-differentiation does not directly depend on distributional notions.

[12.3.13] Corollary: For f in H` with ` ≥ 2,

F(∆f)(ξ) = λξ · Ff

Proof: Since F : L2(Γ\G/K)→ L2(Ξ) is an isometric isomorphism obtained by extension by continuity from
F on C∞c (Γ\G/K), the literal integral computation for test functions

(F∆f)(ξ) =

∫
X

∆f Φξ =

∫
X

f ∆Φξ =

∫
X

f λξ · Φξ = λξ

∫
X

f · Φξ = λξ · (Ff)(ξ)

extends by continuity to give the result. ///

[12.3.14] Corollary: Term-wise differentiation is valid:

∆f = F−1F∆f = F−1λξFf (for f ∈ H` with ` ≥ 2)

This differentiation is in the extended, non-classical sense. ///

Negative-index Sobolev spaces are not easily described via differential operators. Instead, characterize
negative-index Sobolev spaces as Hilbert-space duals

H−` = H−`(Γ\G/K) = Hilbert-space dual to H` (for 0 ≤ ` ∈ Z)

To identify H0 = L2 with its own dual C-linearly, combine the C-conjugate-linear Riesz-Fréchet map
Λ : f → 〈−, f〉 with pointwise conjugation c : f → f , so that Λ ◦ c : H0 → H0 is C-linear. Mapping
(H0)∗ → H−1 by the adjoint of the inclusion H1 → H0, and generally H−k → H−k−1 by the adjoint of the
inclusion Hk+1 → Hk, we have a chain of continuous linear maps

. . . // H2 inc // H1 inc // H0 Λ◦c
≈
// (H0)∗

inc∗ // H−1 inc∗ // H−2 inc∗ // . . .
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[12.3.15] Claim: For 0 ≤ k ∈ Z, the maps H−k → H−k−1 adjoint to inclusions Hk+1 → Hk are themselves
inclusions with dense images. Thus, we have a chain of continuous injections with dense images:

. . . ⊂ H2 ⊂ H1 ⊂ H0 ≈ (H0)∗ ⊂ H−1 ⊂ H−2 ⊂ . . .

Proof: For 0 ≤ k ∈ Z, since Hk+1 → Hk has dense image, the adjoint H−k → H−k−1 is injective. If
H−k → H−k−1 did not have dense image, then its adjoint would not be injective. By the reflexivity of
Hilbert spaces, its adjoint is the original Hk+1 → Hk, which is injective. ///

In the sequel, we identify H0 with its dual via Λ ◦ c.
The continuous L2-differentiation ∆ : H2` → H2`−2 for 2` ≥ 2 on positive-index Sobolev spaces gives an

adjoint, still denoted ∆, on negative-index spaces:

∆ : H−2` −→ H−2`−2 (for 0 ≤ ` ∈ Z)

The extension of ∆ to ∆ : H1 → H−1 can be characterized by

((1−∆)f)(F ) = 〈f, F 〉H1 (for f, F ∈ H1)

The compatibility of this extension with the others is best clarified by the spectral characterizations of the
next section. Anticipating that clarification, let

H∞(Γ\G/K) =
⋂
k∈Z

Hk(Γ\G/K) = lim
k∈Z

Hk(Γ\G/K)

and
H−∞(Γ\G/K) =

⋃
k∈Z

Hk(Γ\G/K) = colimk∈ZH
k(Γ\G/K)

Pending the spectral characterization, for the following corollary we can temporarily take

H∞ = lim
k
H2k H−∞ = colimkH

2k

[12.3.16] Corollary: Both H∞(Γ\G/K) and H−∞(Γ\G/K) are stable under the extension of ∆ (from test
functions to global Sobolev spaces), and ∆ gives a continuous linear operator on both.

Proof: For H∞ =
⋂
kH

2k, the extended ∆ maps H2k+2 → H2k, so ∆H∞ ⊂ H2k for every k, and the
intersection is H∞. More precisely, by the characterization of (projective) limits, the family of compatible
maps

H∞
inc // H2k+2 ∆ // H2k

induces a unique compatible continuous (linear) map H∞ → H∞.
Oppositely, the extension-by-adjoint ∆ maps H−2k → H−2k−2, so the image of the ascending union is

contained in the ascending union. More precisely, by the characterization of colimits, the compatible family
of maps

H−2k ∆ // H−2k−2 inc // H−∞

gives a unique compatible continuous (linear) map H−∞ → H−∞. ///

[12.3.17] Claim: H−∞(Γ\G/K) is a subset of the space C∞c (Γ\G/K) of distributions on Γ\G/K.

Proof: First, check that the inclusion C∞c (Γ\G/K) ⊂ Hk(Γ\G/K) is continuous for every k. Recall [13.9],
[6.3] that the space of test functions is the colimit of spaces

C∞E = {f ∈ C∞c : sptf ⊂ E}

for compact E ⊂ Γ\G/K. By the characterization of colimit, it suffices to prove continuity of each C∞E → Hk.
Among the seminorms defining the topology on C∞E (see [6.4], [13.9]) are

νk(f) = sup
x∈E
|(1−∆)kf(x)|

Note that the volume of Γ\G/K is finite. Given f ∈ C∞E , by Cauchy-Schwarz-Bunyakowsky,
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|f |2Hk =

∫
Γ\G/K

(1−∆)kf · f =

∫
E

(1−∆)kf · f ≤
(∫

E

|(1−∆)f |2
) 1

2 ·
(∫

E

|f |L2

) 1
2

≤ νk(f) ·meas (E)
1
2 · ν0(f) ·meas (E)

1
2 ≤ νk(f) · νo(f) ·meas (Γ\G/K)

Thus, |f |Hk �E νk(f) + ν0(f), giving the desired continuity. Thus, H−k = (Hk)∗ gives continuous linear
functionals on C∞c . Thus, the ascending union does so, as well. ///

[12.3.18] Claim: H−∞(Γ\G/K) is the dual of H∞(Γ\G/K).

Proof: This is an instance of the general fact that every continuous linear functional on a limit of Banach
spaces factors through some limitand [13.14.4]. ///

Although we will prove a stronger result in terms of global spectral expansions in the following section, we
can reduce to local considerations to prove the following:

[12.3.19] Claim: For n = dimR Γ\G/K, for all ` > k + n
2 and ` ∈ Z,

H`(Γ\G/K) ⊂ Ck(Γ\G/K)

Proof: Smoothness is a local property, which allows reduction to a local version of Sobolev spaces. Namely,
to show that f ∈ H` is Ck at go, it suffices to show that ηf is in Ck, for η a smooth cut-off function near go.
We can take η with sufficiently small support so that its compact support E lies inside a small open subset
diffeomorphic to a cube of the dimension of Γ\G/K. Identifying opposite faces of the cube imbeds E into a
multi-torus Tn. Further, it suffices to show a suitable Sobolev inequality for test functions f . Thus, we can
apply the literal differential operator ∆ to f .

For fixed η and E, the Laplacian on Γ\G/K restricted to E and the Laplacian on Tn are comparable on
functions ηf for test functions f , giving constants 0 < A`, B` <∞ such that

A` · |ηf |Hk(Tn) ≤ |ηf |H`(Γ\G/K) ≤ Bk · |ηf |H`(Tn)

for all test functions f , for 0 ≤ ` ∈ Z. By continuity, the same inequalities hold for f ∈ H`(Γ\G/K), for
every k. This reduces the problem to H`(Tn) ⊂ Ck(Tn), which we know from [9.5]. ///

[12.3.20] Remark: The quotient Γ\G/K can fail to be a smooth manifold at various points, due to the
possibility that the isotropy group Gx of x ∈ G/K can have non-trivial intersection with Γ. However, this is
surmountable in various ways. For example, Gx is compact, so Gx ∩ Γ is finite, and to examine smoothness
of functions at x we can harmlessly shrink Γ by finite index to shrink Gx ∩ Γ to act trivially on Γ\G/K,
so that Γ\G/K is smooth near x. In fact, as earlier, we can identify C∞(Γ\G/K) with the right K-fixed
vectors C∞(Γ\G)K in C∞(Γ\G).

[12.3.21] Remark: The smooth cut-off device allows elementary local comparison of non-negative integer
index Sobolev spaces on Γ\G/K with those on Tn, but for non-integer index, as in the following section,
such a comparison is less elementary.

[12.3.22] Corollary: C∞(Γ\G/K)∗ ⊂ H−∞(Γ\G/K) ⊂ C∞c (Γ\G/K)∗. ///

12.4 Spectral characterization of Sobolev spaces Hs

By expressing Sobolev norm and differentiation via spectral transforms F , for 0 ≤ ` ∈ Z certainly FH` is
contained in V `, where

V s = {measurable v on Ξ : (1− λξ)s/2 · v ∈ L2(Ξ)} (for s ∈ R)

For any s ∈ R, give V s the Hilbert-space structure from the expected norm

|v|2V s =

∫
Ξ

(1− λξ)s |v|2
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For s > t, certainly there is a continuous inclusion V s → V t with dense image. The space V −s is naturally
the Hilbert space dual (V s)∗ of V s, with C-bilinear pairing given by integration∫

Ξ

v(ξ)w(ξ) dξ (complex-bilinear, for v ∈ V s and w ∈ V −s)

The asymmetrical extension of the hermitian pairing V 0 × V 0 → C by v × w → 〈v, w〉V 0 to a hermitian
pairing on V s × V −s is

〈v, w〉V s×V −s =

∫
Ξ

v(ξ)w(ξ) dξ

[12.4.1] Claim: The spectral transform F : C∞c (Γ\G/K) → L2(Ξ) induces a Hilbert space isomorphism

F : H2` ≈ // V 2` for all 0 ≤ ` ∈ Z, and we have commuting rectangles

H2k 1−∆

≈
//

≈F
��

H2k−2

≈F
��

V 2k
×(1−λξ)
≈

// V 2k−2

(for all 1 ≤ k ∈ Z)

Proof: Plancherel asserts that F : H0 → V 0 is an isomorphism. By design, 1 − ∆ gives an isomorphism
H2k → H2k−2 for all k ∈ Z. Even more directly, multiplication by 1− λξ gives an isomorphism V s → V s−2

for all s ∈ R. Corollary [12.3.12] shows that F intertwines 1 −∆ and multiplication by 1 − λξ on Sobolev
spaces with positive index, and dualization gives the same result on negative-index spaces. ///

This allows us to define an isomorphism F : H−2k → V −2k for 0 > −k ∈ Z as the adjoint to the
isomorphism F−1 : V 2k → H2k. Proof of the analogous assertion for odd-index Hk and V k is slightly
complicated by the fact that the Sobolev space Hk does not have an elementary isomorphism to H0, so
Plancherel does not immediately resolve the issue.

[12.4.2] Claim: The spectral transform F : C∞c (Γ\G/K) → L2(Ξ) induces Hilbert space isomorphisms
F : H2k+1 → V 2k+1 for all 0 ≤ k ∈ Z, and we have commuting rectangles

H2k+1 1−∆

≈
//

≈F
��

H2k−1

≈F
��

V 2k+1
×(1−λξ)
≈

// V 2k−1

(for all 1 ≤ k ∈ Z)

Proof: In the commuting rectangle

H2 inc //

≈F
��

H1

F
��

V 2 inc // V 1

the horizontal maps are injections with dense images, and the left vertical map is an isomorphism, from the
previous. Thus, F(H1) is dense in V 1. Since F intertwines 1−∆ with multiplication by 1−λξ, the spectral
map F : H1 → V 1 is an isometry to its image. Since H1 is complete, the image is closed. A dense, closed
subspace of V 1 is the whole V 1.

As in the even-index case, by design, (1−∆) : H2k+1 → H2k−1 is an isomorphism, and multiplication by
1− λξ is an isomorphism V 2k+1 → V 2k−1. The intertwining of these two operators by F , by [12.3.12], gives
the commutativity. ///

Thus, we can define isomorphisms F : H−1−2k → V −1−2k as the inverses of the (isomorphism) adjoints
F∗ : V −1−2k → H−1−2k to (the isomorphism) F : H2k+1 → V 2k+1. Unlike the even-index case, we need
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[12.4.3] Lemma: We have a commutative rectangle with all maps isomorphisms:

H1 1−∆

≈
//

≈F
��

H−1

F≈
��

V 1
×(1−λξ)
≈

// V −1

Proof: Again, the horizontal maps are (isometric) isomorphisms by design, the left vertical map is an
(isometric) isomorphism from above, and the right vertical map is the inverse of the adjoint of the left
vertical map. Then the commutativity is immediate: composing F∗ ◦ (1 − λξ) ◦ F around three sides, for
f, F ∈ C∞c (Γ\G/K), the characterization of adjoints and Plancherel,

〈(F∗ ◦ (1− λξ) ◦ F)f, F 〉H−1×H1 = 〈((1− λξ) ◦ F)f, FF 〉V −1×V 1 = 〈F(1−∆)f, FF 〉V −1×V 1

= 〈(1−∆)f, F 〉H−1×H1 = 〈(1−∆)f, F 〉H−1×H1

since the asymettrical pairings are the extensions by continuity of the L2 pairing restricted to test functions.
Since H−1 = (H1)∗, this gives the assertion. ///

Thus, as in the even-index case, we have

[12.4.4] Corollary: For all k ∈ Z, we have commuting rectangles

H2k+1 1−∆

≈
//

≈F
��

H2k−1

≈F
��

V 1
×(1−λξ)

≈
// V 2k−1

That is, for k ∈ Z, the spaces V k and the multiplication operator 1−λξ are a faithful spectral-side mirror
of the spaces Hk and operator 1−∆. In fact, on the spectral side, greater flexibility is afforded by the spaces
V s for s ∈ R. Given the compatibility just proven, we can define Sobolev norms

|f |Hs = |Ff |V s (for s ∈ R and f ∈ C∞c (Γ\G/K))

and

Hs = Hs(Γ\G/K) = completion of C∞c (Γ\G/K) with respect to | · |Hs (for s ∈ R)

As an application of the pre-trace formulas of [12.1] and [12.2]:

[12.4.5] Claim: With n the dimension of Γ\G/K, we have

∫
Ξ

|Φξ(zo)|2 · (1− λξ)−
n
2−ε <∞, with a bound

depending uniformly on zo in compacts in Γ\G/K.

Proof: In current notation, the pre-trace formulas assert that, for zo in a fixed compact C ⊂ Γ\G/K,∫
ξ:|λξ|≤T 2

|Φξ(zo)|2 �C Tn (as T → +∞)

or ∫
ξ:|λξ|≤T

|Φξ(zo)|2 �C T
n
2 (as T → +∞)

Thus, summing by parts,
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∫
Ξ

|Φξ(zo)|2 · (1− λξ)−
n
2−ε =

∞∑
`=1

∫
ξ:`−1≤|λξ|<`

|Φξ(zo)|2 · (1− λξ)−
n
2−ε

�C

∞∑
`=1

∫
ξ:|λξ|<`

|Φξ(zo)|2 ·
(

(1 + `)−
n
2−ε − (1 + (`+ 1))−

n
2−ε
)
�C

∞∑
`=1

∫
ξ:|λξ|<`

|Φξ(zo)|2 · (1 + `)−
n
2−ε−1

�C

∞∑
`=1

`
n
2 · (1 + `)−

n
2−ε−1 < ∞

as claimed. ///

Still n is the dimension of Γ\G/K. Now we can prove

[12.4.6] Theorem: For s > n
2 , for f ∈ C∞c (Γ\G/K), and for compact C ⊂ Γ\G/K, we have a global

Sobolev inequality

sup
z∈C
|f(z)| �C,s |f |Hs

Thus, Hs(Γ\G/K) ⊂ Co(Γ\G/K). Further, with Ξ` = {ξ ∈ Ξ : |λξ| ≤ `},

lim
`

∫
Ξ`

〈f,Φξ〉 · Φξ dξ = f (in the Co topology)

[12.4.7] Remark: That is, for s > n
2 , Hs(Γ\G/K) is an improved version of Co(Γ\G/K), in the sense that

this Hs not only consists of continuous functions, but also the spectral expansion of every f ∈ Hs converges
uniformly pointwise to f on compacts. In contrast, already on the circle T, spectral expansions (Fourier
series) of continuous functions need not converge pointwise, much less uniformly so.

Proof: For 0 ≤ ` < +∞, Ξ` is compact. Every Φξ is smooth, and ξ → Φξ is a continuous C∞(Γ\G/K)-valued
function on Ξ. Thus, for a test function f ,

f` =

∫
Ξ`

〈f,Φξ〉 · Φξ(z) dξ

exists as a C∞(Γ\G/K)-valued Gelfand-Pettis integral, so is certainly continuous. By the spectral
characterization of Hs, the sequence {f`} approaches f in the Hs topology.

For f ∈ Hs, by Cauchy-Schwarz-Bunyakowsky, for zo ∈ C,∣∣∣ ∫
Ξ

Ff(ξ) · Φ(zo) dξ
∣∣∣ =

∣∣∣ ∫
Ξ

Ff(ξ)(1− λξ)s/2 · (1− λξ)−s/2Φ(zo) dξ
∣∣∣

≤
(∫

Ξ

|Ff(ξ)|2(1− λξ)s dξ
) 1

2 ·
(∫

Ξ

(1− λξ)−s|Φ(zo)|2 dξ
) 1

2

= |f |Hs ·
(∫

Ξ

(1− λξ)−s|Φ(zo)|2 dξ
) 1

2

The previous claim shows that the latter integral is finite for s > n
2 , with a bound uniform in zo ∈ C. That

is, the sup norm on C of the pointwise function z →
∫

Ξ
Ff(ξ) · Φξ(z) dξ exists, and is dominated by |f |Hs .

Thus, for test function f , the Hs convergence of the continuous function f` to f implies Co convergence
f` → f . That is, the spectral expansion of f converges pointwise to f , uniformly on compacts. Extending
by continuity, the same result follows for f ∈ Hs.

Since test functions are dense in Hs and Hs convergence implies Co convergence, Hs ⊂ Co, and the
spectral expansion of every function f in Hs converges pointwise to f , uniformly on compacts. ///

[12.4.8] Corollary: The automorphic Dirac δzo at zo ∈ Γ\G/K is in H−s for every s > n
2 , and has spectral

expansion

δzo =

∫
Ξ

Φξ(zo) · Φξ dξ (convergent in H−s)
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[12.4.9] Remark: Unsurprisingly, the indicated integral does not converge pointwise, but there is no claim
that it does so.

Proof: Fix s > n
2 , zo ∈ Γ\G/K, and take f ∈ Hs. By the theorem, Hs ⊂ Co, so f → f(zo) = δzo(f) is a

continuous linear functional on Hs, so is in H−s. To determine its spectral coefficients, consider

δzo(f) = f(zo) =

∫
Ξ

Ff(ξ) · Φξ(zo) dξ

The claim shows that ϕ(ξ) = Φξ(zo) is in V −s, so this integral is the complex bilinear pairing on V s × V −s
applied to Ff and ϕ. By uniqueness of spectral expansions, Fδzo = ϕ. ///

12.5 Continuation of solutions of differential equations

Given f ∈ H−∞(Γ\G/K) and λ ∈ C, we want to solve

(∆− λ)u = f

for u ∈ H−∞(Γ\G/K), when possible. Here ∆ is the extension of the invariant Laplacian from test functions
to H−∞. Applying F to both sides gives

Ff = F(∆− λ)u = (λξ − λ)Fu

and both Ff and Fu are in weighted L2 spaces on Ξ. For λ 6∈ (−∞, 0], the function λξ−λ is bounded away
from 0 on Ξ, so we can simply divide to obtain

Fu =
Ff

λξ − λ

That is,

u =

∫
Ξ

Ff(ξ)

λξ − λ
· Φξ dξ (converging in H−∞)

[12.5.1] Claim: For λ 6∈ (−∞, 0], the previous solution u to the differential equation (∆ − λ)u = f is the
unique solution in H−∞. That is, the corresponding homogeneous equation has no solutions in H−∞.

Proof: The difference v ∈ H−∞ between the previous solution and any other would be a solution to the
homogeneous equation (∆− λ)v = 0. Since v ∈ H−∞, it has a spectral expansion v =

∫
Ξ
Fv(ξ) ·Φξ dξ, and

the differential equation gives (λξ − λ)Fv = 0. Since λξ − λ 6= 0 on Ξ, this requires that Fv = 0 almost
everywhere, so v is 0 in H−∞. ///

For λ ∈ (−∞, 0] there is potential interaction with the eigenvalues λξ and eigenfunctions Φξ. For
simplicity, we consider only the simplest example of SL2(Z). The other three simple examples admit nearly
identical treatment, with uninteresting minor complications due to normalizations of constants. The spectral
expansion is

f =
∑

cfm F

〈f, F 〉 · F +
〈f, 1〉 · 1
〈1, 1〉

+
1

4πi

∫
( 1

2 )

〈f,Es〉 · Es ds (convergent in H−∞)

where the indicated pairings and integrals are extensions by continuity of the literal pairings and integrals,
as above, and F runs through a orthonormal basis for cuspforms, consisting of strong-sense cuspforms.

[12.5.2] Claim: f ∈ Hr if and only if the discrete-spectrum part

∑
cfm F

〈f, F 〉 · F +
〈f, 1〉 · 1
〈1, 1〉
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and the continuous-spectrum part
1

4πi

∫
( 1

2 )

〈f,Es〉 · Es ds

are both in Hr, individually.

Proof: Use the spectral characterization. ///

Use notation λs = s(s− 1), and for cuspform eigenfunction F let sF ∈ C be such that ∆F = λsF · F . For
Re(w) > 1

2 and w 6= 1, by division, the equation (∆− λw)u = f has solution

u =
∑

cfm F

〈f, F 〉 · F
λsF − λw

+
〈f, 1〉 · 1

(λ1 − λw) · 〈1, 1〉
+

1

4πi

∫
( 1

2 )

〈f,Es〉 · Es
λs − λw

ds

This spectral expansion converges at least in H−∞. For f ∈ Hr with r ∈ R, the spectral characterization
shows that u ∈ Hr+2, and the spectral expansion converges in Hr+2.

To examine possible solutions for all w ∈ C, it is useful to consider a solution u = uw to (∆ − λw)u = f
as a holomorphic or meromorphic function-valued function of w. By the spectral characterization of Hr and
Hr+2, the cuspidal component ∑

cfm F

〈f, F 〉 · F
λsF − λw

is visibly a meromorphic Hr+2-valued function of w ∈ C, with poles at most at w = sF : the decomposition
[7.1] of cuspforms shows that the multiplicity of sF is finite, and that the points sF are discrete in C. The
constant component is similar.

The continuous spectrum component

1

4πi

∫
( 1

2 )

〈f,Es〉 · Es
λs − λw

ds

is subtler, and does not generally meromorphically continue as an Hr+2-valued function, but only in a
broader sense, as follows.

[12.5.3] Claim: For λw ≤ −1/4, if (∆− λw)u = f has a solution u in H−∞, then 〈f,Ew〉 = 0, in the strong
sense that 〈f,Es〉/(λs − λw) is locally integrable near s = w.

Proof: The continuous-spectrum part of the spectral transform of the differential equation gives

(λs − λw)〈u,Es〉 = 〈f,Es〉 (almost everywhere in s with Re(s) = 1
2 )

where the pairings are extensions by continuity of the literal integrals, and are at least locally integrable
functions. Since λs − λw = (s− w)(s− 1 + w), we have the indicated vanishing. ///

[12.5.4] Theorem: Let X be a quasi-complete, locally convex topological vector space containing both Hr+2

and Eisenstein series. The function

uw =
1

4πi

∫
( 1

2 )

〈f,Es〉 · Es
λs − λw

ds (convergent in Hr+2)

has a meromorphic continuation as X-valued function of w, with functional equation

uw = u1−w −
〈f,Ew〉 · Ew

2w − 1

[12.5.5] Remark: Thus, although u1−w is in Hr+2 for Re(w) < 1
2 , the extra term is not in H−∞ unless it

is 0, that is, unless 〈f,Ew〉 = 0.

[12.5.6] Remark: Despite the seeming symmetry of the spectral integral for uw under w → 1− w, there is
no such symmetry.
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Proof: This begins with a natural regularization:

uw =
1

4πi

∫
( 1

2 )

〈f,Es〉 · Es − 〈f,Ew〉 · Ew
λs − λw

ds+
1

4πi

∫
( 1

2 )

〈f,Ew〉 · Ew
λs − λw

ds

=
1

4πi

∫
( 1

2 )

〈f,Es〉 · Es − 〈f,Ew〉 · Ew
λs − λw

ds+ 〈f,Ew〉Ew
1

4πi

∫
( 1

2 )

ds

λs − λw

=
1

4πi

∫
( 1

2 )

〈f,Es〉 · Es − 〈f,Ew〉 · Ew
λs − λw

ds− 〈f,Ew〉Ew
2(2w − 1)

by residues.
The integral appears to be better behaved near s = w, but since it is not necessarily a literal integral the

appearance is potentially misleading. With t = Im(s), rewrite∫
( 1

2 )

〈f,Es〉 · Es − 〈f,Ew〉 · Ew
λs − λw

ds =

∫
|t|>T

〈f,Es〉 · Es − 〈f,Ew〉 · Ew
λs − λw

ds+

∫
|t|≤T

〈f,Es〉 · Es − 〈f,Ew〉 · Ew
λs − λw

ds

The first integral is ∫
|t|>T

〈f,Es〉 · Es
λs − λw

ds− 〈f,Ew〉Ew ·
∫
|t|>T

ds

λs − λw
ds

The latter integral on |t| > T is Hr+2-valued. The extra term is meromorphic in w, but takes values in
some function space adequate to contain Eisenstein series. Of course, if 〈f,Ew〉 = 0, then that extra term
disappears.

The second integral ∫
|t|≤T

〈f,Es〉 · Es − 〈f,Ew〉 · Ew
λs − λw

ds

is compactly supported, and is a holomorphic X-valued function of two complex variables s, w away from
the diagonal s = w. By design, there is cancellation on the diagonal, as is visible from a vector-valued power
series expansion [15.8]. Thus, the integrand is a holomorphic X-valued function of s, w.

Let Hol(Ω, X) be the space of holomorphic X-valued functions on a region Ω, with seminorms

νµ(f) = sup
w∈K

µ(f(w))

where K ⊂ Ω is compact, and the topology on X is given by seminorms µ. With this topology, Hol(Ω, X)
is quasi-complete and locally convex [15.3.2]. By [15.3.3] and [15.3.4], for a complex-analytic X-valued
function f(s, w) in two variables, on a domain Ω1 ×Ω2 ⊂ C2, function s→ (w → f(z, w))) is a holomorphic
Hol(Ω1, X)-valued function on Ω2.

Thus, letting Ω be an appropriate bounded open containing the set where |t| ≤ T , the integrand in
the integral over |t| ≤ T is a compactly-supported, continuous, Hol(Ω, X)-valued function of s, and has a
Gelfand-Pettis integral in Hol(Ω, X). That is, it has a meromorphic continuation as an X-valued function
of w.

To obtain the functional equation of uw, from the first part of the proof, at first for Re(w) > 1
2 ,

uw =
1

4πi

∫
( 1

2 )

〈f,Es〉 · Es − 〈f,Ew〉 · Ew
λs − λw

ds− 〈f,Ew〉Ew
2(2w − 1)

and then this holds by meromorphic continuation. Now take Re(w) < 1
2 , and bring the regularizing term

back out, producing
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uw =
1

4πi

∫
( 1

2 )

〈f,Es〉 · Es
λs − λw

ds− 〈f,Ew〉 · Ew ·
1

4πi

∫
( 1

2 )

ds

λs − λw
− 〈f,Ew〉Ew

2(2w − 1)

=
1

4πi

∫
( 1

2 )

〈f,Es〉 · Es
λs − λw

ds − 〈f,Ew〉Ew
(2w − 1)

(for Re(w) < 1
2 )

That is, the two extra terms do not cancel, but reinforce. For Re(w) < 1
2 , Re(1 − w) > 1

2 , so the latter
integral is u1−w. That is,

uw = u1−w −
〈f,Ew〉Ew
(2w − 1)

at first for Re(w) < 1
2 , but then for all w (away from poles), by the identity principle. ///

[12.5.7] Remark: One simple choice for a topological vector space containing both suitable global
automorphic Sobolev spaces and Eisenstein series is as follows. A preliminary choice of topological vector
space E containing Eisenstein series is needed. An easy choice is the Fréchet space E = C∞(Γ\G/K). Others
are spaces of moderate-growth continuous functions or moderate-growth smooth functions. The essential
point is that D = C∞c (Γ\G/K) should be dense in E. Since D is dense in Hr, we could hope for a topological

vector space X fitting into a pushout diagram [73]

D inc //

inc
��

Hr

��
E // X

meaning that, for every topological vector space Y fitting into a commutative diagram

D inc //

inc
��

Hr

���
�
�

E //___ Y

there is a unique X → Y making a commutative diagram

D inc //

inc
��

Hr

��

��1
1

1
1

1
1

1

E

((QQQQQQQQ // X

!!
Y

For the usual diagrammatic reasons, there is at most one such X, up to unique isomorphism. To prove
existence, as with colimits expressed as quotients of coproducts in [13.8], the pushout is a natural quotient
of the coproduct:

X = quotient of Hr ⊕ E by the closure of the anti-diagonal copy D−∆ = {(ϕ,−ϕ) : ϕ ∈ D} of D

[73] In fact, such a diagram is a non-directed type of colimit, that is, with index set that is not a directed set.
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12.6 Example: automorphic Green’s functions

Continue the situation of the previous section. From [12.4.8], the automorphic Dirac δz at z ∈ Γ\G/K is
in H−1−ε for every ε > 0. By the previous section, the equation (∆− λw)uw = δz has a solution uw = uw,z
in H1−ε for Re(w) > 1

2 and w 6= 1, with a meromorphic continuation in a topological vector space X large
enough to include both H1−ε and Eisenstein series.

A traditional notation (slightly incompatible with ours) is

Gw(z, z′) = uw,z(z
′) (for z, z′ ∈ Γ\G/K)

This is often called a Green’s function. In traditional (partly heuristic) notation, the differential equation
(∆− λw)uw,z = δz would be written as

∆z′Gw(z, z′) = λw · δz(z′) or, equivalently, ∆zGw(z, z′) = λw · δz′(z)

In contexts where distributions are not acknowledged, the description of Gw(z, z′) is considerably more
awkward.

[12.6.1] Theorem: Use coordinates z = x + iy on H ≈ G/K. For Re(w) > 1
2 and w 6∈ ( 1

2 , 1], and for
a ≥ Im(z), the solution uw = uw,z in H1−ε of the equation (∆− λw)uw = δz has constant term

cPuw(ia) =

∫ 1

0

uw(x+ ia) dx = a1−w · Ew(z)

1− 2w

Proof: From [12.2], since the orbits of (N ∩ Γ)\N are compact and codimension 1, the distribution

ηaf = cP f(ia) =

∫ 1

0

f(x+ ia) dx

is in H−
1
2−ε for every ε > 0, and, as was argued for δz in [12.4.8], has a corresponding spectral expansion

ηa =
ηa(1) · 1
〈1, 1〉

+
1

4πi

∫
( 1

2 )

ηaE1−s · Es ds

Since uw ∈ H1−ε for every ε > 0, ηa gives a continuous linear functional on a Sobolev space containing it,
and by the extended asymmetrical form of Plancherel,

ηa(uw) =

∫
Ξ

Fηa · Fuw =
ηa(1) · δz(1)

(λ1 − λw) · 〈1, 1〉
+

1

4πi

∫
( 1

2 )

ηa(E1−s) ·
δz(Es)

λs − λw
ds

=
1

(λ1 − λw) · 〈1, 1〉
+

1

4πi

∫
( 1

2 )

(a1−s + c1−sa
s) · Es(z)

λs − λw
ds

from the computation of the constant term [1.9.4]. Using the functional equation c1−sEs = E1−s and then
replacing s by 1 − s, the integral of c1−sa

s · Es(z)/(λs − λw) just produces another copy of the integral of
a1−sEs(z)/(λs − λw), and

ηa(uw) =
1

(λ1 − λw) · 〈1, 1〉
+

1

2πi

∫
( 1

2 )

a1−s · Es(z)

λs − λw
ds

With z = x + iy, from the theory of the constant term [8.1], the Eisenstein series Es(z) is asymptotically
dominated by its constant term ys+csy

1−s. Thus, for a ≥ y, by elementary estimates, the contour Re(s) = 1
2

can be pushed indefinitely to the right, picking up (negatives of) residues at s = 1 dues to the pole of Es,
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and at s = w, due to the denominator. The constant-function term exactly cancels the residue at s = 1.
Since λs − λw = (s− w)(s− 1 + w),

ηa(uw) = −Ress=wa
1−s · Es(z)

λs − λw
= −a1−w · Ew(z)

w − 1 + w

as asserted. ///

[12.6.2] Corollary: For Ew(z) = 0, the function uw = uw,z is of rapid decay.

Proof: In the region Im(z′) > Im(z), the function z′ → uw,z(z
′) is an eigenfunction for ∆. Thus, it is

dominated by its constant term, just determined to be Im(z′)1−w · Ew(z)/(1− 2w). ///

[12.6.3] Remark: Similarly, the constant term of the meromorphic continuation of uw in a topological
vector space large enough to include both H1−ε and Eisenstein series is the meromorphic continuation of
a1−w ·Ew(z)/(1−2w), assuming that the topology is fine enough so that ηa is a continuous linear functional
on the larger space.

[12.6.4] Remark: As computed more generally in [2.C], finite linear combinations θ of automorphic Dirac
δ’s applied to Eisenstein series can be arranged to give values of L-functions. Thus, solutions uw,θ to
(∆− λw)u = θ are of rapid decay if and only if θEw = 0.

12.7 Whittaker models and a subquotient theorem

Asymptotics of solutions of second-order ordinary differential equations will imply that, for f either
an Eisenstein series or a strong-sense cuspform, the representation generated by f has a common G-
homomorphism image with an unramified principal series Is. Specifically Vf be the closed subspace of
C∞(Γ\G) generated by f under right translations, where C∞(Γ\G) has the Fréchet-space structure given
by sups of (Lie algebra) derivatives on compacts.

Let ψ : N → C× be a non-trivial character on N , trivial on Γ ∩N , thus factoring through the (abelian)
quotient (Γ ∩N)\N . For example, one might take

ψ(n) = e2πi(x1+...+xr−1) (with x = (x1, . . . , xr−1) ∈ Rr−1 and n =

(
1 x
0 1

)
)

The corresponding Whittaker space is

Wψ = {f ∈ C∞(G) : f(ng) = ψs(n) · f(g) for n ∈ N and g ∈ G}

with Fréchet space structure given by sups of (Lie algebra) derivatives on compacts. The natural G-
homomorphism ρψ : Vf −→Wψ is given by a Gelfand-Pettis integral:

ρψ(F ) =

∫
(N∩Γ)\N

ψ(n)F (ng) dn (for F ∈ Vf )

We will need to have the flexibility to choose ψ for given f so that ρψ(f) 6= 0.

[12.7.1] Lemma: ρψ : C∞(Γ\G)→Wψ is continuous.

Proof: Since functions in Wψ are left ψ-equivariant, it suffices to show that a compact subset C of N\G/K
is covered by a compact subset of G. Indeed, the height function η assumes a positive inf µ and finite sup σ
on C. For a sufficiently large compact subset CN of N , the compact set

{g = n ·
(√

y 0
0 1/

√
y

)
·K : n ∈ CN , µ ≤ η(g) ≤ σ} ⊂ G

surjects to C. ///
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[12.7.2] Claim: Let ∆f = λ · f with λ = (r − 1)2 · s(s− 1). The image ρψ(f) is a constant multiple of(
1 x
0 1

)(√
y 0

0 1/
√
t

)
· k −→ e2πi(x1+...+xr−1) · u(y) (for k ∈ K)

where u is the unique (up to scalars) not-rapidly-increasing solution (as y → +∞) of the differential equation

u′′ − r − 2

y
· u′ − (4π2 +

λ

y2
) · u = 0

That is, up to scalars, the image ρψ(f) in Wψ is uniquely characterized (up to scalar multiples) by satisfaction
of that differential equation, and (in fact) rapid decay as y → +∞.

Proof: The Casimir operator commutes with ρψ, and on right K-invariant functions is ∆. On Wψ, we can
separate variables:

λ · e2πi(x1+...+xr−1) · u(y) = ∆(e2πi(x1+...+xr−1) · u(y)

=
(
y2
( ∂2

∂x2
1

+ . . .+
∂2

∂x2
r

)
− (r − 2)y

∂

∂y

)
(e2πi(x1+...+xr−1) · u(y)

= y2
(

(2πi)2 · (e2πi(x1+...+xr−1) · u(y) + (e2πi(x1+...+xr−1) · u′′(y)
)
− (r − 2)y(e2πi(x1+...+xr−1) · u′(y)

= e2πi(x1+...+xr−1) ·
(
− 4π2y2 · u(y) + y2u′′(y)− (r − 2)yu′(y)

)
Thus, the condition is

λ · u = −4π2y2 · u+ y2 · u′′ − (r − 2)y · u′

or

u′′ − r − 2

y
· u′ − (4π2 +

λ

y2
) · u = 0

The point at +∞ is an irregular singular point of a tractable sort, as in [16.10], [16.B.1]. To see this most
clearly, an equation of the form u′′+pu′+qu = 0 should be rearranged to have no first-derivative term, by the
standard procedure. Namely, let u = vϕ and determine ϕ so that no v′ term appears in the corresponding
differential equation for v:

0 = u′′ + pu′ + q = (v′′ϕ+ 2v′ϕ′ + vϕ′′) + p(v′ϕ+ vϕ′) + q(vϕ)

= ϕ · v′′ + (2ϕ′ + pϕ) · v′ + (ϕ′′ + pϕ′ + qϕ) · v

Thus, we require 2ϕ′ + pϕ = 0, so ϕ = e−
∫
p/2, and after dividing through by ϕ the equation is

v′′ + (
ϕ′′

ϕ
+ p

ϕ′

ϕ
+ q) · v = 0

In the case at hand, p(y) = −(r − 2)/y, so ϕ(y) = e−
∫
p/2 = y(r−2)/2, and the equation is

v′′ −
(

4π2 +
r − 2

2y2

)
· v = 0

By freezing the coefficients at y = ∞, the solutions of the corresponding constant-coefficient differential
equation give the correct leading-term asymptotics as y → +∞, up to powers of y. The frozen equation at
y = ∞ is v′′ − 4π2 · v = 0. The solutions of the frozen equation are linear combinations of e±2πy. From
[16.11], these are the leading terms in asymptotics for two linearly independent solutions v of the differential
equation. Thus, two linearly independent solutions of the original have asymptotics

u = y
r−2

2 · e±2πy (as y → +∞)
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Only the scalar multiples of y
r−2

2 ·e−2πy alone, not involving y
r−2

2 ·e+2πy, are linear combinations decreasing
as y → +∞.

By the theory of the constant term [8.1], since by assumption f is a moderate-growth eigenfunction for ∆,
the asymptotic behavior of f as y → +∞ is dominated (in standard Siegel sets, as height goes to infinity)
by its constant term cP f , with a rapidly decreasing error term. In particular, applying the Whittaker map
ρ to the constant term gives 0, so ρ(f) is rapidly decreasing. This gives the assertion. ///

Thus, the image ρψ(f) ∈ Wψ is uniquely determined up to constants, as is ρψ(Vf ). It is important to
note:

[12.7.3] Claim: For given non-constant f , there is non-trivial ψ such that ρψ(f) 6= 0.

Proof: If not, then in Iwasawa coordinates N · A+ the function f is constant along N , and is a function of
the A+ coordinate alone. But apart from constants, there is no such function on Γ\G/K. ///

On the other hand, now we will identify the image in Wψ of the corresponding principal series Is. We will
see that a G-homomorphism Is →Wψ from a principal series Is also sends the spherical vector ϕos ∈ Is to a
function satisfying the same differential equation, and of rapid decay as y → +∞. First,

[12.7.4] Claim: On Is, the Casimir operator Ω has eigenvalue (r − 1)2 · s(s− 1).

Proof: This is a computation similar to those in [4.5-4.8]. The computation for G = SL2(R) suffices to
illustrate the point. Let

h =

(
1 0
0 −1

)
X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
(in the Lie algebra g)

For comparison purposes, specify a normalization of the Casimir operator [4.2] Ω = 1
2 ( 1

2h
2+XY +Y X) ∈ Ug,

so that by the computation in [4.5] in the Iwasawa coordinates x, y on G/K,

Ω = y2
( ∂2

∂x2
+

∂2

∂y2

)
(on G/K)

Since Is is defined by a left equivariance condition, it is reasonable to let Ω act on the left, as the derivative
of the left translation action (g · f)(x) = f(g−1x). In particular, X acts by 0 on f ∈ Is. Thus, Y X acts by
0. Using the commutation relation,

XY = Y X + (XY − Y X) = Y X + [X,Y ] = Y X + h

Thus, XY acts by h. Thus, on Is, Ω acts on the left by 1
2 ( 1

2h
2 + h). On Is, h acts by

(h · f)(x) =
∂

∂t

∣∣∣
t=0

f(e−t · x) =
∂

∂t

∣∣∣
t=0

∣∣∣e−t
et

∣∣∣s · f(x) =
∂

∂t

∣∣∣
t=0

e−2ts · f(x) = −2s · f(x)

Thus, 1
2 ( 1

2h
2 + h) acts on Is by

1
2 ( 1

2 (2s)2 − (2s)) = s(s− 1)

as claimed. ///

At least when the integral converges suitably, the map

(τϕ)(g) =

∫
N

ψ(n) · ϕ(wng) dn (with w =

(
0 −1
1 0

)
)

gives a natural G-homomorphism τs,ψ : Is →Wψ. On the spherical vector ϕos, it is completely determined by
its values for g among a set of representatives for N\G/K, namely, the Levi component, and by an explicit
Iwasawa decomposition [1.3]

(τs,ψϕ
o
s)

(√
y 0

0 1/
√
y

)
=

∫
Rr−1

ψ(x)
y(r−1)s

(|x|2 + y2)(r−1)s
dx
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[12.7.5] Claim: The integral for τs,ψ on Is converges absolutely for Re(s) > 1
2 , and produces functions not

of rapid growth.

Proof: It suffices to prove convergence for the spherical vector ϕos, since every other function in Is is dominated
by it. Since |ψ| = 1, letting σ = Re(s),

∣∣∣ ∫
Rr−1

ψ(x)
y(r−1)s

(|x|2 + y2)(r−1)s
dx
∣∣∣ ≤ y(r−2)σ

∫
Rr−1

dx

(|x|2 + y2)(r−1)σ
dx = y(r−1)(1−σ)

∫
Rr−1

1

(|x|2 + 1)(r−1)σ
dx

by replacing x ∈ Rr−1 by y · x. Converting to polar coordinates gives the desired convergence. Further, in
that range, the bound is at worst of polynomial growth in y, so is not of rapid growth. ///

The following is necessary for the continuation.

[12.7.6] Theorem: The G-map τs,ψ : Is →Wψ has a meromorphic continuation in s ∈ C, and τs,ψ(ϕos) 6= 0
except for s = 0, 1. (Proof for G = SL2(R) in the following section.)

Granting the previous theorem, a sufficient subquotient theorem for our purposes follows:

[12.7.7] Theorem: Let f be an Eisenstein series or a strong-sense cuspform, in particular generating an
irreducible representation Vf of G under right translation on Γ\G. This entails that f is a ∆-eigenfunction:
let ∆f = λs · f with λs = (r− 1)2 · s(s− 1). Choose additive character ψ on (N ∩Γ)\N such that ρψ(f) 6= 0.
Then the image ρψ(Vf ) ⊂Wψ is a subrepresentation of τs,ψ(Is).

Proof: From [12.7.2], the image Wψ contains a unique (up to scalars) right K-invariant function u of less than
rapid growth with given ∆-eigenvalue λs. Since f is at worst of moderate growth, ρψ(f) must be a scalar
multiple of of that function. Likewise, the image τs,ψ(ϕos) of the spherical vector in Is is not of rapid growth,
and is non-zero. Thus, the irreducible ρψ(Vf ) meets τs,ψ(Is) at least in C · u. Thus, ρψ(Vf ) ⊂ τs,ψ(Is).
///

12.8 Meromorphic continuation of intertwining operators

The analytic continuation of τs,ψ to Re(s) = 1
2 , for real and non-positive λs = s(s− 1) possible eigenvalue

of ∆ for eigenfunctions in the spectral expansion and Plancherel, is just beyond the range of convergence
Re(s) > 1

2 of the integral giving τs,ψ. To prove meromorphic continuation, take G = SL2(R).

[12.8.1] Theorem: The G-map τs,ψ : Is →Wψ has a meromorphic continuation in s ∈ C, and τs,ψ(ϕos) 6= 0
except for s = 0, 1.

Proof: First, we demonstrate meromorphic continuation of the value of τ on each of the vectors

ϕ`s

(
1 x
0 1

)(√
y 0

0 1/
√
y

)(
cos θ sin θ
− sin θ cos θ

)
= ys · e2i`θ

via Bochner’s lemma [3.A]. Using the explicit Iwasawa decomposition [1.3] for SL2(R), after some typical
minor rearrangements, up to irrelevant constants the integral for τ is∫

R
e−ix

1

(y + ix)s+`(y − ix)s−`
dx (absolutely convergent for Re(s) > 1)

Thus, for α, β ∈ C, on one hand consider∫
R
e−ix

1

(y + ix)α(y − ix)β
dx (absolutely convergent for Re(α+ β) > 1

2 )

On the other hand, the identity
∫∞

0
e−t(y+ix)tv dt/t = (iz)−v ·Γ(v) for y > 0 can be viewed as a computation

of a Fourier transform: ∫
R
e−itx ·

{
tv−1e−ty (for t > 0)

0 (for t < 0)

}
dt = (y + ix)−v · Γ(v)
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By Fourier inversion, up to irrelevant constants,∫
R
eixt (y + ix)−v dx =

{ 1
Γ(v)e

−tytv−1 (for t > 0)

0 (for t < 0)

Replacing x by −x and t by −t gives the corresponding identity for (y − ix)−v:∫
R
eixt (y − ix)−v dx =

{
0 (for t > 0)

1
Γ(v)e

−|t|y|t|v−1 (for t < 0)

The Fourier transform of a product is the convolution, so, up to irrelevant constants, for ξ > 0,∫
R
e−ixξ

1

(1 + ix)α(1− ix)β
dx =

1

Γ(α) · Γ(β)

∫
ξ−t>0, t<0

e−|ξ−t|y |ξ − t|α−1 · e−|t|y |t|β−1 dt

=
1

Γ(α) · Γ(β)

∫ ∞
0

e−|ξ+t|y |ξ + t|α−1 · e−ty tβ−1 dt =
1

Γ(α) · Γ(β)

∫ ∞
0

e−(ξ+2t)y (ξ + t)α−1 tβ
dt

t

Since ξ > 0, this is convergent for all α ∈ C and for Re(β) > 0. The convex hull of the union of the
regions {(α, β) : Re(α + β) > 1} and {(α, β) : Re(β) > 0} is all of C2 so Bochner’s lemma [3.A] gives
the meromorphic continuations of the functions τs,ψ(ϕ`s). (The integral expressions show that the vertical
growth in α and β is mild enough to allow application of Bochner’s lemma.)

Via the Iwasawa decomposition G = PK, functions ϕ in the smooth principal series Is can be identified
with Fourier series on K ≈ SO2(R) with rapidly decreasing coefficients. That is,

ϕ

(
cos θ sin θ
− sin θ cos θ

)
=
∑
`∈Z

c` ϕ
`
s

(
cos θ sin θ
− sin θ cos θ

)
=
∑
`∈Z

c` e
2i`θ

with rapidly decreasing c`. We want to show that the image
∑
`∈Z c` τs,ψ(ϕ`s) is still convergent to a smooth

function in Wψ. The intertwining operator τs,ψ preserves the right K-equivariance. Thus, for some constants
Cs,`,ψ,

τs,ψ(ϕ`s)

(
cos θ sin θ
− sin θ cos θ

)
= Cs,`,ψ · e2i`θ

Thus, it suffices to show that the Cs,`,ψ grow (in `) at most polynomially.
In Re(s) ≥ 1

2 + δ for fixed small δ > 0, the integral for τs,ψ(ϕ`s) converges absolutely, and is uniformly
bounded in ` ∈ Z and Re(s) ≥ 1

2 + ε. In the next section we exhibit an intertwining operator Is → I1−s
that is an isomorphism for all s with |Re(s) − 1

2 | < δ with 0 < δ < 1, and that sends ϕ`s −→ As,` · ϕ`1−s
with polynomial-growth (in `) constants As,`. Thus, the analytic continuation demonstrated above extends
to smooth vectors in 1

4 ≤ Re(s) ≤ 1
2 − δ (for example). By Phragmén-Lindelöf, each individual polynomial

growth bound extends to 1
4 ≤ Re(s) ≤ 3

4 , giving the analytic continuation of τs,ψ to that region. ///

12.9 Intertwining operators among principal series

To have essentially elementary computations, we consider only G = SL2(R). The standard intertwining

operator T = Ts : Is → I1−s is defined, for Re(s) sufficiently large, by the integral [74]

Tsf(g) =

∫
N

f(wn · g) dn

[74] Why this integral? This is an analogue of a finite-group method for writing formulas for intertwining operators

from a representation induced from a subgroup A to a representation induced from a subgroup B, with intertwining

operators roughly corresponding to double cosets A\G/B. For finite groups, this goes by the name of Mackey theory,

and Bruhat extended the idea to Lie groups and p-adic groups. For non-finite groups, there are issues of convergence

and analytic continuation.
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with the longest Weyl element

w =

(
0 −1
1 0

)
Convergence will be clarified shortly. Since the map is an integration on the left, it does not disturb the
right action of G. To verify that (assuming convergence) the image really does lie inside I1−s, observe that
Tsf is left N -invariant by construction, and that for m ∈M

(Tsf)(mg) =

∫
N

f(wn ·mg) dn =

∫
N

f(wmm−1nm · g) dn = χ1(m) ·
∫
N

f(wmn · g) dn

by replacing n by mnm−1, taking into account the change of measure d(mnm−1) = χ1(m) · dn coming from(
a 0
0 a−1

)(
1 x
0 1

)(
a 0
0 a−1

)−1

=

(
1 a2x
0 1

)
This is

χ1(m) ·
∫
N

f(wmw−1 · wn · g) dn = χ1(m) ·
∫
N

f(m−1 · wn · g) dn

= χ1(m)χs(m
−1) ·

∫
N

f(wn · g) dn = χ1−s(m) · (Tsf)(g)

This verifies that Ts : Is → I1−s.
Parametrize the maximal compact by

K = {
(

cos θ sin θ
− sin θ cos θ

)
: θ ∈ R/2πiZ}

and note that the overlap is just P ∩ K = ±1. Thus, a function f in Is is completely determined by its
values on K, in fact, on {±1}\K. Conversely, for fixed s ∈ C, any smooth function fo on {±1}\K has a
unique extension (depending upon s) to a function f ∈ Is, by f(pk) = χs(p) · fo(k). Taking advantage of
the simplicity of this situation, we may expand smooth functions on K in Fourier series

f

(
cos θ sin θ
− sin θ cos θ

)
=
∑
`∈Z

c` e
2πi`θ

where the Fourier coefficients cn are rapidly decreasing due to the smoothness of f .
Initially, we restrict our attention to functions f ∈ Is which are not merely smooth, but in fact right

K-finite in the sense that the Fourier expansion of f restricted to K is finite. That is, these are finite sums
of functions ϕ`s(pk) = χs(p) · ρ`(k) where

ρ`

(
cos θ sin θ
− sin θ cos θ

)
= e2πi`θ

For any function f on G with
f(pk) = f(g) · ρ(k) (for k ∈ K)

with ρ among the ρ`, say that f has (right) K-type ρ. From the Iwasawa decomposition G = PK

dimC{f ∈ Is : f has right K-type ρ`} = 1

The main computation: We will directly compute the effect of the intertwining operator Ts on ϕ`s.
Since the left integration over N cannot affect the right K-type, Ts preserves K-types. Since the dimensions
of the subspaces of Is and I1−s with given K-type ρ are 1, necessarily Ts maps ϕ`s to some multiple of ϕ`1−s.
To determine this constant, it suffices to evaluate (Tsf)(1), that is, to evaluate the integral

(Tsf)(1) =

∫
N

f(wn) dn =

∫
R
f(wnx) dx (with nx =

(
1 x
0 1

)
)
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To evaluate f(wnx), we give the Iwasawa decomposition wnx = pk. One convenient approach is to compute

(wnx)(wnx)> = (pk)(pk)> = pkk−1p> = pp>

since k is orthogonal. Letting

p =

(
a b
0 a−1

)
and expanding (wnx)(wnx)> gives(

1 −x
−x 1 + x2

)
=

(
a2 + b2 b/a
b/a 1/a2

)
from which a−2 = 1 + x2 and b/a = −x, so a = 1/

√
1 + x2 and b = −x/

√
1 + x2. Then k = p−1g, so we find

the Iwasawa decomposition

wnx =

 1√
1+x2

−x√
1+x2

0
√

1 + x2

 ·
 1√

1+x2

x√
1+x2

−x√
1+x2

1√
1+x2


Thus, with K-type ρ`,

ϕ`s(wnx) = ϕ`s(pk) = χs(p) · ρ`(k) = (
1√

1 + x2
)2s · ( 1 + ix√

1 + x2
)2` = (1 + x2)−s · ( 1 + ix√

1 + ix ·
√

1− ix
)2`

= (1 + x2)−s · (1 + ix

1− ix
)` = (1 + ix)−s+` (1− ix)−s−`

Thus, our intertwining operator when applied to a f ∈ Is with specified K-type ρ`, evaluated at 1 ∈ G is

(Tsf)(1) =

∫
N

f(wn) dn =

∫
R

(1 + ix)−s+` (1− ix)−s−` dx

To compute the latter, we use a standard trick employing the gamma function. That is, for complex z in
the right half-plane, and for Re(s) > 0,

Γ(s) · z−s =

∫ ∞
0

e−tzt−s
dt

t

Thus,

(Tsϕ
`
s)(1) =

∫
R

(1 + ix)−s+` (1− ix)−s−` dx

= Γ(s− `)−1Γ(s+ `)−1 ·
∫
R

∫ ∞
0

∫ ∞
0

e−u(1+ix)u−(s−`) e−v(1+ix)v−(s+`) du

u

dv

v
dx

Changing the order of integration and integrating in x first [75] gives an inner integral∫
R
eix(u−v) dx = 2π · δu−v

where δ is the Dirac delta distribution. Thus, the whole integral becomes

[75] This is not legitimate from an elementary viewpoint. However, it is a compelling heuristic, correctly suggests the

true conclusion, and can immediately be justified by Fourier inversion, as is done in the appendix.
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(Tsϕ
`
s)(1) =

2π

Γ(s− `)Γ(s+ `)

∫ ∞
0

e−uu−(s−`) e−uu−(s+`)u−1u−1du

=
2π

Γ(s− `)Γ(s+ `)

∫ ∞
0

e−2uu−2s−1 du

u
=

2π 21−2s Γ(2s− 1)

Γ(s− `)Γ(s+ `)

That is, under the intertwining Ts : Is → I1−s, the function ϕ`s is mapped to ϕ`1−s multiplied by that last
constant.

Subrepresentations: For brevity, let

λ(s, n) =
2π 21−2s Γ(2s− 1)

Γ(s− `)Γ(s+ `)

denote the constant computed above. The intertwining operator Ts is holomorphic at so ∈ C if for all integers
` the function λ(s, `) is holomorphic at so.

The numerator Γ(2s− 1) has poles at

1

2
, 0, −1

2
, −1, −3

2
, −2, . . .

The half-integer poles are not canceled by the poles of the denominator, so Ts has poles at these half-integers.
At the non-positive integers, regardless of the value of ` the poles of the denominator cancel the pole of the
numerator. That is,

[12.9.1] Claim: Ts : Is → I1−s is holomorphic away from

s =
1

2
, −1

2
, −3

2
, −5

2
, −7

2
, . . .

at which it has simple poles. ///

For s not an integer, the denominator has no poles, so (away from the half-integers at which the numerator
has a pole) λ(s, `) 6= 0 for all K-types ρ2n. Thus,

[12.9.2] Claim: The intertwining operator Ts : Is → I1−s has trivial kernel for s not an integer (and away
from its poles). ///

Consider s = m with 0 < m ∈ Z. The numerator has no pole at m, while the denominator has a pole,
yielding a λ(m, `) = 0 for all integers

n = ±m, ±(m+ 1), ±(m+ 2), ±(m+ 3), . . .

Thus, for 0 < m ∈ Z, Im has a non-trivial infinite-dimensional subrepresentation [76] consisting of these
K-types in the kernel of Tm : Im → I1−m.

Consider s = −m with 0 ≥ −m ∈ Z. The numerator has a pole at −m, and the denominator has a double
pole for integers

` = 0, ±1, ±2, . . . , ±m

and a single pole for integers

` = ±(m+ 1), ±(m+ 2), ±(m+ 3), . . .

Thus, λ(−m, `) = 0 for the double poles, and the single poles cancel. Thus, for 0 ≥ m ∈ Z, Im has a
non-trivial subrepresentation consisting of the finitely-many K-types at which the denominator has a double
pole. These are (therefore) finite-dimensional representations, the kernels of T−m : I−m → I1+m.

[76] These subrepresentations have names, based on how they arose in other circumstances: are the sum of the

holomorphic discrete series and anti-holomorphic discrete series representations.
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Smooth vectors: The explicit computation of the scalar λ(s, `) = (Tsϕ
`
s)(1) for ϕ`s also shows that

Ts has an analytic continuation on smooth vectors in Is, not merely K-finite vectors, as follows. From
Γ(s) · s = Γ(s+ 1),

(Tsϕ
`
s)(1) =

2π 21−2s Γ(2s− 1)

Γ(s− `)Γ(s+ `)
= polynomial growth in `

By asymptotics of Γ(s), for example from Stirling’s formula in [16.1]. Let

f =
∑
`∈Z

c` · ϕ`s

be smooth in Is. Smoothness is equivalent to the rapid decrease of the Fourier coefficients. Then

Tsf =
∑
`∈Z

λ(s, `) · c` · ϕ`s

still has rapidly decreasing coefficients, so is a smooth vector in I1−s. That is, away from the poles, the
intertwining operator Ts when analytically continued is defined on all smooth vectors in I1−s, not merely
K-finite ones. ///

12.A Appendix: a usual trick with Γ(s)

The property of Γ(s) used above is sufficiently important that we review it. The gamma function is given
for Re(s) > 0 by Euler’s integral

Γ(s) =

∫ ∞
0

e−tts
dt

t

Replacing t by ty with y > 0

Γ(s) · y−s =

∫ ∞
0

e−tyts
dt

t

By analytic continuation to the right complex half-plane, for y > 0 and x ∈ R

Γ(s) · (y + 2πix)−s =

∫ ∞
0

e−t(y+2πix)ts
dt

t

Having analytically continued, we may let y = 1 again, obtaining

Γ(s) · (1 + 2πix)−s =

∫ ∞
0

e−t(1+2πix)ts
dt

t
=

∫ ∞
0

e−2πixt e−tts
dt

t

which is the Fourier transform of

ϕs(t) =

{
e−t ts−1 (t > 0)

0 (t < 0)

To compute the concrete integral for (Tsf)(1) invoke the Plancherel theorem, that∫
R
f(x)ϕ(x) dx =

∫
R
f̂(x) ϕ̂(x) dx

and Fourier inversion. With real s >> 0, replacing x by 2πx at the first step, and with real s,∫
R

(1 + ix)−s+n (1− ix)−s−n dx = 2π

∫
R

(1 + 2πix)−s+n (1− 2πix)−s−n dx

= 2π

∫
R
ϕ̂s−n(x) ϕ̂s+n(x) dx = 2π

∫
R
ϕs−n(x) ϕs+n(x) dx

=
2π

Γ(s− n) Γ(s+ n)

∫ ∞
0

e−uu−(s−n)−1 · e−uu−(s+n)−1 du =
2πΓ(2s− 1)

Γ(s− n) Γ(s+ n)

as computed heuristically earlier. This also exhibits the constant 2π.

375



13. Examples: topologies on natural function spaces

13. Examples: topologies on natural function spaces

1. Banach spaces Ck[a, b]
2. Non-Banach limit C∞[a, b] of Banach spaces Ck[a, b]
3. Sufficient notion of topological vector space
4. Unique vectorspace topology on Cn
5. Non-Banach limits Ck(R), C∞(R) of Banach spaces Ck[a, b]
6. Banach completion Cko (R) of Ckc (R)
7. Rapid-decay functions, Schwartz functions
8. Non-Fréchet colimit C∞ of Cn, quasi-completeness
9. Non-Fréchet colimit C∞c (R) of Fréchet spaces
10. LF-spaces of moderate-growth functions
11. Seminorms and locally convex topologies
12. Quasi-completeness theorem
13. Strong operator topology
14. Generalized functions (distributions) on R
15. Tempered distributions and Fourier transforms on R
16. Test functions and Paley-Wiener spaces
17. Schwartz functions and Fourier transforms on Qp

We review natural topological vectorspaces of functions on relatively simple geometric objects, such as
R, as opposed to the automorphic examples Γ\G and Γ\X, to separate the geometric and group-theoretic
complications from the topological-analytical.

In all cases, we specify a natural topology, in which differentiation and other natural operators are
continuous, and so that the space is complete.

Many familiar and useful spaces of continuous or differentiable functions, such as Ck[a, b], have natural
metric structures, and are complete. Often, the metric d(, ) comes from a norm | · |, on the functions, giving
Banach spaces.

Other natural function spaces, such as C∞[a, b], Co(R), are not Banach, but still do have a metric topology
and are complete: these are Fréchet spaces, appearing as (projective) limits of Banach spaces, as below. These
lack some of the conveniences of Banach spaces, but their expressions as limits of Banach spaces is often
sufficient.

Other important spaces, such as compactly-supported continuous functions Coc (R) on R, or compactly-
supported smooth functions (test functions) D(R) = C∞c (R) on R, are not metrizable so as to be complete.
Nevertheless, some are expressible as colimits (sometimes called inductive limits) of Banach or Fréchet spaces,
and such descriptions suffice for many applications. An LF-space is a countable ascending union of Fréchet
spaces with each Fréchet subspace closed in the next. These are strict colimits or strict inductive limits of
Fréchet spaces. These are generally not complete in the strongest sense, but, nevertheless, as demonstrated
in [13.12], are quasi-complete, and this suffices for applications.

13.1 Banach spaces Ck[a, b]

We give the vector space Ck[a, b] of k-times continuously differentiable functions on an interval [a, b] a
metric which makes it complete. Mere pointwise limits of continuous functions easily fail to be continuous.
First recall the standard

[13.1.1] Claim: The set Co(K) of complex-valued continuous functions on a compact set K is complete with
the metric |f − g|Co , with the Co-norm |f |Co = supx∈K |f(x)|.

Proof: This is a typical three-epsilon argument. To show that a Cauchy sequence {fi} of continuous functions
has a pointwise limit which is a continuous function, first argue that fi has a pointwise limit at every x ∈ K.
Given ε > 0, choose N large enough such that |fi − fj | < ε for all i, j ≥ N . Then |fi(x)− fj(x)| < ε for any
x in K. Thus, the sequence of values fi(x) is a Cauchy sequence of complex numbers, so has a limit f(x).
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Further, given ε′ > 0 choose j ≥ N sufficiently large such that |fj(x)− f(x)| < ε′. For i ≥ N

|fi(x)− f(x)| ≤ |fi(x)− fj(x)|+ |fj(x)− f(x)| < ε+ ε′

This is true for every positive ε′, so |fi(x) − f(x)| ≤ ε for every x in K. That is, the pointwise limit is
approached uniformly in x ∈ [a, b].

To prove that f(x) is continuous, for ε > 0, take N be large enough so that |fi − fj | < ε for all i, j ≥ N .
From the previous paragraph |fi(x)−f(x)| ≤ ε for every x and for i ≥ N . Fix i ≥ N and x ∈ K, and choose
a small enough neigborhood U of x such that |fi(x)− fi(y)| < ε for any y in U . Then

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |f(y)− fi(y)| ≤ ε+ |fi(x)− fi(y)|+ ε < ε+ ε+ ε

Thus, the pointwise limit f is continuous at every x in U . ///

Unsurprisingly, but significantly:

[13.1.2] Claim: For x ∈ [a, b], the evaluation map f → f(x) is a continuous linear functional on Co[a, b].

Proof: For |f − g|Co < ε, we have

|f(x)− g(x)| ≤ |f − g|Co < ε

proving the continuity. ///

As usual, a real-valued or complex-valued function f on a closed interval [a, b] ⊂ R is continuously
differentiable when it has a derivative which is itself a continuous function. That is, the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists for all x ∈ [a, b], and the function f ′(x) is in Co[a, b]. Let Ck[a, b] be the collection of k-times
continuously differentiable functions on [a, b], with the Ck-norm

|f |Ck =
∑

0≤i≤k

sup
x∈[a,b]

|f (i)(x)| =
∑

0≤i≤k

|f (i)|∞

where f (i) is the ith derivative of f . The associated metric on Ck[a, b] is |f − g|Ck .
Similar to the assertion about evaluation on Co[a, b],

[13.1.3] Claim: For x ∈ [a, b] and 0 ≤ j ≤ k, the evaluation map f → f (j)(x) is a continuous linear
functional on Ck[a, b].

Proof: For |f − g|Ck < ε,
|f (j)(x)− g(j)(x)| ≤ |f − g|Ck < ε

proving the continuity. ///

We see that Ck[a, b] is a Banach space:

[13.1.4] Theorem: The normed metric space Ck[a, b] is complete.

Proof: For a Cauchy sequence {fi} in Ck[a, b], all the pointwise limits limi f
(j)
i (x) of j-fold derivatives exist

for 0 ≤ j ≤ k, and are uniformly continuous. The issue is to show that limi f
(j) is differentiable, with

derivative limi f
(j+1). It suffices to show that, for a Cauchy sequence fn in C1[a, b], with pointwise limits

f(x) = limn fn(x) and g(x) = limn f
′
n(x) we have g = f ′. By the fundamental theorem of calculus, for any

index i,

fi(x)− fi(a) =

∫ x

a

f ′i(t) dt

Since the f ′i uniformly approach g, given ε > 0 there is io such that |f ′i(t)− g(t)| < ε for i ≥ io and for all t
in the interval, so for such i∣∣∣ ∫ x

a

f ′i(t) dt−
∫ x

a

g(t) dt
∣∣∣ ≤ ∫ x

a

|f ′i(t)− g(t)| dt ≤ ε · |x− a| −→ 0
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Thus,

lim
i
fi(x)− fi(a) = lim

i

∫ x

a

f ′i(t) dt =

∫ x

a

g(t) dt

from which f ′ = g. ///

By design, we have

[13.1.5] Theorem: The map d
dx : Ck[a, b]→ Ck−1[a, b] is continuous.

Proof: As usual, for a linear map T : V →W , by linearity Tv−Tv′ = T (v−v′) it suffices to check continuity
at 0. For Banach spaces the homogeneity |σ · v|V = |α| · |v|V shows that continuity is equivalent to existence
of a constant B such that |Tv|W ≤ B · |v|V for v ∈ V . Then

| d
dx
f |Ck−1 =

∑
0≤i≤k−1

sup
x∈[a,b]

|( df
dx

)(i)(x)| =
∑

1≤i≤k

sup
x∈[a,b]

|f (i)(x)| ≤ 1 · |f |Ck

as desired. ///

13.2 Non-Banach limit C∞[a, b] of Banach spaces Ck[a, b]

The space C∞[a, b] of infinitely differentiable complex-valued functions on a (finite) interval [a, b] in R is

not a Banach space. [77] Nevertheless, the topology is completely determined by its relation to the Banach
spaces Ck[a, b]. That is, there is a unique reasonable topology on C∞[a, b]. After explaining and proving
this uniqueness, we also show that this topology is complete metric.

This function space can be presented as

C∞[a, b] =
⋂
k≥0

Ck[a, b]

and we reasonably require that whatever topology C∞[a, b] should have, each inclusion C∞[a, b] −→ Ck[a, b]
is continuous.

At the same time, given a family of continuous linear maps Z → Ck[a, b] from a vector space Z in
some reasonable class (specified in the next section), with the compatibility condition of giving commutative
diagrams

Ck[a, b]
⊂ // Ck−1[a, b]

Z

ffMMMMMMMMMMM

OO

the image of Z actually lies in the intersection C∞[a, b]. Thus, diagrammatically, for every family of
compatible maps Z → Ck[a, b], there is a unique Z → C∞[a, b] fitting into a commutative diagram

C∞[a, b]
** ((

. . . // C1[a, b] // Co[a, b]

Z

;;w
w

w
w

w

∀
44jjjjjjjjjj

∃!

cc

We require that this induced map Z → C∞[a, b] is continuous.
When we know that these conditions are met, we would say that C∞[a, b] is the (projective) limit of the

spaces Ck[a, b], written
C∞[a, b] = lim

k
Ck[a, b]

[77] It is not essential to prove that there is no reasonable Banach space structure on C∞[a, b], but this can be readily

proven in a suitable context.

378



Garrett: Modern Analysis of Automorphic Forms

with implicit reference to the inclusions Ck+1[a, b]→ Ck[a, b] and C∞[a, b]→ Ck[a, b].

[13.2.1] Claim: Up to unique isomorphism, there exists at most one topology on C∞[a, b] such that to every
compatible family of continuous linear maps Z → Ck[a, b] from a topological vector space Z there is a unique
continuous linear Z → C∞[a, b] fitting into a commutative diagram as just above.

Proof: Let X,Y be C∞[a, b] with two topologies fitting into such diagrams, and show X ≈ Y , and for a
unique isomorphism. First, claim that the identity map idX : X → X is the only map ϕ : X → X fitting
into a commutative diagram

X
** ''

. . . // C1[a, b] // Co[a, b]

X

ϕ

OO

44 77
. . . // C1[a, b] // Co[a, b]

Indeed, given a compatible family of maps X → Ck[a, b], there is unique ϕ fitting into

X
** ''

. . . // C1[a, b] // Co[a, b]

X

;;w
w

w
w

w

∀
44jjjjjjjjjj

ϕ

``

Since the identity map idX fits, necessarily ϕ = idX . Similarly, given the compatible family of inclusions
Y → Ck[a, b], there is unique f : Y → X fitting into

X
** ''

. . . // C1[a, b] // Co[a, b]

Y

;;wwwwwwwww

44jjjjjjjjjjjjjjjjjjj
f

``

Similarly, given the compatible family of inclusions X → Ck[a, b], there is unique g : X → Y fitting into

Y
** ''

. . . // C1[a, b] // Co[a, b]

X

;;wwwwwwwww

44jjjjjjjjjjjjjjjjjjj
g

__

Then f ◦ g : X → X fits into a diagram

X
** ''

. . . // C1[a, b] // Co[a, b]

X

;;wwwwwwwww

44jjjjjjjjjjjjjjjjjjj
f◦g

``

Therefore, f ◦ g = idX . Similarly, g ◦ f = idY . That is, f, g are mutual inverses, so are isomorphisms of
topological vector spaces. ///

Existence of a topology on C∞[a, b] satisfying the condition above will be proven by identifying C∞[a, b]
as the obvious diagonal closed subspace of the topological product of the limitands Ck[a, b]:

C∞[a, b] = {{fk : fk ∈ Ck[a, b]} : fk = fk+1 for all k}

An arbitrary product of topological spaces Xα for α in an index set A is a topological space X with
(projections) pα : X → Xα, such that every family fα : Z → Xα of maps from any other topological
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space Z factors through the pα uniquely, in the sense that there is a unique f : Z → X such that fα = pα ◦ f
for all α. Pictorially, all triangles commute in the diagram

Z

fβ
++XXXXXXXXXXXXXXXX

fα
((PPPPPPPP

f // X
pβ

!!BBBBBBBB
pα

}}||||||||

. . . Xα . . . Xβ . . .

A similar argument to that for uniqueness of limits proves uniqueness of products up to unique isomorphism.
Construction of products is by putting the usual product topology with basis consisting of products

∏
α Yα

with Yα = Xα for all but finitely-many indices, on the Cartesian product of the sets Xα, whose existence we
grant ourselves. Proof that this usual is a product amounts to unwinding the definitions. By uniqueness,
in particular, despite the plausibility of the box topology on the product, it cannot function as a product
topology since it differs from the standard product topology in general.

[13.2.2] Claim: Giving the diagonal copy of C∞[a, b] inside
∏
k C

k[a, b] the subspace topology yields a
(projective) limit topology.

Proof: The projection maps pk :
∏
j C

j [a, b] → Ck[a, b] from the whole product to the factors Ck[a, b]
are continuous, so their restrictions to the diagonally imbedded C∞[a, b] are continuous. Further, letting
ik : Ck[a, b] → Ck−1[a, b] be the inclusion, on that diagonal copy of C∞[a, b] we have ik ◦ pk = pk−1 as
required.

On the other hand, any family of maps ϕk : Z → Ck[a, b] induces a map ϕ̃ : Z →
∏
Ck[a, b] such that

pk ◦ ϕ̃ = ϕk, by the property of the product. Compatibility ik ◦ ϕk = ϕk−1 implies that the image of ϕ̃ is
inside the diagonal, that is, inside the copy of C∞[a, b]. ///

A countable product of metric spaces Xk with metrics dk has no canonical single metric, but is metrizable.
One of many topologically equivalent metrics is the usual

d({xk}, {yk}) =

∞∑
k=0

2−k
dk(xk, yk)

dk(xk, yk) + 1

When the metric spaces Xk are complete, the product is complete. A closed subspace of a complete metrizable
space is complete metrizable, so we have

[13.2.3] Corollary: C∞[a, b] is complete metrizable. ///

Abstracting the above, for a (not necessarily countable) family

. . .
ϕ2 // B1

ϕ1 // Bo

of Banach spaces with continuous linear transition maps as indicated, not recessarily requiring the continuous
linear maps to be injective (or surjective), a (projective) limit limiBi is a topological vector space with
continuous linear maps limiBi → Bj such that, for every compatible family of continuous linear maps
Z → Bi there is unique continuous linear Z → limiBi fitting into

limiBi
!!   

. . .
ϕ2 // B1

ϕ1 // Bo

Z

==|
|

|
|

66mmmmmmmm

cc

The same uniqueness proof as above shows that there is at most one topological vector space limiBi. For
existence by construction, the earlier argument needs only minor adjustment. The conclusion of complete
metrizability would hold when the family is countable.
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Before declaring C∞[a, b] to be a Fréchet space, we must certify that it is locally convex, in the sense that
every point has a local basis of convex opens. Normed spaces are immediately locally convex, because open
balls are convex: for 0 ≤ t ≤ 1 and x, y in the ε-ball at 0 in a normed space,

|tx+ (1− t)y| ≤ |tx|+ |(1− t)y| ≤ t|x|+ (1− t)|y| < t · ε+ (1− t) · ε = ε

Product topologies of locally convex vectorspaces are locally convex, from the construction of the product.
The construction of the limit as the diagonal in the product, with the subspace topology, shows that it is
locally convex. In particular, countable limits of Banach spaces are locally convex, hence, are Fréchet. All
spaces of practical interest are locally convex for simple reasons, so demonstrating local convexity is rarely
interesting.

[13.2.4] Theorem: d
dx : C∞[a, b]→ C∞[a, b] is continuous.

Proof: In fact, the differentiation operator is characterized via the expression of C∞[a, b] as a limit. We
already know that differentiation d/dx gives a continuous map Ck[a, b] → Ck−1[a, b]. Differentiation is
compatible with the inclusions among the Ck[a, b]. Thus, we have a commutative diagram

C∞[a, b]
)) **

. . . Ck[a, b] // Ck−1[a, b] // . . .

C∞[a, b]
55 55

. . . Ck[a, b] //

d
dx

99rrrrrrrrrr
Ck−1[a, b] //

d
dx

::vvvvvvvvvv
. . .

Composing the projections with d/dx gives (dashed) induced maps from C∞[a, b] to the limitands, inducing
a unique (dotted) continuous linear map to the limit, as in

C∞[a, b]
)) **

. . . Ck[a, b] // Ck−1[a, b] // . . .

C∞[a, b]

55kkkkkkkk

33gggggggggggggg

22eeeeeeeeeeeeeeeeeeeee

d
dx

OO

55 55
. . . Ck[a, b] //

99rrrrrrrrrr
Ck−1[a, b] //

::vvvvvvvvvv
. . .

This proves the continuity of differentiation in the limit topology. ///

In a slightly different vein, we have

[13.2.5] Claim: For all x ∈ [a, b] and for all non-negative integers k, the evaluation map f → f (k)(x) is a
continuous linear map C∞[a, b]→ C.

Proof: The inclusion C∞[a, b]→ Ck[a, b] is continuous, and the evaluation of the kth derivative is continuous.
///

13.3 Sufficient notion of topological vector space

To describe a (projective) limit by characterizing its behavior in relation to all topological vectorspaces
requires specification of what a topological vectorspace should be.

A topological vector space V (over C) is a C-vectorspace V with a topology on V in which points are closed,
and so that scalar multiplication

x× v −→ xv (for x ∈ k and v ∈ V )

and vector addition
v × w −→ v + w (for v, w ∈ V )

are continuous. For subsets X,Y of V , let

X + Y = {x+ y : x ∈ X, y ∈ Y }
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and
−X = {−x : x ∈ X}

The following trick is elementary, but indispensable. Given an open neighborhood U of 0 in a topological
vectorspace V , continuity of vector addition yields an open neighborhood U ′ of 0 such that

U ′ + U ′ ⊂ U

Since 0 ∈ U ′, necessarily U ′ ⊂ U . This can be repeated to give, for any positive integer n, an open
neighborhood Un of 0 such that

Un + . . .+ Un︸ ︷︷ ︸
n

⊂ U

In a similar vein, for fixed v ∈ V the map V → V by x → x + v is a homeomorphism, being invertible by
the obvious x→ x− v. Thus, the open neighborhoods of v are of the form v + U for open neighborhoods U
of 0. In particular, a local basis at 0 gives the topology on a topological vectorspace.

[13.3.1] Lemma: Given a compact subset K of a topological vectorspace V and a closed subset C of V not
meeting K, there is an open neighborhood U of 0 in V such that

closure(K + U) ∩ (C + U) = φ

Proof: Since C is closed, for x ∈ K there is a neighborhood Ux of 0 such that the neighborhood x+ Ux of x
does not meet C. By continuity of vector addition

V × V × V → V by v1 × v2 × v3 → v1 + v2 + v3

there is a smaller open neighborhood Nx of 0 so that

Nx +Nx +Nx ⊂ Ux

By replacing Nx by Nx ∩ −Nx, which is still an open neighborhood of 0, suppose that Nx is symmetric in
the sense that Nx = −Nx.

Using this symmetry,
(x+Nx +Nx) ∩ (C +Nx) = φ

Since K is compact, there are finitely-many x1, . . . , xn such that

K ⊂ (x1 +Nx1
) ∪ . . . ∪ (xn +Nxn)

Let U =
⋂
i Nxi . Since the intersection is finite, U is open. Then

K + U ⊂
⋃

i=1,...,n

(xi +Nxi + U) ⊂
⋃

i=1,...,n

(xi +Nxi +Nxi)

These sets do not meet C + U , by construction, since U ⊂ Nxi for all i. Finally, since C + U is a union of
opens y + U for y ∈ C, it is open, so even the closure of K + U does not meet C + U . ///

Conveniently, Hausdorff-ness of topological vectorspaces follows from the weaker assumption that points
are closed:

[13.3.2] Corollary: A topological vectorspace is Hausdorff.

Proof: Take K = {x} and C = {y} in the lemma. ///

[13.3.3] Corollary: The topological closure Ē of a subset E of a topological vectorspace V can be expressed
as

Ē =
⋂
U

(E + U) (where U ranges over a local basis at 0)
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Proof: In the lemma, take K = {x} and C = Ē for a point x of V not in C. Then we obtain an open
neighborhood U of 0 so that x+U does not meet Ē+U . The latter contains E+U , so certainly x 6∈ E+U .
That is, for x not in the closure, there is an open U containing 0 so that x 6∈ E + U . ///

As usual, for two topological vectorspaces V,W over C, a function f : V −→ W is (k-)linear when
f(αx + βy) = αf(x) + βf(y) for all α, β ∈ k and x, y ∈ V . Almost without exception we care about
continuous linear maps, meaning linear maps continuous for the topologies on V,W . As expected, the kernel
ker f of a linear map is

ker f = {v ∈ V : f(v) = 0}

Being the inverse image of a closed set by a continuous map, the kernel is a closed subspace of V .
For a closed subspace H of a topological vectorspace V , the quotient V/H is characterized as topological

vectorspace with linear quotient map q : V → V/H through which any continuous f : V →W with ker f ⊃ H
factors, in the sense that there is a unique continuous linear f : V/H →W giving a commutative diagram

V/H
f

""D
D

D
D

V
f
//

q

OO

W

Uniqueness of the quotient q : V → V/H, up to unique isomorphism, follows by the usual categorical
arguments, as with limits and products above. The existence of the quotient is proven by the usual
construction of V/H as the collection of cosets v + H, with q given as usual by q : v −→ v + H. We
verify that this construction succeeds in the proposition below.

The quotient topology on V/H is the finest topology such that the quotient map q : V → V/H is continuous,
namely, a subset E of V/H is open if and only if q−1(E) is open.

For non-closed subspaces H, the quotient topology on the collection of cosets {v + H} would not be
Hausdorff. Thus, the proper categorical notion of topological vectorspace quotient, by non-closed subspace,
would produce the collection of cosets v +H for the closure H of H.

[13.3.4] Claim: For a closed subspace W of a topological vectorspace V , the collection Q = {v+W : v ∈ V }
of cosets by W with map q(v) = v +W is a topological vectorspace and q is a quotient map.

Proof: The algebraic quotient Q = V/W of cosets v+W and q(v) = v+W constructs a vectorspace quotient
without any topological hypotheses on W . Since W is closed, and since vector addition is a homeomorphism,
v+W is closed as well. Thus, its complement V − (v+W ) is open, so q(V − (v+W )) is open, by definition
of the quotient topology. Thus, the complement

q(v) = v +W = q(v +W ) = V/W − q(V − (v +W ))

of the open set q(V − (v +W )) is closed. ///

Unlike general topological quotient maps,

[13.3.5] Claim: For a closed subspace H of a topological vector space V , the quotient map q : V → V/H is
open, that is, carries open sets to open sets.

Proof: For U open in V ,

q−1(q(U)) = q−1(U +H) = U +H =
⋃
h∈H

h+ U

This is a union of opens. ///

[13.3.6] Corollary: For f : V → X a linear map with a closed subspace W of V contained in ker f , and f̄
the induced map f̄ : V/W → X defined by f̄(v +W ) = f(v), f is continuous if and only if f̄ is continuous.

Proof: Certainly if f̄ is continuous then f = f̄ ◦ q is continuous. The converse follows from the fact that q is
open. ///
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This proves that the construction of the quotient by cosets succeeds in producing a quotient: a continuous
linear map f : V → X factors through any quotient V/W for W a closed subspace contained in the kernel of
f .

The notions of balanced subset, absorbing subset, directed set, Cauchy net, and completeness are necessary:
A subset E of V is balanced when xE ⊂ E for every x ∈ C with |x| ≤ 1.

[13.3.7] Lemma: Every neighborhood u of 0 in a topological vectorspace V over C contains a balanced
neighborhood N of 0.

Proof: By continuity of scalar multiplication, there is ε > 0 and a neighborhood U ′ of 0 ∈ V so that if
|x| < ε and v ∈ U ′ then xv ∈ U . Since C is not discrete, there is xo ∈ C with 0 < |xo| < ε. Since scalar
multiplication by a non-zero element is a homeomorphism, xoU

′ is a neighborhood of 0 and xoU
′ ⊂ U . Put

N =
⋃
|y|≤1

yxoU
′

For |x| ≤ 1, |xy| ≤ |y| ≤ 1, so

xN =
⋃
|y|≤1

x(yxoU
′) ⊂

⋃
|y|≤1

yxoU
′ = N

producing the desired N . ///

A subset E of vectorspace V over k is absorbing when for every v ∈ V there is to ∈ R so that v ∈ αE for
every α ∈ k so that |α| ≥ to.
[13.3.8] Lemma: Every neighborhood U of 0 in a topological vectorspace is absorbing.

Proof: We may shrink U to assume U is balanced. By continuity of the map k → V given by α→ αv, there
is ε > 0 so that |α| < ε implies αv ∈ U . By the non-discreteness of k, there is non-zero α ∈ k satisfying any
such inequality. Then v ∈ α−1U , as desired. ///

A poset S,≤ is a partially ordered set. A directed set is a poset S such that, for any two elements s, t ∈ S,
there is z ∈ S so that z ≥ s and z ≥ t.

A net in V is a subset {xs : s ∈ S} of V indexed by a directed set S. A net {xs : s ∈ S} in a topological
vectorspace V is a Cauchy net if, for every neighborhood U of 0 in V , there is an index so so that for s, t ≥ so
we have xs − xt ∈ U . A net {xs : s ∈ S} is convergent if there is x ∈ V so that, for every neighborhood U
of 0 in V there is an index so so that for s ≥ so we have x − xs ∈ U . Since points are closed, there can be
at most one point to which a net converges. Thus, a convergent net is Cauchy. Oppositely, a topological
vectorspace is complete if every Cauchy net is convergent.

[13.3.9] Lemma: Let Y be a vector subspace of a topological vector space X, complete when given the
subspace topology from X. Then Y is a closed subset of X.

Proof: Let x ∈ X be in the closure of Y . Let S be a local basis of opens at 0, where we take the partial
ordering so that U ≥ U ′ if and only if U ⊂ U ′. For each U ∈ S choose yU ∈ (x + U) ∩ Y . The net
{yU : U ∈ S} converges to x, so is Cauchy. It must converge to a point in Y , so by uniqueness of limits of
nets it must be that x ∈ Y . Thus, Y is closed. ///

Unfortunately, completeness as above is too strong a condition for general topological vectorspaces, beyond
Fréchet spaces. A slightly weaker version of completeness, quasi-completeness or local completeness, does
hold for most important natural spaces, as discussed in [13.12].
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13.4 Unique vectorspace topology on Cn

Finite-dimensional topological vectorspaces, and their interactions with other topological vectorspaces, are
especially simple:

[13.4.1] Theorem: A finite-dimensional complex vectorspace V has just one topological vectorspace
topology, that of the product topology on Cn for n = dimV . A finite-dimensional subspace V of a topological
vectorspace W is closed. A C-linear map X → V to a finite-dimensional space V is continuous if and only
if the kernel is closed.

Proof: The argument is by induction. First treat the one-dimensional situation:

[13.4.2] Claim: For a one-dimensional topological vectorspace V with basis e the map C→ V by x→ xe is
a homeomorphism.

Proof: Since scalar multiplication is continuous, we need only show that the map is open. We need only do
this at 0, since translation addresses other points. Given ε > 0, by the non-discreteness of C there is xo in
C so that 0 < |xo| < ε. Since V is Hausdorff, there is a neighborhood U of 0 so that xoe 6∈ U . Shrink U so
it is balanced. Take x ∈ k so that xe ∈ U . For |x| ≥ |xo|, |xox−1| ≤ 1, so

xoe = (xox
−1)(xe) ∈ U

by balanced-ness of U , contradiction. Thus, xe ∈ U implies that |x| < |xo| < ε. ///

[13.4.3] Corollary: For fixed xo ∈ C, a not-identically-zero C-linear C-valued function f on V is continuous
if and only if the affine hyperplane H = {v ∈ V : f(v) = xo} is closed in V .

Proof: Certainly if f is continuous then H is closed. For the converse, consider only the case xo = 0, since
translations (vector additions) are homeomorphisms of V to itself.

For vo with f(vo) 6= 0 and for any other v ∈ V

f(v − f(v)f(vo)
−1vo) = f(v)− f(v)f(vo)

−1f(vo) = 0

Thus, V/H is one-dimensional. The induced C-linear map f̄ : V/H → k so that f = f̄ ◦ q, that is,
f̄(v +H) = f(v), is a homeomorphism to C, by the previous result, so f is continuous. ///

For the theorem, for uniqueness of the topology it suffices to prove that for any C-basis e1, . . . , en for V ,
the map C× . . .× C −→ V by

(x1, . . . , xn) −→ x1e1 + . . .+ xnen

is a homeomorphism. Prove this by induction on the dimension n, that is, on the number of generators
for V as a free C-module. The case n = 1 was treated. Since C is complete, the lemma above asserting
the closed-ness of complete subspaces shows that any one-dimensional subspace is closed. For n > 1, let
H = Ce1 + . . . + Cen−1. By induction, H is closed in V , so the quotient q : V → V/H is constructed as
expected, as the set of cosets v + H. The space V/H is a one-dimensional topological vectorspace over C,
with basis q(en). By induction, φ : xq(en) = q(xen) −→ x is a homeomorphism V/H → C.

Likewise, Cen is a closed subspace and we have the quotient map

q′ : V −→ V/Cen

The image has basis q′(e1), . . . , q′(en−1), and by induction

φ′ : x1q
′(e1) + . . .+ xn−1q

′(en−1)→ (x1, . . . , xn−1)

is a homeomorphism. By the induction hypothesis,

v −→ (φ ◦ q)(v)× (φ′ ◦ q′)(v)
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is continuous to Cn−1 × C ≈ Cn. On the other hand, by the continuity of scalar multiplication and vector
addition,

Cn −→ V by x1 × . . .× xn −→ x1e1 + . . .+ xnen

is continuous. These two maps are mutual inverses, certifying the homeomorphism.
Thus, a n-dimensional subspace is homeomorphic to Cn with its product topology, so is complete, since a

finite product of complete spaces is complete. By the closed-ness of complete subspaces, it is closed.
Continuity of a linear map f : X → Cn implies that the kernel N = ker f is closed. On the other hand,

for N closed, the set of cosets x+N constructs a quotient, and is a topological vectorspace of dimension at
most n. Therefore, the induced map f̄ : X/N → V is unavoidably continuous. Then f = f̄ ◦ q is continuous,
where q is the quotient map. This completes the induction step. ///

13.5 Non-Banach limits Ck(R), C∞(R) of Banach spaces Ck[a, b]

For a non-compact topological space such as R, the space Co(R) of continuous functions is not a Banach
space with sup norm, because the sup of the absolute value of a continuous function may be +∞.

But, Co(R) has a Fréchet-space structure: express R as a countable union of compact subsets Kn = [−n, n].
Despite the likely non-injectivity of the map Co(R)→ Co(Ki), giving Co(R) the (projective) limit topology
limi C

o(Ki) is reasonable: certainly the restriction map Co(R) → Co(Ki) should be continuous, as should
all the restrictions Co(Ki)→ Co(Ki−1), whether or not these are surjective.

The argument in favor of giving Co(R) the limit topology is that a compatible family of maps fi : Z →
Co(Ki) gives compatible fragments of functions F on R. That is, for z ∈ Z, given x ∈ R take Ki such
that x is in the interior of Ki. Then for all j ≥ i the function x → fj(z)(x) is continuous near x, and the
compatibility assures that all these functions are the same.

That is, the compatibility of these fragments is exactly the assertion that they fit together to make a
function x → Fz(x) on the whole space X. Since continuity is a local property, x → Fz(x) is in Co(X).
Further, there is just one way to piece the fragments together. Thus, diagrammatically,

Co(R)
** ''

. . . // Co(K2) // Co(K1)

Z

f2

;;v
v

v
v

v

f1

44jjjjjjjjjj
z→Fz

cc

Thus, Co(X) = limn C
o(Kn) is a Fréchet space. Similarly, Ck(R) = limn C

k(Kn) is a Fréchet space.

[13.5.1] Remark: The question of whether the restriction maps Co(Kn)→ Co(Kn−1) or Co(R)→ Co(Kn)
are surjective need not be addressed.

Unsurprisingly, we have

[13.5.2] Theorem: d
dx : Ck(R)→ Ck−1(R) is continuous.

Proof: The argument is structurally similar to the argument for d
dx : C∞[a, b]→ C∞[a, b]. The differentiations

d
dx : Ck(Kn)→ Ck−1(Kn) are a compatible family, fitting into a commutative diagram

Ck−1(R)
** **

. . . // Ck−1(Kn+1) // Ck−1(Kn) // . . .

Ck(R)
55 44. . . // Ck(Kn+1) //

d
dx

OO

Ck(Kn) //

d
dx

OO

. . .

Composing the projections with d/dx gives (dashed) induced maps from Ck(R) to the limitands, inducing a
unique (dotted) continuous linear map to the limit, as in
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Ck−1(R)
** **

. . . // Ck−1(Kn+1) // Ck−1(Kn) // . . .

Ck(R)

55jjjjjjjjj

22ffffffffffffffff

d
dx

OO

55 44. . . // Ck(Kn+1) //

OO

Ck(Kn) //

OO

. . .

That is, there is a unique continuous linear map d
dx : Ck(R)→ Ck−1(R) compatible with the differentiations

on finite intervals. ///

Similarly,

[13.5.3] Theorem: C∞(R) = limk C
k(R), also C∞(R) = limn C

∞(Kn), and d
dx : C∞(R) → C∞(R) is

continuous.

Proof: From C∞(R) = limk C
k(R) we can obtain the induced map d/dx, as follows. Starting with the

commutative diagram

C∞(R)
)) **

. . . // Ck−1(R) // Ck−1(R) // . . .

C∞(R)
55 55. . . // Ck(R) //

d
dx

99rrrrrrrrrr
Ck(R) //

d
dx

;;wwwwwwwwww
. . .

Composing the projections with d/dx gives (dashed) induced maps from Ck(R) to the limitands, inducing a
unique (dotted) continuous linear map to the limit, as in

C∞(R)
)) **

. . . // Ck−1(R) // Ck−1(R) // . . .

C∞(R)

55kkkkkkkk

33gggggggggggggg

d
dx

OO

55 55. . . // Ck(R) //

99rrrrrrrrrr
Ck(R) //

;;wwwwwwwwww
. . .

A novelty is the assertion that (projective) limits commute with each other, so that the limits of Ck(Kn) in
k and in n can be taken in either order. Generally, in a situation

limj(limi Vij)
++f b _ \ X ((l j h e c a _ ] [ Y V T R

. . . // limi Vi2





��

// limi Vi1





��

limi(limj Vij)

��

�



�
�

(
1

:

��

�
�




�
�

(

1
6

;
?

...

��

...

��

...

��
limj V2j 22 44

��

. . . // V22
//

��

V21

��
limj V1j 22 44. . . // V12

// V11

the maps limj(limi Vij)→ Vk` induce a map limj(limi Vij)→ lim` Vk`, which induce a unique
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limj(limi Vij) → limk(lim` Vk`). Similarly, a unique map is induced in the opposite direction, and, for the
usual reason, these are mutual inverses. ///

[13.5.4] Claim: For fixed x ∈ R and fixed non-negative integer k, the evaluation map f → f (k)(x) is
continuous.

Proof: Take n large enough so that x ∈ [−n, n]. Evaluation f → f (k)(x) was shown in [13.1] to be continuous
on Ck[−n, n]. Composing with the continuous C∞(R)→ Ck(R)→ Ck[−n, n] gives the continuity. ///

13.6 Banach completion Ck
o (R) of Ck

c (R)

It is reasonable to ask about the completion of the space Coc (R) of compactly-supported continuous
functions in the metric given by the sup-norm, and, more generally, about the completion of the space
Ckc (R) of compactly-supported k-times continuously differentiable functions in the metric given by the sum
of the sups of the k derivatives.

The spaces Ckc (R) are not complete with those norms, because supports can leak out to infinity: for
example, in fix any u such that u(x) = 1 for |x| ≤ 1, 0 ≤ u(x) ≤ 1 for 1 ≤ |x| ≤ 2, and u(x) = 0 for |x| ≥ 2.
Then

f(x) =

∞∑
n=0

u(x− n)

n2

converges in sup-norm, the partial sums have compact support, but the whole does not have compact support.

[13.6.1] Claim: The completion of the space Coc (R) of compactly-supported continuous functions in the
metric given by the sup-norm |f |Co = supx∈R |f(x)| is the space Coo (R) of continuous functions f vanishing
at infinity, in the sense that, given ε > 0, there is a compact interval K = [−N,N ] ⊂ X such that |f(x)| < ε
for x 6∈ K.

[13.6.2] Remark: Since we need to distinguish compactly-supported functions Coc (R) from functions Coo (R)
going to 0 at infinity, we cannot use the latter notation for the former, unlike some sources.

Proof: This is almost a tautology. Given f ∈ Coo (R), given ε > 0, let K = [−N,N ] ⊂ X be compact such
that |f(x)| < ε for x 6∈ K. It is easy to make an auxiliary function ϕ that is continuous, compactly-supported,
real-valued function such that ϕ = 1 on K and 0 ≤ ϕ ≤ 1 on X. Then f − ϕ · f is 0 on K, and of absolute
value |ϕ(x) · f(x)| ≤ |f(x)| < ε off K. That is, supR |f − ϕ · f | < ε, so Coc (R) is dense in Coo (R).

On the other hand, a sequence fi in Coc (R) that is a Cauchy sequence with respect to sup norm gives a
Cauchy sequence in each Co[a, b], and converges uniformly pointwise to a continuous function on [a, b] for
every [a, b]. Let f be the pointwise limit. Given ε > 0 take io such that supx |fi(x) − fj(x)| < ε for all
i, j ≥ io. With K the support of fio ,

sup
x6∈K
|f(x)| ≤ sup

x 6∈K
|f(x)− fio(x)|+ sup

x 6∈K
|fio(x)| = sup

x 6∈K
|f(x)− fio(x)|+ 0 ≤ ε < 2ε

showing that f goes to 0 at infinity. ///

[13.6.3] Corollary: Continuous functions vanishing at infinity are uniformly continuous.

Proof: For f ∈ Coo (R), given ε > 0, let g ∈ Coc (R) be such that sup |f − g| < ε. By the uniform continuity of
g, there is δ > 0 such that |x− y| < δ implies |g(x)− g(y)| < ε, and

|f(x)− f(y)| ≤ |f(x)− g(x)|+ |f(y)− g(y)|+ |g(x)− g(y)| < 3ε

as desired. ///

The arguments for Ck(R) are completely parallel: the completion of the space Ckc (R) of compactly
supported k-times continuously differentiable functions is the space Ckc (R) of k-times continuously
differentiable functions whose k derivatives go to zero at infinity. Similarly,

[13.6.4] Corollary: The space of Ck functions whose k derivatives all vanish at infinity have uniformly
continuous derivatives. ///
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[13.6.5] Claim: The limit limk C
k
o (R) is the space C∞o (R) of smooth functions all whose derivatives go to 0

at infinity. All those derivatives are uniformly continuous.

Proof: As with C∞[a, b] =
⋂
k C

k[a, b] = limk C
k[a, b], by its very definition C∞o (R) is the intersection of the

Banach spaces Cko (R). For any compatible family Z → Cko (R), the compatibility implies that the image of
Z is in that intersection. ///

[13.6.6] Corollary: The space C∞o (R) is a Fréchet space, so is complete.

Proof: As earlier, countable limits of Banach spaces are Fréchet. ///

[13.6.7] Remark: In contrast, the space of merely bounded continuous functions does not behave so
well. Functions such as f(x) = sin(x2) are not uniformly continuous. This has the bad side effect that
supx |f(x + h) − f(x)| = 1 for all h 6= 0, which means that the translation action of R on that space of
functions is not continuous.

13.7 Rapid-decay functions, Schwartz functions

A continuous function f on R is of rapid decay when

sup
x∈R

(1 + x2)n · |f(x)| < +∞ (for every n = 1, 2, . . .)

With norm νn(f) = supx∈R(1 + x2)n · |f(x)|, let the Banach space Bn be the completion of Coc (R) with
respect to the metric νn(f − g) associated to νn.

[13.7.1] Lemma: The Banach space Bn is isomorphic to Coo (R) by the map T : f → (1 + x2)n · f . Thus,
Bn is the space of continuous functions f such that (1 + x2)n · f(x) goes to 0 at infinity.

Proof: By design, νn(f) is the sup-norm of Tf . Thus, the result [13.6] for Coo (R) under sup-norm gives this
lemma. ///

[13.7.2] Remark: Just as we want the completion Coo (R) of Coc (R), rather than the space of all
bounded continuous functions, we want Bn rather than the space of all continuous functions f with
supx(1 + x2) · |f(x)| < ∞. This distinction disappears in the limit, but it is only via the density of Coc (R)
in every Bn that it follows that Coc (R) is dense in the space of continuous functions of rapid decay, in the
corollary below.

[13.7.3] Claim: The space of continuous functions of rapid decay on R is the nested intersection, thereby
the limit, of the Banach spaces Bn, so is Fréchet.

Proof: The key issue is to show that rapid-decay f is a νn-limit of compactly-supported continuous functions
for every n. For each fixed n the function fn = (1 + x2)nf is continuous and goes to 0 at infinity. From
[13.6], fn is the sup-norm limit of compactly supported continuous functions Fnj . Then (1 + x2)−nFnj → f
in the topology on Bn, and f ∈ Bn. Thus, the space of rapid-decay functions lies inside the intersection.

On the other hand, a function f ∈
⋂
k Bk is continuous. For each n, since (1 + x2)n+1|f(x)| is continuous

and goes to 0 at infinity, it has a finite sup σ, and

sup
x

(1 + x2)n · |f(x)| = sup
x

(1 + x2)−1 · (1 + x2)n+1|f(x)| ≤ sup
x

(1 + x2)−1 · σ < +∞

This holds for all n, so f is of rapid decay. ///

[13.7.4] Corollary: The space Coc (R) is dense in the space of continuous functions of rapid decay.

Proof: That every Bn is a completion of Coc (R) is essential for this argument.
Use the model of the limit X = limnBn as the diagonal in

∏
nBn, with the product topology restricted

to X. Let pn :
∏
k Bk → Bn be the projection. Thus, given x ∈ X, there is a basis of neighborhood N of x

in X of the form N = X ∩U for an open U in the product of the form U =
∏
n Un with all but finitely-many

Un = Bn. Thus, for y ∈ Coc (R) such that pn(y) ∈ pn(N) = pn(U) for the finitely-many indices such that
Un 6= Bn, we have y ∈ N . That is, approximating x in only finitely-many of the limitands Bn suffices to
approximate x in the limit. Thus, density in the limitands Bn implies density in the limit. ///
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[13.7.5] Remark: The previous argument applies generally, showing that a common subspace dense in all
limitands is dense in the limit.

Certainly the operator of multiplication by 1 + x2 preserves Coc (R), and is a continuous map Bn → Bn−1.
Much as d/dx was treated earlier,

[13.7.6] Claim: Multiplication by 1 + x2 is a continuous map of the space of continuous rapidly-decreasing
functions to itself.

Proof: Let T denote the multiplication by 1+x2, and let B = limnBn be the space of rapid-decay continuous
functions. From the commutative diagram

B
&& ''

. . . // Bn // Bn−1
// . . .

B 88 77. . . // Bn //

T
<<yyyyyyyy
Bn−1

//

T

<<yyyyyyyyy
. . .

composing the projections with T giving (dashed) induced maps from B to the limitands, inducing a unique
(dotted) continuous linear map to the limit, as in

B
&& ''

. . . // Bn // Bn−1
// . . .

B

77nnnnnnnn

44iiiiiiiiiiii

T

OO

88 77. . . // Bn //

<<yyyyyyyy
Bn−1

//

<<yyyyyyyyy
. . .

giving the continuous multiplication map on the space of rapid-decay continuous functions. ///

Similarly, adding differentiability conditions, the space of rapidly decreasing Ck functions is the space of
k-times continuously differentiable functions f such that, for every ` = 0, 1, 2, . . . , k and for every n = 1, 2, . . .,

sup
x∈R

(1 + x2)n · |f (`)(x)| < +∞

Let Bkn be the completion of Ckc (R) with respect to the metric from the norm

νkn(f) =
∑

0≤`≤k

sup
x∈R

(1 + x2)n|f (`)(x)|

Essentially identical arguments give

[13.7.7] Claim: The space of Ck functions of rapid decay on R is the nested intersection, thereby the limit,
of the Banach spaces Bkn, so is Fréchet. ///

[13.7.8] Corollary: The space Ckc (R) is dense in the space of Ck functions of rapid decay. ///

Identifying Bkn as a space of Ck functions with additional decay properties at infinity gives the obvious
map d

dx : Bkn → Bk−1
n .

[13.7.9] Claim: d
dx : Bkn → Bk−1

n is continuous.

Proof: Since Bkn is the closure of Ckc (R), it suffices to check the continuity of d
dx : Ckc (R)→ Ck−1

c (R) for the
Bkn and Bk−1

n topologies. As usual, that continuity was designed into the situation. ///

The space of Schwartz functions is

S (R) = {smooth functions f all whose derivatives are of rapid decay}

One reasonable topology on S (R) is as a limit

S (R) =
⋂
k

{Ck functions of rapid decay} = lim
k
{Ck functions of rapid decay}
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As a countable limit of Fréchet spaces, this makes S (R) Fréchet.

[13.7.10] Corollary: d
dx : S (R)→ S (R) is continuous.

Proof: This is structurally the same as before: letting Bk∞ be the space of Ck functions of rapid decay, from
the commutative diagram

S (R)
(( ((

. . . // Bk−1
∞

// Bk−1
∞

// . . .

S (R) 77 66. . . // Bk∞ //

d
dx

OO

Bk∞ //

d
dx

OO

. . .

composing the projections with d/dx to give (dashed) induced maps from S (R) to the limitands, inducing
a unique (dotted) continuous linear map to the limit:

S (R)
(( ((

. . . // Bk−1
∞

// Bk−2
∞

// . . .

S (R)

66mmmmmmmm

33hhhhhhhhhhhhh

d
dx

OO

77 66. . . // Bk∞ //

OO

Bk−1
∞

//

OO

. . .

as desired. ///

Finally, to induce a canonical continuous map T : S (R) → S (R) by multiplication by 1 + x2, examine
the behavior of this multiplication map on the auxiliary spaces Bkn and its interaction with d

dx :

[13.7.11] Claim: T : Bkn → Bk−1
n−1 is continuous.

Proof: Of course,∣∣∣ d
dx

(
(1 + x2) · f(x)

)∣∣∣ =
∣∣∣2x · f(x) + (1 + x2) · f ′(x)

∣∣∣ ≤ 2 · (1 + x2) · |f(x)|+ (1 + x2) · |f ′(x)|

Thus, T : Ckc (R) → Ck−1
c (R) is continuous with the Bkn and Bk−1

n−1 topologies. For general reasons, cofinal
limits are isomorphic, so the same argument gives a unique continuous linear map S (R). ///

It is worth noting

[13.7.12] Claim: Compactly-supported smooth functions are dense in S .

Proof: At least up to rearranging the order of limit-taking, the description of S above is as a limit of spaces
in each of which compactly-supported smooth functions are dense. Thus, we claim a general result: for a
limit X = limiXi and compatible maps fi : V → Xi with dense image, the induced map f : V → X has
dense image. As in [13.2], the limit is the diagonal

D = {{xi} ∈
∏
i

Xi : xi → xi−1, for all i} ⊂
∏
i

Xi

with the subspace topology from the product. Suppose we are given a finite collection of neighborhoods
xi1 ∈ Ui1 ⊂ Xi1 , . . . , xin ∈ Uin ⊂ Xin , with xij → xik if ij ≥ ik. Take i = maxj ij , and U a neighborhood
of xi such that the image of U is inside every Uij , by continuity. Since the image of V is dense in Xi, there
is v ∈ V such that fi(v) ∈ U . By compatibility, fij (v) ∈ Uij for all j. Thus, the image of V is dense in the
limit. ///
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13.8 Non-Fréchet colimit C∞ of Cn, quasi-completeness

Toward topologies in which Coc (R) and C∞c (R) could be complete, we consider first

C∞ =
⋃
n

Cn

where in : Cn ⊂ Cn+1 by in : (x1, . . . , xn)→ (x1, . . . , xn, 0). We want to topologize C∞ so that it is complete,
in a suitable sense. Above, we saw that finite-dimensional complex vectorspaces have unique vectorspace
topologies, so the only question is how to fit them together.

A countable ascending union of complete metric topological vector spaces, each a proper closed subspace
of the next, such as C∞ =

⋃
Cn, cannot be a complete metric space, because it is exactly presented as

a countable union of nowhere-dense closed subsets, contradicting the conclusion of the Baire Category
Theorem. The function spaces Coc (R) and C∞c (R) are also of this type, being the ascending unions of
spaces CoK or C∞K , continuous or smooth functions with supports inside compact K ⊂ R.

Thus, we cannot hope to give such space metric topologies for which they are complete.
Nevertheless, ascending unions are a type of colimit, just as descending intersections are a type of limit.

That is, the topology on C∞ is characterized by a universal property: for every collection of maps fn : Cn → Z
with the compatibility in ◦ fn = fn+1, there is a unique f : C∞ → Z through which all fn’s factor. That is,
given a commutative diagram

C1 //
%%

((QQQQQQQQ C2 // ((

!!B
B

B
B . . . C∞

Z

there is a unique (dotted) map C∞ → Z giving a commutative diagram

C1 //
%%

((QQQQQQQQ C2 // ((

!!B
B

B
B . . . C∞

}}
Z

To argue that an ascending union X =
⋃
nXn with X1 ⊂ X2 ⊂ . . . is an example of a colimit, observe

that every x ∈ X lies in some Xn, so all values f(x) for a map f : X → Z are completely determined by
the restrictions of f to the limitands Xn. Thus, on one hand, given a compatible family fn : Xn → Z, there
is at most one compatible f : X → Z. On the other hand, a compatible family fn : Xn → Z defines a map
X → Z: given x ∈ X, take n sufficiently large so that x ∈ Xn, and define f(x) = fn(x). The compatibility
assures that it doesn’t matter which sufficiently large n we use.

For the topology of C∞, the colimit characterization has a possibly-counterintuitive consequence:

[13.8.1] Claim: Every linear map from the space C∞ = colimnCn with the colimit topology to any
topological vectorspace is continuous.

Proof: Given arbitrary linear f : C∞ → Z, composition with inclusion gives a compatible family of linear
maps fn : Cn → Z. From [13.4], every linear map from a finite-dimensional space is continuous. The
collection {fn} induces a unique continuous map F : C∞ → Z such that F ◦ in : Cn → Z is the same as
f ◦ in. In general, this might not be force f = F . However, because X is an ascending union, the values of
both F and f are completely determined by their values on the limitands, and these are the same. Thus,
f = F . ///

The uniqueness argument for locally convex colimits of locally convex topological vectorspaces, that there
is at most one such topology, is identical to the uniqueness argument for limits in [13.2] with arrows reversed.

[13.8.2] Remark: The fact that a colimit of finite-dimensional spaces has a unique canonical topology, from
which every linear map from such a colimit is continuous, is often misunderstood and misrepresented as
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suggesting that there is no topology on that colimit. Again, there is a unique canonical topology, from which
every linear map is continuous.

To prove existence of colimits, just as limits are subobjects of products, colimits are quotients of coproducts,
as follows. A locally convex colimit of topological vector spaces Xα with transition maps jαβ : Xα → Xβ is
the quotient of the locally convex coproduct X of the Xα by the closure of the subspace Z spanned by vectors

jα(xα)− (jβ ◦ jαβ )(xα) (for all α < β and xα ∈ Xα)

Annihilation of these differences in the quotient forces the desired compatibility relations. Obviously,
quotients of locally convex spaces are locally convex.

Locally convex coproducts X of topological vector spaces Xα are coproducts (also called direct sums) of

the vector spaces Xα topologized by the diamond topology, described as follows. [78] For a collection Uα of
convex neighborhoods of 0 in the Xα, let

U = convex hull in X of the union of jα(Uα) (with jα : Xα → X the αth canonical map)

The diamond topology has local basis at 0 consisting of such U . Thus, it is locally convex by construction.
Closedness of points follows from the corresponding property of the Xα. Thus, existence of a locally convex
coproduct of locally convex spaces is assured by the construction.

A countable colimit of a family V1 → V2 → . . . of topological vectorspaces is a strict colimit, or strict
inductive limit, when each Vi → Vi+1 is an isomorphism to its image, and each image is closed. A strict
colimit of Fréchet spaces is called an LF-space.

Just to be sure:

[13.8.3] Claim: In a colimit indexed by positive integers V = colimVi, if every transition Vi → Vi+1 is
injective, then every limitand Vi injects to the colimit V . Further, the colimit is the ascending union of the
limitands Vi, suitably topologized.

Proof: In effect, the argument presents the colimit corresponding to an ascending union more directly, not
as a quotient of the coproduct, although it is convenient to already have existence of the colimit. Certainly
each Vi injects to W =

⋃
n Vn. We will give W a locally convex topology so that every inclusion Vi →W is

continuous. The universal property of the colimit produces a unique compatible map V → W , so every Vi
must inject to V itself.

Since the maps ji of Vi to the colimit V are injections, the ascending union W injects to V by j(w) = ji(w)
for any index i large enough so that w ∈ Vi. The compatibility of the maps among the Vi assures that j is well-
defined. We claim that j(W ) with the subspace topology from V , and the inclusions Vi → ji(Vi) ⊂ j(W ),
give a colimit of the Vi. Indeed for any compatible, family fi : Vi → Z and induced f : V → Z, the
restriction of f to j(W ) gives a map j(W )→ Z through which the fi factor. Thus, in fact, such a colimit is
the ascending union with a suitable topology.

Now we describe a topology on the ascending union W so that all inclusions Vi → W are continuous.
Give W a local basis {U} at 0, by taking arbitrary convex opens Ui ⊂ Vi containing 0, and letting U be
the convex hull of

⋃
i Ui. Every injection Vi → W is continuous, because the inverse image of such U ∩ Vi

contains Ui, giving continuity at 0.
To be sure that points are closed in W , given 0 6= x ∈W , we find a neighborhood of 0 in W not containing

x. Let io be the first index such that x ∈ Vio . By Hahn-Banach, there is a continuous linear functional λio on
Vio such that λio(x) 6= 0. Without loss of generality, λio(x) = 1 and |λio | = 1. Use Hahn-Banach to extend
λio to a continuous linear functional λi on Vi for every i ≥ io, with |λi| ≤ 1. λio gives a continuous linear
functional on Vi for i < io by composition with the injection Vi → Vio . Then Ui = {y ∈ Vi : |λi(y)| < 1} is
open in Vi and does not contain x, for all i. The convex hull of the ascending union

⋃
i Ui is just

⋃
i Ui itself,

so does not contain x.

[78] The product topology of locally convex topological vector spaces is locally convex, whether in the category of

locally convex topological vector spaces or in the larger category of not-necessarily-locally-convex topological vector

spaces. However, coproducts behave differently: the locally convex coproduct of uncountably many locally convex

spaces is not a coproduct in the larger category of not-necessarily-locally-convex spaces. This already occurs with an

uncountable coproduct of lines.
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We did not quite prove that this topology is exactly the colimit topology, but we will never need that fact.
///

Typical colimit topologies are not complete in the strongest possible sense (see below), but are quasi-
complete, a property sufficient for all applications. To describe quasi-completeness, we need a notion of
boundedness in general topological vectorspaces, not merely metrizable ones. A subset B of a topological
vector space V is bounded when, for every open neighborhood N of 0 there is to > 0 such that B ⊂ tN for
every t ≥ to. A space is quasi-complete when every bounded Cauchy net is convergent.

Nothing new for metric spaces:

[13.8.4] Lemma: Complete metric spaces are quasi-complete. In particular, Cauchy nets converge, and
contain cofinal sequences converging to the same limit.

Proof: Let {si : i ∈ I} be a Cauchy net in X. Given a natural number n, let in ∈ I be an index such that
d(xi, xj) <

1
n for i, j ≥ in. Then {xin : n = 1, 2, . . .} is a Cauchy sequence, with limit x. Given ε > 0, let

j ≥ in be also large enough such that d(x, xj) < ε. Then

d(x, xin) ≤ d(x, xj) + d(xj , xin) < ε+
1

n
(for every ε > 0)

Thus, d(x, xin) ≤ 1
n . The original Cauchy net also converges to x: given ε > 0, for n large enough so that

ε > 1
n ,

d(xi, x) ≤ d(xi, xin) + d(xin , x) < ε+ ε (for i ≥ in)

with the strict inequality coming from d(xin , x) < ε. ///

[13.8.5] Theorem: A bounded subset of an LF-space X = colimnXn lies in some limitand Xn. An LF-space
is quasi-complete.

Proof: Let B be a bounded subset of X. Suppose B does not lie in any Xi. Then there is a sequence
i1, i2, . . . of positive integers and xi` in Xi` ∩B with xi` not lying in Xi`−1. Using X =

⋃
j Xi` , without loss

of generality, suppose that i` = `.
By the Hahn-Banach theorem and induction, using the closedness of Xi−1 in Xi, there are continuous

linear functionals λi on Xi’s such that λi(xi) = i and the restriction of λi to Xi−1 is λi−1, for example. Since
X is the colimit of the Xi, this collection of functionals exactly describes a unique compatible continuous
linear functional λ on X.

But λ(B) is bounded since B is bounded and λ is continuous, precluding the possibility that λ takes on all
positive integer values at the points xi of B. Thus, it could not have been that B failed to lie inside some
single Xi. The strictness of the colimit implies that B is bounded as a subset of Xi, proving one direction
of the equivalence. The other direction of the equivalence is less interesting.

Thus a bounded Cauchy net lies in some limitand Fréchet space Xn, so is convergent there, since Fréchet
spaces are complete. ///

[13.8.6] Remark: Strict inductive limits of finite-dimensional spaces do appear as natural function spaces,
for example the Schwartz space on Qp, as in [13.17].

13.9 Non-Fréchet colimit C∞c (R) of Fréchet spaces

The space of compactly-supported continuous functions

Coc (R) = compactly-supported continuous functions on R

is an ascending union of the subspaces

Co[−n,n] = {f ∈ Co(R) : sptf ⊂ [−n, n]}

Each space Co[−n,n] is a Banach space, being a closed subspace of the Banach space Co[−n, n], further

requiring vanishing of the functions on the boundary of [−n, n]. A closed subspace of a Banach space is a
Banach space. Thus, Coc (R) is an LF-space, and is quasi-complete.
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Similarly,
Ckc (R) = compactly-supported Ck functions on R

is an ascending union of the subspaces

Ck[−n,n] = {f ∈ Ck(R) : sptf ⊂ [−n, n]}

Each space Ck[−n,n] is a Banach space, being a closed subspace of the Banach space Ck[−n, n], further

requiring vanishing of the functions and derivatives on the boundary of [−n, n]. A closed subspace of a
Banach space is a Banach space. Thus, Ckc (R) is an LF-space, and is quasi-complete.

The space of test functions is

D(R) = C∞c (R) = compactly-supported C∞ functions on R

is an ascending union of the subspaces

D[−n,n] = C∞[−n,n] = {f ∈ C∞(R) : sptf ⊂ [−n, n]}

Each space D[−n,n] is a Fréchet space, being a closed subspace of the Fréchet space C∞[−n, n], by further
requiring vanishing of the functions and derivatives on the boundary of [−n, n]. A closed subspace of a
Fréchet space is a Fréchet space. Thus, D(R) = C∞c (R) is an LF-space, and is quasi-complete.

The operator d
dx : Ck[−n, n] → Ck−1[−n, n] is continuous, and preserves the vanishing conditions at the

endpoints, so restricts to a continuous map d
dx : Ck[−n,n] → Ck−1

[−n,n] on the Banach sub-spaces of functions

vanishing suitably at the endpoints. Composing with the inclusions Ck−1
[−n,n] → Ck−1

c (R) gives a compatible

family of continuous maps d
dx : Ck[−n,n] → Ck−1

c (R). This induces a unique continuous map on the colimit:
d
dx : Ckc (R)→ Ck−1

c (R).

Similarly, d
dx : C∞[−n, n] → C∞[−n, n] is continuous, and preserves the vanishing conditions at the

endpoints, so restricts to a continuous map d
dx : D[−n,n] → D[−n,n] on the Frechet sub-spaces of functions

vanishing to all orders at the endpoints. Composing with the inclusions D[−n,n] → D(R) gives a compatible

family of continuous maps d
dx : D[−n,n] → D(R). This induces a unique continuous map on the colimit:

d
dx : D(R)→ D(R). Diagrammatically,

. . . // C∞[−n,n]
//

**

d
dx

((QQQQQQQQ
d
dx

��

. . . D(R)

d
dx

��
. . . // C∞[−n,n]

//
55. . . D(R)

That is, d
dx is continuous in the LF-space topology on test functions D(R) = C∞c (R).

[13.9.1] Claim: For fixed x ∈ R and non-negative integer k, the evaluation map f → f (k)(x) on
D(R) = C∞c (R) is continuous.

Proof: This evaluation map is continuous on C∞[−n, n] for every large-enough n so that x ∈ [−n, n], so is
continuous on the closed subspace D[−n,n] of C∞[−n, n]. The inclusions among these spaces are extend-by-0,
so the evaluation map is the 0 map on D[−n,n] if |x| ≥ n. These maps to C fit together into a compatible
family, so extend uniquely to a continuous linear map of the colimit D(R) to C. ///

[13.9.2] Claim: For F ∈ C∞(R), the map f → F · f is a continuous map of D(R) to itself.

Proof: By the colimit characterization, it suffices to show that such a map is continuous on C∞[−n,n], or on the

larger Fréchet space C∞[−n, n] without vanishing conditions on the boundary. This is the limit of Ck[−n, n],
so it suffices to show that f → F · f is a continuous map Ck[−n, n] → Ck[−n, n] for every k. The sum of
sups of derivatives is∑

0≤i≤k

sup
|x|≤n

∣∣∣( d
dx

)i
(Ff)(x)

∣∣∣ ≤ 2k
( ∑

0≤i≤k

sup
|x|≤n

|F (i)(x)|
)
·
( ∑

0≤i≤k

sup
|x|≤n

|f (i)(x)|
)
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Although F and its derivatives need not be bounded, this estimate only uses their boundedness on [−n, n].
This is a bad estimate, but sufficient for continuity. ///

[13.9.3] Claim: The inclusion D(R)→ S (R) is continuous, and the image is dense.

Proof: At least after changing order of limits, S (R) is described as a limit of spaces in which D(R) is dense,
so D(R) is dense in that limit.

The slightly more serious issue is that D(R) with its LF-space topology maps continuously to S (R). Since
D(R) is a colimit, we need only check that the limitands (compatibly) map continuously. On a limitand
C∞[−n,n], the norms

νN,k(f) = sup
x

(1 + x2)N · |f (k)(x)|

differ from the norms supx |f (k)(x)| defining the topology on C∞[−n,n] merely by constants, namely, the sups

of (1 + x2)N on [−n, n]. Thus, we have the desired continuity on the limitands. ///

13.10 LF-spaces of moderate-growth functions

The space Comod(R) of continuous functions of moderate growth on R is

Comod(R) = {f ∈ Co(R) : sup
x∈R

(1 + x2)−N · |f(x)| < +∞ for some N}

Literally, it is an ascending union

Comod(R) =
⋃
N

{
f ∈ Co(R) : sup

x∈R
(1 + x2)−N · |f(x)| < +∞

}
However, it is ill-advised to use the individual spaces

BN =
{
f ∈ Co(R) : sup

x∈R
(1 + x2)−N · |f(x)| < +∞

}
with norms νN (f) = supx∈R (1 + x2)−N · |f(x)| because Coc (R) is not dense in these spaces BN . Indeed,
in the simple case N = 0, the norm ν0 is the sup-norm, and the sup-norm closure of Coc (R) is continuous
functions going to 0 at infinity, which excludes many bounded continuous functions.

In particular, there are many bounded continuous functions f which are not uniformly continuous, and
the translation action of R on such functions cannot be continuous: no matter how small δ > 0 is,
supx∈R |f(x+ δ)− f(x)| may be large. For example, f(x) = sin(x2) has this feature.

This difficulty does not mean that the characterization of the whole set of moderate-growth functions is
incorrect, nor that the norms νN are inappropriate, but only that the Banach spaces BN are too large, and
that the topology of the whole should not be the strict colimit of the Banach spaces BN . Instead, take the
smaller

VN = completion of Coc (R) with respect to νN

As in the case of completion of Coc (R) with respect to sup-norm ν0,

[13.10.1] Claim: VN = {continuous f such that (1 + x2)−Nf(x) goes to 0 at infinity}. ///

Of course, if (1 + x2)−Nf(x) is merely bounded, then (1 + x2)−(N+1)f(x) then goes to 0 at infinity. Thus,
as sets, BN ⊂ VN+1, but this inclusion cannot be continuous, since Coc (R) is dense in VN+1, but not in BN .
That is, there is a non-trivial effect on the topology in setting

Comod = colimNVN

instead of the colimit of the too-large spaces BN .
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13.11 Seminorms and locally convex topologies

So far, the vectorspace topologies have been described as Banach spaces, limits of Banach spaces, and
colimits of limits of Banach spaces. By design, these descriptions facilitate proof of (quasi-) completeness.
Weaker topologies are not usually described in this fashion. For example, for a topological vectorspace V ,
with (continuous) dual

V ∗ = {continuous linear maps V → C}

the weak dual topology [79] on V ∗ has a local sub-basis at 0 consisting of sets

U = Uv,ε = {λ ∈ V ∗ : |λ(v)| < ε} (for fixed v ∈ V and ε > 0)

Unless V is finite-dimensional, this topology on V ∗ is much coarser than a Banach, Fréchet, or LF-topology.
The map λ → |λ(v)| is a natural example of a seminorm. It is not a norm, because λ(v) = 0 can easily
happen.

Seminorms are a general device to describe topologies on vectorspaces. These topologies are invariably
locally convex, in the sense of having a local basis at 0 consisting of convex sets.

Description of a vectorspace topology by seminorms does not generally give direct information about
completeness. Nevertheless, we can prove quasi-completeness for an important class of examples, just below.

A seminorm ν on a complex vectorspace V is a real-valued function on V so that ν(x) ≥ 0 for all x ∈ V
(non-negativity), ν(αx) = |α| · ν(x) for all α ∈ C and x ∈ V (homogeneity), and ν(x+ y) ≤ ν(x) + ν(y) for
all x, y ∈ V (triangle inequality). This differs from the notion of norm only in the significant point that we
allow ν(x) = 0 for x 6= 0.

To compensate for the possibility that an individual seminorm can be 0 on a particular non-zero vector,
since we want Hausdorff topologies, we mostly care about separating families {νi : i ∈ I} of semi-norms: for
every 0 6= x ∈ V there is νi so that νi(x) 6= 0.

[13.11.1] Claim: The collection Φ of all finite intersections of sets

Ui,ε = {x ∈ V : νi(x) < ε} (for ε > 0 and i ∈ I)

is a local basis at 0 for a locally convex topology on V .

Proof: As expected, we intend to define a topological vector space topology on V by saying a set U is open
if and only if for every x ∈ U there is some N ∈ Φ so that x + N ⊂ U This would be the induced topology
associated to the family of seminorms.

That we have a topology does not use the hypothesis that the family of seminorms is separating, although
points will not be closed without the separating property. Arbitrary unions of sets containing sets of the
form x + N containing each point x have the same property. The empty set and the whole space V are
visibly in the collection. The least trivial issue is to check that finite intersections of such sets are again of
the same form. Looking at each point x in a given finite intersection, this amounts to checking that finite
intersections of sets in Φ are again in Φ. But Φ is defined to be the collection of all finite intersections of
sets Ui,ε, so this succeeds: we have closure under finite intersections, and a topology on V .

To verify that this topology makes V a topological vectorspace is to verify the continuity of vector addition
and continuity of scalar multiplication, and closed-ness of points. None of these verifications is difficult:

The separating property implies that for each x ∈ V the intersection of all the sets x+N with N ∈ Φ is
just x. Given y ∈ V , for each x 6= y let Ux be an open set containing x but not y. Then

U =
⋃
x 6=y

Ux

is open and has complement {y}, so the singleton {y} is closed.
For continuity of vector addition, it suffices to prove that, given N ∈ Φ and given x, y ∈ V there are

U,U ′ ∈ Φ so that
(x+ U) + (y + U ′) ⊂ x+ y +N

[79] The weak dual topology is traditionally called the weak-*-topology, but replacing * by dual is more explanatory.
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The triangle inequality implies that for a fixed index i and for ε1, ε2 > 0

Ui,ε1 + Ui,ε2 ⊂ Ui,ε1+ε2

Then

(x+ Ui,ε1) + (y + Ui,ε2) ⊂ (x+ y) + Ui,ε1+ε2

Thus, given

N = Ui1,ε1 ∩ . . . ∩ Uin,εn
take

U = U ′ = Ui1,ε1/2 ∩ . . . ∩ Uin,εn/2

proving continuity of vector addition.
For continuity of scalar multiplication, prove that for given α ∈ k, x ∈ V , and N ∈ Φ there are δ > 0 and

U ∈ Φ so that

(α+Bδ) · (x+ U) ⊂ αx+N (with Bδ = {β ∈ k : |α− β| < δ})

Since N is an intersection of the sub-basis sets Ui,ε, it suffices to consider the case that N is such a set.
Given α and x, for |α′ − α| < δ and for x− x′ ∈ Ui,δ,

νi(αx− α′x′) = νi((α− α′)x+ (α′(x− x′)) ≤ νi((α− α′)x) + νi(α
′(x− x′))

= |α− α′| · νi(x) + |α′| · νi(x− x′) ≤ |α− α′| · νi(x) + (|α|+ δ) · νi(x− x′)

≤ δ · (νi(x) + |α|+ δ)

Thus, for the joint continuity, take δ > 0 small enough so that

δ · (δ + νi(x) + |α|) < ε

Taking finite intersections presents no further difficulty, taking the corresponding finite intersections of the
sets Bδ and Ui,δ, finishing the demonstration that separating families of seminorms give a structure of
topological vectorspace.

Last, check that finite intersections of the sets Ui,ε are convex. Since intersections of convex sets are
convex, it suffices to check that the sets Ui,ε themselves are convex, which follows from the homogeneity and
the triangle inequality: with 0 ≤ t ≤ 1 and x, y ∈ Ui,ε,

νi(tx+ (1− t)y) ≤ νi(tx) + νi((1− t)y) = tνi(x) + (1− t)νi(y) ≤ tε+ (1− t)ε = ε

Thus, the set Ui,ε is convex. ///

The converse, that every locally convex topology is given by a family of seminorms, is more difficult:
Let U be a convex open set containing 0 in a topological vectorspace V . Every open neighborhood of 0

contains a balanced neighborhood of 0, so shrink U if necessary so it is balanced, that is, αv ∈ U for v ∈ U
and |α| ≤ 1. The Minkowski functional νU associated to U is

νU (v) = inf{t ≥ 0 : v ∈ tU}

[13.11.2] Claim: The Minkowski functional νU associated to a balanced convex open neighborhood U of 0
in a topological vectorspace V is a seminorm on V , and is continuous in the topology on V .

Proof: The argument is as expected:
By continuity of scalar multiplication, every neighborhood U of 0 is absorbing, in the sense that every

v ∈ V lies inside tU for large enough |t|. Thus, the set over which we take the infimum to define the
Minkowski functional is non-empty, so the infimum exists.
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Let α be a scalar, and let α = sµ with s = |α| and |µ| = 1. The balanced-ness of U implies the
balanced-ness of tU for any t ≥ 0, so for v ∈ tU also

αv ∈ αtU = sµtU = stU

From this,
{t ≥ 0 : αv ∈ αU} = |α| · {t ≥ 0 : αv ∈ tU}

from which follows the homogeneity property required of a seminorm:

νU (αv) = |α| · νU (v) (for scalar α)

For the triangle inequality use the convexity. For v, w ∈ V and s, t > 0 such that v ∈ sU and w ∈ tU ,

v + w ∈ sU + tU = {su+ tu′ : u, u′ ∈ U}

By convexity,

su+ tu′ = (s+ t) ·
( s

s+ t
· u+

t

s+ t
· u′
)
∈ (s+ t) · U

Thus,

νU (v + w) = inf{r ≥ 0 : v + w ∈ rU} ≤ inf{r ≥ 0 : v ∈ rU}+ inf{r ≥ 0 : w ∈ rU} = νU (v) + νU (w)

Thus, the Minkowski functional νU attached to balanced, convex U is a continuous seminorm. ///

[13.11.3] Theorem: The topology of a locally convex topological vectorspace V is given by the collection
of seminorms obtained as Minkowski functionals νU associated to a local basis at 0 consisting of convex,
balanced opens.

Proof: The proof is straightforward, once we decide to tolerate an extravagantly large collection of seminorms.
With or without local convexity, every neighborhood of 0 contains a balanced neighborhood of 0. Thus, a
locally convex topological vectorspace has a local basis X at 0 of balanced convex open sets.

We claim that every open U ∈ X can be recovered from the corresponding seminorm νU by

U = {v ∈ V : νU (v) < 1}

Indeed, for v ∈ U , the continuity of scalar multiplication gives δ > 0 and a neighborhood N of v such that
z · v − 1 · v ∈ U for |1− z| < δ. Thus, v ∈ (1 + δ)−1 · U , so

νU (v) = inf{t ≥ 0 : v ∈ t · U} ≤ 1

1 + δ
< 1

On the other hand, for νU (v) < 1, there is t < 1 such that v ∈ tU ⊂ U , since U is convex and contains 0.
Thus, the seminorm topology is at least as fine as the original.

Oppositely, the same argument shows that every seminorm local basis open

{v ∈ V : νU (v) < t}

is simply tU . Thus, the original topology is at least as fine as the seminorm topology. ///

The comparison of descriptions of topologies is straightforward, as follows. For a seminorm ν on a
topological vectorspace V , we can form a Banach space completing with respect to the pseudo-metric ν(x−y).
In particular, unlike completions with respect to genuine metrics, there can be collapsing, so that the natural
map of V to this completion need not be an injection.

[13.11.4] Claim: Let V be a topological vectorspace with topology given by a (separating) family of
seminorms S = {ν}. Order the set of finite subsets of S by inclusion, and

νF =
∑
ν∈F

ν (for finite subset F of S)
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Then V with its seminorm topology is a dense subspace of the limit limF∈Φ VF of the Banach-space
completions VF with respect to νF .

Proof: As earlier, the seminorm topology is literally the subspace topology on the diagonal copy of V in the
product of the VF .

Of course, the poset of finite subsets of S is more complicated than the poset of positive integers, so such
a limit can be large. Certainly V has a natural map to every VF . Indeed, by definition of the seminorm
topology, the open sets in V are exactly the inverse images in V of open sets in the various VF .

For F ⊂ F ′, since νF ′ ≥ νF , there is a natural continuous linear map VF ′ → VF . The maps V → VF
are compatible, in the sense that the composite V → VF ′ → VF is the same as V → VF , for F ⊂ F ′. This
induces a unique continuous linear map of V to the limit of the VF .

As in [13.2], the limit is the diagonal

D = {{vF } ∈
∏
F

VF : vF ′ → vF , for all F ′ ⊃ F} ⊂
∏
F

VF

with the subspace topology. Repeating part of an earlier argument, given a finite collection of finite subsets
F1, . . . , Fn of S, for {vF } ∈ D, take neighborhoods Ui ⊂ VFi containing vFi . Let Φ =

⋃
i Fi. The

compatibility implies that there is vΦ ∈ VΦ such that vΦ → vFi for all i. Also, there is a sufficiently
small neighborhood U of vΦ such that its image in every VFi is inside the neighborhood Ui of vFi . Since the
image of V is dense in VΦ, take v ∈ V with image inside U . Then the image of v is inside Ui for all i. Thus,
the image of V is dense in the limit. ///

Although it turns out that we only care about locally convex topological vectorspaces, there do exist
complete-metric topological vectorspaces which fail to be locally convex. This underscores the need to
explicitly specify that a Fréchet space should be locally convex. The usual example of a not-locally-convex
complete-metric space is the sequence space

`p = {x = (x1, x2, . . .) :
∑
i

|xi|p <∞}

for 0 < p < 1 with metric

d(x, y) =
∑
i

|xi − yi|p (note: no pth root, unlike the p ≥ 1 case)

This example’s interest is mostly as a counterexample to a naive presumption that local convexity is
automatic.

13.12 Quasi-completeness theorem

We have already seen that LF-spaces such as the space of test functions D(R) = C∞c (R), although not
complete metrizable, are quasi-complete. It is fortunate that most important topological vector spaces are
quasi-complete.

At the end of this section, we show that the fullest notion of completeness easily fails to hold, even for
quasi-complete spaces.

It is clear that closed subspaces of quasi-complete spaces are quasi-complete. Products and finite sums of
quasi-complete spaces are quasi-complete.

Let Hom(X,Y ) be the space of continuous linear functions from a topological vectorspace X to another
topological vectorspace Y . Give Hom(X,Y ) the topology by seminorms px,U where x ∈ X and U is a convex,
balanced neighborhood of 0 in Y , defined by

px,U (T ) = inf {t > 0 : Tx ∈ tU} (for T ∈ Hom(X,Y ))

For Y = C, this gives the weak dual topology on X∗.

[13.12.1] Theorem: For X a Fréchet space or LF-space, and Y quasi-complete, the space Hom(X,Y ), with
the topology induced by the seminorms px,U , is quasi-complete.
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Proof: Some preparation is required. A set E of continuous linear maps from one topological vectorspace X
to another topological vectorspace Y is equicontinuous when, for every neighborhood U of 0 in Y , there is a
neighborhood N of 0 in X so that T (N) ⊂ U for every T ∈ E.

[13.12.2] Claim: Let V be a strict colimit of a well-ordered countable collection of locally convex closed
subspaces Vi. Let Y be a locally convex topological vectorspace. Let E be a set of continuous linear maps
from V to Y . Then E is equicontinuous if and only if for each index i the collection of continuous linear
maps {T |Vi : T ∈ E} is equicontinuous.

Proof: Given a neighborhood U of 0 in Y , shrink U if necessary so that U is convex and balanced. For each
index i, let Ni be a convex, balanced neighborhood of 0 in Vi so that TNi ⊂ U for all T ∈ E. Let N be the
convex hull of the union of the Ni. By the convexity of N , still TN ⊂ U for all T ∈ E. By the construction
of the diamond topology, N is an open neighborhood of 0 in the coproduct, hence in the colimit, which is
a quotient of the coproduct. This gives the equicontinuity of E. The other direction of the implication is
easy. ///

[13.12.3] Claim: (Banach-Steinhaus/uniform boundedness theorem) Let X be a Fréchet space or LF-space
and Y a locally convex topological vector space. A set E of linear maps X → Y , such that every set
Ex = {Tx : T ∈ E} is bounded in Y , is equicontinuous.

Proof: First consider X Fréchet. Given a neighborhood U of 0 in Y , let A =
⋂
T∈E T

−1U . By assumption,⋃
n nA = X. By the Baire category theorem, the complete metric space X is not a countable union of

nowhere dense subsets, so at least one of the closed sets nA has non-empty interior. Since (non-zero)
scalar multiplication is a homeomorphism, A itself has non-empty interior, containing some x + N for a
neighborhood N of 0 and x ∈ A. For every T ∈ E,

TN ⊂ T{a− x : a ∈ A} ⊂ {u1 − u2 : u1, u2 ∈ U} = U − U

By continuity of addition and scalar multiplication in Y , given an open neighborhood Uo of 0, there is U
such that U − U ⊂ Uo. Thus, TN ⊂ Uo for every T ∈ E, and E is equicontinuous.

For X =
⋃
iXi an LF-space, this argument already shows that E restricted to each Xi is equicontinuous.

As in the previous claim, this gives equicontinuity on the strict colimit. ///

For the proof of the theorem on quasi-completeness, let E = {Ti : i ∈ I} be a bounded Cauchy net in
Hom(X,Y ), where I is a directed set. Of course, attempt to define the limit of the net by Tx = limi Tix. For
x ∈ X the evaluation map S → Sx from Hom(X,Y ) to Y is continuous. In fact, the topology on Hom(X,Y )
is the coarsest with this property. Therefore, by the quasi-completeness of Y , for each fixed x ∈ X the net
Tix in Y is bounded and Cauchy, so converges to an element of Y suggestively denoted Tx.

To prove linearity of T , fix x1, x2 in X, a, b ∈ C and fix a neighborhood Uo of 0 in Y . Since T is in the
closure of E, for any open neighborhood N of 0 in Hom(X,Y ), there exists

Ti ∈ E ∩ (T +N)

In particular, for any neighborhood U of 0 in Y , take

N = {S ∈ Hom(X,Y ) : S(ax1 + bx2) ∈ U, S(x1) ∈ U, S(x2) ∈ U}

Then
T (ax1 + bx2)− aT (x1)− bT (x2)

= (T (ax1 + bx2)− aT (x1)− bT (x2))− (Ti(ax1 + bx2)− aTi(x1)− bTi(x2))

since Ti is linear. The latter expression is

T (ax1 + bx2)− (ax1 + bx2) + a(T (x1)− Ti(x1) + b(T (x2)− Ti(x2)

∈ U + aU + bU

By choosing U small enough so that
U + aU + bU ⊂ Uo
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we find that
T (ax1 + bx2)− aT (x1)− bT (x2) ∈ Uo

Since this is true for every neighborhood Uo of 0 in Y ,

T (ax1 + bx2)− aT (x1)− bT (x2) = 0

which proves linearity.
Continuity of the limit operator T exactly requires equicontinuity of E = {Tix : i ∈ I}. Indeed, for each

x ∈ X, {Tix : i ∈ I} is bounded in Y , so by Banach-Steinhaus, {Ti : i ∈ I} is equicontinuous.
Fix a neighborhood U of 0 in Y . Invoking the equicontinuity of E, let N be a small enough neighborhood

of 0 in X so that T (N) ⊂ U for all T ∈ E. Let x ∈ N . Choose an index i sufficiently large so that
Tx− Tix ∈ U , via the definition of the topology on Hom(X,Y ). Then

Tx ∈ U + Tix ⊂ U + U

The usual rewriting, replacing U by U ′ such that U ′ + U ′ ⊂ U , shows that T is continuous. ///

Finally, we demonstrate that weak duals of reasonable topological vector spaces, such as infinite-
dimensional Hilbert, Banach, or Fréchet spaces, are definitely not complete in the strongest sense. That
is, in these weak duals there are Cauchy nets which do not converge.

[13.12.4] Theorem: The weak dual of a locally-convex topological vector space V is complete if and only if
every linear functional on V is continuous.

Proof: A vectorspace V can be (re-) topologized as the colimit Vinit of all its finite-dimensional subspaces.
Although the poset of finite-dimensional subspaces is much larger than the poset of positive integers, the
earlier argument still applies: this colimit really is the ascending union with a suitable topology.

[13.12.5] Claim: For a locally-convex topological vector space V the identity map Vinit → V is continuous.
That is, Vinit is the finest locally convex topological vector space topology on V .

Proof: Finite-dimensional topological vector spaces have unique topologies [13.4]. Thus, for any finite-
dimensional vector subspace X of V the inclusion X → V is continuous with that unique topology on X.
These inclusions form a compatible family of maps to V , so by the characterization of colimit there is a
unique continuous map Vinit → V . This map is the identity on every finite-dimensional subspace, so is the
identity on the underlying set V . ///

[13.12.6] Claim: Every linear functional λ : Vinit → C is continuous.

Proof: The restrictions of a given linear function λ on V to finite-dimensional subspaces are compatible with
the inclusions among finite-dimensional subspaces. Every linear functional on a finite-dimensional space is
continuous, so the characterizing property of the colimit implies that λ is continuous on Vinit. ///

[13.12.7] Claim: The weak dual V ∗ of a locally-convex topological vector space V injects continuously to
the limit of the finite-dimensional Banach spaces

V ∗Φ = completion of V ∗ under seminorm pΦ(λ) =
∑
v∈Φ

|λ(v)| (finite Φ ⊂ V )

and the weak dual topology is the subspace topology.

Proof: The weak dual topology on the continuous dual V ∗ of a topological vector space V is given by the
seminorms

pv(λ) = |λ(v)| (for λ ∈ V ∗ and v ∈ V )

The corresponding local basis is finite intersections

{λ ∈ V ∗ : |λ(v)| < ε, for all v ∈ Φ} (for arbitrary finite sets Φ ⊂ V )

These sets contain, and are contained in, sets of the form

{λ ∈ V ∗ :
∑
v∈Φ

|λ(v)| < ε} (for arbitrary finite sets Φ ⊂ V )
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Therefore, the weak dual topology on V ∗ is also given by semi-norms

pΦ(λ) =
∑
v∈Φ

|λ(v)| (finite Φ ⊂ V )

These have the convenient feature that they form a projective family, indexed by (reversed) inclusion. Let
V ∗(Φ) be V ∗ with the pΦ-topology: this is not Hausdorff, so continuous linear maps V ∗ → V ∗(Φ) descend to
maps V ∗ → V ∗Φ to the completion V ∗Φ of V ∗ with respect to the pseudo-metric attached to pΦ. The quotient
map V ∗(Φ)→ V ∗Φ typically has a large kernel, since

dimC V
∗
Φ = cardΦ (for finite Φ ⊂ V )

The maps V ∗ → V ∗Φ are compatible with respect to (reverse) inclusion Φ ⊃ Y , so V ∗ has a natural induced
map to the limΦ V

∗
Φ . Since V separates points in V ∗, V ∗ injects to the limit. The weak topology on V ∗ is

exactly the subspace topology from that limit. ///

[13.12.8] Claim: The weak dual V ∗init of Vinit is the limit of the finite-dimensional Banach spaces

V ∗Φ = completion of V ∗init under seminorm pΦ(λ) =
∑
v∈Φ

|λ(v)| (finite Φ ⊂ V )

Proof: The previous proposition shows that V ∗init injects to the limit, and that the subspace topology from
the limit is the weak dual topology. On the other hand, the limit consists of linear functionals on V , without
regard to topology or continuity. Since all linear functionals are continuous on Vinit, the limit is naturally a
subspace of V ∗init. ///

Returning to the proof of the theorem, limΦ V
∗
Φ is a closed subspace of the corresponding product, so is

complete in the fullest sense. Any other locally convex topologization Vτ of V has weak dual (Vτ )∗ ⊂ (Vinit)
∗

with the subspace topology, and the image is dense in (Vinit)
∗. Thus, unless (Vτ )∗ = (Vinit)

∗, the weak dual
V ∗τ is not complete. ///

13.13 Strong operator topology

For X and Y Hilbert spaces, the topology on Hom(X,Y ) given by seminorms

px,U (T ) = inf {t > 0 : Tx ∈ tU} (for T ∈ Hom(X,Y ))

where x ∈ X and U is a convex, balanced neighborhood of 0 in Y , is the strong operator topology. Indeed,
every neighborhood of 0 in Y contains an open ball, so this topology can also be given by seminorms

qx(T ) = |Tx|Y (for T ∈ Hom(X,Y ))

where x ∈ X. The strong operator topology is weaker than the uniform topology given by the operator
norm |T | = sup|x|≤1 |Tx|Y .

The uniform operator-norm topology makes the space of operators a Banach space, certainly simpler than
the strong operator topology, but the uniform topology is too strong for many purposes.

For example, group actions on Hilbert spaces are rarely continuous for the uniform topology: letting R
act on L2(R) by Txf(y) = f(x+ y), no matter how small δ > 0 is, there is an L2 function f with |f |L2 = 1
such that |Tδf − f |L2 =

√
2.

Despite the strong operator topology being less elementary than the uniform topology, the theorem of the
previous section [13.12] shows that Hom(X,Y ) with the strong operator topology is quasi-complete.
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13.14 Generalized functions (distributions) on R
The most immediate definition of the space of distributions or generalized functions on R is as the dual

D∗ = D(R)∗ = C∞c (R)∗ to the space D = D(R) of test functions, with the weak dual topology by seminorms
νf (u) = |u(f)| for test functions f and distributions u.

Similarly, the tempered distributions are the weak dual S ∗ = S (R)∗, and the compactly-supported
distributions are the weak dual E∗ = E(R)∗, in this context writing E(R) = C∞(R). Naming E∗ compactly-
supported will be justified below.

By dualizing, the continuous containments D ⊂ S ⊂ E give continuous maps E∗ → S ∗ → D∗. When
we know that D is dense in S and in E , it will follow that these are injections. The most straightforward
argument for density uses Gelfand-Pettis integrals, as in [14.5]. Thus, for the moment, we cannot claim that
E∗ and S ∗ are distributions, but only that they naturally map to distributions.

[13.12] shows that D∗, S ∗, and E∗ are quasi-complete, despite not being complete in the strongest possible
sense.

The description of the space of distributions as the weak dual to the space of test functions falls far short
of explaining its utility. There is a natural imbedding D(R)→ D(R)∗ of test functions into distributions, by

f → uf by uf (g) =

∫
R
f(x) g(x) dx (for f, g ∈ D(R))

That is, via this imbedding we consider distributions to be generalized functions. Indeed, [14.5] shows that
test functions D(R) are dense in D(R)∗.

The simplest example of a distribution not obtained by integration against a test function on R is the
Dirac delta, the evaluation map δ(f) = f(0). From [13.9] and other earlier results, this is continuous for the
LF-space topology on test functions.

This imbedding, and integration by parts, explain how to define d
dx on distributions in a form compatible

with the imbedding D ⊂ D∗: noting the sign, due to integration by parts,( d
dx
u
)

(f) = − u
( d
dx
f
)

(for u ∈ D∗ and f ∈ D)

[13.14.1] Claim: d
dx : D∗ → D∗ is continuous.

Proof: By the nature of the weak dual topology, it suffices to show that for each f ∈ D and ε > 0 there are
g ∈ D and δ > 0 such that |u(g)| < δ implies |( d

dxu)(f)| < ε. Taking g = d
dxf and δ = ε succeeds. ///

Multiplications by F ∈ C∞(R) give continuous maps D to itself, compatible with the imbedding D → D∗
in the sense that∫

R
(F · u)(x) f(x) dx =

∫
R
u(x) (F · f)(x) dx (for F ∈ C∞(R) and u, f ∈ D(R))

Extend this to a map D∗ → D∗ by

(F · u)(f) = u(F · f) (for F ∈ C∞, u ∈ D∗, and f ∈ D)

[13.14.2] Claim: Multiplication operators D∗ → D∗ by F ∈ C∞ are continuous.

Proof: By the nature of the weak dual topology, it suffices to show that for each f ∈ D and ε > 0 there are
g ∈ D and δ > 0 such that |u(g)| < δ implies |F · u)(f)| < ε. Taking g = F · f and δ = ε succeeds. ///

Since S is mapped to itself by Fourier transform [13.13], this gives a way to define Fourier transform on
S ∗, by a duality extending the Plancherel theorem:

û(f) = u(f̂) (for f ∈ S and u ∈ Schw∗)

Recall that the support of a function is the closure of the set on which it is non-zero, slightly complicating
the notion of support for a distribution u: support of u is the complement of the union of all open sets U
such that u(f) = 0 for all test functions f with support inside U .
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[13.14.3] Theorem: A distribution with support {0} is a finite linear combination of Dirac’s δ and its
derivatives.

Proof: Since D is a colimit of DK over K = [−n, n], it suffices to classify u in D∗K with support {0}. We
claim that a continuous linear functional on DK = limk C

k
K factors through some limitand

CkK = {f ∈ Ck(K) : f (i) vanishes on ∂K for 0 ≤ i ≤ k}

This is a special case of

[13.14.4] Claim: Let X = limnBn be a limit of Banach spaces, with the image of X dense in each Bn. A
continuous linear map T : limnBn → Z from a, to a normed space Z factors through some limitand Bn. For
Z = C, the same conclusion holds without the density assumption.

Proof: Let X = limiBi with projections pi : X → Bi. Each Bi is the closure of the image of X. By the
continuity of T at 0, there is an open neighborhood U of 0 in X such that TU is inside the open unit ball
at 0 in Z. By the description of the limit topology as the product topology restricted to the diagonal, there
are finitely-many indices i1, . . . , in and open neighborhoods Vit of 0 in Bit such that

n⋂
t=1

p−1
it

(
pitX ∩ Vit

)
⊂ U

We can make a smaller open in X by a condition involving a single limitand, as follows. Let j be any index
with j ≥ it for all t, and

N =

n⋂
t=1

p−1
it,j

(
pit,jBj ∩ Vit

)
⊂ Bj

By the compatibility p−1
it

= p−1
j ◦ p

−1
it,j

, we have pit,jN ⊂ Vit for i1, . . . , in, and p−1
j (pjX ∩N) ⊂ U . By the

linearity of T , for any ε > 0,

T (ε · p−1
j

(
pjX ∩N

)
) = ε · T (p−1

j

(
pjX ∩N

)
) ⊂ ε-ball in Z

We claim that T factors through pjX with the subspace topology from Bj . One potential issue in general is
that pj : X → Bj can have a non-trivial kernel, and we must check that ker pj ⊂ kerT . By the linearity of
T ,

T (
1

n
· p−1
j (pj ∩N)) ⊂ 1

n
-ball in Z

so

T

(⋂
n

1

n
· p−1
j (pjX ∩N)

)
⊂ 1

m
-ball in Z (for all m)

and then

T

(⋂
n

1

n
· p−1
j (pj ∩N)

)
⊂
⋂
m

1

m
-ball in Z = {0}

Thus, ⋂
n

p−1
j (pjX ∩

1

n
·N) =

⋂
n

1

n
· p−1(pjX ∩N) ⊂ kerT

Thus, for x ∈ X with pjx = 0, certainly pjx ∈ 1
n N for all n = 1, 2, . . ., and

x ∈
⋂
n

p−1
j (pjX ∩

1

n
N) ⊂ kerT

This proves the subordinate claim that T factors through pj : X → Bj via a (not necessarily continuous)
linear map T ′ : pjX → Z. The continuity follows from continuity at 0, which is

T (ε · p−1
j

(
pjX ∩N

)
) = ε · T (p−1

j

(
pjX ∩N

)
) ⊂ ε-ball in Z
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Then T ′ : pjX → Z extends to a map Bj → Z by continuity: given ε > 0, take symmetric convex
neighborhood U of 0 in Bj such that |T ′y|Z < ε for y ∈ pjX∩U . Let yi be a Cauchy net in pjX approaching
b ∈ Bj . For yi and yj inside b + 1

2U , |T ′yi − T ′yj | = |T ′(yi − yj)| < ε, since yi − yj ∈ 1
2 · 2U = U . Then

unambiguously define T ′b to be the Z-limit of the T ′yi. The closure of pjX in Bj is Bj , giving the desired
map.

When u is a functional, that is, a map to C, we can extend it by Hahn-Banach. ///

Returning to the proof of the theorem: thus, there is k ≥ 0 such that u factors through a limitand CkK .
In particular, u is continuous for the Ck topology on DK .

We need an auxiliary gadget. Fix a test function ψ identically 1 on a neighborhood of 0, bounded between
0 and 1, and (necessarily) identically 0 outside some (larger) neighborhood of 0. For ε > 0 let

ψε(x) = ψ(ε−1x)

Since the support of u is just {0}, for all ε > 0 and for all f ∈ D(Rn) the support of f − ψε · f does not
include 0, so

u(ψε · f) = u(f)

Thus, for implied constant depending on k and K, but not on f ,

|ψεf |k = sup
x∈K

∑
0≤i≤k

|(ψεf)(i)(x)| �
∑
i≤k

∑
0≤j≤i

sup
x
ε−j

∣∣∣ψ(j)(ε−1x) f (i−j)(x)
∣∣∣

For test function f vanishing to order k at 0, that is, f (i)(0) = 0 for all 0 ≤ i ≤ k, on a fixed neighborhood
of 0, by a Taylor-Maclaurin expansion, |f(x)| � |x|k+1, and, generally, for ith derivatives with 0 ≤ i ≤ k,
|f (i)(x)| � |x|k+1−i. By design, all derivatives ψ′, ψ′′, . . . are identically 0 in a neighborhood of 0, so, for
suitable implied constants independent of ε,

|ψεf |k �
∑

0≤i≤k

∑
0≤j≤i

ε−j ·
∣∣∣ψ(j)(ε−1x) f (i−j)(x)

∣∣∣ � ∑
0≤i≤k

∑
j=0

ε−j · 1 · εk+1−i

=
∑

0≤i≤k

εk+1−i � εk+1−k = ε

Thus, for sufficiently small ε > 0, for smooth f vanishing to order k at 0, |u(f)| = |u(ψεf)| � ε, and
u(f) = 0. That is,

keru ⊃
⋂

0≤i≤k

ker δ(i)

The conclusion, that u is a linear combination of the distributions δ, δ′, δ(2), . . . , δ(k), follows from

[13.14.5] Claim: A linear functional λ ∈ V ∗ vanishing on the intersection
⋂
i kerλi of kernels of a finite

collection λ1, . . . , λn ∈ V ∗ is a linear combination of the λi.

Proof: The linear map
q : V −→ Cn by v −→ (λ1v, . . . , λnv)

is continuous since each λi is continuous, and λ factors through q, as λ = L ◦ q for some linear functional L
on Cn. We know all the linear functionals on Cn, namely, L is of the form

L(z1, . . . , zn) = c1z1 + . . .+ cnzn (for some ci ∈ C)

Thus,
λ(v) = (L ◦ q)(v) = L(λ1v, . . . , λnv) = c1λ1(v) + . . .+ cnλn(v)

expressing λ as a linear combination of the λi. ///

The order of a distribution u : D → C is the integer k, if such exists, such that u is continuous when D
is given the weaker topology from colimKC

k
K . Not every distribution has finite order, but there is a useful

technical application of the previous discussion:
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[13.14.6] Corollary: A distribution u ∈ D∗ with compact support has finite order.

Proof: Let ψ be a test function that is identically 1 on an open containing the support of u. Then

u(f) = u((1− ψ) · f) + u(ψ · f) = 0 + u(ψ · f)

since (1−ψ) · f is a test function with support not meeting the support of u. With K = sptψ, this suggests
that u factors through a subspace of DK via f → ψ · f → u(ψ · f), but there is the issue of continuity.
Distinguishing things a little more carefully, the compatibility embodied in the commutative diagram

. . . // DK

uK
!!CCCCCCCC
//

i

''
. . . D

u
~~}}}}}}}}

C

gives
u(f) = u(ψ · f) = u

(
i(ψf)

)
= uK(ψf)

The map uK is continuous, as is the multiplication f → ψf . The map uK is from the limit DK of Banach
spaces CkK to the normed space C, so factors through some limitand CkK , by [13.4.4]. As in proof that
multiplication is continuous in the C∞ topology, by Leibniz’ rule, the Ck norm of ψf is

|ψf |k =
∑

0≤i≤k

sup
x∈K

|(ψf)(i)(x)| �
∑
i≤k

∑
0≤j≤i

sup
x

∣∣∣ψ(j)(x) f (i−j)(x)
∣∣∣

�
∑

0≤i≤k

sup
x∈K

|f (i)(x)| ·
∑
j≤k

sup
x
|ψ(j)(x)| = |f |Ck · |ψ|Ck

Since ψ is fixed, this gives continuity in f in the Ck topology. ///

[13.14.7] Claim: In the inclusion E∗ ⊂ S ∗ ⊂ D∗, the image of E∗ really is the collection of distributions
with compact support.

Proof: On one hand the previous shows that u ∈ D∗ with compact support can be composed as u(f) =
uK(ψf) for suitable ψ ∈ D. The map f → ψ · f is also continuous as a map E → D, so the same expression
f → ψf → uK(ψf) extends u ∈ D∗ to a continuous linear functional on E .

On the other hand, let u ∈ E∗. Composition of u with D → E gives an element of D∗, which we must
check has compact support. From [13.5], E is a limit of the Banach spaces Ck(K) with K = [−n, n], without
claiming that the image of E is necessarily dense in any of these. By [13.4.4], u factors through some limitand
Ck(K). The map D → E is compatible with the restriction maps ResK : D → Ck(K): the diagram

E
**

. . . // Ck(K) //

u

##FFFFFFFFF
. . .

D
ResK

;;xxxxxxxxx

__????????

C

commutes. For f ∈ D with support disjoint from K, ResK(f) = 0, and u(f) = 0. This proves that the
support of the (induced) distribution is contained in K, so is compact. ///
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13.15 Tempered distributions and Fourier transforms on R
One normalization of the Fourier transform integral is

f̂(ξ) = Ff(ξ) =

∫
R
ψξ(x) f(x) dx (with ψξ(x) = e2πiξx)

This converges nicely for f in the space S (R) of Schwartz functions.

[13.15.1] Theorem: Fourier transform is a topological isomorphism of S (R) to itself, with Fourier inversion
map ϕ→ ϕ̌ given by

ϕ̌(x) =

∫
R
ψξ(x) f̂(ξ) dξ

Proof: Using the idea [14.3] that Schwartz functions extend to smooth functions on a suitable one-point
compactification of R vanishing to infinite order at the point at infinity, Gelfand-Pettis integrals justify
moving a differentiation under the integral,

d

dξ
f̂(ξ) =

d

dξ

∫
R
ψξ(x) f(x) dx =

∫
R

∂

∂ξ
ψξ(x) f(x) dx

=

∫
R

(−2πix)ψξ(x) f(x) dx = (−2πi)

∫
R
ψξ(x)xf(x) dx = (−2πi)x̂f(ξ)

Similarly, with an integration by parts,

−2πiξ · f̂(ξ) =

∫
R

∂

∂x
ψξ(x) · f(x) dx = −F df

dx
(ξ)

Thus, F maps S (R) to itself.
The natural idea to prove Fourier inversion for S (R), that unfortunately begs the question, is the obvious:∫

R
ψξ(x) f̂(ξ) dξ =

∫
R
ψξ(x)

(∫
R
ψξ(t) f(t) dt

)
dξ =

∫
R
f(t)

(∫
R
ψξ(x− t) dt

)
dt

If we could justify asserting that the inner integral is δx(t), which it is, then Fourier inversion follows.
However, Fourier inversion for S (R) is used to make sense of that inner integral in the first place.

Despite that issue, a dummy convergence factor will legitimize the idea. For example, let g(x) = e−πx
2

be
the usual Gaussian. Various computations show that it is its own Fourier transform. For ε > 0, as ε→ 0+,
the dilated Gaussian gε(x) = g(ε · x) approaches 1 uniformly on compacts. Thus,∫

R
ψξ(x) f̂(ξ) dξ =

∫
R

lim
ε→0+

g(εξ) ψξ(x) f̂(ξ) dξ = lim
ε→0+

∫
R
g(εξ) ψξ(x) f̂(ξ) dξ

by monotone convergence or more elementary reasons. Then the iterated integral is legitimately rearranged:∫
R
g(εξ) ψξ(x) f̂(ξ) dξ =

∫
R

∫
R
g(εξ) ψξ(x) ψξ(t) f(t) dt dξ =

∫
R

∫
R
g(εξ) ψξ(x− t) f(t) dξ dt

By changing variables in the definition of Fourier transform, ĝε = 1
εg1/ε. Thus,∫

R
ψξ(x) f̂(ξ) dξ =

∫
R

1

ε
g
(x− t

ε

)
f(t) dt =

∫
R

1

ε
g
( t
ε

)
· f(x+ t) dt

The sequence of function g1/ε/ε is not an approximate identity in the strictest sense, since the supports are
the entire line. Nevertheless, the integral of each is 1, and as ε → 0+, the mass is concentrated on smaller
and smaller neighborhoods of 0 ∈ R. Thus, for f ∈ S (R),

lim
ε→0+

∫
R

1

ε
g
( t
ε

)
· f(x+ t) dt = f(x)
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This proves Fourier inversion. In particular, this proves that Fourier transform bijects the Schwartz space to
itself. ///

With Fourier inversion in hand, we can prove the Plancherel identity for Schwartz functions:

[13.15.2] Corollary: For f, g ∈ S , the Fourier transform is an isometry in the L2(R) topology, that is,

〈f̂ , ĝ〉 = 〈f, g〉.
Proof: There is an immediate preliminary identity:∫

R
f̂(ξ)h(ξ) dξ =

∫
R

∫
R
e−2πiξx f(x)h(ξ) dξ dx =

∫
R

∫
R
e−2πiξx f(x)h(ξ) dx dξ =

∫
R
f(x) ĥ(x) dx

To get from this identity to Plancherel requires, given g ∈ S , existence of h ∈ S such that ĥ = g, with
complex conjugation. By Fourier inversion on Schwartz functions, h = (g)̌ succeeds. ///

[13.15.3] Corollary: Fourier transform extends by continuity to an isometry L2(R)→ L2(R).

Proof: Schwartz functions are dense in in L2(R). ///

[13.15.4] Corollary: Fourier transform extends to give a bijection of the space tempered distributions S ∗

to itself, by

û(ϕ) = u(ϕ̂) (for all ϕ ∈ S )

Proof: Fourier transform is a topological isomorphism of S to itself. ///

13.16 Test functions and Paley-Wiener spaces

Of course, the original [Paley-Wiener 1934] referred to L2 functions, not distributions. The distributional
aspect is from [Schwartz 1952]. An interesting point is that rate-of-growth of the Fourier transforms in the
imaginary part determines the support of the inverse Fourier transforms.

The class PW of entire functions appearing in the following theorem is the Paley-Wiener space in one
complex variable. The assertion is that, in contrast to the fact that Fourier transform maps the Schwartz
space to itself, on test functions the Fourier transform has less symmetrical behavior, bijecting to the Paley-
Wiener space.

[13.16.1] Theorem: A test function f supported on [−r, r] ⊂ R has Fourier transform f̂ extending to an
entire function on C, with

|f̂(z)| �N (1 + |z|)−N er·|y| (for z = x+ iy ∈ C, for every N)

Conversely, an entire function satisfying such an estimate has (inverse) Fourier transform which is a test
function supported in [−r, r].
Proof: First, the integral for f̂(z) is the integral of the compactly-supported, continuous, entire-function-
valued function,

ξ −→
(
z → f(ξ) · e−iξz

)
where the space of entire functions is given the sups-on-compacts semi-norms supz∈K |f(z)|. Since C can
be covered by countably-many compacts, this topology is metrizable. Cauchy’s integral formula proves
completeness, so this space is Fréchet. Thus, the Gelfand-Pettis integral exists, and is entire. Multiplication
by z is converted to differentiation inside the integral,

(−iz)N · f̂(z) =

∫
|ξ|≤r

∂N

∂ξN
e−iz·ξ · f(ξ) dξ = (−1)N

∫
|ξ|≤r

e−iz·ξ · ∂
N

∂ξN
f(ξ) dξ

by integration by parts. Differentiation does not enlarge support, so
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|f̂(z)| �N (1 + |z|)−N ·
∣∣∣ ∫
|ξ|≤r

e−iz·ξ f (N)(ξ) dξ
∣∣∣ ≤ (1 + |z|)−N · er·|y| ·

∣∣∣ ∫
|ξ|≤r

e−ix·ξ f (N)(ξ) dξ
∣∣∣

≤ (1 + |z|)−N · er·|y| ·
∫
|ξ|≤r

|f (N)(ξ)| dξ �f,N (1 + |z|)−N · er·|y|

Conversely, for an entire function F with the indicated growth and decay property, we show that

ϕ(ξ) =

∫
R
eixξ F (x) dx

is a test function with support inside [−r, r]. The assumptions on F do not directly include any assertion that
F is Schwartz, so we cannot directly conclude that ϕ is smooth. Nevertheless, a similar obvious computation
would give ∫

R
(ix)N · eixξ F (x) dx =

∫
R

∂N

∂ξN
eixξ F (x) dx =

∂N

∂ξN

∫
R
eixξ F (x) dx

Moving the differentiation outside the integral is necessary, justified via Gelfand-Pettis integrals by a
compactification device, as in [14.3], as follows. Since F strongly vanishes at ∞, the integrand extends
continuously to the stereographic-projection one-point compactification of R, giving a compactly-supported
smooth-function-valued function on this compactification. The measure on the compactification can be
adjusted to be finite, taking advantage of the rapid decay of F :

ϕ(ξ) =

∫
R
eixξ F (x) dx =

∫
R
eixξ F (x) (1 + x2)N

dx

(1 + x2)N

Thus, the Gelfand-Pettis integral exists, and ϕ is smooth. Thus, in fact, the justification proves that such
an integral of smooth functions is smooth without necessarily producing a formula for derivatives.

To see that ϕ is supported inside [−r, r], observe that, taking y of the same sign as ξ,∣∣∣F (x+ iy) · eiξ(x+iy)
∣∣∣ �N (1 + |z|)−N · e(r−|ξ|)·|y|

Thus,

|ϕ(ξ)| �N

∫
R

(1 + |z|)−N · e(r−|ξ|)·|y| dx ≤ e(r−|ξ|)·|y| ·
∫
R

dx

(1 + |x|)−N

For |ξ| > r, letting |y| → +∞ shows that ϕ(ξ) = 0. ///

[13.16.2] Corollary: We can topologize PW by requiring that the linear bijection D → PW be a topological
vector space isomorphism. ///

[13.16.3] Remark: The latter topology on PW is finer than the sups-on-compacts topology on all entire
functions, since the latter cannot detect growth properties.

[13.16.4] Corollary: Fourier transform can be defined on all distributions u ∈ D∗ by û(ϕ) = u(ϕ̂) for
ϕ ∈ PW , giving an isomorphism D∗ → PW ∗ to the dual of the Paley-Wiener space. ///

For example, the exponential t → eiz·t with z ∈ C but z 6∈ R is not a tempered distribution, but is a
distribution, and its Fourier transform is the Dirac delta δz ∈ PW ′.

Compactly-supported distributions have a similar characterization:

[13.16.5] Theorem: The Fourier transform û of a distribution u supported in [−r, r], of order N , is
(integration against) the function x → u(ξ → e−ixξ), which is smooth, and extends to an entire function
satisfying

|û(z)| � (1 + |z|)N · er·|y|

Conversely, an entire function meeting such a bound is the Fourier transform of a distribution of order N
supported inside [−r, r].
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Proof: The Fourier transform û is the tempered distribution defined for Schwartz functions ϕ by

û(ϕ) = u(ϕ̂) = u
(
ξ →

∫
R
e−ixξ ϕ(x) dx

)
=

∫
R
u(ξ → e−ixξ)ϕ(x) dx

since x → (ξ → e−ixξϕ(ξ) extends to a continuous smooth-function-valued function on the one-point
compactification of R, and Gelfand-Pettis applies. Thus, as expected, û is integration against x → u(ξ →
e−ixξ).

The smooth-function-valued function z → (ξ → e−izξ) is holomorphic in z. Compactly-supported
distributions constitute the dual of C∞(R). Application of u gives a holomorphic scalar-valued function
z → u(ξ → e−izξ).

Let νN be the N th-derivative seminorm on C∞[−r, r], so

|u(ϕ)| �ε νN (ϕ)

Then

|û(z)| = |u(ξ → e−izξ)| �ε νN (ξ → e−izξ) � sup
[−r,r]

∣∣∣(1 + |z|)N e−izξ
∣∣∣ ≤ (1 + |z|)Ner·|y|

Conversely, let F be an entire function with |F (z)| � (1 + |z|)Ner·|y|. Certainly F is a tempered
distribution, so F = û for a tempered distribution. We show that u is of order at most N and has support
in [−r, r].

With η supported on [−1, 1] with η ≥ 0 and
∫
η = 1, make an approximate identity ηε(x) = η(x/ε)/ε for

ε→ 0+. By the easy half of Paley-Wiener for test functions, η̂ε is entire and satisfies

|η̂ε(z)| �ε,N (1 + |z|)−N · eε·|y| (for all N)

Note that η̂ε(x) = η̂(ε · x) goes to 1 as tempered distribution
By the more difficult half of Paley-Wiener for test functions, F ·η̂ε is ϕ̂ε for some test function ϕε supported

in [−(r + ε), r + ε]. Note that F · η̂ε → F .
For Schwartz function g with the support of ĝ not meeting [−r, r], ĝ ·ϕε for sufficiently small ε > 0. Since

F · η̂ε is a Cauchy net as tempered distributions,

u(ĝ) = û(g) =

∫
F · g =

∫
lim
ε

(F · η̂ε) g = lim
ε

∫
(F · η̂ε) g = lim

ε

∫
ϕ̂ε g = lim

ε

∫
ϕε ĝ = 0

This shows that the support of u is inside [−r, r]. ///

13.17 Schwartz functions and Fourier transforms on Qp

For simplicity, we only look at Fourier analysis on Qp, rather than on general p-adic fields. The same ideas
apply to the general case, with minor modifications.

Fix a prime p, let Qp be the p-adic field and Zp the p-adic integers. Give Qp the additive Haar measure
that gives Zp total measure 1. This determines the measure of every set x+pnZp with n ≥ 0, by translation-
invariance, and the fact that Zp is a disjoint union of such translates, as x ranges over Zp/pnZp ≈ Z/pnZ.

The standard choice of additive character, trivial on Zp, is ψ1(x) = e−2πix′ , where x′ ∈ Z[ 1
p ] is such that

x− x′ ∈ Zp. Parametrize additive characters by ψξ(x) = ψ1(ξ · x).
Unsurprisingly, the Fourier transform on C-valued L1 functions on Qp is

Ff(ξ) = f̂(ξ) =

∫
Qp
ψξ(x) f(x) dx

The space of Schwartz functions S (Qp) on Qp should be mapped to itself homeomorphically under Fourier
transform, should consist of very simple functions, and should be dense in L2(Qp). We will show that the
following choice succeeds: take

S (Qp) = {compactly-supported, locally constant, C-valued functions}
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where f being locally constant means that every x ∈ Qp has a neighborhood U such that f(x′) = f(x) for
x′ ∈ U .

[13.17.1] Remark: The local constancy turns out to be the appropriate p-adic notion of smoothness. Unlike
the archimedean case, p-adic Schwartz functions are compactly supported. That is, in the p-adic case, test
functions and Schwartz functions are the same classes of functions.

[13.17.2] Claim: f ∈ S (Qp) is uniformly locally constant: there is a (compact, open) subgroup U = pnZp
such that f(x+ u) = f(x) for all x ∈ Qp, and for all u ∈ U .

Proof: Since
⋃
m≥0 p

−mZp = Qp, the support of a given f ∈ S (Qp) is contained in some p−mZp. For each

x ∈ p−mZp, there is a neighborhood x+ pnxZp on which f is constant. By compactness of p−mZp, there are
finitely-many points x1, . . . , x` so that the corresponding neighborhoods cover p−mZp. Let n = max1≤i≤` nxi
and U = pnZp. A given x ∈ p−mZp lies in xj + pnxjZp for some j, and

x+ U ⊂ xj + pnxjZp + U ⊂ xj + pnxjZp + pnxjZp + U = xj + pnxjZp

since every pnZp is closed under addition. Thus, f is locally constant on x+ U . ///

[13.17.3] Corollary: S (Qp) is a strict colimit of the finite-dimensional subspaces

Vm,n = {f ∈ S (Qp) : sptf ⊂ p−mZp, f(x+ u) = f(x) for all x, for all u ∈ pnZp}

In particular, S (Qp) consists of finite linear combinations of characteristic functions of sets xo + pnZp.
Proof: The lemma asserts that S (Qp) =

⋃
m,n Vm,n. Since p−mZp is the disjoint union of pm+n distinct

cosets xo + pnZp, the subspace Vm,n is the collection of linear combinations of characteristic functions of
these sets. ///

Thus, the Schwartz space S (Qp) is not Fréchet, but is the simplest type of LF-space, namely, a strict
colimit of finite-dimensional spaces (and finite-dimensional spaces have unique topologies [13.4]) like C∞ in
[13.8].

The following holds for Schwartz functions by direct computation, and then will follow for L2 functions
by denseness of S (Qp) in L2(Qp) and extending by L2-continuity.

[13.17.4] Theorem: For Schwartz functions, Fourier inversion holds:

f(x) =

∫
kv

ψξ(x) f̂(ξ) dξ (for f ∈ S (Qp))

and Plancherel’s theorem holds:∫
Qp
|f |2 =

∫
Qp
|f̂ |2 (for f ∈ S (Qp))

Proof: For Schwartz functions, we prove more, by giving sample computations of Fourier transforms which
are useful. In particular, we observe simply-described functions on Qp whose Fourier transforms are of a
similar nature. For example, certain natural functions in S (Qp) are their own Fourier transform, analogous
to the Gaussian in the archimedean case.

[13.17.5] Claim: The characteristic function f of Zp is its own Fourier transform.

Proof: Computing directly,

f̂(ξ) =

∫
Qp
ψξ(x) f(x) dx =

∫
Zp
ψ1(ξ · x) dx =

∫
Zp
ψ1(−ξ · x) dx

Recall a form of the cancellation lemma: (a tiny case of Schur orthogonality)

[13.17.6] Lemma: Let ψ : K → C× be a continuous group homomorphism on a compact group K. Then

∫
K

ψ(x) dx =

meas (K) (for ψ = 1)

0 (for ψ 6= 1)
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Proof: (of Lemma) Yes, of course, the measure is a Haar measure on K. Since K is compact, it is unimodular.
For ψ trivial, of course the integral is the total measure of K. For ψ non-trivial, there is y ∈ K such that
ψ(y) 6= 1. Using the invariance of the measure, change variables by replacing x by xy:∫

K

ψ(x) dx =

∫
K

ψ(xy) d(xy) =

∫
K

ψ(x)ψ(y) dx =ψ(y)

∫
K

ψ(x) dx

Since ψ(y) 6= 1, the integral is 0. ///

Apply the lemma to the integrals computing the Fourier transform of the characteristic function f of Zp.
Since Zp has measure 1,

f̂(ξ) =

∫
Zp
ψ1(−ξ · x) dx =

 1 (ψ1(−ξx) = 1 for x ∈ Zp)

0 (otherwise)

On one hand, for ξ ∈ Zp, certainly ψ1(ξx) = 1 for x ∈ Zp. On the other hand, for ξ 6∈ Zp, there is x ∈ Zp
such that, for example, ξ · x = 1/p. Then

ψ1(−ξ · x) = ψ1(−1
p ) = e+2πi· 1p 6= 1

Thus, ψξ is not trivial on Zp, so the integral is 0. Thus, the characteristic function of Zp is its own Fourier
transform. ///

[13.17.7] Claim: The Fourier transform of the characteristic function of pkZp is p−k times the characteristic
function of p−kZp.
Proof: Let f be the characteristic function of pkZp, so

f̂(ξ) =

∫
Qp
ψξ(x) f(x) dx =

∫
pkZp

ψ1(ξ · x) dx

= |pk|p ·
∫
Zp
ψ1(−ξ · x/pk) dx = p−k ·

∫
Zp
ψ1(−ξ · x/pk) dx

This reduces to the previous computation: by cancellation, for ξ/pk 6∈ Zp the character x→ ψ1(−ξx/pk) is
non-trivial, so the integral is 0. Otherwise, the integral is 1. ///

[13.17.8] Claim: The Fourier transform of the characteristic function of Zp+y is ψy times the characteristic
function of Zp.
Proof: Let f be the characteristic function of Zp + y, so

f̂(ξ) =

∫
Qp
ψξ(x) f(x) dx =

∫
Zp+y

ψ1(ξ · x) dx =

∫
Zp
ψ1(−ξ · (x+ y)) dx

= ψ1(−ξ · y) dx

∫
Zp
ψ1(−ξ · x) dx = ψ1(−ξ · y) · f(ξ)

by the previous computation. ///

Combining the two computations above,

F
(

char fcn pkZp + y
)

= ψy · p−k · (char fcn p−kZp)

Conveniently, products ψy ·(char fcn p−kZp) are in the same class of functions, since ψy has a kernel which
is an open (and compact) neighborhood of 0, so we this class of functions is mapped to itself under Fourier
transform.

413



13. Examples: topologies on natural function spaces

We have essentially proven Fourier inversion, in the computations above, as follows. Let fo be the
characteristic function of Zp. We computed f̂o = f . Let δt be the dilation operator δtf(x) = f(t · x)
for t ∈ Q×p . We computed, by changing variables in the integral defining the Fourier transform, that

F (δtf) =
1

|t|p
· δ1/t(Ff)

Let τy be the translation operator τyf(x) = f(x+ y). By changing variables,

F (τyf) = ψy · (Ff)

It is convenient to also compute that

F (ψy · f)(ξ) =

∫
Qp
ψξ(x) · ψy(x) f(x) dx =

∫
Qp
ψξ−y(x) f(x) dx = f̂(ξ − y) = τ−y(Ff)

Let F ∗ be the integral for Fourier inversion, namely,

F ∗f(x) =

∫
Qp
ψξ(x) f(ξ) dξ

Similar computations give

F ∗(δtf) =
1

|t|p
δ1/t(F

∗f) F ∗(τyf) = ψ−y(F ∗f)

and
F ∗(ψyf) = τy(F ∗f)

Since every element of S (Qp) is a linear combination of images of fo under dilation and translation, it
suffices to give a sort of inductive proof of Fourier inversion:

F ∗F (τy f) = = F ∗ψyFf = τyF
∗Ff

F ∗F (δt f) = F ∗
1

|t|p
δ1/tFf =

1

|t|p
1

|1/t|p
δtF

∗Ff = δtF
∗Ff

Similarly for multiplication by ψy. Since F ∗Ffo = F ∗fo = fo, we have Fourier inversion on S (Qp).
The surjectivity of F : S (Qp) → S (Qp) is made explicit in the computations above. Then we have the

Plancherel theorem on S (Qp):∫
Qp
f · g =

∫
Qp
f ·F−1ĝ =

∫
Qp

∫
Qp
f(x) · ψ1(−ξx) · ĝ(ξ) dξ dx

=

∫
Qp

(∫
Qp
f(x) · ψ1(−ξx) dx

)
· ĝ(ξ) dξ =

∫
Qp
f̂ · ĝ

This proves the theorem for Schwartz functions. ///

Similarly, and as for Coc (R), the space Coc (Q) of compactly-supported, continuous, C-valued functions on
Qp is an LF-space, the strict colimit of the spaces of continuous functions supported on p−nZp. Much as in
[6.2] and [13.9], we have

[13.17.9] Claim: The translation action Qp×Coc (Q) −→ Coc (Q) by (x·f)(y) = f(y+x) is (jointly) continuous.

Proof: Since Qp itself is the colimit of p−mZp (as additive topological group), and Coc (Qp) is a colimit, it
suffices to show that p−mZp×Co(p−nZp) −→ Coc (Qp) is continuous for all m,n. Indeed, p−mZp×Co(p−nZp)
maps to Co(p−max(m,n)Zp), and sup-norms are preserved. ///
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[13.17.10] Claim: S (Qp) is dense in Coc (Qp).
Proof: This is a simple p-adic analogue of the smoothing of distributions [14.5], and of G̊arding ’s theorem
[14.6], asserting that smooth vectors are dense in a representation, also following from the basic result
[14.1.4] about approximate identities and Gelfand-Pettis integrals. Namely, let ϕn = pn · χn, where χn
is the characteristic function of pnZp. These are continuous, compactly-supported functions, and form an
approximate identity in Coc (Qp) in the sense that they are non-negative, their integrals are all 1, and their
supports shrink to {0}. By the previous claim, Qp acts continuously on Coc (Qp), giving integral operators

(ϕn · f)(x) =

∫
Qp
ϕn(y) f(x+ y) dy

on f ∈ Coc (Qp). By [14.1.4], ϕn · f −→ f in Coc (Qp).
Analogous to the archimedean discussion in the proof of smoothing of distributions theorem [14.5], we

check that each ϕn · f is locally constant and compactly supported, so is in S (Qp). The compact support
is clear, since the support of ϕn · f is contained in spt(ϕn) + spt(f), which is compact, being the image of
the compact spt(ϕn)× spt(f) ⊂ Qp ×Qp under the continuous map x× y → x+ y. For local constancy, for
u ∈ pnZp,

(ϕn ·f)(x+u) =

∫
Qp
ϕn(y) f(x+u+y) dy = pn

∫
pnZp

f(x+u+y) dy = pn
∫
pnZp

f(x+y) dy = (ϕn ·f)(x)

by changing variables y → y − u, since pnZp is a group. ///

[13.17.11] Corollary: S (Qp) is dense in L1(Qp) and in L2(Qp).
Proof: Coc (Qp) is dense in both L1(Qp) and L2(Qp), essentially by Urysohn’s Lemma [9.E.2], as in [6.1], [6.2],
so S (Qp) is dense in both, by the previous. ///

[13.17.12] Corollary: F extends to L2(Qp) by continuity, giving the Fourier-Plancherel transform
F : L2(Qp) −→ L2(Qp), no longer defined literally by the integrals, but still satisfying Fourier inversion and
Plancherel theorem. ///
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14. Vector-valued integrals

1. Characterization and basic results
2. Differentiation of parametrized integrals
3. Fourier transforms
4. Uniqueness of invariant distributions
5. Smoothing of distributions
6. Density of smooth vectors
7. Quasi-completeness and convex hulls of compacts
8. Existence proof
Appendix A: Hahn-Banach theorems

Quasi-complete, locally convex topological vector spaces V have the useful property that continuous
compactly-supported V -valued functions have integrals with respect to finite, regular Borel measures. Rather
than being constructed as limits, these vector-valued integrals are characterized. Uniqueness follows from
the Hahn-Banach theorem, and existence follows from a construction.

An immediate application is justification of differentiation with respect to a parameter inside an integral,
under mild, easily understood hypotheses, a special case of the general assertion that Gelfand-Pettis
integrals commute with continuous operators, as in the first section. A subtler application is to passage of
compactly-supported distributions inside the integrals expressing Fourier inversion, as in [14.3]. Uniqueness
of group-invariant measures, distributions, and other functionals is another corollary. Other applications are
to holomorphic vector-valued functions, to holomorphically parametrized families of generalized functions
(distributions), as in chapter 14. Many distributions which are not classical functions appear naturally as
residues or analytic continuations of meromorphic families of classical functions.

14.1 Characterization and basic results

For a topological vectorspace V over C and for f a continuous V -valued function on a topological space
X with a regular Borel measure, a Gelfand-Pettis integral of f is a vector If ∈ V so that

λ(If ) =

∫
X

λ ◦ f (for all λ ∈ V ∗)

If it exists and is unique, this vector If is reasonably denoted

If =

∫
X

f

In contrast to construction of integrals as limits, this characterization surely should apply to any reasonable
notion of integral, without asking how the property comes to be. Since the property of allowing continuous
linear functionals to pass inside the integral is an irreducible minimum, the Gelfand-Pettis integral is
sometimes called a weak integral.

We only consider locally convex vectorspaces, so uniqueness of the integral is immediate, since V ∗ separates
points on V , by Hahn-Banach. Similarly, for such V , linearity of f → If follows by Hahn-Banach. The issue

is existence. [80] We only consider V -valued functions that are continuous on compact measure spaces with
regular Borel measures. Under these assumptions, all the C-valued integrals

f −→ f ◦ λ −→
∫
X

λ ◦ f (for λ ∈ V ∗)

[80] We want the integral to be in V itself, rather than in a larger space containing V , such as a double dual V ∗∗, for

example, to make existence trivial, but then leaving technical issues. Some discussions of vector-valued integration

do allow integrals to exist in larger spaces, but this only delays certain issues, rather than resolving them directly.
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exist for elementary reasons, being integrals of compactly-supported C-valued continuous functions on
compact sets with respect to a regular Borel measure.

For existence of Gelfand-Pettis integrals of compactly-supported, continuous V -valued functions, the literal
requirement on V turns out to be that the closure of the convex hull of a compact set is compact. We show
below that local convexity and quasi-completeness suffice. For the following, a probability measure is a positive,
regular, Borel measure with total measure 1.

[14.1.1] Theorem: Let X be a compact Hausdorff topological space with a probability measure. Let V be a
quasi-complete, locally convex vectorspace. Then continuous V -valued functions f on X have Gelfand-Pettis
integrals. The basic estimate holds:∫

X

f ∈
(

closure of convex hull of f(X)
)

substituting for the estimate of a C-valued integral by the integral of its absolute value. (Proof in [14.8].)

[14.1.2] Corollary: In the situation of the theorem, but when the total measure of X is finite but not
necessarily 1, the basic estimate becomes∫

X

f ∈
(

closure of convex hull of f(X)
)
·
∫
X

1

(Replace the measure by a constant multiple.) ///

[14.1.3] Corollary: For a continuous linear map of locally convex, quasi-complete topological vectorspaces
T : V →W , and f a continuous, compactly-supported V -valued function on a finite, regular, positive Borel
measure space X. Then

T
(∫

X

f
)

=

∫
X

T ◦ f

Proof: To verify that the left-hand side of the asserted equality is a Gelfand-Pettis integral of T ◦ f , show
that

µ
(

left-hand side
)

=

∫
X

µ ◦ (T ◦ f) (for all µ ∈W ∗)

Starting with the left-hand side,

µ
(
T
( ∫

X
f
))

= (µ ◦ T )
( ∫

X
f
)

(associativity)

=
∫
X

(µ ◦ T ) ◦ f (µ ◦ T ∈ V ∗ and
∫
X
f is a weak integral)

=
∫
X
µ ◦ (T ◦ f) (associativity)

proving that T
( ∫

X
f
)

is a weak integral of T ◦ f . ///

A representation of G on a locally convex, quasi-complete topological vectorspace V is a continuous map
G× V → V that is linear in V , has the associativity (gh) · v = g · (h · v) for g, h ∈ G, and 1G · v = v for all
v ∈ V .

For any v ∈ V and ϕ ∈ Coc (G), we have a V -valued Gelfand-Pettis integral

ϕ · f =

∫
G

ϕ(g)Tgf dg ∈ closure of convex hull of {ϕ(g)f : g ∈ G} ⊂ V

For present purposes, a continuous approximate identity on a topological group G is a sequence {ϕi} of
non-negative, continuous, real-valued functions such that

∫
G
ϕi = 1 for all i, and such that the supports

shrink to {1}, in the sense that for every neighborhood N of 1 in G, there is an index io so that the support
of ϕi is inside N for all i ≥ io. From Urysohn’s Lemma [9.E.2], there always exists a continuous approximate
identity. Let Tgf(y) = f(yg) be right translation. With right translation-invariant measure dg on G, since
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14. Vector-valued integrals∫
G
ϕi(g) dg = 1 and ϕi is non-negative, ϕi(g) dg is a probability measure (total mass 1) on the (compact)

support of ϕi.

[14.1.4] Corollary: Given a representation of G on a quasi-complete, locally convex topological vector space
V , for every approximate identity {ϕi} on G, ϕi · v → v for every v ∈ V .

Proof: By continuity, given a neighborhood N of 0 in V , we have ϕi · f ∈ f + N for all sufficiently large i.
That is, ϕi · f → f . ///

[14.1.5] Corollary: Given a representation of G on a quasi-complete, locally convex topological vector space
V , the action of Coc (G) on V is non-degenerate, in the sense that, for every 0 6= v ∈ V , there exists ϕ ∈ Coc (G)
such that ϕ · v 6= 0.

Proof: For every approximate identity {ϕi}, for every v ∈ V , ϕi · v → v. Thus, for all sufficiently large i,
ϕi · v 6= 0 for v 6= 0. ///

A G-subrepresentation W ⊂ V of a representation of G on a quasi-complete, locally convext topological
vector space V is a (topologically) closed G-stable vector subspace of V . Similarly, a Coc (G)-subrepresentation
W ⊂ V of a G-representation is a (topologically) closed Coc (G)-stable vector subspace of V .

[14.1.6] Corollary: A Coc (G)-subrepresentation of a G-representation on a quasi-complete, locally convex
topological vector space V is a G-representation.

Proof: Let {ϕi} be an approximate identity, fix w in the subrepresentation W , and take g ∈ G. We will show
that g · w ∈W . On one hand, from [14.1.4] above, ϕi · (g · w)→ g · w. On the other hand,

ϕi · (g · w) =

∫
G

ϕi(h)h · (g · v) dh =

∫
G

ϕi(hg
−1)h · v dh

by changing variables. The function h→ ϕi(hg
−1) is still in W , by assumption, so ϕi · (g · w) is a sequence

of vectors in W . Since W is closed, and the sequence converges to g · w, necessarily g · w ∈W . ///

A representation of G on W is (topologically) G-irreducible when there is no proper G-subrepresentation.
A representation of G on W is (topologically) Coc (G)-irreducible when there is no proper Coc (G)-
subrepresentation.

[14.1.7] Corollary: For a representation of G on a quasi-complete, locally convext topological vector space
V , every irreducible Coc (G)-subrepresentation is an irreducible G-subrepresentation.

Proof: From the previous corollary, every Coc (G)-subrepresentation W ⊂ V is a G-subrepresentation. If W
had a proper G-subrepresentation W ′, then W ′ would be a proper Coc (G)-subrepresentation, as well.
///

14.2 Differentiation of parametrized integrals

Differentiation under the integral is an immediate corollary, in many useful situations.

[14.2.1] Claim: A C-valued Ck function F on [a, b] × [c, d] gives a continuous Ck[c, d]-valued function
f(x) = F (x,−) of x ∈ [a, b].

Proof: For each 0 ≤ i ≤ k, the function (x, y)→ ∂i

∂yiF (x, y) is continuous as a function of two variables. For

each ε > 0 and each xo ∈ [a, b], we want δ > 0 such that

|x− xo| < δ =⇒ sup
y

∣∣∣ ∂i
∂yi

F (x, y)− ∂i

∂yi
F (xo, y)

∣∣∣ < ε

The continuous function (x, y) → ∂k

∂yiF (x, y) is uniformly continuous on the compact [a, b] × [c, d], so there
is δ > 0 such that∣∣∣ ∂k

∂yi
F (x1, y1)− ∂i

∂yi
F (x2, y2)

∣∣∣ < ε (for all (x1, y1), (x2, y2) with |x1 − x2| < δ and |y1 − y2| < δ)

In particular, this holds for all y1 = y2, and x1 = x, and x2 = xo. ///
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[14.2.2] Corollary: For a C-valued Ck function F on [a, b]× [c, d],

∂

∂y

∫ b

a

F (x, y) dx =

∫ b

a

F
∂

∂y
(x, y) dx

Proof: The function-valued function x → (y → F (x, y)) is a continuous, Ck[c, d]-valued function, and ∂
∂y

is a continuous linear map Ck[c, d] → Ck−1[c, d], so the Gelfand-Pettis property allows interchange of the
operator and the integral. ///

14.3 Fourier transforms

Certainly an integral expressing Fourier inversion [13.15]

f(x) =
1

2π

∫
R
eiξx f̂(ξ) dξ

for Schwartz function f cannot converge as a Schwartz-function-valued integral, because x → eiξx is in
C∞(R), but not Schwartz. Multiplying by f̂ does not affect decay in x, so does not alter the situation.
Examination of the situation is complicated by the fact that the integrand is not compactly supported, but
we can follow Schwartz’ device of suitably compactifying Rn to a sphere Sn, and then invoke the Gelfand-
Pettis property for compactly-supported functions. Then we will see that the integral does converge as a
C∞(R)-valued Gelfand-Pettis integral. First,

[14.3.1] Claim: For any Φ ∈ C∞(R2), the C∞(R)-valued function ξ → Φ(−, ξ) that is, ξ → (x → Φ(x, ξ))
is a continuous, C∞(R)-valued function on R. (Similarly, it is a smooth C∞(R)-valued function, but we do
not need this.)

Proof: The function (x, ξ)→ Φ(x, ξ) is C∞ as a function of two variables. In particular, (x, ξ)→ ∂k

∂xk
Φ(x, ξ)

is continuous as a function of two variables. For each k, compact C ⊂ R, ε > 0 and each ξo ∈ R, we want
δ > 0 such that

|ξ − ξo| < δ =⇒ sup
x∈C

∣∣∣ ∂k
∂xk

Φ(x, ξ)− ∂k

∂xk
Φ(x, ξo)

∣∣∣ < ε

Let I be the interval [ξ1, ξo + 1]. The continuous function (x, ξ) → ∂k

∂xk
Φ(x, ξ) is uniformly continuous on

the compact C × I that is, there is δ > 0 such that

∣∣∣ ∂k
∂xk

Φ(x1, ξ1)− ∂k

∂xk
Φ(x2, ξ2)

∣∣∣ < ε (for all (x1, ξ1), (x2, ξ2) ∈ I with |x1 − x2| < δ and |ξ1 − ξ2| < δ)

In particular, this holds for all x1 = x2, and ξ = ξo ∈ I, and ξ2 = ξo, giving the desired continuity.
This previous applies to Φ(x, ξ) = eiξx. Since ξ → F (ξ) is a continuous C-valued function, the product
x→ F (ξ) · eiξx is a continuous C∞(R)-valued function of ξ ∈ R.

Compactify R to the circle T ⊂ R2 via by stereographic projection

σ : x −→ (
x√

1 + x2
,

1√
1 + x2

)

and adding the point ∞ = (0, 1).

[14.3.2] Claim: ξ → F (ξ) · ψξ extends (by 0 ∈ C∞(R)) to a continuous, C∞(R)-valued function on the
compactification T of R.

Proof: We must check continuity in ξ near ∞. That is, for each k, compact C ⊂ R, and ε > 0, we want
(large) B such that

|ξ| > B =⇒ sup
x∈C

∣∣∣F (ξ) · ∂
k

∂xk
eiξx − 0

∣∣∣ < ε
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The exponential function is easy to estimate: for example, with M a bound so that |(1 + ξ2)k · F (ξ)| ≤M ,

sup
x∈C

∣∣∣F (ξ) · ∂
k

∂xk
eiξx

∣∣∣ =
∣∣∣F (ξ) · (iξ)k

∣∣∣ · 1 ≤ M · |ξ|k

(1 + ξ2)k

Take B large enough so that M ·Bk/(1 +B2)k < ε. For any continuous linear functional, ξ → λ ◦ (ψξ ·F (ξ))
is a continuous scalar-valued function on the compact set T, so is bounded. The same is true of any
ξ → λ ◦ (ψξ · (1 + ξ2)NF (ξ)), so ξ → λ ◦ (ψξ · F (ξ)) is rapid decreasing. Adjust the measure on R to
give total measure 1: ∫

R
ψξ · F (ξ) dξ =

∫
R
ψξ · π(1 + ξ)2F (ξ)

dξ

π(1 + ξ2)

The function π(1+ξ)2F (ξ) is still continuous and of rapid decay. Being continuous and compactly supported
on a measure space with total measure 1, with values in a quasi-complete, locally convex topological vector
space, ξ → π(1 + ξ2)F (ξ) ·ψξ has a Gelfand-Pettis integral J with respect to the measure dξ/π(1 + ξ2), lying
inside the closed convex hull of the image. That is,

λ(J) =

∫
R
λ(ψξ) · π(1 + ξ)2F (ξ)

dξ

π(1 + ξ2)

for every continuous linear functional λ. In the the latter scalar-valued integral the adjustment factors cancel:∫
R
λ
(
ψξ · π(1 + ξ)2F (ξ)

) dξ

π(1 + ξ2)
=

∫
R
λ(ψξ) · π(1 + ξ)2F (ξ)

dξ

π(1 + ξ2)
=

∫
R
λ(ψξ) · F (ξ) dξ

That is, λ(J) =
∫
R λ(ψξ) · F (ξ) dξ, and the Gelfand-Pettis integral J of the mutually adjusted function and

measure is the Gelfand-Pettis integral of the original. ///

[14.3.3] Corollary: For rapidly decreasing F ∈ Co(R), for any continuous linear T : C∞ → V for another
topological vector space V ,

T
(∫

R
ψξ · F (ξ) dξ

)
=

∫
R
T
(
ψξ · F (ξ)

)
dξ =

∫
R
T (ψξ) · F (ξ) dξ

as V -valued Gelfand-Pettis integral. ///

[14.3.4] Corollary: For rapidly decreasing F ∈ Co(R), for any continuous, for any compactly-supported
distribution u,

u
(∫

R
ψξ · F (ξ) dξ

)
=

∫
R
u
(
ψξ · F (ξ)

)
dξ =

∫
R
u(ψξ) · F (ξ) dξ

with absolutely convergent integral. ///

[14.3.5] Corollary: For rapidly decreasing F ∈ Co(R), the Fourier transform is a C∞ function on R, and
its derivative is computed by the expected expression

∂

∂x

(∫
R
ψξ · F (ξ) dξ

)
=

∫
R

∂ψξ
∂x
· F (ξ) dξ = i

∫
R
ψξ · ξF (ξ) dξ

since ∂/∂x is a continuous map of C∞(R) to itself. ///
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14.4 Uniqueness of invariant distributions

We prove uniqueness of invariant functionals on suitable function spaces V on topological spaces X on
which a topological group acts transitively. This includes uniqueness of invariant (Haar) measures, and
uniqueness of invariant distributions, as special cases.

A translation-invariant function f on the real line, that is, a function with f(x+y) = f(x) for all x, y ∈ R,
is constant, by a point-wise argument:

f(x) = (Txf)(0) = f(0)

where Txf(y) = f(x + y) is translation. The same conclusion holds for translation-invariant distributions,
but we cannot argue in terms of point-wise values.

Let G be a topological group, [81] with right translation-invariant measure dg, meaning that∫
G

f(g · h) dg =

∫
G

f(g) dg (for all h ∈ G)

We assume only existence of a right translation-invariant measure. The theorem proves uniqueness.
For present purposes, a continuous approximate identity on a topological group G is a sequence {ϕi} of

non-negative, continuous, real-valued functions such that
∫
G
ϕi = 1 for all i, and such that the supports

shrink to {1}, in the sense that for every neighborhood N of 1 in G, there is an index io so that the support
of ϕi is inside N for all i ≥ io. From Urysohn’s Lemma [9.E.2], there always exists a continuous approximate
identity. Not all classes of functions contain an approximate identity in this strict sense: (real-) analytic
functions on a non-compact group, such as R cannot be compactly supported, so a compromise notion would
be needed. The following theorem refers to the strict sense that supports shrink to {1}:
[14.4.1] Theorem: Let V ⊂ Coc (G) be a quasi-complete, locally convex topological vector space of complex-
valued functions on G stable under left and right translations, so that G × V → V is continuous, and
containing an approximate identity {ϕi}. Then there is a unique right G-invariant element of the dual space
V ∗ (up to constant multiples), and it is

f →
∫
G

f(g) dg (with right translation-invariant measure)

Proof: Let Tgf(y) = f(yg) be right translation. With right translation-invariant measure dg on G, since∫
G
ϕi(g) dg = 1 and ϕi is non-negative, ϕi(g) dg is a probability measure (total mass 1) on the (compact)

support of ϕi. Thus, for any f ∈ V , we have a V -valued Gelfand-Pettis integral

Tϕif =

∫
G

ϕi(g)Tgf dg ∈ closure of convex hull of {ϕi(g)f : g ∈ G} ⊂ V

By continuity, given a neighborhood N of 0 in V , we have Tϕif ∈ f +N for all sufficiently large i. That is,
Tϕif → f . For a right-invariant (continuous) functional u ∈ V ∗,

u(f) = lim
i
u

(
g →

∫
G

ϕi(h) f(gh) dh

)
This is

u

(
g →

∫
G

f(hg)ϕi(h
−1) dh

)
= u

(
g →

∫
G

f(h)ϕi(gh
−1) dh

)
[81] A topological group is usually understood to be locally compact and Hausdorff, and multiplication and inversion

are continuous. To avoid measure-theoretic pathologies, a countable basis is often assumed. Perhaps oddly, the local

compactness excludes most topological vector spaces.
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by replacing h by hg−1. By properties of Gelfand-Pettis integrals, and since f is guaranteed to be a
compactly-supported continuous function, we can move the functional u inside the integral: the above
becomes ∫

G

f(h)u
(
g → ϕi(gh

−1)
)
dh

Using the right G-invariance of u the evaluation of u with right translation by h−1 gives∫
G

f(h)u(g → ϕi(g)) dh = u(ϕi) ·
∫
G

f(h) dh

By assumption the latter expressions approach u(f) as i→∞. For f so that the latter integral is non-zero,
we see that the limit of the u(ϕi) exists, and then we conclude that u(f) is a constant multiple of the
indicated integral with right Haar measure. ///

14.5 Smoothing of distributions

Every locally integrable [82] function f on Rn, for example, gives a distribution uf by integrating against
it:

uf (ϕ) =

∫
Rn

ϕ · f (for ϕ ∈ D(Rn))

Conversely, we prove here that the distributions uf from f ∈ D = C∞c (Rn) are dense in the whole space D∗
of distributions, with the weak dual topology. Further, a sequence of such smooth functions approaching a
given distribution can be expressed in terms of smoothing or mollifying u.

Let g → Tg be the regular representation of Rn on test functions f ∈ D = D(Rn) by (Tgf)(x) = f(x+ g),
for x, g ∈ Rn. The map, x × f → Txf gives a continuous map Rn × D −→ D. The corresponding adjoint
action of Rn on distributions u is

(T ∗g u)(f) = u(T−1
g f)

For the usual reasons, this gives a continuous map x×u −→ x ·u = T ∗xu with the weak dual topology: for
f ∈ D, let νf be the semi-norm νf (u) = |u(f)| on D∗, and then

ν(T ∗g u− T ∗hv) = |u(T−1
g f)− v(T−1

h f)| ≤ |u(T−1
g f)− u(T−1

h f)|+ |u(T−1
h f)− v(T−1

h f)|

= |u
(
T−1
g f − T−1

h f
)
|+ νT−1

h f (u− v)

For g close to h, since the translation action of Rn on D is continuous and u is a continuous functional,
|u(T−1

g f)−u(T−1
h f)| is small. And for u close to v in the weak dual topology, the second term is small. This

proves the continuity.
As earlier and throughout, the action of a function ϕ ∈ Coc (Rn) on distributions u is by integrating the

group action

T ∗ϕu =

∫
Rn
ϕ(x)T ∗xu dx ∈ D∗

Suppressing the T ∗, this is

ϕ · u =

∫
Rn
ϕ(x)x · u dx ∈ D∗

A smooth approximate identity on Rn is a sequence {ψi} ⊂ D which are non-negative, real-valued, have∫
Rn ψi = 1, and supports shrink to {0} ⊂ Rn.

[14.5.1] Theorem: For a smooth approximate identity {ψi} and distribution u, the distributions T ∗ψiu go

to u in the weak dual topology on D∗, and are (integration against) the functions x→ u(T−1
x ψi), which are

smooth functions.

[82] Again, locally integrable means that |f | is in L1(K) for every compact K. This makes best sense for positive

regular Borel measures, so that the measures of compact sets are finite.

422



Garrett: Modern Analysis of Automorphic Forms

Proof: That T ∗ψiu → u as distributions is an instance of a general property of such Gelfand-Pettis integrals
from [14.1.4]. To prove that every Tfu for f ∈ D is (integration against) a continuous or smooth function,
we first guess what that continuous function is, by determining its point-wise values. Indeed, if u = uϕ were
known to be integration against a continuous function ϕ, then with an approximate identity {ψi}

lim
i
uϕ(ψi) = lim

i

∫
Rn
ϕ(x)ψi(x) dx = ϕ(0)

Thus, we anticipate determining values of the alleged continuous function f · u by computing

alleged value (f · u)(0) = lim
i

(f · u)(ψi)

For a continuous function F on Rn, let F∨(x) = F (−x). For for f and ψ in D, since Gelfand-Pettis integrals
commute with continuous linear maps,

(T ∗f u)(ψ) =

(∫
Rn
f(x)T ∗xu dx

)
(ψ) =

∫
Rn
f(x) (T ∗xu)(ψ) dx

=

∫
Rn
f(x)u(T−1

x · ψ) dx = u

(∫
Rn
f(x) (T−1

x · ψ) dx

)
= u

(∫
Rn
f(−x) (Txψ) dx

)
= u(Tf∨ψ)

The function Tf∨ψ admits a rewriting that reverses the roles of f and ψ, namely

(Tf∨ψ)(y) =

∫
Rn
f(−x)ψ(y + x) dx =

∫
Rn
f(y − x)ψ(x) dx

=

∫
Rn
f(y + x)ψ(−x) dx =

∫
Rn
f(y + x)ψ∨(x) dx = (Tψ∨f)(y)

Thus,
(T ∗f · u)(ψ) = u(Tf∨ψ) = u(Tψ∨f) = (T ∗ψu)(f)

We already know that T ∗ψiu→ u for an approximate identity ψi, so the limit exists, and has an understandable
value:

(T ∗f u)(ψi) = (T ∗ψiu)(f) −→ u(f) = supposed value of f · u at 0

Thus, we would guess that T ∗f u should be a function with value u(f) at 0. More generally, for the distribution
uϕ given by integration against ϕ, we have

(T ∗z uϕ)(ψi) = uϕ(T−1
z ψi) =

∫
Rn
ϕ(x)ψi(x− z) dx =

∫
Rn
ϕ(x+ z)ψi(x) dx → ϕ(z)

The analogous computation suggests the values of the function T ∗f u at z. First, a more elaborate version of
the identity reverses the roles of test functions f and ϕ, namely

(Tf∨T
−1
z ψ)(y) =

∫
Rn
f(−x)ψ(y + x− z) dx =

∫
Rn
f(y − x− z)ψ(x) dx

=

∫
Rn
f(y + x− z)ψ(−x) dx =

∫
Rn

(T−1
z f)(y + x)ψ∨(x) dx = (Tψ∨T

−1
z f)(y)

The same sort of computation gives

(T ∗y (T ∗f u))(ψi) = (T ∗f u))(T−1
y ψi) = u(Tf∨T

−1
y ψi) = u(Tψ∨i T

−1
y f)

= (T ∗y (T ∗ψiu))(f)→ (T ∗y u)(f) = u(T−1
y f) = supposed value of f · u at y

Since Rn ×D → D is continuous, and u is continuous, the composition

y × f −→ T−1
y f −→ u(T−1

y f)

423



14. Vector-valued integrals

is indeed continuous as a function of y ∈ Rn.
Now we check that the distribution f · u is truly given by integration against the continuous function

ϕ(y) = u(T−1
y f)

that apparently gives the pointwise values of T ∗f u. Letting h ∈ D,∫
Rn
ϕ(x)h(x) dx =

∫
Rn
u(T−1

x f)h(x) dx =

(∫
Rn
h(x)x · u dx

)
(f) = (T ∗hu)(f)

We already computed directly that

(T ∗hu)(f) = u(Th∨f) = u(Tf∨h) = (T ∗f u)(h)

which shows that integration against the continuous function ϕ(y) = u(T−1
y f) gives the distribution T ∗f u.

Smoothness of y → u(T−1
y f) would follow from the assertion that y → T−1

y f is a smooth, D-valued
function, since u is a continuous linear functional on D. The latter assertion is existence of limits

lim
t→0

T−1
y+tXf − T−1

y f

t
(for X ∈ Rn and y ∈ Rn)

in D for each X ∈ Rn, and iterates thereof. It suffices to consider y = 0. By design, differentiation (such
as this directional derivative in the X direction) is a continuous map of D to itself [13.9]. This gives the
smoothness of y → u(T−1

y f). ///

[14.5.2] Remark: That is, given the idea that f · u has been smoothed, determination of it as a classical
function is straightforward. The proof that T ∗ψiu → u did not use the specifics of the situation: the same
argument applies to representations of Lie groups.

14.6 Density of smooth vectors

Let G be a Lie group, so that the notion of C∞ function on G makes sense. A representation of G on a
locally convex, quasi-complete topological vectorspace V is a continuous map G × V → V that is linear in
V , and has the associativity (gh) · v = g · (h · v) for g, h ∈ G. The subspace V∞ of smooth vectors is

V∞ = {v ∈ V : g → g · v is a C∞ V -valued function on G}

It suffices to consider derivatives associated to the Lie algebra g of G:

(x · f)(g) =
∂

∂t

∣∣∣
t=0

(
(getx) · v

)
(for x ∈ g)

where x→ ex is the exponential map g→ G.
Note that in the representation of Rn on distributions D∗ every distribution is a smooth vector, since every

distribution is infinitely differentiable as a distribution. Thus, smooth vectors are not necessarily smooth
functions. Nevertheless, as in the previous section, distributions are approximable by smooth functions. For
general representations G× V → V , the following is the appropriate corollary of [14.1.4]:

[14.6.1] Theorem: (G̊arding) For quasi-complete, locally convex V with a continuous action of a real Lie
group G, V∞ is dense in V .

Proof: Let {ψi} be an approximate identity in D(G). On one hand, by [14.1.4], for each v ∈ V , Tψiv → v.
On the other hand, we claim that Tψiv is a smooth vector in V . That is, for any ψ ∈ D, we claim that
g → Tg(Tψv) is a smooth function of g ∈ G. By the weak-to-strong result [15.1.1] it suffices to show that,
for all λ ∈ V ∗, g → λ(TgTψv) is a smooth scalar-valued function. By properties of Gelfand-Pettis integrals,

λ(TgTψv) = λTg

∫
G

ψ(h)Thv dh =

∫
G

ψ(h)λ(TgThv) dh =

∫
G

ψ(g−1h)λ(Thv) dh
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To show differentiability near a given go, without loss of generality we can multiply by a smooth, compactly-
supported cut-off function η(g) which is identically 1 near go. Then h → (g → η(g)ψ(g−1h)) is a
smooth, compactly-supported function on G × G, and the integrand h → (g → η(g)ψ(g−1h)λ(Thv)) is
a continuous, compactly-supported, D(G)-valued function on G. Thus, it admits a Gelfand-Pettis integral
g →

∫
G
ψ(g−1h)λ(Thv) dh that is a smooth function. This holds for every λ ∈ V ∗, so by [15.1.1] shows that

g → TgTψv is a smooth V -valued function on G. ///

14.7 Quasi-completeness and convex hulls of compacts

A subset E of a complete metric space X is totally bounded if, for every ε > 0 there is a covering of E by
finitely-many open balls of radius ε. The property of total boundedness in a metric space is generally stronger
than mere boundedness. It is immediate that any subset of a totally bounded set is totally bounded. Recall:

[14.7.1] Proposition: A subset of a complete metric space has compact closure if and only if it is totally
bounded.

Proof: Certainly if a set has compact closure then it admits a finite covering by open balls of arbitrarily
small (positive) radius. On the other hand, suppose that a set E is totally bounded in a complete metric
space X. To show that E has compact closure it suffices to show that any sequence {xi} in E has a Cauchy
subsequence.

Choose such a subsequence as follows. Cover E by finitely-many open balls of radius 1. In at least one
of these balls there are infinitely-many elements from the sequence. Pick such a ball B1, and let i1 be the
smallest index so that xi1 lies in this ball.

The set E ∩B1 is still totally bounded, and contains infinitely-many elements from the sequence. Cover it
by finitely-many open balls of radius 1/2, and choose a ball B2 with infinitely-many elements of the sequence
lying in E ∩ B1 ∩ B2. Choose the index i2 to be the smallest one so that both i2 > i1 and so that xi2 lies
inside E ∩B1 ∩B2.

Inductively, suppose that indices i1 < . . . < in have been chosen, and balls Bi of radius 1/i, so that

xi ∈ E ∩B1 ∩B2 ∩ . . . ∩Bi

Cover E ∩B1 ∩ . . . ∩Bn by finitely-many balls of radius 1/(n+ 1) and choose one, call it Bn+1, containing
infinitely-many elements of the sequence. Let in+1 be the first index so that in+1 > in and so that

xn+1 ∈ E ∩B1 ∩ . . . ∩Bn+1

For m < n we have d(xim , xin) ≤ 1
m so this subsequence is Cauchy. ///

In a not-necessarily metric topological vectorspace V , a subset E is totally bounded if, for every neighborhood
U of 0 there is a finite subset F of V so that E ⊂ F + U , where

F + U =
⋃
v∈F

v + U = {v + u : v ∈ F, u ∈ U}

[14.7.2] Proposition: A totally bounded subset E of a locally convex topological vectorspace V has totally
bounded convex hull.

Proof: First, recall that the convex hull of a finite set F = {x1, . . . , xn} in a topological vectorspace is compact,
since it is the continuous image of the compact set {(c1, . . . , cn) ∈ Rn :

∑
i ci = 1, 0 ≤ ci ≤ 1, for all i} ⊂ Rn

under (c1, . . . , cn)→
∑
i cixi.

Given a neighborhood U of 0 in V , let U1 be a convex neighborhood of 0 so that U1 + U1 ⊂ U . For some
finite subset F we have E ⊂ F + U1, by total boundedness. The convex hull K of F is compact. Then
E ⊂ K + U1, and the latter is convex. Therefore, the convex hull H of E lies inside K + U1. Since K is
compact, it is totally bounded, so can be covered by a finite union Φ + U1 of translates of U1. Thus, since
U1 + U1 ⊂ U , H ⊂ (Φ + U1) + U1 ⊂ Φ + U . Thus, H lies inside this finite union of translates of U . This
holds for any open U containing 0, so H is totally bounded. ///
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[14.7.3] Corollary: In a Fréchet space, the closure of the convex hull of a compact set is compact.

Proof: A compact set in a Fréchet space (or in any complete metric space) is totally bounded, as recalled
above. By the previous, the convex hull of a totally bounded set in a Fréchet space is totally bounded. Thus,
this convex hull has compact closure, since totally bounded sets in complete metric spaces have compact
closure. ///

The general case reduces to the case of Fréchet spaces.

[14.7.4] Proposition: In a quasi-complete, locally convex topological vectorspace X, the closure of the
convex hull of a compact set is compact.

Proof: Since X is locally convex, its topology is given by a collection of seminorms v. For each seminorm v, let
Xv be the completion of the quotient X/{x ∈ X : v(x) = 0} with respect to the metric that v induces on the
latter quotient. Thus, Xv is a Banach space. Consider Z =

∏
v Xv with product topology, with the natural

injection j : X → Z, and with projection pv to the vth factor. By construction, and by definition of the
topology given by the seminorms, j is a (linear) homeomorphism to its image. That is, X is homeomorphic
to the subset jX of Z, given the subspace topology.

Let K ⊂ X be compact, with convex hull H, and C the closure of H. The continuous image pvjK of
compact K is compact. Since Xv is Fréchet, the convex hull Hv of pvjK has compact closure Cv. The
convex hull jH of jK is contained in the product

∏
v Hv of the convex hulls Hv of the projections pvjK.

By Tychonoff’s theorem, the product
∏
v Cv is compact.

Since jC is contained in the compact set
∏
v Cv, to prove that the closure jC of jH in jX is compact, it

suffices to prove that jC is closed in Z. Since jC is a subset of the compact set
∏
v Cv, it is totally bounded

and so is certainly bounded (in Z, hence in X ≈ jX). By the quasi-completeness, a Cauchy net in jC is
necessarily bounded and converges to a point in jC. Since any point in the closure of jC in Z has a Cauchy
net in jC converging to it, jC is closed in Z. ///

14.8 Existence proof

To simplify, divide by a constant to make X have total measure 1. The closure H of the convex hull of
f(X) in V is compact by hypothesis. We will show that there is an integral of f inside H.

For finite L ⊂ V ∗, let

VL = {v ∈ V : λv =

∫
X

λ ◦ f, ∀λ ∈ L} and IL = H ∩ VL

Since H is compact and VL is closed, IL is compact. Certainly IL ∩ IL′ = IL∪L′ for two finite subsets L,L′

of V ∗. If all the IL are non-empty, then the intersection of all these compact sets IL is non-empty, by the
finite intersection property, giving existence.

To prove that each IL is non-empty for finite subsets L of V ∗, choose an ordering λ1, . . . , λn of the elements
of L. Make a continuous linear mapping Λ = ΛL from V to Rn by Λ(v) = (λ1v, . . . , λnv). Since this map is
continuous, the image Λ(f(X)) is compact in Rn.

For a finite set L of functionals, the integral y = yL =
∫
X

Λf(x) dx is readily defined by component-wise
integration. Take y in the convex hull of Λ(f(X)). Since ΛL is linear, y = ΛLv for some v in the convex hull
of f(X). Then

ΛLv = y = (. . . ,

∫
λif(x) dx, . . .)

Thus, v ∈ IL as desired. It remains to show that y lies in the convex hull of ΛL(f(x)).
Suppose not. From the lemma below, in a finite-dimensional space the convex hull of a compact set is still

compact, without taking closure. By the finite-dimensional case of the Hahn-Banach theorem, there would
be a linear functional η on Rn so that ηy > ηz for all z in this convex hull. That is, letting y = (y1, . . . , yn),
there would be real c1, . . . , cn so that for all (z1, . . . , zn) in the convex hull

∑
i cizi <

∑
ciyi. In particular,

for all x ∈ X ∑
i

ciλi(f(x)) <
∑
i

ciyi

426



Garrett: Modern Analysis of Automorphic Forms

Integration of both sides of this over X preserves ordering, giving the impossible
∑
i ciyi <

∑
i ciyi. Thus,

y does lie in this convex hull. ///

[14.8.1] Lemma: The convex hull of a compact set K in Rn is compact.

Proof: First claim that, for E ⊂ Rn and for any x a point in the convex hull of E, there are n + 1 points
x0, x1, . . . , xn in E of which x is a convex combination.

By induction, it suffices to consider a convex combination v = c1v1+. . .+cNvN of vectors vi with N > n+1
and show that v is actually a convex combination of N − 1 of the vi. Further, without loss of generality that
all the coefficients ci are non-zero. Define a linear map

L : RN −→ Rn × R by L(x1, . . . , xN ) −→ (
∑
i

xivi,
∑
i

xi)

By dimension-counting, since N > n+ 1 the kernel of L is non-trivial. Let (x1, . . . , xN ) be a non-zero vector
in the kernel. Since ci > 0 for every index, and since there are only finitely-many indices altogether, there is
a constant c so that |cxi| ≤ ci for every index i, and so that cxio = cio for at least one index io. Then

v = v − 0 =
∑
i

civi − c ·
∑

xivi =
∑
i

(ci − cxi)vi

Since
∑
i xi = 0 this is still a convex combination, and since cxio = cio at least one coefficient has become

zero. This is the induction proving the claim.
By this claim, a point v in the convex hull of K is a convex combination covo + . . .+ cnvn of n+ 1 points

vo, . . . , vn of K. Let σ be the compact set (co, . . . , cn) with 0 ≤ ci ≤ 1 and
∑
i ci = 1. The convex hull of K

is the image of the compact set σ ×Kn+1 under the continuous map

L : (co, . . . , cn)× (vo, v1, . . . , vn) −→
∑
i

civi

so is compact. This proves the lemma, finishing the proof of the theorem. ///

14.A Appendix: Hahn-Banach theorems

For a locally convex vectorspace V , functionals λ ∈ V ∗ separate points, and convex sets can be separated
by linear functionals. Continuous linear functionals on arbitrary subspaces have continuous extensions to
the whole space. In contrast, in general, linear maps from subspaces W to not-finite-dimensional topological
vectorspaces need not extend to V . Indeed, if the identity map T : W → W extended to T ′ : V → W , then
kerT ′ would be a complementary subspace, which need not exist even for closed subspaces W .

Let k be either R or C, and let V be a k-vectorspace, without any assumptions about topologies for the
moment. A k-linear k-valued function on V is a linear functional. A linear functional λ on V is bounded
when there is a neighborhood U of 0 in V and constant c so that |λx| ≤ c for x ∈ U , where | | is the usual
absolute value on k. The following proposition is the general analogue of the corresponding assertion for
Banach spaces, in which boundedness has a different sense.

[14.A.1] Proposition: The following conditions on a linear functional λ on a topological vectorspace V over
k are equivalent: (i) λ is continuous, (ii) λ is continuous at 0, (iii) λ is bounded.

Proof: The first assertion certainly implies the second. Assume the second. Then, given ε > 0, there is a
neighborhood U of 0 so that |λ| is bounded by ε on U . This proves boundedness. Finally, suppose that
|λ(x)| ≤ c on a neighborhood U of 0. Then given x ∈ V and given ε > 0, we claim that for y ∈ x+ ε

2cU we
have |λ(x)− λ(y)| < ε. Indeed, letting x− y = ε

2cu with u ∈ U , we have

|λ(x)− λ(y)| =
ε

2c
|λ(u)| ≤ ε

2c
· c =

ε

2
< ε

This proves the proposition. ///
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The immediate goal is to extend a linear functional while preserving a comparison to another function
(denoted p below). For this, we need not suppose that the vectorspaces involved are topological vectorspaces.
Let V be a real vectorspace, without any assumption about topologies. Let p : V → R be a non-negative
real-valued function on V so that

p(tv) = t · p(v) (for t ≥ 0) (positive-homogeneity)

p(v + w) ≤ p(v) + p(w) (triangle inequality)

Lacking a description of p(tv) for t < 0, p is not quite a semi-norm.

[14.A.2] Theorem: Let λ be a real-linear function on a real vector subspace W of V , so that λ(w) ≤ p(w) for
all w ∈W . There is an extension of λ to a real-linear function Λ on all of V , so that −p(−v) ≤ Λ(v) ≤ p(v)
for all v ∈ V .

Proof: The key issue is extending the functional one step. That is, for vo ∈ V , attempt to extend λ′ of λ to
W + Rvo by λ′(w + tvo) = λ(w) + ct and examine the resulting conditions on c.

For all w,w′ ∈W
λ(w)− p(w − vo) = λ(w + w′)− λ(w′)− p(w − vo)

≤ p(w + w′)− λ(w′)− p(w − vo) = p(w − vo + w′ + vo)− λ(w′)− p(w − vo)

≤ p(w − vo) + p(w′ + vo)− λ(w′)− p(w − vo) = p(w′ + vo)− λ(w′)

That is,
λ(w)− p(w − vo) ≤ p(w′ + vo)− λ(w′) (for all w,w′ ∈W )

Let σ be the sup of all the left-hand sides as w ranges over W . Since the right-hand side is finite, this sup
is finite. With µ the inf of the right-hand side as w′ ranges over W ,

λ(w)− p(w − vo) ≤ σ ≤ µ ≤ p(w′ + vo)− λ(w′)

Take any real number c so that σ ≤ c ≤ µ and define λ′(w + tvo) = λ(w) + tc.
To compare with p is easy: in the inequality λ(w)− p(w − vo) ≤ σ replace w by w/t with t > 0, multiply

by t and invoke the positive-homogeneity to obtain λ(w)− p(w − tvo) ≤ tσ from which

λ′(w − tvo) = λ(w)− tc ≤ λ(w)− tσ ≤ p(w − tvo)

Likewise, from µ ≤ p(w + vo)− λ(w) a similar trick produces

λ′(w + tvo) = λ(w) + tc ≤ λ(w) + tµ ≤ p(w + tvo)

for t > 0, the other half of the desired inequality. Thus, for all v ∈ W + Rvo we have λ′(v) ≤ p(v). Using
the linearity of λ′, λ′(v) = −λ′(−v) ≥ −p(−v) giving the bottom half of the comparison of λ′ and p.

Extend to a functional on the whole space dominated by p by transfinite induction, as follows. Let X be
the collection of all pairs (X,µ), where X is a subspace of V (containing W ), and where µ is real-linear
real-valued function on X so that µ restricted to W is λ, and so that −p(−x) ≤ µ(x) ≤ p(x) for all x ∈ X.
Order these by writing (X,µ) ≤ (Y, ν) when X ⊂ Y and ν|X = µ. By the Hausdorff Maximality Principle,
there is a maximal totally ordered subset Y of X . Let

V ′ =
⋃

(X,µ)∈Y

X

be the ascending union of all the subspaces in Y. Define a linear functional λ′ on this union as follows: for
v ∈ V ′, take any X so that (X,µ) ∈ Y and v ∈ X and define λ′(v) = µ(v). The total ordering on Y makes
the choice of (X,µ) not affect the definition of λ′. If V ′ were not the whole space V the first part of the
proof would create an extension to a properly larger subspace, contradicting the maximality. ///
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[14.A.3] Theorem: For a non-empty convex open subset X of a locally convex topological vectorspace V ,
and a non-empty convex set Y in V with X ∩ Y = φ, there is a continuous real-linear real-valued functional
λ on V and a constant c so that λ(x) < c ≤ λ(y) for all x ∈ X and y ∈ Y .

Proof: Fix xo ∈ X and yo ∈ Y . Since X is open, X − xo is open, and thus

U = (X − xo)− (Y − yo) = {(x− xo)− (y − yo) : x ∈ X, y ∈ Y }

is open. Further, since xo ∈ X and yo ∈ Y , U contains 0. Since X,Y are convex, U is convex. The Minkowski
functional p = pU attached to U is p(v) = inf{t > 0 : v ∈ tU}. The convexity assures that this function p
has the positive-homogeneity and triangle-inequality properties of the auxiliary functional p above.

Let zo = −xo + yo. Since X ∩ Y = φ, zo 6∈ U , so p(zo) ≥ 1. Define a linear functional λ on Rzo by
λ(tzo) = t. Check that λ is dominated by p in the sense of the previous section:

λ(tzo) = t ≤ t · p(zo) = p(tzo) (for t ≥ 0)

while
λ(tzo) = t < 0 ≤ p(tzo) (for t < 0)

Thus, λ(tzo) ≤ p(tzo) for all real t, and λ extends to a real-linear real-valued functional Λ on V , still so that
−p(−v) ≤ Λ(v) ≤ p(v) for all v ∈ V . From the definition of p, |Λ| ≤ 1 on U . Thus, on ε

2U we have |Λ| < ε.
That is, the linear functional Λ is bounded, so is continuous at 0, so is continuous on V .

For arbitrary x ∈ X and y ∈ Y ,

Λx− Λy + 1 = Λ(x− y + zo) ≤ p(x− y + zo) < 1

since x − y + zo ∈ U . Thus, Λx − Λy < 0 for all such x, y. Therefore, Λ(X) and Λ(Y ) are disjoint convex
subsets of R. Since Λ is not the zero functional, it is surjective to R, and so is an open map. Thus, Λ(X) is
open, and Λ(X) < sup Λ(X) ≤ Λ(Y ) as desired. ///

The analogous results for complex scalars are corollaries of the real-scalar cases, as follows. Let V be a
complex vectorspace. Given a complex-linear complex-valued functional λ on V , let its real part be

u(v) = Reλ(v) =
λ(v) + λ(v)

2

where the overbar denotes complex conjugation. On the other hand, given a real-linear real-valued functional
u on V , its complexification is Cu(x) = u(x)− iu(ix) where i =

√
−1.

[14.A.4] Lemma: For a real-linear functional u on the complex vectorspace V , the complexification Cu
is a complex-linear functional so that Re(Cu) = u and for a complex-linear functional λ C(Reλ) = λ.
(Straightforward computation). ///

[14.A.5] Corollary: Let p be a seminorm on the complex vectorspace V . Let λ be a complex-linear function
on a complex vector subspace W of V , so that |λ(w)| ≤ p(w) for all w ∈ W . Then there is an extension of
λ to a complex-linear function Λ on all of V , so that |Λ(v)| ≤ p(v) for all v ∈ V .

Proof: Certainly if |λ| ≤ p then |Reλ| ≤ p. By the theorem for real-linear functionals, there is an extension
u of Reλ to a real-linear functional so that still |u| ≤ p. Let Λ = Cu. In light of the lemma, it remains
to show that |Λ| ≤ p. To this end, given v ∈ V , let µ be a complex number of absolute value 1 so that
|Λ(v)| = µΛ(v). Then

|Λ(v)| = µΛ(v) = Λ(µv) = ReΛ(µv) ≤ p(µv) = p(v)

using the seminorm property of p. Thus, the complex-linear functional made by complexifying the real-linear
extension of the real part of λ satisfies the desired bound. ///

[14.A.6] Corollary: Let X be a non-empty convex open subset of a locally convex topological vectorspace
V , and let Y be an arbitrary non-empty convex set in V so that X ∩ Y = φ. Then there is a continuous
complex-linear complex-valued functional λ on V and a constant c so that

Reλ(x) < c ≤ Reλ(y) (for all x ∈ X and y ∈ Y )
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Proof: Invoke the real-linear version of the theorem to make a real-linear functional u so that u(x) < c ≤ u(y)
for all x ∈ X and y ∈ Y . By the lemma, u is the real part of its own complexification. ///

[14.A.7] Corollary: Let V be a locally convex topological vectorspace. Let K and C be disjoint sets, where
K is a compact convex non-empty subset of V , and C is a closed convex subset of V . Then there is a
continuous linear functional λ on V and there are real constants c1 < c2 so that

Reλ(x) ≤ c1 < c2 ≤ Reλ(y) (for all x ∈ K and y ∈ C)

Proof: Take a small-enough convex neighborhood U of 0 in V so that (K+U)∩C = φ. Apply the separation
theorem to X = K + U and Y = C. The constant c2 can be taken to be c2 = sup Reλ(K + U). Since
Reλ(K) is a compact subset of Reλ(K + U), its sup c1 is strictly less than c2. ///

[14.A.8] Corollary: Let V be a locally convex topological vectorspace, W a subspace, and vo ∈ V . Let W
be the topological closure of W . Then vo 6∈ W if and only if there is a continuous linear functional λ on V
so that λ(W ) = 0 while λ(v) = 1.

Proof: On one hand, if vo lies in the closure of W , then any continuous function which is 0 on W must be 0
on vo, as well. On the other hand, suppose that vo does not lie in the closure of W . Then apply the previous
corollary with K = {vo} and C = W . We find that

Reλ({vo}) ∩ Reλ(W ) = φ

Since Reλ(W ) is a vector subspace of the real line, and is not the whole real line, it is just {0}, and
Reλ(vo) 6= 0. Divide λ by the constant Reλ(vo) to obtain a continuous linear functional zero on W but 1
on vo. ///

[14.A.9] Corollary: Let V be a locally convex topological (real) vectorspace. Let λ be a continuous linear
functional on a subspace W of V . Then there is a continuous linear functional Λ on V extending λ.

Proof: Without loss of generality, take λ 6= 0. Let Wo be the kernel of λ (on W ), and pick w1 ∈ W so that
λw1 = 1. Evidently w1 is not in the closure of Wo, so there is Λ on the whole space V so that Λ|Wo

= 0 and
Λw1 = 1. It is easy to check that this Λ is an extension of λ. ///

[14.A.10] Corollary: Let V be a locally convex topological vectorspace. Given two distinct vectors x 6= y
in V , there is a continuous linear functional λ on V so that λ(x) 6= λ(y)

Proof: The set {x} is compact convex non-empty, and the set {y} is closed convex non-empty, so we can
apply a corollary just above. ///
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15. Differentiable vector-valued functions

1. Weak-to-strong differentiability
2. Holomorphic vector-valued functions
3. Holomorphic Hol(Ω, V )-valued functions
4. Banach-Alaoglu: compactness of polars
5. Variant Banach-Steinhaus/uniform boundedness
6. Weak boundedness implies (strong) boundedness
7. Proof that weak C1 implies strong Co

8. Proof that weak holomorphy implies continuity
Appendix A: vector-valued power series
Appendix B: two forms of the Baire category theorem
Appendix C: Hartogs’ theorem on joint analyticity

15.1 Weak-to-strong differentiability

A V -valued function f : [a, c]→ V on an interval [a, c] ⊂ R is differentiable if for every xo ∈ [a, c]

f ′(xo) = lim
x→xo

(x− xo)−1
(
f(x)− f(xo)

)
exists. The function f is continuously differentiable when it is differentiable and f ′ is continuous. A k-times
continuously differentiable function is Ck, and a continuous function is Co.

A V -valued function f is weakly Ck when for every λ ∈ V ∗ the scalar-valued function λ◦f is Ck. This sense
of weak differentiability of a function f does not refer to distributional derivatives, but to differentiability of
every scalar-valued function λ ◦ f where λ ∈ V ∗ for V -valued f .

[15.1.1] Theorem: For quasi-complete, locally convex V , a weakly Ck V -valued function f on an interval
[a, c] is strongly Ck−1.

Proof: This is a corollary of [15.7.1] below. To have f be (strongly) differentiable at fixed b ∈ [a, c] is to have
(strong) continuity at b of

g(x) =
f(x)− f(b)

x− b
(for x 6= b)

Weak C2-ness of f implies that every λ ◦ g extends to a C1 scalar-valued function on [a, c]. We need to get
from this to a (strongly) continuous extension of g to the whole interval.

The (strong) continuity of f ′ will follow from consideration of the function of two variables (initially for
x 6= y)

g(x, y) =
f(x)− f(y)

x− y

The weak C2-ness of f assures that g extends to a weakly C1 function on [a, c] × [a, c]. In particular, the
function x → g(x, x) of (the extended) g is weakly C1, and x → g(x, x) is f ′(x), so f ′ is weakly C1. By
[15.7.1], f ′ is (strongly) Co. Suppose that we already know that f is C`, for ` < k− 1. As the `th derivative
g = f (`) of f is weakly C2, it is (strongly) C1 by the first part of the argument. That is, f is C`+1. ///

15.2 Holomorphic vector-valued functions

Let V be a quasi-complete, locally convex topological vector space. A V -valued function f on a non-
empty open set Ω ⊂ C is (strongly) complex-differentiable when limz→zo

(
f(z) − f(zo)

)
/(z − zo) exists (in

V ) for all zo ∈ Ω, where z → zo specificially means for complex z approaching zo. The function f is weakly
holomorphic when the C-valued functions λ◦f are holomorphic for all λ in V ∗. The useful version of vector-
valued meromorphy of f at zo is that (z − zo)n · f(z) extends to a vector-valued holomorphic function at zo
for some n. After some preparation, we will prove
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[15.2.1] Theorem: Weakly holomorphic V -valued functions f are continuous. (Proof in [15.8.1]) ///

[15.2.2] Corollary: Weakly holomorphic V -valued functions are (strongly) holomorphic. The Cauchy
integral formula applies:

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw (as Gelfand-Pettis V -valued integral)

Proof: Since f(z) is continuous, the integral

I(z) =
1

2πi

∫
γ

f(w)

w − z
dw

exists as a Gelfand-Pettis integral [14.1]. Thus, for any λ ∈ V ∗

λ
(
I(z)

)
=

1

2πi

∫
γ

(λ ◦ f)(w)

w − z
dw = (λ ◦ f)(z)

by the holomorphy of λ ◦ f . By Hahn-Banach, linear functionals separate points, so I(z) = f(z), giving the
Cauchy integral formula for f itself.

To prove (strong) complex-differentiability of f at zo, take zo = 0 and use f(0) = 0, for convenience.
There is a disk |z| < 3r such that for every λ ∈ V ∗

Fλ(z) =
(λ ◦ f)(z)

z
(on 0 < |z| < r)

extends to a holomorphic function on |z| < r. Continuity of f assures existence of

1

2πi

∫
γ

f(w)

w

dw

w − z

By Cauchy theory for C-valued functions, and Gelfand-Pettis,

λ
(f(z)

z

)
= Fλ(z) =

1

2πi

∫
γ

(λ ◦ f)(w)

w

dw

w − z
= λ

( 1

2πi

∫
γ

f(w)

w

dw

w − z

)
Since functionals separate points,

f(z)

z
=

1

2πi

∫
γ

f(w)

w

dw

w − z

From
1

w(w − z)
=

1

w2
+

z

w2(w − z)
we have

f(z)

z
=

1

2πi

∫
γ

f(w)

w2
dw + z · 1

2πi

∫
γ

f(w)

w2(w − z)
dw

Using the continuity of f , given a convex balanced neighborhood U of 0 in V , the compact set
K = {f(w) : |w| = 2r} is contained in some multiple toU of U . Thus, for |z| < r,

f(z)

z
− 1

2πi

∫
γ

f(w)

w2
dw ∈ |z| · 1

(2r)2 r
· toU

so limz→0 f(z)/z exists. Since f(0) = 0,

lim
z→zo

f(z)− f(zo)

z − zo
=

1

2πi

∫
γ

f(w) dw

(w − zo)2
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giving the complex differentiability of f . ///

[15.2.3] Corollary: The usual Cauchy-theory integral formulas apply. In particular, weakly holomorphic f
is (strongly) infinitely differentiable, in fact expressible as a convergent power series with coefficients given
by Cauchy’s formulas:

f(z) =
∑
n≥0

cn (z − zo)n with cn =
f (n)(zo)

n!
=

1

2πi

∫
γ

f(w)

(w − zo)n+1
dw

for γ a path with winding number +1 around zo.

Proof: Without loss of generality, treat zo = 0, and |z| < ρ|w| with ρ < 1, and |w| = r. The expansion

1

w − z
=

1

w

1

1− z
w

=
1

w

(
1 +

z

w
+
( z
w

)2
+ . . .+

( z
w

)N
+

(z/w)N+1

1− z
w

)
combined with an integration around γ against f(w), and the basic Cauchy integral formula, give

f(z) =

N∑
n=0

1

2πi

∫
γ

f(w) dw

wn+1
· zn +

1

2πi

∫
γ

1

wN+1

f(w) dw

w − z
· zN+1

Much as in the previous proof, given a convex balanced neighborhood U of 0 in V , the compact set
K = {f(w) : |w| = r} is contained in some multiple toU of U , and

1

2πi

∫
γ

1

wN+1

f(w) dw

w − z
· zN+1 ∈ 1

rN+1
· toU ·

1

r(1− ρ)
· (ρr)N+1 = U

to
r(1− ρ)

ρN+1

Since 0 < ρ < 1, ρN+1/r(1− ρ) < 1 for sufficiently large N , so the leftover term is inside given U . ///

Appendix [15.A] discusses the differentiability of power series with coefficients in topological vector spaces.
The next section collects some important corollaries of the main result, prior to preparation for the proof

that weak holomorphy implies continuity,

15.3 Holomorphic Hol(Ω, V )-valued functions

The vector-valued versions of Cauchy’s formulas have useful corollaries. First, recall some aspects of the
classical scalar-valued case.

For open φ 6= Ω ⊂ C, give the space Hol(Ω) of holomorphic functions on Ω the topology given by the
seminorms µK(f) = supz∈K |f(z)| for compacts K ⊂ Ω.

[15.3.1] Claim: Hol(Ω) is a Fréchet space.

Proof: Let {fn} be a Cauchy sequence in that topology. As in [13.5], the pointwise limit f(z) = limn fn(z)
is at least continuous. Then, for a small circle γ inside Ω and enclosing z,

f(z) = lim
n
fn(z) = lim

n

1

2πi

∫
γ

fn(w)

w − z
dw

Since γ is compact and the limit is uniformly approached on compacts, this gives

f(z) =
1

2πi

∫
γ

lim
n

fn(w)

w − z
dw =

1

2πi

∫
γ

f(w)

w − z
dw

Direct estimates (simpler than in the previous section) show that the latter integral is complex-differentiable
in w. ///
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Let V be quasi-complete, locally convex, with topology given by seminorms {ν}. The space Hol(Ω, V ) of
holomorphic V -valued functions on Ω has the natural topology given by seminorms

µν,K(f) = sup
z∈K

ν(f(z)) (compacts K ⊂ Ω, seminorms ν on V )

This topology is obviously the analogue of the sups-on-compacts seminorms on scalar-valued holomorphic
functions, and there is the analogous corollary of the vector-valued Cauchy formulas:

[15.3.2] Corollary: Hol(Ω, V ) is locally convex, quasi-complete. ///

Proof: Let {fn} be a bounded Cauchy net. Just as in the scalar case, the pointwise limits limn fn(z) exist.
The same three-epsilon argument as for scalar-valued functions will show that the pointwise limit exists and
is continuous, as follows. First, using compact K = {z}, the value µ{z},ν(f) is just ν(f(z)). Thus, by quasi-
completeness of V , for each fixed z the bounded Cauchy net fn(z) converges to a value f(z). Given ε > 0 and
zo ∈ Ω, let K be a compact neighborhood of zo, and take N sufficiently large so that ν(fm(z)− fn(z′)) < ε
for all z, z′ ∈ K and all m,n ≥ N . Then

µK,ν(f(z)− f(zo)) ≤ µK,ν(f(z)− fn(z)) + µK,ν(fn(z)− fn(zo)) + µK,ν(fn(zo)− f(zo)) ≤ 3ε

proving the continuity of the pointwise limit. Then, as in the previous scalar-valued argument, the vector-
valued Cauchy formula gives, for a small circle γ inside Ω and enclosing z,

f(z) = lim
n
fn(z) = lim

n

1

2πi

∫
γ

fn(w)

w − z
dw

with Gelfand-Pettis integrals. Since γ is compact and the limit is uniformly approached on compacts, this
gives

f(z) =
1

2πi

∫
γ

lim
n

fn(w)

w − z
dw =

1

2πi

∫
γ

f(w)

w − z
dw

Again, the differentiability of latter integral is directly verifiable, and f is holomorphic. ///

It is occasionally useful to iterate the previous ideas: A V -valued function f(z, w) on a non-empty open
subset Ω ⊂ C2 is complex analytic when it is locally expressible as a convergent power series in z and w, with
coefficients in V . The two-variable version of the discussion of convergence of power series with coefficients
in V in appendix [15.A] succeeds without incident in the two-variable case. [83]

[15.3.3] Corollary: Let f(z, w) be complex-analytic C-valued in two variables, on a domain Ω1 ×Ω2 ⊂ C2.
Then the function w −→ (z → f(z, w)) is a holomorphic Hol(Ω1)-valued function on Ω2.

Proof: The issue is the uniformity in z in compacts K of the limit

lim
h→0

f(z, w + h)− f(z, w)

h

Using the scalar-valued Cauchy integral, for a small circle γ about w, letting f2 be the partial derivative of
f with respect to its second argument,

f(z, w + h)− f(z, w)

h
− f2(z, w) =

1

2πi

∫
γ

f(z, ζ)
( 1
ζ−(w+h) −

1
ζ−w

h
− 1

(ζ − w)2

)
dζ

=
1

2πi

∫
γ

f(z, ζ)
( 1

(ζ − (w + h))(ζ − h)
− 1

(ζ − w)2

)
dζ

The two-variable analytic function z, ζ → f(z, ζ) is certainly continuous as a function of two variables, so is
uniformly continuous on compacts K × γ. Thus, the limit as h→ 0 is approached uniformly. ///

[83] We have no immediate need of subtleties concerning functions of several complex variables, such as Hartogs’

theorem that separate analyticity implies joint analyticity.

434



Garrett: Modern Analysis of Automorphic Forms

Application of the vector-valued form of Cauchy’s integrals gives the same result for f(z, w) taking values
in a quasi-complete, locally convex V :

[15.3.4] Corollary: Let V be quasi-complete, locally convex. Let f(z, w) be complex-analytic V -valued
in two variables, on a domain Ω1 × Ω2 ⊂ C2. Then the function w −→ (z → f(z, w)) is a holomorphic
Hol(Ω1, V )-valued function on Ω2. ///

15.4 Banach-Alaoglu: compactness of polars

The polar Uo of an open neighborhood U of 0 in a topological vector space V is

Uo = {λ ∈ V ∗ : |λu| ≤ 1, for all u ∈ U}

[15.4.1] Theorem: (Banach-Alaoglu) In the weak dual topology on V ∗ the polar Uo of an open neighborhood
U of 0 in V is compact.

Proof: For every v in V there is real tv sufficiently large such that v ∈ tv · U , and |λv| ≤ tv for λ ∈ Uo.
Tychonoff gives compactness of the product

P =
∏
v∈V
{z ∈ C : |z| ≤ tv} ⊂

∏
v∈V

C

Map V ∗ to
∏
v∈V C by j(λ) = {λ(v) : v ∈ V }. By design, j(Uo) ⊂ P . To prove the compactness of Uo it

suffices to show that the weak dual topology on Uo is identical to the subspace topology on j(Uo) inherited
from P , and that j(Uo) is closed in P .

The sub-basis sets
{λ ∈ V ∗ : |λv − λov| < δ} (for v ∈ V and δ > 0)

for V ∗ are mapped by j to the sub-basis sets

{p ∈ P : |pv − λov| < δ} (for v ∈ V and δ > 0)

for the product topology on P . That is, j maps Uo with the weak star-topology homeomorphically to j(Uo).
To show that j(Uo) is closed in P , consider L in the closure of Uo in P . Given x, y ∈ V , a, b ∈ C, the sets

{p ∈ P : |(p− L)x| < δ} {p ∈ P : |(p− L)y| < δ} {p ∈ P : |(p− L)ax+by| < δ}

are open in P and contain L, so meet j(Uo). Let λ ∈ j(Uo) lie in the intersection of these three sets and
j(Uo). Then

|aLx + bLy − Lax+by| ≤ |a| · |Lx − λx|+ |b| · |Ly − λy|+ |Lax+by − λ(ax+ by)|+ |aλx+ bλy − λ(ax+ by)|

≤ |a| · δ + |b| · δ + δ + 0 (for every δ > 0)

so L is linear. Given ε > 0, for N be a neighborhood of 0 in V such that x− y ∈ N implies λx− λy ∈ N ,

|Lx − Ly| = |Lx − λx|+ |Ly − λy|+ |λx− λy|δ + δ + ε

Thus, L is continuous. Also, |Lx − λx| < δ for all x ∈ U and all δ > 0, so L ∈ j(Uo), and j(Uo) is closed,
giving compactness. ///
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15.5 Variant Banach-Steinhaus/uniform boundedness

This variant of the Banach-Steinhaus (uniform boundedness) theorem is used with Banach-Alaoglu to
show that weak boundedness implies boundedness in a locally convex space, the starting point for weak-to-
strong principles. It uses the version of Baire category for locally compact Hausdorff spaces, rather than
complete metric spaces.

[15.5.1] Theorem: (Variant Banach-Steinhaus) Let K be a compact convex set in a topological vectorspace
X, and T a set of continuous linear maps X → Y from X to another topological vectorspace Y . Suppose
that for every individual x ∈ K the collection of images T x = {Tx : T ∈ T } is bounded in Y . Then
B =

⋃
x∈K T x is bounded in Y .

Proof: Let U, V be balanced neighborhoods of 0 in Y so that U + U ⊂ V , and let

E =
⋂
T∈T

T−1(U)

By the boundedness of T x, there is a positive integer n such that T x ⊂ nU , and then x ∈ nE. For every
x ∈ K there is such n, so

K =
⋃
n

(K ∩ nE)

Since E is closed, the version of the Baire category theorem for locally compact Hausdorff spaces implies
that at least one set K ∩nE has non-empty interior in K. For such n, let xo be an interior point of K ∩nE.
Pick a balanced neighborhood W of 0 in X such that

K ∩ (xo +W ) ⊂ nE

Since K is compact, it is bounded, so K − xo is bounded, and K ⊂ xo + tW for large enough positive real
t. Since K is convex, (1− t−1)x+ t−1x ∈ K for any x ∈ K and t ≥ 1. At the same time,

z − xo = t−1(x− xo) ∈W (for large enough t)

by the boundedness of K, so z ∈ xo +W . Thus, z ∈ K ∩ (xo +V ) ⊂ nE. From the definition of E, TE ⊂ U ,
so T (nE) = nT (E) ⊂ nU . And x = tz − (t− 1)xo yields

Tx ∈ tnU − (t− 1)nU ⊂ tn(U + U)

by the balanced-ness of U . Since U + U ⊂ V , we have B ⊂ tnV . Since V was arbitrary, this proves the
boundedness of B. ///

15.6 Weak boundedness implies (strong) boundedness

[15.6.1] Theorem: Let V be a locally convex topological vectorspace. A subset E of V is bounded if and
only if it is weakly bounded.

Proof: For the proof, we need the notion of second polar Noo of an open neighborhood N of 0 in a topological
vector space V :

Noo = {v ∈ V : |λ v| ≤ 1 for all λ ∈ No}

where No is the polar of N . Conveniently,

[15.6.2] Claim: (On second polars) For V a locally convex topological vectorspace and N a convex, balanced
neighborhood of 0, the second polar Noo of N is the closure N of N .

Proof: Certainly N is contained in Noo, and in fact N is contained in Noo since Noo is closed. By the local
convexity of V , Hahn-Banach implies that for v ∈ V but v 6∈ N there is λ ∈ V ∗ such that λv > 1 and
|λv′| ≤ 1 for all v′ ∈ N . Thus, λ is in No, and every element v ∈ Noo is in N , so Noo = N . ///
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Returning to the proof of the theorem: clearly boundedness implies weak boundedness. On the other hand,
take E weakly bounded, and U be a neighborhood of 0 in V in the original topology. By local convexity,
there is a convex (and balanced) neighborhood N of 0 such that the closure N is contained in U .

By the weak boundedness of E, for each λ ∈ V ∗ there is a bound bλ such that |λx| ≤ bλ for x ∈ E. By
Banach-Alaoglu the polar No of N is compact in V ∗. The functions λ → λx are continuous, so by variant
Banach-Steinhaus there is a uniform constant b < ∞ such that |λx| ≤ b for x ∈ E and λ ∈ No. Thus,
b−1x is in the second polar Noo of N , shown by the previous proposition to be the closure N of N . That is,
b−1x ∈ N . By the balanced-ness of N , E ⊂ tN ⊂ tU for any t > b, so E is bounded. ///

15.7 Proof that weak C1 implies strong Co

The claim below, needed to complete the proof of [15.1.1] that weak Ck implies (strong) Ck−1, is an
application of the fact that weak boundedness implies boundedness.

[15.7.1] Claim: Let V be a quasi-complete locally convex topological vector space. Fix real numbers
a ≤ b ≤ c. Let g be a V -valued function defined on [a, b) ∪ (b, c]. Suppose that for λ ∈ V ∗ the scalar-valued
function λ ◦ g extends to a C1 function Fλ on the whole interval [a, c]. Then g(b) can be chosen such that
the extended g(x) is (strongly) continuous on [a, c].

Proof: For each λ ∈ V ∗, let Fλ be the extension of λ ◦ g to a C1 function on [a, c]. The differentiability of
Fλ implies that for each λ the function

Φλ(x, y) =
Fλ(x)− Fλ(y)

x− y
(for x 6= y)

has a continuous extension Φ̃λ to the compact set [a, c] × [a, c]. The image Cλ of [a, c] × [a, c] under this
continuous map is compact in R, so bounded. Thus, the subset{λf(x)− λf(y)

x− y
: x 6= y

}
⊂ Cλ

is bounded in R. That is,

E =
{g(x)− g(y)

x− y
: x 6= y

}
⊂ V

is weakly bounded. Because weakly bounded implies (strongly) bounded, E is (strongly) bounded. That
is, for a balanced, convex neighborhood N of 0 in V , there is to such that (g(x) − g(y))/(x − y) ∈ tN for
x 6= y in [a, c] and t ≥ to. That is, g(x)− g(y) ∈ (x− y)tN . Given N and to as above, g(x)− g(y) ∈ N for
|x− y| < 1

to
. That is, as x→ b the collection g(x) is a bounded Cauchy net. By quasi-completeness, define

g(b) ∈ V as the limit of the values g(x). For x → y the values g(x) approach g(y), so this extension of g is
continuous on [a, c]. ///

15.8 Proof that weak holomorphy implies continuity

With the above preparation, we prove that weak holomorphy implies (strong) continuity, completing the
proof of [15.2.2], as another application of the fact that weak boundedness implies boundedness, by an
argument parallel to that of [15.7] that weak C1 implies Co for vector-valued functions on [a, b].

[15.8.1] Claim: Weak holomorphy implies (strong) continuity.

Proof: To show that weak holomorphy of f implies f : D → V is (strongly) continuous, without loss of
generality prove continuity at z = 0 and suppose f(0) = 0 ∈ V . Since λ ◦ f is holomorphic for each
λ ∈ V ∗ and vanishes at 0, each function (λ ◦ f)(z)/z initially defined on a punctured disk at 0 extends to
a holomorphic function on a full disk at 0. By Cauchy theory for the scalar-valued holomorphic function

z → λ(f(z))
z ,

(λ ◦ f)(z)

z
=

1

2πi

∫
γ

1

w − z
· (λ ◦ f)(w)

w
dw
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where γ is a circle of radius 2r centered at 0, and |z| < r. With Mλ the sup of |λ ◦ f | on γ,∣∣∣∣ (λ ◦ f)(z)

z

∣∣∣∣ ≤ length γ

2π
· 1

2r − r
· Mλ

2r
=

1

2π
· (2π · 2r) · 1

r
· Mλ

2r
=

Mλ

r

Thus, the set of values

S =
{f(z)

z
: |z| ≤ r

}
is weakly bounded. Weak boundedness implies (strong) boundedness, so S is bounded. That is, given a
balanced convex neighborhood N of 0 in V , there is to > 0 such that for complex w with |w| ≥ to, the set S
lies inside wN . Then f(z) ∈ zwN and f(z) ∈ N for |z| < |w|. As f(0) = 0, we have proven that, given N ,
for z sufficiently near 0 f(z)− f(0) ∈ N . This is (strong) continuity. ///

15.A Appendix: vector-valued power series

We should confirm that power series with values in a quasi-complete, locally compact vectorspace V behave
essentially as well as scalar-valued ones. First,

[15.A.1] Lemma: Let cn be a bounded sequence of vectors in the locally convex, quasi-complete topological
vector space V . Let zn be a sequence of complex numbers, let 0 ≤ rn be real numbers such that |zn| ≤ rn, and
suppose that

∑
n rn < +∞. Then

∑
n cn zn converges in V . Further, given a convex balanced neighborhood

U of 0 in V let t be a positive real such that for all complex w with |w| ≥ t we have {cn} ⊂ tU . Then

∑
n

cn zn ∈

(∑
n

|zn|

)
· tU ⊂

(∑
n

rn

)
· tU

Proof: For convex balanced neighborhood N of 0 in the topological vector space, with complex numbers z
and w such that |z| ≤ |w|, then zN ⊂ wN , since |z/w| ≤ 1 implies (z/w)N ⊂ N , or zN ⊂ wN . Further, for
an absolutely convergent series

∑
n αn of complex numbers, for any no

∑
n≤no

(αn · V ) =
∑
n≤no

(|αn| · V ) ⊂

∑
n≤no

|αn|

 ·N ⊂

(∑
n<∞

|αn|

)
·N

For a balanced open U containing 0, let t be large enough such that for any complex w with |w| ≥ t the
sequence cn is contained in wU . The previous discussion shows that∑

m≤`≤n

c`z` ∈ (|zm|+ . . .+ |zn|) · tU

Given ε > 0, invoking absolute convergence, take m sufficiently large such that |zm|+ . . .+ |zn| < t · ε for all
n ≥ m. Then ∑

m≤`≤n

c`z` ∈ t · (ε/t) · U = U

Thus, the original series is convergent. Since X is quasi-complete the limit exists in V . The last containment
assertion follows from this discussion, as well. ///

[15.A.2] Corollary: Let cn be a bounded sequence of vectors in a locally convex quasi-complete topological
vector space V . Then on |z| < 1 the series f(z) =

∑
n cnz

n converges and gives a holomorphic V -valued
function. That is, the function is infinitely-many-times complex-differentiable.

Proof: The lemma shows that the series expressing f(z) and its apparent kth derivative
∑
n cn

(
n
k

)
zn−k all

converge for |z| < 1. The usual direct proof of Abel’s theorem on the differentiability of (scalar-valued)
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power series can be adapted to prove the infinite differentiability of the X-valued function given by this
power series, as follows. Let

g(z) =
∑
n≥0

ncn z
n−1

Then
f(z)− f(w)

z − w
− g(w) =

∑
n≥1

cn

(
zn − wn

z − w
− nwn−1

)
For n = 1, the expression in the parentheses is 1. For n > 1, it is(

zn−1 + zn−2w + . . .+ zwn−2 + wn−1
)
− nwn−1

= (zn−1 − wn−1) + (zn−2w − wn−1) + . . .+ (z2wn−3 − wn−1) + (zwn−2 − wn−1) + (wn−1 − wn−1)

= (z − w)
[
(zn−2 + . . .+ wn−2) + w(zn−3 + . . .+ wn−3) + . . .+ wn−3(z + w) + wn−2 + 0

]
= (z − w)

n−2∑
k=0

(k + 1) zn−2−k wk

For |z| ≤ r and |w| ≤ r the latter expression is dominated by

|z − w| · rn−2 n(n− 1)

2
< |z − w| · n2 rn−2

Let U be a balanced neighborhood of 0 in X, and t a sufficiently large real number such that for all complex
w with |w| ≥ t all cn lie in wU . For |z| ≤ r < 1 and |w| ≤ r < 1, by the lemma,

f(z)− f(w)

z − w
− g(w) = (z − w)

∑
n≥2

cn ·

(
n−2∑
k=0

(k + 1) zn−2−k wk

)
∈ (z − w) ·

(∑
n

n2 rn−2

)
· tU

Thus, as z → w, eventually f(z)−f(w)
z−w − g(w) lies in U . ///

[15.A.3] Corollary: Let cn be a sequence of vectors in a Banach space X such that for some r > 0 the series∑
|cn| · rn converges in X. Then for |z| < r the series f(z) =

∑
cnz

n converges and gives a holomorphic
(infinitely-many times complex-differentiable) X-valued function. ///

15.B Appendix: two forms of the Baire category theorem

This standard result is indispensable and mysterious. We give the more-typical version for complete metric
spaces in parallel with the argument for locally compact Hausdorff spaces.

A set E in a topological space X is nowhere dense if its closure Ē contains no non-empty open. A countable
union of nowhere dense sets is said to be of first category, while every other subset is of second category.
The idea, not suggested by this traditional terminology, is that first category sets are small, while second
category sets are large. The theorem asserts that (non-empty) complete metric spaces and locally compact
Hausdorff spaces are of second category.

[15.B.1] Theorem: For X be a complete metric space or a locally compact Hausdorff topological space, the
intersection of a countable collection U1, U2, . . . of dense open subsets Ui of X is still dense in X.

Proof: Let Bo be a non-empty open set in X, and show that
⋂
i Ui meets Bo. Suppose that we have inductively

chosen an open ball Bn−1. By the denseness of Un, there is an open ball Bn whose closure Bn satisfies

Bn ⊂ Bn−1 ∩ Un

Further, for complete metric spaces, take Bn to have radius less than 1/n (or any other sequence of reals
going to 0), and in the locally compact Hausdorff case take Bn to have compact closure.
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Let
K =

⋂
n≥1

Bn ⊂ Bo ∩
⋂
n≥1

Un

For complete metric spaces, the centers of the nested balls Bn form a Cauchy sequence (since they are nested
and the radii go to 0). By completeness, this Cauchy sequence converges, and the limit point lies inside each
closure Bn, so lies in the intersection. In particular, K is non-empty. For locally compact Hausdorff spaces,
the intersection of a nested family of non-empty compact sets is non-empty, so K is non-empty, and Bo
necessarily meets the intersection of the Un. ///

15.C Appendix: Hartogs’ theorem on joint analyticity

This proof roughly follows that in [Hörmander 1973] which roughly follows Hartogs’ original argument
[Hartogs 1906].

[15.C.1] Theorem: Let f be a C-valued function defined in a non-empty open set U ⊂ Cn. If f is analytic
in each variable zj when the other coordinates zk for k 6= j are fixed, then f is analytic as a function of all
n coordinates.

[15.C.2] Remark: It is striking that no additional hypothesis on f is used beyond its separate analyticity:
there is no assumption of continuity, nor even of measurability. Indeed, the beginning of the proof illustrates
the fact that an assumption of continuity trivializes things. The strength of the theorem is that no hypothesis
whatsoever is necessary.

Proof: The assertion is local, so it suffices to prove it when the open set U is a polydisk. The argument
approaches the full assertion in stages.

First, suppose that f is continuous on the closure Ū of a polydisk U , and separately analytic. Even without
continuity, simply by separate analyticity, an n-fold iterated version of Cauchy’s one-variable integral formula
is valid, namely

f(z) =
1

(2πi)n

∫
C1

. . .

∫
Cn

f(ζ)

(ζ1 − z1) . . . (ζn − zn)
dζ1 . . . dζn

where Cj is the circle bounding the disk in which zj lies, traversed in the positive direction. The integral is
a compactly supported integral of the function

(ζ1, . . . , ζn)→ f(ζ1, . . . , ζn)

(ζ1 − z1) . . . (ζn − zn)

For |zj | < |ζj |, the geometric series expansion

1

ζj − zj
=
∑
n≥0

znj

ζn+1
j

can be substituted into the latter integral. Fubini’s theorem justifies interchange of summation and
integration, yielding a (convergent) power series for f(z). Thus, continuity of f(z) (with separate analyticity)
implies joint continuity.

Note that if we could be sure that every conceivable integral of analytic functions were analytic, then this
iterated one-variable Cauchy formula would prove (joint) analyticity immediately. However, it is not obvious
that separate analyticity implies continuity, for example.

Next we see that boundedness of a separately analytic function on a closed polydisk implies continuity,
using Schwarz’ lemma and its usual corollary:

[15.C.3] Lemma: (Schwarz) Let g(z) be a holomorphic function on {z ∈ C : |z| < 1}, with g(0) = 0 and
|g(z)| ≤ 1. Then |g(z)| ≤ |z| and |g′(0)| ≤ 1. (Proof: Apply the maximum modulus principle to f(z)/z on
disks of radius less than 1.)

[15.C.4] Corollary: Let g(z) be a holomorphic function on {z ∈ C : |z| < r}, with |g(z)| ≤ B for a bound
B. Then for z, ζ in that disk,

|g(z)− g(ζ)| ≤ 2 ·B ·
∣∣∣∣r(z − ζ)

r2 − ζ̄z

∣∣∣∣
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Proof: (of corollary) The linear fractional transformation

µ : z → r ·
(

1 ζ/r
ζ̄/r 1

)
(rz) = r · z + rζ

ζ̄z + r

sends the disk of radius 1 to the disk of radius r, and sends 0 to ζ. Then the function

z → g(µ(z))− g(ζ)

2B

is normalized to match Schwarz’ lemma, namely that it vanishes at 0, and is bounded by 1 on the open unit
disk. Thus, we conclude that for |z| < 1 ∣∣∣∣g(µ(z))− g(ζ)

2B

∣∣∣∣ ≤ |z|
Replace z by

µ−1(z) =
r(z − ζ)

r2 − ζ̄z
to obtain ∣∣∣∣g(z)− g(ζ)

2B

∣∣∣∣ ≤ ∣∣∣∣r(z − ζ)

r2 − ζ̄z

∣∣∣∣
as asserted in the corollary. ///

Now let f be separately analytic and bounded on the closure of the polydisk {(z1, . . . , zn) : |zj | < rj}. We
show that f is (jointly) analytic by proving it is continuous, invoking the first part of the proof (above). Let
B be a bound for |f | on the closed polydisk. We claim that the inequality

|f(z)− f(ζ)| ≤ 2B
∑

1≤j≤n

rj |zj − ζj |
|r2
j − ζ̄jzj |

holds, which would prove continuity. Because of the telescoping expression

f(z)− f(ζ) =
∑

1≤j≤n

(f(ζ1, . . . , ζj−1, zj , . . . , zn)− f(ζ1, . . . , ζj , ζj , zj+1, . . . , zn))

it suffices to prove the inequality in the single-variable case, which is the immediate corollary to Schwarz’
lemma as above. Thus, a bounded separately analytic f is continuous, and (from above) jointly analytic.

Now we do induction on the dimension n: suppose that Hartogs’ theorem is proven on Cn−1, and prove it
for Cn. Here the Baire Category Theorem intervenes, getting started on the full statement of the theorem
by first showing that a separately analytic function must be bounded on some polydisk, hence (from above)
continuous on that polydisk, hence (from above) analytic on that polydisk.

Let f be separately analytic on a (non-empty) closed polydisk D =
∏

1≤j≤n Dj , where Dj is a disk in
C. We claim that there exist non-empty closed disks Ej ⊂ Dj with En = Dn such that f is bounded on
E =

∏
1≤j≤n Ej (and, hence, f is analytic in E).

To see this, for each bound B > 0 let

ΩB = {z′ ∈
∏

1≤j≤n−1

Ej : |f(z′, zn)| ≤ B for all zn ∈ En}

By induction, for fixed zn the function z′ → f(z′, zn) is analytic, so continuous, so ΩB is closed. For any
fixed z′, the function zn → f(z′, zn) is assumed analytic, so is continuous on the closed disk En = Dn, hence
bounded. Thus

∞⋃
B=1

ΩB =
∏

1≤j≤n−1

Dj
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Then the Baire Category Theorem shows that some ΩB must have non-empty interior, so must contain a
(non-empty) closed polydisk, as claimed

Now let f be separately analytic in a polydisk

D = {(z1, . . . , zn) : |zj | < r} ⊂ Cn

analytic in z′ = (z1, . . . , zn−1) for fixed zn, and suppose that f is analytic in a smaller (non-empty) polydisk

E =

 ∏
1≤j≤n−1

{zj ∈ C : |zj | < ε}

× {zn ∈ C : |zn| < r}

inside D. Then we claim that f is analytic on the original polydisk D.
By the iterated form of Cauchy’s formula, the function z′ → f(z′, zn) has a Taylor expansion in z′

f(z′, z) =
∑
α

cα(zn) z′α

where the coefficients depend upon zn, given by the usual formula

cα(zn) =
∂α

∂z′α
f(0, zn)/α!

using multi-index notation. Cauchy’s integral formula in z′ for derivatives

∂α

∂z′α
f(0, zn) = α!

1

(2πi)n−1

∫
C1

. . .

∫
Cn−1

f(ζ)

(ζ1 − z1)α1+1 . . . (ζn−1 − zn−1)αn−1+1
dζ1 . . . dζn−1

shows that cα(zn) is analytic in zn, again by expanding convergent geometric series and their derivatives,
and interchanging summation and integration.

Fix 0 < r1 < r2 < r and fix zn with |zn| < r. Then

|cα(zn)| · r|α|2 → 0

as |α| → ∞, by the convergence of the power series. Let B be a bound for |f | on the smaller polydisk E.
Then on that smaller polydisk the Cauchy integral formula for the derivative gives

|cα(zn)| ≤ B/ε|α|

Therefore, the subharmonic functions

uα(zn) =
1

|α|
log |cα(zn)|

are uniformly bounded from above for |zn| < r. And the property |cα(zn)| · r|α|2 → 0 shows that for fixed zn
log(1/r2) is an upper bound for these subharmonic functions as |α| → ∞. Thus, Hartogs’ lemma (recalled
below) on subharmonic functions implies that for large |α|, uniformly in |zn| < r1

1

|α|
log |cα(zn)| ≤ log(1/r1)

Thus, for large |α|
|cα(zn)| · r|α|1 ≤ 1

uniformly in |zn| < r1. Therefore, since the summands cα(zn) z′α are analytic, the series

f(z′, z) =
∑
α

cα(zn) z′α
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converges to a function analytic in the polydisk D.
Thus, in summary, given z ∈ U , choose r > 0 so that the polydisk of radius 2r centered at z is contained

in U . The Baire category argument above shows that there is w such that z is inside a polydisk D of radius
r centered at w, and such that f is holomorphic on some smaller polydisk E inside D (still centered at w).
Finally one uses Hartogs’ lemma on subharmonic functions (below) to see that the power series for f on the
small polydisk E at w converges on the larger polydisk D at w. Since D contains the given point z, f is
analytic on a neighborhood of z. Thus, f is analytic throughout U . ///

[15.C.5] Lemma: (Hartogs) Let uj be a sequence of real-valued subharmonic functions in an open set U in
C. Suppose that the functions are uniformly bounded from above, and that

lim sup
k

uk(z) ≤ C

for every z ∈ U . Then, given ε > 0 and compact K ⊂ U there exists ko such that for z ∈ K and k ≥ ko

uk(z) ≤ C + ε

Proof: Without loss of generality, replacing U by an open subset with compact closure contained inside U ,
we may suppose that the functions uk are uniformly bounded in U , for example uk(z) ≤ 0 for all z ∈ U . Let
r > 0 be small enough so that the distance from K to every point of the complement of U is more than 3r.
Using the proposition below characterizing subharmonic functions, we have, for every z ∈ K,

πr2uk(z) ≤
∫
|z−ζ|<r

uk(ζ) dζ

By Fatou’s lemma, the lim sup of the right hand side is at most πr2C as k → ∞. Thus, for every z ∈ K
there is ko such that for k ≥ ko ∫

|z−ζ|<r
uk(ζ) dζ ≤ πr2(C + ε/2)

Since uk(z) ≤ 0, for |z − w| < δ < r

π(r + δ)2 uk(w) ≤
∫
|ζ−w|<r+δ|

uk(ζ) dζ ≤
∫
|ζ−z|≤r

uk(ζ) dζ

Thus, for δ > 0 sufficiently small, for k ≥ ko and |w − z| < δ,

uk(w) < C + ε

Since K is compact the lemma follows. ///

For convenience, recall the following basic property of subharmonic functions.

[15.C.6] Proposition: For a real-valued subharmonic function u bounded above on an open set U , for every
positive measure µ on [0, δ], and for z ∈ U of distance more than δ from the complement of U ,

u(z) · 2π ·
∫

dµ ≤
∫ 2π

0

∫
u(z + reiθ) dθ dµ(r)

Proof: The definition of a function u being subharmonic on an open set Ω is that u is upper semicontinuous
(that is, {z ∈ Ω : u(z) < c} is open for every constant c), and for every compact K ⊂ Ω, for every continuous
function h on K harmonic on K and h(β) ≥ u(β) for β on the boundary of K, u(z) ≤ h(z) throughout K.
The condition may be vacuous unless u is assumed bounded from above.

Let z ∈ U be distance more than δ away from the complement of U , and fix r with 0 < r ≤ δ. Let D be
the closed disk of radius r about z. Since r ≤ δ, D ⊂ U . For a trigonometric polynomial

g(θ) =
∑
k

ck e
iθ
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with real coefficients ck with u(z + reiθ) ≤ g(θ), the polynomial

G(ζ) = c0 +
∑
k>0

(ck + c−k)
(ζ − z)k

rk

has real part ReG which is an upper bound for u on the boundary of the disk D. Thus, u ≤ ReG on D by
the subharmonicness of u, and in particular at the center of D, at z,

u(z) ≤ co +
1

2π

∫ 2π

0

g(θ) dθ

Then for an arbitrary continuous real-valued function h on the boundary of D and with u(z + reiθ) ≤ h(θ),
(by Weierstrass approximation, for example) given ε > 0 we can find a trigonometric polynomial g so that
sup |g(θ)− h(θ)| < ε. Thus, for every ε > 0,

u(z) ≤ co +
1

2π

∫ 2π

0

h(θ) dθ + ε

Thus, the latter inequality must hold with ε = 0, for continuous h. Since the integral of an upper-
semicontinuous function is the infimum of the integrals of continuous functions dominating it, we have
the same inequality with u in place of h. Integration with respect to the radius r gives the result. ///

In fact, suppose that for every δ > 0 and for every z at distance more than δ from the complement of U
there exists a positive measure µ on [0, δ] with support not just {0} and

u(z) · 2π ·
∫

dµ ≤
∫ 2π

0

∫
u(z + reiθ) dθ dµ(r)

Then u is subharmonic. To see this, let K be a compact subset of U , h a continuous function on K which
is harmonic in the interior of K and such that u ≤ g on the boundary of K. If the supremum of u− h over
K is strictly positive, the upper semicontinuity of u− h implies that u− h attains its sup S on a non-empty
compact subset M of the interior of K. Let zo be a point of M closest to the boundary of K. If the distance
is greater than δ, then every circle |z − zo| = r with 0 < r ≤ δ contains a non-empty arc of points where
u− h < S. Then∫

(u− h)(zo + reiθ)) dθ dµ(r) < S · 2π ·
∫
dµ(r) = (u− h)(zo) · 2π ·

∫
dµ(r)

when µ is a measure not supported just at {0}. The mean value property for harmonic functions gives∫
h(zo + reiθ)) dθ dµ(r) = h(zo) · 2π ·

∫
dµ(r)

Thus, ∫
u(zo + reiθ)) dθ dµ(r) < u(zo) · 2π ·

∫
dµ(r)

contradicting the hypothesis. Thus, supK(u− h) ≤ 0, which proves that u is subharmonic. ///
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16. Asymptotic expansions

1. Heuristic for Stirling’s asymptotic
2. Watson’s lemma
3. Watson’s lemma illustrated on the Beta function
4. Simple form of Laplace’s method
5. Laplace’s method illustrated on Bessel functions
6. Regular singular points heuristic: freezing coefficients
7. Regular singular points
8. Regular singular points at infinity
9. Example revisited
10. Irregular singular points
11. Example: translation-equivariant eigenfunctions on H
12. Beginning of construction of solutions
13. Boundedness of K(x, t)
14. End of construction of solutions
15. Asymptotics of solutions
Appendix A: manipulation of asymptotic expansions
Appendix B: ordinary points

The simplest notion of asymptotic of f(s) as s goes to +∞ on R is a simpler function F (s) such that
lims f(s)/F (s) = 1, written f ∼ F . One might require an error estimate, for example,

f ∼ F ⇐⇒ f(s) = F (s) · (1 +O
( 1

|s|
)
)

A more precise form is to say that

f(s) ∼ f0(s) ·
( c0
sα

+
c1
sα+1

+
c2
sα+2

+ . . .
)

(with any auxiliary function f0) is an asymptotic expansion for f when

f = f0(s) ·
( c0
sα

+
c1
sα+1

+ . . .+
cn
sα+n

+O
( 1

|s|α+n+1

))
The exposition is revisionist: Laplace’s method is proven by reducing it to Watson’s lemma.

16.1 Heuristic for Stirling’s asymptotic

First we give a heuristic and mnemonic for the main term of the Laplace-Stirling asymptotic, namely

Γ(s) ∼ e−s · ss− 1
2 ·
√

2π

Using Euler’s integral,

s · Γ(s) = Γ(s+ 1) =

∫ ∞
0

e−u us+1 du

u
=

∫ ∞
0

e−u us du =

∫ ∞
0

e−u+s log u du

The trick is to replace the exponent −u + s log u by the quadratic polynomial in u best approximating it
near its maximum, and evaluate the resulting integral. This replacement is justified via Watson’s lemma
and Laplace’s method, below, but the heuristic is simpler than the justification. The exponent takes its
maximum where its derivative vanishes, at the unique solution uo = s of

−1 +
s

u
= 0
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The second derivative in u of the exponent is −s/u2, which takes value −1/s at uo = s. Thus, near uo = s,
the quadratic Taylor-Maclaurin polynomial in u approximating the exponent is

−s+ s log s− 1

2! s
· (u− s)2

We imagine that

s · Γ(s) ∼
∫ ∞

0

e−s+s log s− 1
2s ·(u−s)

2

du = e−s · ss ·
∫ ∞
−∞

e−
1
2s ·(u−s)

2

du

The latter integral is taken over the whole real line. Evaluation of the integral over the whole line, and simple
estimates on the integral over (−∞, 0], show that the integral over (−∞, 0] is of a lower order of magnitude
than the whole. Thus, the leading term of the asymptotics of the integral over the whole line is the same
than the integral from 0 to +∞. To simplify the remaining integral, replace u by su and cancel a factor of
s from both sides,

Γ(s) ∼ e−s · ss ·
∫ ∞
−∞

e−s(u−1)2/2 du

Replace u by u+ 1, and u by u ·
√

2π/s, obtaining∫ ∞
−∞

e−s(u−1)2/2 du =

∫ ∞
−∞

e−su
2/2 du =

√
2π√
s

∫ ∞
−∞

e−πu
2

du =

√
2π√
s

and
Γ(s) ∼ e−s · ss− 1

2 ·
√

2π

It is striking that this heuristic can be made rigorous, as below.

16.2 Watson’s lemma

Watson’s lemma gives an asymptotic expansion for certain Laplace transforms, valid in half-planes in C.
For example, let h be a smooth function on (0,+∞) all whose derivatives are of polynomial growth, and
expressible for small x > 0 as

h(x) = xα · g(x)

for some α ∈ C, where g(x) is differentiable on R near 0. Thus, h(x) has an expression

h(x) = xα ·
∞∑
n=0

cn x
n (for 0 < x sufficiently small)

Then there is an asymptotic expansion of the Laplace transform of h,∫ ∞
0

e−xs h(x)
dx

x
∼ Γ(α) c0

sα
+

Γ(α+ 1) c1
sα+1

+
Γ(α+ 2) c2

sα+2
+ . . . (for Re(s) > 0)

A simple corollary of the error estimates given below is that, letting Re(α) + 1 − ε be the greatest integer
less than or equal Re(α) + 1,∫ ∞

0

e−xs h(x)
dx

x
=

∫ ∞
0

e−xs xα g(x)
dx

x
=

Γ(α) g(0)

sα
+O

( 1

|s|Re(α)+1−ε

)
Since

Re(α) + 1− ε > Re(α)

the error term is of strictly smaller order of magnitude in s.
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The idea of the proof is straightforward: the expansion is obtained from∫ ∞
0

e−xs h(x)
dx

x
=

∫ ∞
0

e−xs xα
(
c0 + . . .+ cnx

n
) dx
x

+

∫ ∞
0

e−xs xα
(
g(x) −

(
c0 + . . .+ cnx

n
)) dx

x

The first integral gives the asymptotic expansion, and for Re(s) > 0 the second integral can be integrated
by parts essentially Re(α) +n times and trivially bounded to give a O(1/sα+n−ε) error term for some small
ε ≥ 0. Note that for the integration by parts the denominator x in the measure must be moved into the
integrand proper, accounting for a slight reduction of the order of vanishing of the integrand at 0.

To understand the error, let ε ≥ 0 be the smallest such that

N = Re(α) + n− ε ∈ Z

The subtraction of the initial polynomial and re-allocation of the 1/x from the measure makes
xα−1(g(x)− (c0 + . . .+ cnx

n) vanish to order N at 0. This, with the exponential e−sx and the presumed
polynomial growth of h and its derivatives, allows integration by parts N times without boundary terms,
giving ∫ ∞

0

e−xs h(x) dx =
Γ(α) c0
sα

+
Γ(α+ 1) c1

sα+1
+ . . .+

Γ(α+ n) cn
sα+n

+
1

sN

∫ ∞
0

e−sx
( ∂
∂x

)N(
xα ·

(
g(x)− (c0 + . . .+ cnx

n)
))
dx

The last error-like term is O(s−[Re(α)+n−ε]). That is, computing in this fashion, the error term swallows up
the last term in the asymptotic expansion. Visibly, this argument applies to more general sorts of expansions
near 0.

16.3 Watson’s lemma illustrated on the Beta function

Here is an important example of an asymptotic result non-trivial to derive from Stirling’s formula for Γ(s),
but easy to obtain from Watson’s lemma. Euler’s beta integral is

B(s, a) =

∫ 1

0

xs−1 (1− x)a−1 dx =
Γ(s) Γ(a)

Γ(s+ a)

We recall how to express Beta in terms of Gamma: with x = u/(u+ 1) in the beta integral,

B(s, a) =

∫ ∞
0

us−1 (u+ 1)−(s−1)−(a−1)−2 du =

∫ ∞
0

us−1 (u+ 1)−s−a du

=
1

Γ(s+ a)

∫ ∞
0

∫ ∞
0

us e−v(u+1) vs+a
dv

v

du

u

using
∫∞

0
e−vy vb dv/v = Γ(b)/yb. Replacing u by u/v gives B(s, a) = Γ(s)Γ(a)/Γ(s+ a).

Fix a with Re(a) > 0, and consider this integral as a function of s. Letting x = e−u gives an integrand
fitting Watson’s lemma,

B(s, a) =

∫ ∞
0

e−su (1− e−u)a−1 du =

∫ ∞
0

e−su (u− u2

2!
+ . . .)a−1 du

=

∫ ∞
0

e−su ua · (1− u

2!
+ . . .)a−1 du

u
∼ Γ(a)

sa

taking just the first term in an asymptotic expansion, using Watson’s lemma. Thus,

Γ(s) Γ(a)

Γ(s+ a)
∼ Γ(a)

sa
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giving
Γ(s)

Γ(s+ a)
∼ 1

sa
(for a fixed)

16.4 Simple form of Laplace’s method

A simple version of Laplace’s method obtains asymptotics in s for certain integrals of the form∫ ∞
0

e−s·f(u) du

with f real-valued. The idea is that the minimum values of f(u) should dominate, and the leading term of
the asymptotics should be∫ ∞

0

e−s·f(u) du ∼ e−sf(uo) ·
√

2π√
f ′′(uo)

· 1√
s

(for |s| → ∞, with Re(s) ≥ δ > 0)

To reduce this to Watson’s lemma, break the integral at points where the derivative f ′ changes sign,
and change variables to convert each fragment to a Watson-lemma integral. For Watson’s lemma to be
legitimately applied, we will find that f must be smooth with all derivatives of at most polynomial growth
and at most polynomial decay, as u → +∞. For simplicity assume that there is exactly one point uo at
which f ′(uo) = 0, and that f ′′(uo) > 0. Further, assume that f(u) goes to +∞ at 0+ and at +∞. Since
f ′(u) > 0 for u > uo and f ′(u) < 0 for 0 < u < uo, on each of these two intervals there is a smooth square
root

√
f(u)− f(uo) and there are smooth functions F,G such thatF (

√
f(u)− f(uo)) = u (for uo < u < +∞)

G(
√
f(u)− f(uo)) = u (for 0 < u < uo)

Then ∫ ∞
0

e−s f(u) du = e−sf(uo)

∫ uo

0

e−s (f(u)−f(uo)) du+ e−sf(uo)

∫ ∞
uo

e−s (f(u)−f(uo)) du

= e−sf(uo)

(∫ ∞
0

e−s x
2

F ′(x) dx+

∫ ∞
0

e−s x
2

G′(x) dx

)
by letting x =

√
f(u)− f(uo) in the two intervals. In both integrals, replacing x by

√
x gives Watson’s-lemma

integrals ∫ ∞
0

e−s f(u) du = e−sf(uo)

(∫ ∞
0

e−sx 1
2x

1/2 F ′(
√
x)
dx

x
+

∫ ∞
0

e−sx 1
2x

1/2G′(
√
x)
dx

x

)
At this point the needed conditions on F , hence, on f , become clear: since F must be smooth with all
derivatives of at most polynomial growth, direct chain-rule computations show that it suffices that no
derivative of f increases or decreases faster than polynomially as u→ +∞. The assumptions f ′(uo) = 0 and
f ′′(uo) > 0 assure that F has a Taylor series expansion near 0, giving a suitable expansion

1
2x

1/2F ′(x) = 1
2F
′(0)x1/2 +

1
2F

(2)(0)

1!
x3/2 +

1
2F

(3)(0)

2!
x5/2 +

1
2F

(4)(0)

3!
x7/2 + . . . (small x > 0)

From this, the main term of the Watson’s lemma asymptotics for the integral involving F would be∫ ∞
0

e−sx 1
2x

1/2 F ′(
√
x)
dx

x
∼

Γ( 1
2 )F ′(0)

2
· 1√

s
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To determine F ′(0), or any higher coefficients, from F (x) = u, we have F ′(x) · dxdu = 1. Since

x =
√
f(u)− f(uo) =

√
(u− uo)2 · f

′′(uo)

2!
+ . . . =

√
f ′′(uo)

2
·
(

(u− uo) + . . .
)

the derivative is
dx

du
=

√
f ′′(uo)

2
·
(

1 +O(u− uo)
)

Thus,

F ′(x) =
1
dx
du

=

√
2

f ′′(uo)
·
(

1 +O(u− uo)
)

which allows evaluation at x = 0, namely

F ′(0) =

√
2

f ′′(uo)

The same argument applied to G gives G′(0) = F ′(0). Thus,

∫ ∞
0

e−s f(u) du ∼ e−sf(uo) ·
Γ( 1

2 ) · 2 ·
√

2
f ′′(uo)

2
√
s

= e−sf(uo) ·
√

2π√
f ′′(uo)

· 1√
s

Last, we verify that this outcome is what would be obtained by replacing f(u) by its quadratic
approximation

f(uo) +
f ′′(0)

2!
· (u− uo)2

in the exponent in the original integral, integrated over the whole line. The latter would be∫ ∞
−∞

es·
(
f(uo)+ 1

2 f
′′(uo)(u−uo)2

)
du = esf(uo)

∫ ∞
−∞

es·
1
2 f
′′(uo)(u−uo)2

du

= esf(uo)

∫ ∞
−∞

es·
1
2 f
′′(uo)u2

du = esf(uo) ·
√
π√

1
2f
′′(uo)

· 1√
s

= esf(uo) ·
√

2π√
f ′′(uo)

· 1√
s

This does indeed agree. Last, verify that the integral of the exponentiated quadratic approximation over
(−∞, 0] is of a lower order of magnitude. Indeed, for u ≤ 0 and uo > 0 we have (u − uo)2 ≥ u2 + u2

o, and
f ′′(uo) < 0 by assumption, so

esf(uo)

∫ 0

−∞
es·
(

1
2 f
′′(uo)(u−uo)2

)
du ≤ esf(uo) · es· 12 f

′′(uo)·u2
o

∫ 0

−∞
es·

1
2 f
′′(uo)u2

du

≤ esf(uo) · es· 12 f
′′(uo)·u2

o

∫ ∞
−∞

es·
1
2 f
′′(uo)u2

du = esf(uo) · es· 12 f
′′(uo)·u2

o ·
√

2π√
f ′′(uo)

· 1√
s

Thus, the integral over (−∞, 0] has an additional exponential decay by comparison to the integral over the
whole line, so the leading-term of the asymptotics of the integral from 0 to +∞ is the same as those of the
integral from −∞ to +∞.

The case of Γ(s) can be converted to this situation as follows. For real s > 0, in the integral

s · Γ(s) = Γ(s+ 1) =

∫ ∞
0

e−u us du =

∫ ∞
0

e−u+s log u du
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can replace u by su, to put the integral into the desired form

s · Γ(s) =

∫ ∞
0

e−su+s log u+s log s s du = s · es log s

∫ ∞
0

e−s(u+log u) du

For complex s with Re(s) > 0, both s · Γ(s) and the integral s · es log s
∫∞

0
e−s(u+log u) du are holomorphic in

s, and they agree for real s. Thus, by the identity principle, they are equal for Re(s) > 0.

16.5 Laplace’s method illustrated on Bessel functions

Consider the standard integral

Kν(y) =
1

2

∫ ∞
0

e(u+ 1
u )y/2 uν

du

u

The function Kν is variously called a Bessel function of imaginary argument or MacDonald’s function or
modified Bessel function of third kind. Being interested mainly in the case that the parameter ν here is
purely imaginary, in the text we replace ν by iν. The leading factor of

√
y arises in applications, where such

an integral appears as a Whittaker function.

f(y) =
√
y

∫ ∞
0

e−(u+ 1
u )y uiν

du

u

The exponent −(u+ 1
u )y is of the desired form, with the earlier s replaced by y, but the uiν in the integrand

does not fit into the simpler Laplace’ method. Thus, consider integrals∫ ∞
0

e−sf(u) g(u) du

where f is real-valued, but g may be complex-valued. The idea still is that the minimum values of f(u)
should dominate, and the leading term of the asymptotics should be (assuming a unique minimum at uo)∫ ∞

0

e−s·f(u) g(u) du ∼ e−sf(uo) ·
√

2π · g(uo)√
f ′′(uo)

· 1√
s

As in the simpler case, reduce this to Watson’s lemma by breaking the integral where f ′ changes sign, and
change variables to convert each fragment to a Watson-lemma integral. Thus, the first part of the story is
much as the simple case of Laplace’s method. As in the simple case of Laplace’s method, the course of the
argument reveals conditions on f and g.

For simplicity assume that there is exactly one point uo at which f ′(uo) = 0, that f ′′(uo) > 0, and that
f(u) goes to +∞ at 0+ and at +∞. Thus, on these intervals there are smooth square roots

√
f(u)− f(uo)

and smooth functions F,G such thatF (
√
f(u)− f(uo)) = u (for uo < u < +∞)

G(
√
f(u)− f(uo)) = u (for 0 < u < uo)

Then, letting x =
√
f(u)− f(uo) in each of the two intervals, so that F (x) = u and G(x) = u, respectively,∫ ∞

0

e−sf(u) g(u) du = e−sf(uo)

∫ uo

0

e−s (f(u)−f(uo)) g(u) du+ e−sf(uo)

∫ ∞
uo

e−s (f(u)−f(uo)) g(u) du

= e−sf(uo)

(∫ ∞
0

e−s x
2

g(F (x))F ′(x) dx+

∫ ∞
0

e−s x
2

g(G(x))G′(x) dx

)
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In both integrals, replacing x by
√
x gives Watson’s-lemma integrals∫ ∞

0

e−sf(u) g(u) du = e−sf(uo)

(∫ ∞
0

e−sx
√
x

2
g(F (

√
x))F ′(

√
x)
dx

x
+

∫ ∞
0

e−sx
√
x

2
g(G(

√
x))G′(

√
x)
dx

x

)
The assumptions f ′(uo) = 0 and f ′′(uo) > 0 assure that F has a Taylor series expansion near 0, which gives
an expansion

√
x

2
g(F (

√
x))F ′(

√
x) = x1/2 ·

(
g(F (0))F ′(0)

2
+ . . .

)
(small x > 0)

From this, the main term of the Watson’s lemma asymptotics for the integral involving F would be∫ ∞
0

e−sx
√
x

2
g(F (

√
x))F ′(

√
x)
dx

x
∼

Γ( 1
2 ) g(F (0))F ′(0)

2
· 1√

s

Note that F (0) = uo. Determine F ′(0) from F (x) = u. First, F ′(x) · dxdu = 1. Since

x =
√
f(u)− f(uo) =

√
(u− uo)2 · f

′′(uo)

2!
+ . . . =

√
f ′′(uo)

2
·
(

(u− uo) + . . .
)

the derivative is
dx

du
=

√
f ′′(uo)

2
·
(

1 +O(u− uo)
)

Thus,

F ′(x) =
1
dx
du

=

√
2

f ′′(uo)
·
(

1 +O(u− uo)
)

which allows evaluation at x = 0, namely

F ′(0) =

√
2

f ′′(uo)

The same argument applied to G gives G′(0) = F ′(0). Thus,

∫ ∞
0

e−s f(u) du ∼ e−sf(uo) ·
Γ( 1

2 ) · 2 · g(uo) ·
√

2
f ′′(uo)

2
√
s

= e−sf(uo) ·
√

2π · g(uo)√
f ′′(uo)

· 1√
s

Returning to

f(y) =
√
y

∫ ∞
0

e−(u+ 1
u )y uiν

du

u

we have critical point uo = 1, and f(uo) = 2 and f ′′(uo) = 2. Applying the just-derived asymptotic,

f(y) ∼ √y ·

(
e−2y ·

√
2π · 1iν√

2
· 1
√
y

)
=
√
π · e−2y (as y → +∞)

Even though the exponent is plausible, it would be easy to lose track of the power of y, which might matter.
Also, the leading constant does not depend upon the index ν.
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16.6 Regular singular points heuristic: freezing coefficients

Differential equations

x2u′′ + bxu′ + cu = 0 (with constants b, c)

have easy-to-understand solutions on (0,+∞): linear combinations of xα, xβ for α, β solutions of the indicial
equation

X(X − 1) + bX + c = 0

when the roots are distinct. Therefore, it is reasonable to imagine that a differential equation

x2u′′ + xb(x)u′ + c(x)u = 0

with b, c analytic near 0 has solutions asymptotic, as x → 0+, to solutions of the differential equation
x2u′′ + b(0)xu′ + c(0)u = 0 obtained by freezing the coefficients b(x), c(x) of the original at x = 0+. That
is, solutions of the variable-coefficient equation should be asymptotic to xα for solutions α to the indicial
equation X(X − 1) + b(0)X + c(0) = 0. An equation of that form, with b, c analytic near 0, is said to have a
regular singular point at 0. Discussion below explains the behavior of solutions to such equations.

We give a useful example from the non-Euclidean geometry on the upper half-plane. Recall the SL2(R)-
invariant Laplacian on the upper half-plane H is

∆H = y2
( ∂2

∂x2
+

∂2

∂y2

)
[16.6.1] Translation-equivariant eigenfunctions We ask for ∆H-eigenfunctions f(z) of the special

form
f(x+ iy) = e2πixu(y)

That is, such an eigenfunction is equivariant under translations:

f(z + t) = e2πi(x+t)u(y) = e2πit ·
(
e2πixu(y)

)
= e2πit · f(z) (with t ∈ R and z ∈ H)

The eigenfunction condition is the partial differential equation

(∆H − λ) e2πixu(y) = 0

Since the dependence on x is completely specified, this partial differential equation simplifies to the ordinary
differential equation [84]

y2u′′ −
(

4π2y2 + λ
)
u = 0

The point y = 0 is not an ordinary point for this equation, because in the form

u′′ −
(

4π2 +
λ

y2

)
u = 0

the coefficient of u has a pole at 0. But y = 0 is a regular singular point, because that pole is of order at most
2. Thus, following the idea to freeze y2u′′ + yb(y)u′ + c(y) to y2u′′ + yb(0)u′ + c(0)u, the indicial equation
of the frozen equation is

X(X − 1)− λ = 0

Expressing λ as λ = s(s− 1), the roots of the indicial equation are s, 1− s. The frozen equation has distinct
solutions ys and y1−s for s 6= 1

2 . Thus, we could hope that solutions would have asymptotics as y → 0+

beginning
u(y) = Ays(1 +O(y)) +By1−s(1 +O(y)) (as y → 0+)

[84] This equation is a type of Bessel equation, with solutions which are K-type and I-type Bessel functions.
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Indeed, this is the case, as we see below. It seems more difficult to obtain the asymptotics at 0+ from integral
representations of solutions of the differential equation.

[16.6.2] Remark: As we discuss below, y2u′′ − (4π2y2 + λ)u = 0 has an irregular singular point at +∞, so
other methods are needed to obtain asymptotics for solutions as y → +∞.

[16.6.3] Remark: Up to choices of normalizations, the function u above, depending on the spectral parameter
λ or s, is called a Whittaker function or Bessel function, enjoying an enormous literature. Here, wish to have
direct access to their properties, as instances of general phenomena.

[16.6.4] An irregular singular point For the translation-equivariant eigenfunctions on H, we check that
y = +∞ is not an ordinary point nor a regular singular point: given

u′′ −
(

4π2 +
λ

y2

)
u = 0

again let u(x) = v(1/x) and put z = 1/x, obtaining(
z4v′′ + 2z3v′

)
− (4π2 + λz2)v = 0

or

z2v′′ + 2zv′ −
(4π2

z2
+ λ
)
v = 0

Since the coefficient of v has a pole at z = 0, this equation falls outside the present discussion. Instead,
a different freezing idea succeeds: letting y → +∞ freezes the original equation at +∞, giving a constant-
coefficient equation

u′′ − 4π2u = 0

with easily-understood solutions e±2πy. Happily the solutions to the original equation do have asymptotics
with main terms e±2πy. Details and proofs are given below, in a discussion of irregular singular points.

16.7 Regular singular points

A homogeneous ordinary differential equation of the form

x2u′′ + xb(x)u′ + c(x)u = 0 (with b, c analytic near 0)

is said to have a regular singular point at 0. Similarly,

(x− xo)2u′′ + (x− xo)b(x)u′ + c(x)u = 0 (with b, c analytic near xo)

has a regular singular point at xo. Obviously it suffices to treat xo = 0, and is notationally convenient. The
coefficients in an expansion of the form

u(x) = xα ·
∞∑
n=0

an x
n (with a0 6= 0, α ∈ C)

are determined recursively, but we see below that this recursion succeeds only when α satisfies the indicial
equation

α(α− 1) + b(0)α+ c(0) = 0

Further, when the two roots α, α′ of the indicial equation have a relation n+ α− α′ = 0 for 0 < n ∈ Z, the
recursion for α may fail, although the recursion for α′ will succeed. These conditions are easily discovered,
as in the following discussion. The convergence of the recursively defined series is important both because
it produces a genuine function, and because it can be differentiated termwise, by Abel’s theorem.
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[16.7.1] The recursion The equation is

xα+2 ·
∞∑
n=0

(n+ α)(n+ α− 1)an x
n−2 + b(x)xα+1

∞∑
n=0

(n+ α)an x
n−1 + c(x)xα

∞∑
n=0

an x
n = 0

Dividing through by xα and grouping,

∞∑
n=0

(n+ α)(n+ α− 1)an x
n + b(x)

∞∑
n=0

(n+ α)an x
n + c(x)

∞∑
n=0

an x
n = 0

The vanishing of the sum of coefficients of x0, and a0 6= 0, give the indicial equation. The coefficients an
with n > 0 are obtained recursively, from the expected[

(n+ α)(n+ α− 1) + b(0)(n+ α) + c(0)
]
· an = (in terms of a0, a1, . . . , an−1)

The coefficient of an simplifies by invoking the indicial equation and the fact that the sum of the two roots
α, α′ is 1− b(0):

(n+ α)(n+ α− 1) + b(0)(n+ α) + c(0) = n(n+ (2α− 1) + b(0)) = n(n+ α− α′)

That is,
n(n+ α− α′) · an = (in terms of a0, a1, . . . , an−1) (for n > 0)

Since n > 0, the recursion can fail only when

n+ α− α′ = 0 (for some 0 < n ∈ Z)

[16.7.2] Convergence To complete the proof of existence, we prove convergence. Let A,M ≥ 1 be large
enough so that

b(x) =
∑
n≥0

bn x
n (with |bn| ≤ A ·Mn)

c(x) =
∑
n≥0

cn x
n (with |cn| ≤ A ·Mn)

Inductively, suppose that |a`| ≤ (CM)`, with a constant C ≥ 1 to be determined in the following. Then

|n(n+α−α′)·an| ≤ A

n∑
i=1

|n−i+α|M i ·(CM)n−i+A

n∑
i=1

M i ·(CM)n−i ≤ AMnCn−1
(n(n+ 1)

2
+n|α|+n

)
Dividing through by n|n+ α− α′|, this is

|an| ≤ AMn · Cn−1 (n+ 1) + 2|α|+ 2

2|n+ α− α′|

This motivates the choice

C ≥ sup
1≤n∈Z

(n+ 1) + 2|α|+ 2

2|n+ α− α′|

which gives |an| ≤ A(CM)n, and a positive radius of convergence.
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16.8 Regular singular points at infinity

With u(x) = v(1/x),

u′(x) =
−1

x2
v′(1/x) and u′′(x) =

1

x4
v′′(1/x) +

2

x3
v′(1/x)

Putting z = 1/x, this is

u′ = −z2v′ and u′′ = z4v′′ + 2z3v′ (with u = u(x), v = v(z), z = 1/x)

A differential equation u′′ + p(x)u′ + q(x)u = 0 becomes(
z4v′′ + 2z3v′

)
+ p(x)

(
− z2v′

)
+ q(x)v = 0

or

z2v′′ + z
(

2− p(1/z)

z

)
v′ +

q(1/z)

z2
v = 0

The point z = 0 is a regular singular point when the coefficients

2− p(1/z)

z

q(1/z)

z2

are analytic at 0. That is, z = 0 is a regular singular point when p, q have expansions of the forms
p
(1

z

)
= p1z + p2z

2 + . . .

q
(1

z

)
= q2z

2 + q3z
3 + . . .

or, equivalently


p(x) =

p1

x
+
p2

x2
+ . . .

q(x) =
q2

x2
+
q3

x3
+ . . .

16.9 Example revisited

Returning to the earlier example from the upper half-plane: we ask for ∆ = ∆H eigenfunctions f(z) of
the special form

f(x+ iy) = e2πixu(y)

The equation (∆− λ)f = 0 simplifies to the ordinary differential equation

y2u′′ −
(

4π2y2 + λ
)
u = 0

with regular singular point at y = 0. The indicial equation is

X(X − 1)− λ = 0

With λ = s(s− 1), the roots of the indicial equation are s, 1− s. By now we know that, unless s− (1− s) is
an integer, the equation has solutions of the form

us(y) = ys ·
∑
`≥0

a` y
` u1−s(y) = y1−s ·

∑
`≥0

b` y
`

with coefficients a` and b` determined by the natural recursions. We emphasize that these power series have
positive radius of convergence, so certainly give asymptotics as y → 0+. Further, convergent series can be
differentiated termwise, by Abel’s theorem.
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We execute a few steps of the recursion for the coefficients for ys. The equation∑
`≥0

(`+ s)(`+ s− 1)a` y
` − (4π2y2 + λ)

∑
`≥0

a` y
` = 0

simplifies to
`(`+ 2s− 1) a` = 4π2a`−2 (for ` ≥ 1)

with a−1 = 0 by convention, and a0 = 1. Thus, the odd-degree terms are all 0, and

us(y) = ys ·
(

1 +
4π2 y2

2(1 + 2s)
+

(4π2)2 y4

2(1 + 2s) · 4(3 + 2s)
+ . . .

)
Similarly, replacing s by 1− s,

u1−s(y) = y1−s ·
(

1 +
4π2 y2

2(3− 2s)
+

(4π2)2 y4

2(3− 2s) · 4(5− 2s)
+ . . .

)
For Re(s) 6= 1

2 , one of these solutions is obviously asymptotically larger than the other. For Re(s) = 1
2 ,

they are the same size, so some cancellation can occur. Write s = 1
2 + iν, so 1− s = 1

2 − iν, and rewrite the
expansions in those coordinates:

u 1
2 +iν(y) = y

1
2 +iν ·

(
1 +

π2 y2

(1 + iν)
+

π4 y4

(1 + iν) · 2(2 + iν)
+ . . .

)
u 1

2−iν
(y) = y

1
2−iν ·

(
1 +

π2 y2

(1− iν)
+

π4 y4

(1− iν) · 2(2− iν)
+ . . .

)
For example, 

u 1
2 +iν + u 1

2−iν
= 2y

1
2 cos(log y) +O(y

3
2 )

u 1
2 +iν − u 1

2−iν
= 2y

1
2 sin(log y) +O(y

3
2 )

Further, behavior of the higher terms as functions of ν is clear.

16.10 Irregular singular points

According to Erdélyi, Thomé found that differential equations with finite rank irregular singular points
have asymptotic expansions given by the expected recursions. Thus, although the irregularity typically
precludes convergence of the series expression for solutions, the series is still a legitimate asymptotic
expansion.

We approximately follow Erdélyi in treating a rank-one irregular singular point of a second-order
differential equation: after normalization to get rid of the first-derivative term, these are of the form

u′′ − q(x)u = 0 with q(x) ∼ qo +
q1

x
+
q2

x2
+ . . . (as x→ +∞, with qo 6= 0)

with q continuous in some range x ≥ a. The series expression for q(x) need not be convergent: it suffices
that it be an asymptotic expansion of q(x) at +∞. Freezing the coefficient q to its value at +∞, gives the
constant-coefficient equation

u′′ − qo u = 0

and suggests that the solutions e±
√
qo x of the constant-coefficient equation should give the leading term in

the asymptotics of solutions of the original equation. This is approximately true: there is an adjustment by
a power of x. Solutions have asymptotics of the form

u(x) ∼ e±
√
qo x · xρ ·

(
1 +

∑
n≥1

an
xn

)
(with ρ =

q1

±2
√
qo

, as x→ +∞)
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with coefficients an obtained by a natural recursion. However, the series rarely converges.
The loss of convergence is not a trifling matter. The term-wise differentiability of convergent power series

is extremely useful. In contrast, term-wise differentiation of asymptotic series

f(x) ∼
∑
n≥0

an
xn

(as x→ +∞)

for differentiable f produces an asymptotic series for f ′ only under additional hypotheses, for example,
that f ′ admits such an asymptotic series. (See the appendix.) While a function admitting an asymptotic
expansion of this form determines that expansion uniquely, the expansion does not uniquely determine the
function. For example, as x→ +∞, e−x = o(x−N ) for all N , so e−x has the 0 asymptotic expansion, but is
not the 0 function.

[16.10.1] Example: rotationally symmetric eigenfunctions on Rn A natural example arises from
the eigenvalue equation for the radial component of the Euclidean Laplacian on Rn:

v′′ +
n− 1

r
v′ − λv = 0

For large r, this equation resembles the constant-coefficient equation v′′ − λv = 0, with solutions e±r
√
λ.

Heuristically, we should have solutions with behavior v ∼ e±r
√
λ as v → +∞. This is not quite right: the

true asymptotic expansions have main terms

v ∼ e±r
√
λ

r
n−1

2

That is, the differences between the actual equation and the constant-coefficient approximation do not alter
the constant in the exponential, but do have a significant impact, as we see below.

A natural recursion, carried out just below, produces an apparent solution to differential equations in this
class, of the form

eωx x−ρ
∑
n≥0

cn
xn

However, unlike the regular singular point situation, the series is not convergent! The relation of this non-
convergent series to any genuine solution is a priori unclear. It is natural to suppose that this non-convergent
series is an asymptotic expansion, but this is not obvious. A genuine solution must be identified by other
means, must be proven to have an asymptotic expansion, and the latter must be compared with the series
obtained by the recursion. All this will occupy us in following sections.

[16.10.2] Recursion
In more detail, the heuristic recursion is as follows, as applied to the eigenvalue equation for the radial

component of the Laplacian on Rn. First, simplify by employing the standard device to eliminate the v′

term: [85] take v = u/r(n−1)/2, and then

u′′ −
(
λ+

(n− 1)(n− 3)

4 r2

)
u = 0

The singular point at infinity is irregular, unless n = 1 or 3. Nevertheless, intuitively, for x → +∞, a
differential equation of the shape

u′′ − (λ+
C

x2
)u = 0

[85] Let v = u · w and set the u′ term equal to 0 in the left-hand side. This gives 2u′w′ + n−1
r u′w = 0, which gives

the differential equation 2w′ + n−1
r w = 0 for w.
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is approximately a constant-coefficient differential equation, suggesting a solution of the form [86]

u(x) = e±x
√
λ ·

+∞∑
`=0

c`
x`

(with c0 = 1, without loss of generality)

Substituting the latter into the differential equation and dividing through by e±x
√
λ, letting s = ±

√
λ,

simplifies to
+∞∑
`=0

(
(`− 2)(`− 1)c`−2 − 2s(`− 1)c`−1

) 1

x`
−

+∞∑
`=0

c`−2
C

x`
= 0

where by convention c−1 = c−2 = 0. The case ` = 0 is vacuous, as is ` = 1. The case ` ≥ 2 determines c`−1,
assuming s 6= 0:

(`− 2)(`− 1)c`−2 − 2s(`− 1)c`−1 − C · c`−2 = 0

or

c`+1 =
`(`+ 1)− C

2s(`+ 1)
· c`

[16.10.3] Remark: That recursion causes the coefficients to grow approximately as factorials, and the
resulting series does not converge for any finite non-zero value of 1/x, unless the constant C happens to be
of the form (`− 1)(`− 2) for some positive integer `, in which case the series terminates, and is convergent.

Our later discussion will show that the above recursion does correctly determine asymptotic expansions
for solutions. In particular, the leading part of the asymptotic is

v =
e±r
√
λ

r
n−1

2

·
(
1 +O(

1

r
)
)

(as r → +∞, in Rn)

The denominator r(n−1)/2 might be hard to anticipate. The symmetry r → −r imposes a further requirement,
and for

√
λ not purely imaginary one of the two solutions swamps the other. Indeed, for

√
λ not purely

imaginary, the asymptotic components of the large solution are all larger than the main part of the smaller
solution. Further, this is an asymptotic and not merely a bound.

In fact, for n odd, the asymptotic is finite: the recursion for coefficients terminates, so gives a convergent
series: we obtain not merely asymptotics, but equalities. Thus, in odd-dimensional Rn the solutions to the
differential equation for rotationally-invariant λ-eigenfunctions have elementary expressions. For example,

v = e±r
√
λ (on R1)

v =
e±r
√
λ

r
(on R3)

v = e±r
√
λ
( 1

r2
− 1

±r3
√
λ

)
(on R5)

v = e±r
√
λ
( 1

r3
− 3

±r5
√
λ

+
3

r7 λ

)
(on R7)

[16.10.4] Remark: The same technique applies to differential equations

u′′ − q(x)u = 0

with q(x) continuous in some range x > a and admitting an asymptotic expansion at infinity of the form

q(x) ∼
∑
`≥0

q`
x`

(with qo 6= 0)

[86] Anticipating the adjustment by xρ in general, with ρ determined by the asymptotics qo+ q1
x + . . . of the coefficient

of u by ρ = q1/2
√
qo, in the present example we are fortunate that q1 = 0, so the idea of freezing is exactly right.
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The condition qo 6= 0 is essential [87] for the recursion to succeed. Adjustment by xρ with ρ = q1/2
√
qo

would be found necessary when q1 6= 0. In any case, the recursion rarely produces a convergent power series!

[16.10.5] Comparison to regular singular points
The behavior of the above recursion is is much different from that resulting from a regular singular point.

A power series in z = 1/x behaves differently under d/dx than under d/dz. Indeed, as in the example above,
the power series in 1/x often diverges, while at a regular singular point the analogous power series has a
positive radius of convergence. For u′′ − q(x)u = 0 to have a regular singular point at infinity, changing
variables to u(x) = v(1/x) and z = 1/x,

u′(x) =
−1

x2
v′(1/x) and u′′(x) =

1

x4
v′′(1/x) +

2

x3
v′(1/x)

Putting z = 1/x, this is

u′ = −z2v′ and u′′ = z4v′′ + 2z3v′ (with u = u(x), v = v(z), z = 1/x)

Thus, in the coordinate z at infinity, the differential equation becomes(
z4v′′ + 2z3v′

)
− q
(1

z

)
v = 0

or

v′′ +
2

z
v′ − q(1/z)

z4
v = 0

The point z = 0 is never an ordinary point, because of the pole in the coefficient of v′. The point z = 0 is a
regular singular point only when q(1/z)/z2 is analytic at z = 0, that is, when x2q(x) is analytic at ∞. This
requires that q(x) have the form

q(x) =
q2

x2
+
q3

x3
+ . . .

16.11 Example: translation-equivariant eigenfunctions on H

Another example of irregular singular point arises from the SL2(R)-invariant Laplacian on the upper
half-plane H:

∆H = y2
( ∂2

∂x2
+

∂2

∂y2

)
We ask for ∆H-eigenfunctions f(z) of the special form

f(x+ iy) = e2πixu(y)

that is, equivariant under translations:

f(z + t) = e2πi(x+t)u(y) = e2πit ·
(
e2πixu(y)

)
= e2πit · f(z) (with t ∈ R and z ∈ H)

The eigenfunction condition
(∆H − λ) e2πixu(y) = 0

simplifies to the ordinary differential equation

y2u′′ −
(

4π2y2 + λ
)
u = 0

[87] The condition qo 6= 0 and the assumption that q has the indicated asymptotic at +∞ together imply that there

is xo such that q(x) 6= 0 for x ≥ xo. That is, in the regime x ≥ xo there are no transition points.
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This equation has an irregular singular point at +∞, seen by changing coordinates, as follows. Let
u(x) = v(1/x) and put z = 1/x, obtaining(

z4v′′ + 2z3v′
)
− (4π2 + λz2)v = 0

or

z2v′′ + 2zv′ −
(4π2

z2
+ λ
)
v = 0

Since the coefficient of v has a pole at z = 0, the singular point of this equation in the new coordinate z at
0 is irregular.

[16.11.1] Recursion Happily, following our present prescription, in the form

u′′ −
(

4π2 +
λ

y2

)
u = 0

the coefficient

q(y) = qo +
q1

y
+
q2

y2
+ . . . = 4π2 +

λ

y2

is analytic at y = ∞, and q(∞) = qo = 4π2 6= 0 while q1 = 0, so our later discussion justifies freezing y at
+∞, obtaining the constant-coefficient equation

u′′ − 4π2u = 0

with solutions e±2πy, and assuring existence of solutions of the original equation with asymptotics of the
form

u(y) = e±2πy ·
∑
`≥0

a`
y`

Substituting this into the differential equation and dividing through by e±2πy gives

+∞∑
`=0

(
(`− 2)(`− 1)a`−2 ∓ 2π(`− 1)a`−1

) 1

y`
−

+∞∑
`=0

a`−2
λ

y`
= 0

or

±2π(`− 1)a`−1 =
(

(`− 2)(`− 1)− λ
)
a`−2

or

a` =
(`− 1)`− λ
±2π`

a`−1 =
(
`− 1− λ

`

) a`
±2π

As usual, a−2 = a−1 = 0 by convention, and a0 = 1. The cases ` ≤ 0 are vacuous. With a0 = 1, the
recursion begins

a1 =
−λ
±2π

a2 =
(

1− λ

2

) a1

±2π
=

(
1− λ

2

)(
− λ
) 1

(±2π)2

a3 =
(

2− λ

3

) a2

±2π
=

(
2− λ

3

)(
1− λ

2

)(
− λ
) 1

(±2π)3

[16.11.2] Remark: If λ is of the form λ = `(` − 1) for 0 < ` ∈ Z, the recursion terminates. Then the

asymptotic expansion is convergent, and produces an elementary solution to the eigenfunction equation. [88]

[88] These elementary solutions arise from the finite-dimensional representations of SL2(R).
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16.12 Beginning of construction of solutions

[16.12.1] Heuristic for asymptotic expansion Consider the equation

u′′ − q(x)u = 0

as x→ +∞, where q is continuous in some range x > a and itself admits an asymptotic expansion

q(x) ∼
∑
n≥0

qn
xn

(as x→ +∞, with qo 6= 0)

The qo 6= 0 condition is essential. We look for a solution of the form

u(x) ∼ eωx · x−ρ ·
∑
n≥0

co
xn

(with co non-zero)

Substituting this expansion in the differential equation and dividing through by eωx x−ρ, setting the
coefficient of 1/xn to 0,(

(ρ+ n− 2)(ρ+ n− 1)cn−2 − 2ω(ρ+ n− 1)cn−1 + ω2cn

)
−
(
qocn + q1cn−1 + . . .+ qn−1c1 + qnco

)
= 0

By convention, c−2 = c−1 = 0 and q−2 = q−1 = 0. For n = 0, the relation is

ω2co − qoco = 0

so ω = ±√qo 6= 0, since co 6= 0. For n = 1,(
− 2ωρco + ω2c1

)
−
(
qoc1 + q1co

)
= 0

so, using ω2 = qo and ω 6= 0, this is
−2ωρ− q1 = 0

so ρ = −q1/(2ω). Thus, the choice of ±ω is reflected in the choice of ±ρ. For n ≥ 2, using ω2 = qo,(
− 2ω(ρ+ n− 1)− q1

)
cn−1 = −(ρ+ n− 2)(ρ+ n− 1)cn−2 +

(
q2cn−2 + . . .+ qn−1c1 + qnco

)
and using −2ωρ− q1 = 0,

−2ω(n− 1)cn−1 = −(ρ+ n− 2)(ρ+ n− 1)cn−2 +
(
q2cn−2 + . . .+ qn−1c1 + qnco

)
Since ω 6= 0, this gives a successful recursion. The following discussion will show that the two asymptotics,
with ±ω and corresponding ±ρ, are asymptotic expansions of two solutions of the differential equation
u′′ − q(x)u = 0.

[16.12.2] Remark: However, since the above expansions usually do not converge, genuine solutions must
be constructed by other means, and must be shown to have asymptotic expansions at +∞.

[16.12.3] Small renormalization For a solution u to u′′ − q(x)u = 0, let

u(x) = eωx · x−ρ · v(x)

with ω and ρ determined as above. Then
u′ = eωxx−ρ

((
ω − ρ

x

)
v + v′

)
u′′ = eωxx−ρ

(
ω − ρ

x

)2
v + eωxx−ρ

ρ

x2
v + 2eωxx−ρ

(
ω − ρ

x

)
v′ + eωxx−ρv′′
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Dividing through by eωxx−ρ gives the differential equation for v, namely,

v′′ + 2
(
ω − ρ

x

)
v′ +

(
ω2 − 2ωρ

x
+
ρ2 + ρ

x2
− q(x)

)
v = 0

Unsurprisingly, the ω2 and −2ωρ/x cancel the first two terms of q(x). Thus, the function

F (x) = x2 ·
(
ω2 − 2ωρ

x
+
ρ2 + ρ

x2
− q(x)

)
is bounded. The differential equation is

v′′ + 2
(
ω − ρ

x

)
v′ +

F (x)

x2
v = 0

Rewrite the equation as
d

dx

(
e2ωxx−2ρ dv

dx

)
+ e2ωxx−2ρ−2F (x) v(x) = 0

Integrate this from b ≥ a to x ≥ b, and multiply through by e−2ωxx2ρ, to obtain

dv

dx
+ e−2ωxx2ρ

∫ x

b

e2ωt t−2ρ−2 F (t) v(t) dt = const · e−2ωxx2ρ

Take the constant of integration to be 0 and integrate from a to x, to obtain

v(x) +

∫ x

a

e−2ωs s2ρ
(∫ s

b

e2ωt t−2ρ−2 F (t) v(t) dt
)
ds = const

Rearrange the double integral:∫ x

a

e−2ωs s2ρ
(∫ s

b

e2ωt t−2ρ−2 F (t) v(t) dt
)
ds =

∫ x

b

(∫ x

t

e2ω(t−s)
(s
t

)2ρ

ds
)
F (t) v(t)

dt

t2

Let K(x, t) denote the inner integral

K(x, t) =

∫ x

t

e2ω(t−s)
(s
t

)2ρ

ds

Then the equation is

v(x) −
∫ x

b

K(x, t)F (t) v(t)
dt

t2
= const

Take the constant to be 1. With b = +∞, this gives an integral equation

v(x) = 1 +

∫ ∞
x

K(x, t)F (t) v(t)
dt

t2

We claim that this equation can be solved by successive approximations. With the obvious operator

Tf(x) =

∫ ∞
x

K(x, t)F (t) f(t)
dt

t2

take wo(x) = 1, wn+1 = Twn, and then show that the limit

v(x) = wo(x) + w1(x) + w2(x) + . . . =
(

1 + T + T 2 + . . .)wo

exists pointwise, is twice differentiable, and satisfies the differential equation.
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16.13 Boundedness of K(x, t)

We claim that, with correct choice of ±ω, the kernel

−K(x, t) =

∫ t

x

e2ω(t−s)
(s
t

)2ρ

ds

is bounded for t ≥ x ≥ a. Choose ±ω so that either Re(ω) < 0, or Re(ω) = 0 and Re(ρ) ≥ 0.

[16.13.1] Very easy case ρ = 0 To illustrate the reasonableness of the boundedness assertion, consider
the special case ρ = 0, where the integral can be computed explicitly:

−K(x, t) =

∫ t

x

e2ω(t−s) ds =
1

−2ω

(
1− e2ω(t−x)

)
Since Re ω ≤ 0 and ω 6= 0, this is bounded, for a ≤ x ≤ t.

[16.13.2] Easy case Re ω < 0 When Re ω < 0, absolute value estimates suffice to prove boundedness
of K(x, t).

|K(x, t)| ≤
∫ t

x

e2 Reω(t−s)
(s
t

)2 Reρ

ds ≤
∫ t

a

e2 Reω(t−s)
(s
t

)2 Reρ

ds

Lighten the notation by taking ω, ρ real. For ρ ≥ 0,∫ t

a

e2ω(t−s)
(s
t

)2ρ

ds ≤
∫ t

0

e2ω(t−s) ds = e2ωt · e
−2ωt − 1

2|ω|
≤ 1

2|ω|
(for ρ ≥ 0)

For ρ < 0, still with ω < 0,∫ t

a

e2ω(t−s)
(s
t

)2ρ

ds ≤
∫ t

t/2

e2ω(t−s)
( t/2
t

)2ρ

ds+

∫ t/2

0

e2ω(t−s)
(1

t

)2ρ

ds (for ρ < 0)

The two integrals are bounded in t ≥ a, for elementary reasons. Thus, for Re(ω) < 0, the kernel K(x, t) is
bounded.

[16.13.3] Re(ω) = 0 and cancellation
When Re(ω) = 0, absolute value estimates no longer suffice to prove boundedness. Cancellation must be

exploited by an integration by parts. Choose ±ω so that Re(ρ) ≥ 0. One integration by parts gives∫ t

x

e2ω(t−s)
(s
t

)2ρ

ds =
[e2ω(t−s)

−2ω

(s
t

)2ρ]t
x

+

∫ t

x

e2ω(t−s)

2ω

2ρ

s

(s
t

)2ρ

ds

=
1

−2ω
− e2ω(t−x)

−2ω

(x
t

)2ρ

+

∫ t

x

e2ω(t−s)

2ω

2ρ

s

(s
t

)2ρ

ds

The leading terms are bounded for t ≥ x ≥ a. The latter integral can be estimated by absolute values, for
Reρ 6= 0: ∣∣∣ ∫ t

x

e2ω(t−s) 1

s

(s
t

)2ρ

ds
∣∣∣ ≤ ∫ t

x

1

s

(s
t

)2 Reρ

ds =
1

2 Reρ

(
1−

(x
t

)2 Reρ)
When Reρ = 0, a second integration by parts gives∫ t

x

e2ω(t−s) 1

s

(s
t

)2ρ

ds =
[e2ω(t−s)

−2ω

1

s

(s
t

)2ρ]t
x

+
2ρ− 1

2ω

∫ t

x

e2ω(t−s) 1

s2

(s
t

)2ρ

ds

The latter integral is estimated by∣∣∣ ∫ t

x

e2ω(t−s) 1

s2

(s
t

)2ρ

ds
∣∣∣ ≤ ∫ t

x

ds

s2
=

1

x
− 1

t
≤ 1

a
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Thus, in all cases, K(x, t) is bounded on t ≥ x ≥ a > 0.

16.14 End of construction of solutions

[16.14.1] Bound for T As observed above, there is a bound A so that |F (x)| ≤ A for x ≥ a. Let
|K(x, t)| ≤ B. For f satisfying a bound |f(x)| ≤ x−λ for x ≥ a, with λ > −1,

|(Tf)(x)| ≤ AB

λ+ 1
x−(λ+1) (for x ≥ a)

Indeed,

|Tf(x)| =
∣∣∣ ∫ ∞
x

K(x, t)F (t) f(t)
dt

t2
≤ AB

∫ ∞
x

t−(λ+2) dt

[16.14.2] Bound on fn With f0 = 1 and fn+1 = Tfn, we claim that

|fn(x)| ≤ (AB)n

n!
x−n (for n = 0, 1, 2, . . . and x ≥ a)

This holds for n = 0, and induction using the bound on T gives the result.

[16.14.3] Convergence of the series Now we show that the series

f(x) =
∑
n≥0

fn(x) =
∑
n≥0

Tnf0(x)

converges uniformly absolutely, and satisfies the integral equation

f(x) = 1 +

∫ ∞
x

K(x, t)F (t) f(t)
dt

t2

Uniform absolute convergence in Co[a,+∞) follows from the previous estimate. This justifies interchange
of summation and integration:

Tf(x) =

∫ ∞
x

K(x, t)F (t) f(t)
dt

t2
=
∑
n≥0

∫ ∞
x

K(x, t)F (t)Tnf0(t)
dt

t2

=
∑
n≥0

Tn+1f0(x) = −1 +
∑
n≥0

Tnf0(x) = −1 + f(x)

Thus, f satisfies the integral equation. Since K(x, t) is differentiable in x, and since the integral for T
converges well, the expression

f(x) = 1 +

∫ ∞
x

K(x, t)F (t) f(t)
dt

t2

demonstrates the differentiability of f . Further, since K(x, x) = 0, the derivative is

f ′(x) =

∫ ∞
x

∂K(x, t)

∂x
F (t) f(t)

dt

t2
=

∫ ∞
x

e2ω(t−x)
(x
t

)2ρ

F (t) f(t)
dt

t2

The integral is again continuously differentiable in x, so f is in C2.

[16.14.4] Back to the differential equation From the integral expression,

f ′′(x) = −F (x)

x2
f(x) +

∫ ∞
x

(
− 2ω +

2ρ

x

)
e2ω(t−x)

(x
t

)2ρ

F (t) f(t)
dt

t2
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Substituting into the differential equation,

f ′′ + 2
(
ω − ρ

x

)
f ′ +

F

x2
f =

− F
x2

f +

∫ ∞
x

(
− 2ω +

2ρ

x

)
e2ω(t−x)

(x
t

)2ρ

F (t) f(t)
dt

t2

+ 2
(
ω − ρ

x

)∫ ∞
x

e2ω(t−x)
(x
t

)2ρ

F (t) f(t)
dt

t2
+

F

x2
f = 0

Then

u(x) = eωxx−ρ f(x)

satisfies the original equation

u′′ − q(x)u = 0

[16.14.5] Two independent solutions In the special case that qo < 0 and q1 ∈ R, ω =
√
ω has Re ω = 0

and Re ρ = 0. In that case, the successive approximation solution to the integral equation can proceed with
either values ±ω, ±ρ, and two linearly independent solutions are obtained.

In all other cases, the successive approximation argument succeeds for only one choice of sign, producing
a solution u as above. Nevertheless, a second solution can be constructed as follows, by a standard device.
Since f(x) = 1 +O(1/x), there is b ≥ a large enough so that u(x) 6= 0 for x ≥ b. Then let v = u ·w, require
that v satisfy v′′ − q v = 0, and see what condition this imposes on w. From

v′′ − q v = u′′w + 2u′w′ + uw′′ − q uw = 0

using u′′ − q u = 0, we obtain
w′′

w′
=
−2u′

u

Then

logw′ = −2 log u+ C

and

w(x) =

∫ x

b

u(t)−2 dt

Thus, a second solution is

u(x) ·
∫ x

b

u(t)−2 dt

That integral is not constant, so the two solutions are linearly independent.

16.15 Asymptotics of solutions

We show that the solutions on x ≥ a have the same asymptotics as the heuristic indicated earlier.

[16.15.1] Some elementary asymptotics Use the standard device (ρ)` = ρ(ρ + 1) . . . (ρ + ` − 1) and
(ρ)0 = 1. Let 0 6= ω ∈ C with Re ω ≤ 0. If Re ω = 0, require that Re ρ > 1. Repeated integration by parts
and easy estimates yield asymptotic expansions,

∫ ∞
x

eωt t−ρ dt ∼ eωx ·
∑
`≥0

(ρ)`
(−ω)`+1

1

xρ+`∫ x

b

e−ωt t−ρ dt ∼ e−ωx ·
∑
`≥0

(ρ)`
ω`+1

1

xρ+`
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Since the sup of |eωtt−ρ| occurs farther to the right for larger Re(ρ) < 0, these asymptotics are not uniform
in ρ. Note that the boundedness of the kernel K(x, t) proven earlier has a weaker hypothesis than the second
asymptotic assertion, requires a slightly more complicated argument, and has a weaker conclusion.

[16.15.2] Asymptotics of T nf0 With f0 = 1, we claim that fn = Tnf0 has an asymptotic expansion
at +∞, of the form

fn ∼
∑
`≥n

cn` x
−`

This holds for f0 = 1. To do the induction step, assume fn has such an asymptotic expansion. Then
F (x) · fn(x) has a similar expansion

F fn ∼
∑
`≥n

b` x
−`

because (as the product of two asymptotic expansions in 1/xn is readily shown to be an asymptotic expansion
for the product function)

F (x) = x2 ·
(
ω2 − 2ωρ

x
+
ρ2 + ρ

x2
− q(x)

)
and q is assumed to have an asymptotic expansion in the functions 1/xn at +∞. We want to insert the
asymptotic expansion for F fn into the integral in the differentiated form of fn+1 = Tfn, namely, into the
equation

f ′n+1(x) =

∫ ∞
x

e2ω(t−x)
(x
t

)2ρ

F (t) fn(t)
dt

t2

Indeed, from

F (x) fn(x)−
∑

n≤`≤N

b` x
−` = O(x−(N+1))

and from the boundedness of K(x, t) we have∣∣∣ ∫ ∞
x

e2ω(t−x)
(x
t

)2ρ (
F (t) fn(t)−

∑
n≤`≤N

b` t
−`
) dt
t2

∣∣∣ =
∣∣∣ ∫ ∞
x

e2ω(t−x)
(x
t

)2ρ

O(t−(N+1))
dt

t2

∣∣∣
�ω,ρ,N x−(N+1)

∫ ∞
x

dt

t2
= O(x−(N+2)) = o(x−(N+1))

Thus, the desired asymptotics for f ′n+1 would follow from asymptotics for the collection∫ ∞
x

e2ω(t−x)
(x
t

)2ρ ( ∑
n≤`≤N

b` t
−`
) dt
t2

(for N ≥ n)

As noted above, ∫ ∞
x

eωt t−ρ dt ∼ eωx ·
∑
`≥0

(ρ)`
(−ω)`+1

1

xρ+`

Note that for each N only finitely-many asymptotic expansions are used, so uniformity is not an issue. After
some preliminary rearrangements, this gives∫ ∞

x

e2ω(t−x)
(x
t

)2ρ ( ∑
n≤`≤N

b` t
−`
) dt
t2

=
∑

n≤`≤N

b`

∫ ∞
x

e2ω(t−x)
(x
t

)2ρ

t−`
dt

t2

=
∑

n≤`≤N

b` e
−2ωxx2ρ

∫ ∞
x

e2ωt t−(2ρ+`+2) dt

=
∑

n≤`≤N

b` e
−2ωxx2ρ · e2ωx

( ∑
0≤m≤N−(2+`)

(ρ+ `+ 2)m
(−2ω)m+1

1

x2ρ+`+2+m
+ O

( 1

x2ρ+N+1

))
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=
∑

n≤`≤N

b`
∑

0≤m≤N−(2+`)

(ρ+ `+ 2)m
(−2ω)m+1

1

x`+2+m
+ O

( 1

xN+1

)
This holds for all N , so we have an asymptotic expansion for f ′n+1:

f ′n+1(x) ∼
∑

k≥n+1

( ∑
` : n≤`≤k

b`
(ρ+ `+ 2)k−`

(−2ω)m+1

) 1

xk+2

Integrating this in x gives the asymptotic expansion of fn+1. (See the appendix.)

[16.15.3] Asymptotics of the solution f Obviously we expect the asymptotic expansion of f =
∑
n fn

to be the sum of those of fn, all the more so since the 1/xm terms in the expansion of fn vanish for m < n.
The uniform pointwise bound

|fn(x)| ≤ (AB)n

n!
x−n (for n = 0, 1, 2, . . . and x ≥ a)

proven earlier legitimizes this. Thus, the solution f has an asymptotic expansion of the desired type.
To prove that this asymptotic expansion is the same as the expansion obtained by a recursion earlier, we

show that the coefficients satisfy the same recursion.
The integral expression for f ′ in terms of f (above) proves that f ′ has an asymptotic expansion, and

similarly for f ′′. As proven in the appendix, this justifies two termwise differentiations of the asymptotic for
f .

The asymptotics for f, f ′, and f ′′ can be inserted in the differential equation

f ′′ + 2
(
ω − ρ

x

)
f ′ +

(
ω2 − 2ωρ

x
+
ρ2 + ρ

x2
− q(x)

)
f = 0

for f . We have assumed that the coefficient of f has an asymptotic expansion, and this equation gives the
expected recursive relation on the coefficients of the asymptotic for f . Therefore, the solution

u(x) = eωx x−ρ f(x)

to the original differential equation has the asymptotics inherited from f , which match the heuristic
asymptotics from the earlier formal/heuristic solution.

[16.15.4] The second solution Now we show that the second solution

v(x) = u(x) ·
∫ x

b

u(t)−2 dt

to the original differential equation has the asymptotics given by the heuristic recursion, but with the opposite
choice of ±ω and ±ρ. In terms of f ,

v(x) = u(x) ·
∫ x

b

u(t)−2 dt = eωx x−ρ f(x)

∫ x

b

e−2ωt x−2ρ f(t) dt

= e−ωx xρ f(x)

∫ x

b

e2ω(x−s)
( s
x

)2ρ

f(s)−2 ds

This motivates taking

g(x) = f(x)

∫ x

b

e2ω(x−s)
( s
x

)2ρ

f(s)−2 ds

The lower bound b has been chosen large enough so that f(x) is bounded away from 0 for x ≥ b. Since
f has an asymptotic expansion with leading coefficient 1, it is elementary that there are coefficients an so
that 1/f2 has asymptotics

1

f(x)2
= 1 +

∑
1≤n≤N

an
xn

+O
( 1

xN+1

)
(with a0 = 1)
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Then
g(x)

f(x)
=

∑
0≤n≤N

an

∫ x

b

e2ω(x−s)
( s
x

)2ρ 1

sn
ds+

∫ x

b

e2ω(x−s)
( s
x

)−2ρ

O
( 1

sN+1

)
ds

The last integral is O(1/xN+1), from the elementary asymptotics. For each fixed N , the finitely-many
integrals inside the summation have elementary asymptotics. Since for fixed N there are only finitely-many
such asymptotics, they are trivially uniform, so the asymptotics can be added. The asymptotic expansion
for ∫ x

b

e2ω(x−s)
( s
x

)2ρ 1

sn
ds

begins with 1/xn, so the coefficient of each 1/xn is a finite sum, and there is no issue of convergence.
Multiplying this asymptotic by that of f(g) give the asymptotic expansion of g(x).

As with f , the derivatives g′ and g′′ of g have integral representations which yield asymptotic expansions.
Thus, as in the appendix, the asymptotic expansion for g can be twice differentiated term-wise to give those
of g′ and g′′. Thus, their asymptotic expansions can be inserted in the differential equation. Their coefficients
must satisfy the same recursion with some choice of ±ω and corresponding ±ρ. Arguing that the asymptotic
for g cannot be identical to that of f , we infer that the recursion for the coefficients of g uses the opposite
choice −ω,−ρ from the choice ω, ρ used to construct f .

[16.15.5] Remark: When ω and ρ are both purely imaginary, u and v are bounded, neither approaches 0,
and they are uniquely determined up to constant factors. In all other cases, one solution approaches 0, and
is uniquely determined up to a constant, while the other is unbounded and ambiguous by multiples of the
first, insofar as it depends on the choice of lower bound b in the integral above.

[16.15.6] Remark: (Stokes’ phenomenon) When the coefficient q(x) of the differential equation u′′−q(x)u =
0 is analytic in a sector in C, and when q admits the same sort of asymptotic expansion

q(eiθx) ∼
∑
n≥0

qn e
−inθ

xn
(uniformly in θ)

in that sector, uniformly in the argument θ, with qo 6= 0, the above discussion still applies. In the real-
variable discussion, with ω = ±√qo, the case Re ω = 0 was at the interface between the regimes Re ω ≤ 0
and Re ω ≥ 0 in which behaviors of solutions differed. Similarly, in the complex-variable situation the line
Re(z · √qo) = 0 is the boundary between regimes of different behavior. On that line, the behavior is as in
the Re ω = 0 case. On either side of that line, one solution is exponentially larger than the other, etc. This
is Stokes’ phenomenon.

16.A Appendix: manipulation of asymptotic expansions

To say that ϕ` is an asymptotic sequence at xo means that ϕ`+1(x) = o(ϕ`(x)) as x → xo, for all `. A
function f has an asymptotic expansion in terms of the ϕn, expressed with coefficients cn as

f(x) ∼
∑
n≥0

cnϕn

when, for all N ≥ 0,

f(x)−
∑

0≤n≤N

cnϕn = o(ϕN )

It is not surprising that a sum or integral of asymptotic expansions uniform in a parameter has the expected
asymptotics. Circumstances under which an asymptotic expansion can be differentiated are more special.

[16.A.1] Summing asymptotic expansions Let functions fn have asymptotic expansions fn ∼∑
`≥0 cn` ϕ`, uniform in n, meaning that

fn(x)−
∑
`≤N

cn` ϕ` = o(ϕN ) (implied constant and neighborhood of xo uniform in n)
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Let an be coefficients such that
∑
n an · cn` is convergent and

∑
n an is absolutely convergent. We claim that∑

n anfn converges in a neighborhood of xo and has the expected asymptotic expansion

∑
n

an fn ∼
∑
`

(∑
n

an cn`

)
ϕn

The uniformity of the asymptotic expansions, and
∑
n |an| <∞, give

∑
n≥1

an

(
fn(x)− cn1 ϕ1(x)

)
= o(ϕ1(x)) (uniformly in x)

In particular, the sum on the left-hand side converges for fixed x. Since
∑
n ancn1 converges,

∑
n≥1 an fn(x)

converges. Similarly, ∑
anfn(x)−

∑
`≤N

(∑
n

ancn`
)
ϕ` = o(ϕN )

[16.A.2] Integrals The general case is readily extrapolated from the example of an infinite sum. Namely,
let f(x, y) ∼

∑
` c`(y)ϕ` be asymptotic expansions uniform in a parameter y ∈ Y , where Y is a measure

space. Suppose that y → f(x, y) is measurable for each x, and that every c`(y) is measurable. Let a(y) be
absolutely integrable on Y , and assume that the integrals∫

Y

a(y) c`(y) dy

converge for all n. Then ∫
Y

a(y) f(x, y) dy

exists for x close to xo, and has asymptotic expansion∫
Y

a(y) f(x, y) dy ∼
∑
`

(∫
Y

a(y) c`(y) dy
)
ϕ`

[16.A.3] Differentiation of asymptotics in 1/xn Asymptotic power series are asymptotic expansions

f(x) ∼ co +
c1
x

+
c2
x2

+ . . . (as x→ +∞)

Unlike general situations, two such asymptotic expansions can be multiplied. A special property of asymptotic
power series is the absolute integrability of f(x)− co − c1/x = O(x−2) on intervals [a,+∞). Let

F (x) =

∫ ∞
x

(
f(t)− co −

c1
t

)
dt

We claim that F has an asymptotic expansion obtained from that of f(x)−co−c1/x by integrating termwise,
namely,

F (x) ∼ c2
t

+
c3
2t2

+
c4
3t3

+ . . .

To prove this, use

f(x)−
(
co +

c1
x

+ . . .+
cN
xN

)
= O(x−(N+1))

Then
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F (x)−
(c2
t

+
c3
2t2

+ . . .+
cN

NxN−1

)
=

∫ ∞
x

(
f(t)− co −

c1
t

)
dt−

∫ ∞
x

(c2
t2

+
c3
t3

+ . . .+
cN
xN
)
dt

=

∫ ∞
x

O(t−(N+1)) dt = O(x−N ) = o(x−(N−1))

This has a surprising corollary about differentiation: for f with an asymptotic power series at +∞ as
above, if f is differentiable, and if f ′ has an asymptotic power series at +∞, then the asymptotics of f ′ are
obtained by differentiating that of f termwise:

f ′(x) ∼ − c1
x2
− 2c2
x3
− 3c3
x4
− . . .

When f is holomorphic in a region in which the asymptotic holds uniformly in the argument of x, Cauchy’s
integral formula for f ′ produces an asymptotic for f ′ from that for f , thus avoiding the need to make a
hypothesis that f ′ admits an asymptotic expansion.

16.B Appendix: ordinary points

The following discussion is well-known, although the convergence discussion is often omitted. This is the
simpler case extended by the discussion of the regular singular points. A homogeneous ordinary differential
equation of the form

u′′ + b(x)u′ + c(x)u = 0 (with b, c analytic near 0)

is said to have an ordinary point at 0. The coefficients in a proposed expansion of the form

u(x) =

∞∑
n=0

an x
n (with a0 6= 0)

are determined recursively from a0 and a1, as follows. The equation is

∞∑
n=0

n(n− 1)an x
n−2 + b(x)

∞∑
n=0

nan x
n−1 + c(x)

∞∑
n=0

an x
n = 0

or
∞∑
n=0

n(n− 1)an x
n−2 + b(x)

∞∑
n=0

(n− 1)an−1 x
n−2 + c(x)

∞∑
n=0

an−2 x
n−2 = 0

The coefficients an with n ≥ 2 are obtained recursively, from the expected

n(n− 1) · an = (in terms of a0, a1, . . . , an−1)

To complete the proof of existence, we prove convergence. Take A,M ≥ 1 large enough so that b(x) =
∑
n≥0 bn x

n (with |bn| ≤ A ·Mn)

c(x) =
∑
n≥0 cn x

n (with |cn| ≤ A ·Mn)

Inductively, suppose that |a`| ≤ (CM)`, with a constant C ≥ 1 to be determined in the following. Then

n(n−1) · |an| ≤ A

n∑
i=1

(n− i)M i−1 · (CM)n−i+A

n∑
i=2

M i−2 · (CM)n−i ≤ AMn−1 ·Cn−1
(n(n+ 1)

2
+n−1

)
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Dividing through by n(n− 1), this is

|an| ≤ AMn−1Cn−1n
2 + 3n− 2

n(n− 1)

This motivates taking

C ≥ A sup
2≤n∈Z

n2 + 3n− 2

n(n− 1)

which gives |an| ≤ (CM)n. In particular, for arbitrary a0 and a1 the resulting power series has a positive
radius of convergence. In particular, these series can be differentiated termwise, by Abel’s theorem.

[16.B.1] Ordinary points at infinity Let u(x) = v(1/x) and z = 1/x. Then

u′(x) =
−1

x2
v′(1/x) and u′′(x) =

1

x4
v′′(1/x) +

2

x3
v′(1/x)

or
u′ = −z2v′ and u′′ = z4v′′ + 2z3v′ (with u = u(x), v = v(z), z = 1/x)

A differential equation u′′ + b(x)u′ + c(x)u = 0 becomes(
z4v′′ + 2z3v′

)
+ b(x)

(
− z2v′

)
+ c(x)v = 0

or

v′′ +
2z − b

(1

z

)
z2

v′ +
c
(1

z

)
z4

v = 0

The point z = 0 is an ordinary point when the coefficients of v′ and v are analytic at 0. That is, z = 0 is an
ordinary point when b, c have expansions at infinity of the form

b
(1

z

)
= 2z + b2z

2 + b3z
3 . . .

c
(1

z

)
= c4z

4 + c5z
5 + . . .

[16.B.2] Not-quite-ordinary points Consider a differential equation with coefficients having poles of
at most first order at 0:

u′′ +
b(x)

x
u′ +

c(x)

x
u = 0

with b, c analytic at 0. The coefficients in a proposed expansion of the form

u(x) =

∞∑
n=0

an x
n (with a0 6= 0)

are determined recursively as follows. The equation is

∞∑
n=0

n(n− 1)an x
n−2 + b(x)

∞∑
n=0

nan x
n−2 + c(x)

∞∑
n=0

an x
n−1 = 0

or
∞∑
n=0

n(n− 1)an x
n−2 + b(x)

∞∑
n=0

nan x
n−2 + c(x)

∞∑
n=0

an−1 x
n−2 = 0

We expect to determine the coefficients an with n ≥ 2 recursively, from(
n(n− 1) + b(0)n

)
· an = (in terms of a0, a1, . . . , an−1) (for n ≥ 1)
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For b(0) not a non-positive integer, the recursion succeeds, and a0 determines all the other coefficients an.
For b(0) = 0, so that the coefficient of v′ has no pole, the relation from the coefficient of x−1,

b(0)a1 + c(0) a0 = 0

implies that either c(0) = 0 and the coefficient of v has no pole, returning us to the ordinary-point case, or
a0 = 0, and there is no non-zero solution of this form.

For b(0) a negative integer −`, the recursion for a` gives a` the coefficient 0, and imposes a non-trivial
relation on the prior coefficients an.

To complete the proof of existence, we prove convergence, assuming b(0) is not a non-positive integer.
Dividing through by a constant if necessary, we can take M ≥ 1 large enough so that b(x) =

∑
n≥0 bn x

n (with |bn| ≤Mn)

c(x) =
∑
n≥0 cn x

n (with |cn| ≤Mn)

Inductively, suppose that |a`| ≤ (CM)`, with a constant C ≥ 1 to be determined in the following. Then

(
n(n− 1) + b(0)n

)
· |an| =

∣∣∣ n∑
i=1

(n− i)M i−1(CM)n−i +

n∑
i=1

M i−1(CM)n−i
∣∣∣ ≤ Mn−1Cn−1

(n(n+ 1)

2
+ n
)

Dividing through by n(n− 1) + b(0)n, this is

|an| ≤ Mn−1Cn−1 n2 + 3n

n(n− 1) + b(0)n

This motivates taking

C ≥ sup
2≤n∈Z

n2 + 3n

n(n− 1) + b(0)n

which gives |an| ≤ (CM)n. In particular, for arbitrary a0 the resulting power series has a positive radius of
convergence. For example, the series can be differentiated termwise, by Abel’s theorem.
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[Casselman Miličić 1982] W. Casselman, D. Miličić, Asymptotic behavior of matrix coefficients of admissible
representations, Duke J. Math. 49 (1982), 869-930.

[Casselman Osborne 1975] W. Casselman, M.S. Osborne, The n-cohomology of representations with an
infinitesimal character, Comp. Math 31 (1975), 219-227.

[Casselman Osborne 1978] W. Casselman, M.S. Osborne, The restriction of admissible representations to n,
Math. Ann. 233 (1978), 193-198.

[Cogdell-Li-PS-Sarnak 1991] J. Cogdell, J.-S. Li, I.I. Piatetski-Shapiro, P. Sarnak, Poincaré series for
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[Moeglin-Waldspurger 1995] C. Moeglin, J.-L. Waldspurger, Spectral Decompositions and Eisenstein series,
Cambridge Univ. Press, Cambridge, 1995.

[Müller 1996] W. Müller, On the analytic continuation of rank one Eisenstein series, Geom. Fun. An. 6
(1996), 572-586.

[Myller-Lebedev 1907] Wera Myller-Lebedev, Die Theorie der Integralgleichungen in Anwendung auf einige
Reihenentwicklungen, Math. Ann. 64 (1907), 388-416.
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126 (1898), 215-218.
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Laplace’s method 448

Laplace-Stirling asymptotic 445
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