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Introduction and historical notes

The aim here is persuasive proof of several important analytical results about automorphic forms, among
them spectral decompositions of spaces of automorphic forms, discrete decompositions of spaces of cuspforms,
meromorphic continuation of Eisenstein series, spectral synthesis of automorphic forms, a Plancherel theorem,
and various notions of convergence of spectral expansions. Rather than assuming prior knowledge of
the necessary analysis, or giving extensive external references, we provide customized discussions of that
background, especially of ideas from 20th century analysis often neglected in the contemporary standard
curriculum. Similarly, we avoid assumptions of background that would certainly be useful in studying
automorphic forms, but which beginners cannot be expected to have. Therefore, we keep external references
to a minimum, treating the modern analysis and other background as a significant part of the discussion.

Not only for reasons of space, the treatment of automorphic forms is deliberately neither systematic nor
complete, but by three families of examples, in all cases aiming to illustrate aspects beyond the introductory
case of SLy(Z) and its congruence subgroups.

The first three chapters set up three families of examples, proving essential preparatory results, proving
many of the basic facts about automorphic forms, while merely stating results whose proofs are more
sophisticated or difficult. The proofs of the more difficult results occupy the remainder of the book, as
in many cases the arguments require various ideas not visible in the statements.

The first family of examples is introduced in chapter one, consisting of waveforms on quotients having
dimensions 2, 3,4, 5 with a single cusp, which is just a point. In the two-dimensional case, the space on which
the functions live is the usual quotient SLs(Z)\$ of the complex upper half-plane $). The three-dimensional
case is related to SLy(Z[i]), and the four-dimensional and five-dimensional cases are similarly explicitly
described. Basic discussion of the physical spaces themselves involves explication of the groups acting on
them, and decompositions of these groups in terms of subgroups, and the expression of the physical spaces
as G/K for K a maximal compact subgroup of G. There are natural invariant measures and integrals on
G/K and on I'\G/ K, whose salient properties can be described quickly, with proofs deferred to a later point.
Similarly, a natural Laplace-Beltrami operator A on G/K and I'\G/K can be described easily, but with
proofs deferred. The first serious result specific to automorphic forms is about reduction theory, that is,
determination of a nice set in G/K that surjects to the quotient I'\G/K, for specific discrete subgroups I’
of G. The four examples in this simplest scenario all admit very simple sets of representatives, called Siegel
sets in every case a product of a ray and a box, with Fourier expansions possible along the box-coordinate,
consonant with a decomposition of part of the group G (Iwasawa decomposition). This greatly simplifies
both statements and proofs of fundamental theorems.

In the simplest family of examples, the space of cuspforms consists of those functions on the quotient
NG/K with 0" Fourier coefficient identically 0. The basic theorem, quite non-trivial to prove, is that the
space of cuspforms in L?(T'\G/K) has a basis consisting of eigenfunctions for the invariant Laplacian A. This
result is one form of the discrete decomposition of cuspforms. We delay its proof, which uses many ideas
not apparent in the statement of the theorem. The orthogonal complement to cuspforms in L*(T'\G/K)
is readily characterized as the space of pseudo-FEisenstein series, parametrized here by test functions on
(0,+00). However, these simple, explicit automorphic forms are never eigenfunctions for A. Rather, via
Euclidean Fourier-Mellin inversion, they are expressible as integrals of (genuine) Eisenstein series, the latter
eigenfunctions for A, but unfortunately not in L?(I'\G/K). Further, it turns out that the best expression of
pseudo-Eisenstein series in terms of genuine Eisenstein series F involves the latter with complex parameter
outside the region of convergence of the defining series. Thus arises the need to meromorphically continue
the Eisenstein series in that complex parameter. Genuine proof of meromorphic continuation, with control
over the behavior of the meromorphically continued function, is another basic but non-trivial result, whose
proof is delayed. Granting those postponed proofs, a Plancherel theorem for the space of pseudo-Eisenstein
series follows from their expansion in terms of genuine Eisenstein series, together with attention to integrals
as vector-valued (rather than merely numerical), with the important corollary that such integrals commute
with continuous operators on the vector space. This and other aspects of vector-valued integrals are treated
at length in an appendix. Then we obtain the Plancherel theorem for the whole space of L? waveforms.
Even for the simplest examples, these few issues illustrate the goals of this book: discrete decomposition of
spaces of cuspforms, meromorphic continuation of Eisenstein series, and a Plancherel theorem.



In chapter two is the second family of examples, adele groups GLo over number fields. These
examples subsume classical examples of quotient I'o(NN)\$ with several cusps, reconstituting things so that
operationally there is a single cusp. Also, examples of Hilbert modular groups and Hilbert modular forms
are subsumed, by rewriting things so that the vagaries of class numbers and unit groups become irrelevant.
Assuming some basic algebraic number theory, we prove p-adic analogues of the group decomposition results
proven earlier in chapter one for the purely archimedean examples. Integral operators made from C¢ functions
on the p-adic factor groups, known as Hecke operators, are reasonable p-adic analogues of the archimedean
factors’ A, although the same integral operators do make the same sense on archimedean factors. Again,
the first serious result for these examples is that of reduction theory, namely, that there is a single nice set,
an adelic form of a Siegel set, again nearly the product of a ray and a box, that surjects to the quotient
ZTGLy(k)\GLa(A), where ZT is itself a ray in the center of the group. The first serious analytical result
is again about discrete decomposition of spaces of cuspforms, where now relevant operators are both the
invariant Laplacians and the Hecke operators. And, again, the deferred proof is much more substantial than
the statement, and needs ideas not visible in the assertion itself. The orthogonal complement to cuspforms is
again describable as the L? span of pseudo-Eisenstein series, now with a discrete parameter, a Hecke character
(grossencharacter) of the ground field, in addition to the test function on (0,400). The pseudo-Eisenstein
series are never eigenfunctions for invariant Laplacians nor for Hecke operators. Within each family, indexed
by Hecke characters, every pseudo-Eisenstein series again decomposes via Euclidean Fourier-Mellin inversion
as an integral of (genuine) Fisenstein series with the same discrete parameter. The genuine Eisenstein series
are eigenfunctions for invariant Laplacians, and are eigenfunctions for Hecke operators at almost all finite
places, but are not square-integrable. And, again, the best assertion of spectral decomposition requires a
meromorphic continuation of the genuine Eisenstein series in the continuous parameter. Then a Plancherel
theorem for pseudo-Eisenstein series for each discrete parameter value follows from the integral representation
in terms of genuine Eisenstein series and general properties of vector-valued integrals. These are assembled
into a Plancherel theorem for all L? automorphic forms. An appendix computes periods of Eisenstein series
along copies of GL1(k) of quadratic field extensions k of the ground field.

Chapter three treats the most complicated of the three families of examples, including automorphic forms
for SL,(Z), both purely archimedean and adelic. Again, some relatively elementary set-up regarding group
decompositions is necessary, and carried out immediately. Identification of invariant differential operators
and Hecke operators at finite places is generally similar to that for the previous example GLo. A significant
change is the proliferation of types of parabolic subgroups (essentially, subgroups conjugate to subgroups
containing upper-triangular matrices). This somewhat complicates the notion of cuspform, although the
general idea, that zeroth Fourier coefficients vanish, is still correct, if suitably interpreted. Again, the
space of square-integrable cuspforms decomposes discretely, although the complexity of the proof for these
examples increases significantly, and is again delayed. The increased complication of parabolic subgroups
also complicates the description of the orthogonal complement to cuspforms, in terms of pseudo-Eisenstein
series. For purposes of spectral decomposition, the discrete parameters now become more complicated
than the G Lo situation: cuspforms on the Levi components (diagonal blocks) in the parabolics generalize
the role of Hecke characters. Further, the continuous complex parametrizations need to be over larger-
dimensional Euclidean spaces. Thus, we restrict attention to the two extreme cases: minimal parabolics
(also called Borel subgroups) consisting exactly of upper-triangular matrices, and mazimal proper parabolics,
which have exactly two diagonal blocks. The minimal parabolics use no cuspidal data, but for SL,,(Z) have
an (n — 1)-dimensional complex parameter. The maximal proper parabolics have just a one-dimensional
complex parameter, but typically need two cuspforms on smaller groups, one on each of the two diagonal
blocks. The general qualitative result that the L? orthogonal complement to cuspforms is spanned by
pseudo-Eisenstein series of various types does still hold, and the various types of pseudo-Eisenstein series are
integrals of genuine Eisenstein series with the same discrete parameters. And, again, the best description of
these integrals requires the meromorphic continuation of the Eisenstein series. For non-maximal parabolics,
Bochner’s lemma (recalled and proven in an appendix) reduces the problem of meromorphic continuation to
the maximal proper parabolic case, with cuspidal data on the Levi components. Elementary devices such as
Poisson summation, that suffice for meromorphic continuation for GLs, as we have seen in the appendix to
chapter two, are inadequate to prove meromorphic continuation involving the non-elementary cuspidal data.
We defer the proof. Plancherel theorems for the spectral fragments follow from the integral representations



in terms of genuine Eisenstein series, together with properties of vector-valued integrals.

The rest of the book gives proofs of those foundational analytical results, discreteness of cuspforms and
meromorphic continuation of Eisenstein series, at various levels of complication, and by various devices.
Perhaps surprisingly, the required analytical underpinnings are considerably more substantial than an
unsuspecting or innocent bystander might imagine. Further, not everyone interested in the truth of
foundational analytical facts about automorphic forms will necessarily care about their proofs, especially
upon discovery that that burden is greater than anticipated. These obvious points reasonably explain the
compromises made in many sources. Nevertheless, rather than either gloss over the analytical issues, or refer
to encyclopedic treatments of modern analysis on a scope quite unnecessary for our immediate interests, or
give suggestive but misleading neo-classical heuristics masquerading as adequate arguments for what is truly
needed, the remaining bulk of the book aims to discuss analytical issues at a technical level truly sufficient
to convert appealing heuristics to persuasive, genuine proofs. For that matter, one’s own lack of interest in
the proofs might provide all the more interest in knowing that things widely believed are in fact provable by
standard methods.

Chapter four explains enough Lie theory to understand the invariant differential operators on the ambient
archimedean groups G, both in the simplest small examples and more generally, determining the invariant
Laplace-Beltrami operators explicitly in coordinates on the four simplest examples.

Chapter five explains how to integrate on quotients, without concern for explicit sets of representatives.
Although in very simple situations, such as quotients R/Z (the circle), it is easy to manipulate sets of
representatives (the interval [0, 1] for the circle), this eventually becomes infeasible, despite the traditional
example of the explicit fundamental domain for SL2(Z) acting on the upper half-plane §). That is, much of
the picturesque detail is actually inessential, which is fortunate since that level of details is also unsustainable
in all but the very simplest little examples.

Chapter six introduces natural actions of groups on spaces of functions on physical spaces on which the
groups act. In some contexts, one might make a more elaborate representation theory formalism here,
but it is possible to reap many of the benefits of the ideas of representation theory without the usual
superstructure. That is, the idea of a linear action of a topological group on a topological vector space
of functions on a physical space is the beneficial notion, with or without classification. It is true that at
certain technical moments classification results are crucial, so, although we do not prove either the Borel-
Casselman-Matsumoto classification in the p-adic case [Borel 1976], [Matsumoto 1977], [Casselman 1980],
nor the subrepresentation theorem [Casselman 1978/80], [Casselman Mili¢i¢ 1982] in the archimedean case,
hopefully the roles of these results are made clear. Classification results per se, while difficult and interesting
problems, do not necessarily affect the foundational analytic aspects of automorphic forms.

Chapter seven proves the discreteness of spaces of cuspforms, in various senses, in examples of varying
complexity. Here, it becomes apparent that genuine proofs, as opposed to heuristics, require some
sophistication concerning topologies on natural function spaces, beyond the typical Hilbert, Banach, and
Fréchet spaces. Here again, there is a forward reference to the extended appendix on function spaces
and classes of topological vector spaces necessary for practical analysis. Further, even less immediately
apparent, but in fact already needed in the discussion of decomposition of pseudo-Eisenstein series in terms
of genuine Eisenstein series, we need a coherent and effective theory of vector-valued integrals, a complete,
succinct form given in the corresponding appendix, following Gelfand and Pettis, making explicit the most
important corollaries on uniqueness of invariant functions, differentiation under integral signs with respect
to parameters, and related.

Chapter eight fills an unobvious need, proving that automorphic forms that are of moderate growth and
are eigenfunctions for Laplacians have asymptotics given by their constant terms. In the smaller examples,
it is easy to make this precise. For SL, with n > 3, some effort is required for an accurate statement. As
corollaries, L? cuspforms that are eigenfunctions are of rapid decay, and Eisenstein series have relatively
simple asymptotics given by their constant terms. Thus, we discover again the need to prove that Eisenstein
series have vector-valued meromorphic continuations, specifically, as moderate-growth functions.

Chapter nine carefully develops ideas concerning unbounded symmetric operators on Hilbert spaces,
thinking especially of operators related to Laplacians A, and especially those such that (A — \)~! is a
compact-operator-valued meromorphic function of A € C. On one hand, even a naive conception of the
general behavior of Laplacians is fairly accurate, but this is due to a subtle fact that needs proof, namely,



the essential self-adjointness of Laplacians on natural spaces such as R™, multi-toruses T", spaces G/K,
and even spaces I'\G/K. This has a precise sense: the (invariant) Laplacian restricted to test functions has
a unique self-adjoint extension, which then is necessarily its graph-closure. Thus, the naive presumption,
implicit or explicit, that the graph closure is a (maximal) self-adjoint extension is correct. On the other
hand, the proof of meromorphic continuation of Eisenstein series in [Colin de Verdiere 1981/82/83] makes
essential use of some quite counter-intuitive features of (Friedrichs’) self-adjoint extensions of restrictions of
self-adjoint operators, which therefore merit careful attention. In this context, the basic examples are the
usual Sobolev spaces on T or R, and the quantum harmonic oscillator —A + 22 on R. An appendix recalls
the proof of the spectral theorem for compact, self-adjoint operators.

Chapter ten extends the idea from [Lax-Phillips 1976] to prove that larger spaces than spaces of cuspforms
decompose discretely under the action of self-adjoint extensions Ea of suitable restrictions A, of Laplacians.
Namely, the space of pseudo-cuspforms L? at cut-off height a is specified, not by requiring constant terms to
vanish entirely, but by requiring that all constant terms vanish above height a. The discrete decomposition
is proven, as expected, by showing that the resolvent (A, —\)~! is a meromorphic compact-operator-valued
function of A, and invoking the spectral theorem for self-adjoint compact operators. The compactness of the
resolvent is a Rellich-type compactness result, proven by observing that (A, — A\)~! maps L? to a Sobolev-
type space B with a finer topology on B! than the subspace topology, and that the inclusion B! — L2 is
compact.

Chapter eleven uses the discretization results of chapter ten to prove meromorphic continuations and
functional equations of a variety of Eisenstein series, following [Colin de Verdiere 1981/82/83]’s application
of the discreteness result in [Lax-Phillips 1976]. This is carried out first for the four simple examples, then
for maximal proper parabolic Eisenstein series for SL,,(Z), with cuspidal data. In both the simplest cases
and the higher-rank examples, we identify the exotic eigenfunctions as being certain truncated Eisenstein
series.

Chapter twelve uses several of the analytical ideas and methods of the previous chapters to reconsider
automorphic Green’s functions, and solutions to other differential equations in automorphic forms, by spectral
methods. We prove a pre-trace formula in the simplest example, as an application of a comparably simple
instance of a subquotient theorem, which follows from asymptotics of solutions of second-order ordinary
differential equations, recalled in a later appendix. We recast the pre-trace formula as a demonstration
that an automorphic Dirac d-function lies in the expected global automorphic Sobolev space. The same
argument gives a corresponding result for any compact automorphic period. Subquotient /subrepresentation
theorems for groups such as G = SO(n, 1) (rank-one groups with abelian unipotent radicals) appeared in
[Casselman-Osborne 1975], [Casselman-Osborne 1978]. For higher-rank groups SL,(Z), the corresponding
subrepresentation theorem is [Casselman 1978/80], [Casselman Mili¢i’c 1982]. Granting that, we obtain a
corresponding pre-trace formula for a class of compactly-supported automorphic distributions, showing that
these distributions lie in the expected global automorphic Sobolev spaces.

Chapter thirteen is an extensive appendix with many examples of natural spaces of functions and
appropriate topologies on them. One point is that too-limited types of topological vector spaces are
inadequate to discuss natural function spaces arising in practice. We include essential standard arguments
characterizing locally convex topologies in terms of families of seminorms. We prove the quasi-completeness
of all natural function spaces, and weak duals, and spaces of maps between them. Notably, this includes
spaces of distributions.

Chapter fourteen proves existence of Gelfand-Pettis vector-valued integrals of compactly-supported
continuous functions taking values in locally convex, quasi-complete topological vector space. Conveniently,
the previous chapter showed that all function spaces of practical interest meet these requirements. The
fundamental property of Gelfand-Pettis integrals is that

T(/f) = /T of (for V-valued f, T : V — W continuous linear)

at least for f continuous, compactly supported, V-valued, where V is quasi-complete and locally convex.
That is, continuous linear operators pass inside the integral. In suitably-topologized natural function spaces,
this situation includes differentiation with respect to a parameter. In this situation, as corollaries we can
easily prove uniqueness of invariant distributions, density of smooth vectors, and similar.
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Chapter fifteen carefully discusses holomorphic V-valued functions, using the Gelfand-Pettis integrals as
well as a variant of the Banach-Steinhaus theorem. That is, weak holomorphy implies (strong) holomorphy,
and the expected Cauchy integral formulas and Cauchy-Goursat theory apply almost verbatim in the vector-
valued situation. Similarly, we prove that for f a V-valued function on an interval [a,b], A o f being C* for
all A € V* implies that f itself is C*~! as a V-valued function.

Chapter sixteen reviews basic results on asymptotic expansions of integrals, and of solutions to second-order
ordinary differential equations. The methods are deliberately general, rather than invoking specific features
of special functions, to illustrate methods that are applicable more broadly. The simple subrepresentation
theorem in chapter twelve makes essential use of asymptotic expansions.

Our coverage of modern analysis does not aim to be either systematic or complete, but well-grounded and
adequate for the above-mentioned issues concerning automorphic forms. In particular, several otherwise-
apocryphal results are treated carefully. We want a sufficient viewpoint so that attractive heuristics, for
example, from physics, can become succinct, genuine proofs. Similarly, we do not presume familiarity with
Lie theory, nor algebraic groups, nor representation theory, nor algebraic geometry, and certainly not with
classification of representations of Lie groups or p-adic groups. All these are indeed very useful, in the long
run, but it is unreasonable to demand mastery of these prior to thinking about analytical issues concerning
automorphic forms. Thus, we directly develop some essential ideas in these supporting topics, sufficient for
immediate purposes here. [Lang 1975] and [Iwaniec 2002] are examples of the self-supporting exposition
intended here.

Naturally, any novelty here is mostly in the presentation, rather than in the facts themselves, most of
which have been known for several decades. Sources and origins can be most clearly described in a historical
context, as follows.

The reduction theory in [1.5] is merely an imitation of the very classical treatment for SLy(Z), including
some modern ideas, as in [Borel 1997]. The subtler versions in [2.2] and [3.3] are expanded versions of the
first part of [Godement 1963], a more adele-oriented reduction theory than [Borel 1965/6b], [Borel 1969],
and [Borel-HarishChandra 1962]. Proofs [1.9.1], [2.8.6], [3.10.1-2], [3.11.1] of convergence of Eisenstein series
are due to Godement use similar ideas, reproduced for real Lie groups in [Borel 1965/6]. Convergence
arguments on larger groups go back at least to [Braun 1939]’s treatment of convergence of Siegel Eisenstein
series. Holomorphic Hilbert-Blumenthal modular forms were studied by [Blumenthal 1904]. What would
now be called degenerate Eisenstein series for GL,, appeared in [Epstein 1903/07]. [Picard 1882/83/84]
was one of the earliest investigations beyond the elliptic modular case. Our notion of truncation is from
[Arthur 1978] and [Arthur 1980].

Eigenfunction expansions and various notions of convergence are a pervasive theme here, and have a long
history. The idea that periodic functions should be expressible in terms of sines and cosines is at latest
from [Fourier 1822], including what we now call the Dirichlet kernel, although [Dirichlet 1829] came later.
Somewhat more generally, eigenfunction expansions for Sturm-Liouville problems appeared in [Sturm 1836]
and [Sturm 1833a,b/36a,b] but were not made rigorous until [Bocher 1898/99] and [Steklov 1898] (see
[Liitzen 1984]). Refinements of the spectral theory of ordinary differential equations continued in [Weyl 1910],
[Kodaira 1949], and others, addressing issues of non-compactness and unboundedness echoing complications
in the behavior of Fourer transform and Fourier inversion on the line [Bochner 1932], [Wiener 1933].
Spectral theory and eigenfunction expansions for integral equations, which we would now call compact
operators [9.A], were recognized as more tractable than direct treatment of diffferential operators soon
after 1900: [Schmidt 1907], [Myller-Lebedev 1907], [Riesz 1907], [Hilbert 1909], [Riesz 1910], [Hilbert 1912].
Expansions in spherical harmonics were used in the 18th century by S. P. Laplace and J.-L. Lagrange, and
eventually subsumed in the representation theory of compact Lie groups [Weyl 1925/6], and in eigenfunction
expansions on Riemannian manifolds and Lie groups, as in [Minakshisundaram-Pleijel 1949], [Povzner 1953],
[Avakumovié¢ 1956], [Berezin 1956], and many others.

Spectral decomposition and synthesis of various types of automorphic forms is more recent, beginning
with [Maaf8 1949], [Selberg 1956], and [Roelcke 1956a,b]. The spectral decomposition for automorphic
forms on general reductive groups is more complicated than might have been anticipated by the earliest
pioneers. Subtleties are already manifest in [Gelfand-Fomin 1952], and then in [Gelfand-Graev 1959],
[HarishChandra 1959], [Gelfand-PS 1963], [Godement 1966b], [HarishChandra 1968], [Langlands 1966],
[Langlands 1967/76], [Arthur 1978], [Arthur 1980], [Jacquet 1982/83], [Moeglin-Waldspurger 1989], [Moeglin-



Waldspurger 1995], [Casselman 2005], [Shahidi 2010]. Despite various formalizations, spectral synthesis
of automorphic forms seems most clearly understood in fairly limited scenarios: [Godement 1966al,
[Faddeev 1967], [Venkov 1971], [Faddeev-Pavlov 1972], [Arthur 1978], [Venkov 1979], [Arthur 1980], [Cogdell-
PS 1990], largely due to issues of convergence, often leaving discussions in an ambiguous realm of (nevertheless
interesting) heuristics.

Regarding meromorphic continuation of Eisenstein series: our proof [2.B] for the case [2.9] of GLs is
an adaptation of the Poisson summation argument from [Godement 1966a]. The essential idea already
occurred in [Rankin 1939] and [Selberg 1940]. [Elstrodt-Grunewald-Mennicke 1985] treated examples
including our example SL2(Z[i]), and in that context [Elstrodt-Grunewald-Mennicke 1987] treats special
cases of the period computation of [2.C]. For Eisenstein series in rank one groups, compare also [Cohen-
Sarnak 1980], which treats a somewhat larger family including our simplest four examples, and then
[Miiller 1996]. The minimal-parabolic example in [3.12] using Bochner’s lemma [3.A] essentially comes
from an appendix in [Langlands 1967/76]. The arguments for the broader class of examples in chapter
eleven are adaptations of [Colin de Verdiere 1981/82/83], using discretization effects of pseudo-Laplacians
from chapter ten, which adapts the idea of [Lax-Phillips 1976]. Certainly one should compare the arguments
in [HarishChandra 1968], [Langlands 1967/76], [Wong 1990], and [Moeglin-Waldspurger 1995]. The latter
gives a version of Colin de Verdiere’s idea due to H. Jacquet.

The discussion of group actions on function spaces in chapter six is mostly very standard. Apparently
the first occurrence of the Gelfand-Kazhdan criterion idea is in [Gelfand 1950]. An extension of that idea
appeared in [Gelfand-Kazhdan 1975].

The arguments for discrete decomposition of cuspforms in chapter seven are adaptations of [Gode-
ment 1966b]. The discrete decomposition examples for larger spaces of pseudo-cuspforms in chapter ten use
the idea of [Lax-Phillips 1976]. The idea of this decomposition perhaps goes back to [Gelfand-Fomin 1952],
and, as with many of these ideas, was elaborated-upon in the iconic sources [Gelfand-Graev 1959], [Har-
ishChandra 1959], [Gelfand-PS 1963], [Godement 1966b], [HarishChandra 1968], [Langlands 1967/76], and
[Moeglin-Waldspurger 1989].

Difficulties with pointwise convergence of Fourier series of continuous functions, and problems in other
otherwise-natural Banach spaces of functions, were well appreciated in the late 19th century. There was a
precedent for constructs avoiding strictly pointwise conceptions of functions in the very early 20th century,
when B. Levi, G. Fubini, and D. Hilbert used Hilbert space constructs to legitimize Dirichlet’s minimization
principle, in essence that a non-empty closed convex set should have a (unique) point nearest a given point
not in that set. The too-general form of this principle is false, in that both existence and uniqueness easily
fail in Banach spaces, in natural examples, but the principle is correct in Hilbert spaces. Thus, natural
Banach spaces of pointwise-valued functions, such as continuous functions on a compact set with sup norm,
do not support this minimization principle. Instead, Hilbert-space versions of continuity and differentiability
are needed, as in [Levi 1906]. This idea was systematically developed by [Sobolev 1937, 1938, 1950]. We
recall the L? Sobolev spaces for circles in [9.5], for lines in [9.7], and develop various (global) automorphic
versions of Sobolev spaces in chapters ten, eleven, and twelve.

For applications to analytic number theory, automorphic forms are often constructed by winding up
various simpler functions containing parameters, forming Poincaré series [Cogdell-PS 1990], [Cogdell-PS-
Sarnak 1991. Spectral expansions are the standard device for demonstration of meromorphic continuation
in the parameters, if it exists at all, which is a non-trivial issue [Estermann 1928], [Kurokawa 1985a,b].
For the example of automorphic Green’s functions, namely, solutions to equations (A — s(s — 1))u = §3f
with invariant Laplacian A on $ and automorphic Dirac 6 on the right, [Huber 1955] had considered such
matters in the context of lattice-point problems in hyperbolic spaces, and, independently, [Selberg 1954]
had addressed this issue in lectures in Gottingen. [Neunhoffer 1973] carefully considers the convergence and
meromorphic continuation of a solution of that equation formed by winding up. See also [Elstrodt 1973].
The complications or failures of pointwise convergence of the spectral synthesis expressions can often be
avoided entirely by considering convergence in suitable global automorphic Sobolev spaces described in
chapter twelve. See [DeCelles 2012] and [DeCelles 2016] for developments in this spirit.

Because of the naturality of the issue, and to exploit interesting idiosyncrasies, we pay considerable
attention to invariant Laplace-Beltrami operators and their eigenfunctions. To have genuine proofs,
rather than heuristics, chapter nine attends to rigorous notions of unbounded operators on Hilbert spaces



[vonNeumann 1929], with motivation toward [vonNeumann 1931], [Stone 1929/32], [Friedrichs 1934],
[Krein 1945], [Krein 1947]. In fact, [Friedrichs 1934/5] special construction [9.2] has several useful
idiosyncracies, exploited in chapters ten and eleven. Incidentally, the apparent fact that the typically naive
treatment of many natural Laplace-Beltrami operators without boundary conditions does not lead to serious
mistakes is a corollary of their essential self-adjointness [9.9], [9.10]. That is, in many situations, the naive
form of the operator admits a unique self-adjoint extension, and this extension is the graph closure of the
original. Thus, in such situations, a naive treatment is provably reasonable. However, the Lax-Phillips
discretization device, and Colin de Verdiere’s use of it to prove meromorphic continuation of Eisenstein
series, and also to convert certain inhomogeneous differential equations to homogeneous ones, illustrate the
point that restrictions of essentially self-adjoint operators need not remain essentially self-adjoint. With
hindsight, this possibility is already apparent in the context of Sturm-Liouville problems [9.3].

The global automorphic Sobolev spaces of chapter twelve already enter in important auxiliary roles as the
spaces B, Bl in chapter ten’s proofs of discrete decomposition of spaces of pseudo-cuspforms, and €* and ¢}
in [11.7-11.11] proving meromorphic continuation of Eisenstein series. The basic estimate called a pre-trace
formula occurred as a precursor to trace formulas, as in [Selberg 1954], [Selberg 1956], [Hejhal 1976/83],
and [Iwaniec 2002]. The notion of global automorphic Sobolev spaces provides a reasonable context for
discussion of automorphic Green’s functions, other automorphic distributions, and solutions of partial
differential equations in automorphic forms. The heuristics for Green’s functions [Green 1828], [Green 1837]
had repeatedly shown their utility in the 19th century. Differential equations (—A — A)u = § related to
Green’s functions had been used by physicists [Dirac 1928a/b, 1930], [Thomas 1935], [Bethe-Peierls 1935],
with excellent corroboration by physical experiments, and are nowadays known as solvable models. At the
time, and currently, in physics contexts they are rewritten as ((—A + d) — A)u = 0, viewing —A + ¢ as
a perturbation of —A by a singular potential 6, a mathematical idealization of a very-short-range force.
This was treated rigorously in [Berezin-Faddeev 1961]. The necessary systematic estimates on eigenvalues
of integral operators use a subquotient theorem, which we prove for the four simple examples, as in that
case the issue is about asymptotics of solutions of second-order differential equations, classically understood
as recalled in an appendix (chapter sixteen). The general result is the subrepresentation theorem from
[Casselman 1978/80], [Casselman Mili¢i¢ 1982], improving the subquotient theorem of [Harish-Chandra 1954].
In [Varadarajan 1989] there are related computations for SLs(R).

In the discussion of natural function spaces in chapter thirteen, in preparation for the vector-valued
integrals of the following chapter, the notion of quasi-completeness proves to be the correct general version of
completeness. The incompleteness of weak duals has been known at least since [Grothendieck 1950], which
gives a systematic analysis of completeness of various types of duals. This larger issue is systematically
discussed in [Schaefer 1966/99], p. 147-8 and following. The significance of the compactness of the closure
of the convex hull of a compact set appears, for example, in the discussion of vector-valued integrals in
[Rudin 1991], although the latter does not make clear that this condition is fulfilled in more than Fréchet
spaces, and does not mention quasi-completeness. To apply these ideas must be applicable to distributions,
one might cast about for means to prove the compactness condition, eventually hitting upon the hypothesis
of quasi-completeness in conjunction with ideas from the proof of the Banach-Alaoglu theorem. Indeed,
in [Bourbaki 1987] it is shown (by apparently different methods) that quasi-completeness implies this
compactness condition. The fact that a bounded subset of a countable strict inductive limit of closed
subspaces must actually be a bounded subset of one of the subspaces, easy to prove once conceived, is
attributed to Dieudonne and Schwartz in [Horvath 1966]. See also [Bourbaki 1987], IIL.5 for this result.
Pathological behavior of uncountable colimits was evidently first exposed in [Douady 1963].

In chapter fourteen, rather than constructing vector-valued integrals as limits following [Bochner 1935],
[Birkhoff 1935], et alia, we use the [Gelfand 1936]-[Pettis 1938] characterization of integrals, which has good
functorial properties and gives a forceful reason for uniqueness. The issue is ezistence. Density of smooth
vectors follows [Garding 1947]. Another of application of holomorphic and meromorphic vector-valued
functions is to generalized functions, as in [Gelfand-Shilov 1964], studying holomorphically parametrized
families of distributions. A hint appears in the discussion of holomorphic vector-valued functions in
[Rudin 1991]. A variety of developmental episodes and results in the Banach-space-valued case is surveyed in
[Hildebrandt 1953]. Proofs and application of many of these results are given in [Hille-Phillips 1957]. (The
first edition, authored by Hille alone, is sparser in this regard.) See also [Brooks 1969] to understand the



viewpoint of those times.

Ideas about vector-valued holomorphic and differentiable functions, in chapter fifteen, appeared in
[Schwartz 1950/51], [Schwartz 1952], [Schwartz 1953/4], and in [Grothendieck 1953a,b].

The asymptotic expansion results of chapter sixteen are standard. [Blaustein-Handelsman 1975] is a
standard source for asymptotics of integrals. Watson’s lemma and Laplace’s method for integrals have been
used and rediscovered repeatedly. Watson’s lemma dates from at latest [Watson 1918], and Laplace’s method
at latest from [Laplace 1774]. [Olver 1954] notes that Carlini, [Green 1837], and [Liouville 1837] investigated
relatively simple cases of asymptotics at irregular singular points of ordinary differential equations, without
complete rigor. According to [Erdélyi 1956] p. 64, there are roughly two proofs that the standard
argument produces genuine asymptotic expansions for solutions of the differential equation. Poincaré’s
approach, elaborated by J. Horn, expresses solutions as Laplace transforms and invokes Watson’s lemma to
obtain asymptotics. G.D. Birkhoff and his students constructed auxiliary differential equations from partial
sums of the asymptotic expansion, and compared these auxiliary equations to the original [Birkhoff 1908],
[Birkhoff 1909], [Birkhoff 1913]. Volterra integral operators are important in both approaches, insofar as
asymptotic expansions behave better under integration than under differentiation. Our version of the Birkhoff
argument is largely adapted from [Erdélyi 1956].

Many parts of this exposition are adapted and expanded from [Garrett vignettes], [Garrett mfms-notes],
[Garrett fun-notes], and [Garrett alg-noth-notes]. As is surely usual in book writing, many of the issues here
had plagued me for decades.
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1. Four small examples

1. Four small examples

Groups G = SLy(R), SLa(C), Spi 1, and SLo(H)
Compact subgroups K C G, Cartan decompositions
Iwasawa decompositions G = PK = NATK

Some convenient Euclidean rings

Discrete subgroups I' C G, reduction theory

Invariant measures, invariant Laplacians

Discrete decomposition of L?(I'\G/K) cuspforms
Pseudo-Eisenstein series

Eisenstein series

10. Meromorphic continuation of Eisenstein series

11. Truncation and MaaB-Selberg relations

12. Decomposition of pseudo-Eisenstein series

13. Plancherel for pseudo-Eisenstein series

14. Automorphic spectral expansion and Plancherel theorem
15. Exotic eigenfunctions, discreteness of pseudo-cuspforms

LN WNE

We recall basic notions related to automorphic forms on some simple arithmetic quotients, including the
archetypical quotient SL2(Z)\$ of the complex upper half-plane $ and the related quotient SLo(Z)\SL2(R).
To put this in a somewhat larger context, (11 we consider parallel examples I'\ X and I'\G for a few other
groups G, discrete subgroups I', and spaces X ~ G/K for compact subgroups K of G. The other three
examples share several of the features of G = SLa(R), I' = SLy(Z), X = $H ~ G/K with K = SO3(R),
allowing simultaneous treatment.

For many reasons, even if we are only interested in harmonic analysis on quotients I'\ X it is necessary
to counsider spaces of functions on the overlying spaces I'\G, on which G acts by right translations, with a
corresponding translation action on functions.

Some basic discussions not specific to the four examples are postponed, such as determination of invariant
Laplacians in coordinates, self-adjointness properties of invariant Laplacians, proof of the formula for the
left G-invariant measure on X = G/K, unwinding properties of integrals and sums, continuity of the action
of G on test functions on T'\G, density of test functions in L?(I'"\X), vector-valued integrals, holomorphic
vector-valued functions, and other generalities.

We also postpone the relatively specific proofs of the major theorems stated in the last sections of
this chapter, concerning the spectral decomposition of automorphic forms, meromorphic continuation of
FEisenstein series, and the theory of the constant term. Those proofs make pointed use of finer details from
the more sophisticated analysis.

1 1 slightly more sophisticated terms inessential to this discussion: the four examples G immediately considered
are real-rank one semi-simple Lie groups, and the discrete subgroups I' are unicuspidal in the sense that I'\G/K is
reasonably compactified by adding just a single cusp, where K is a (maximal) compact subgroup of G. That is, the
reduction theory of T'\G is especially simple in these four cases. Examples with larger real rank, such as GL, with
n > 3, will be considered later.
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Garrett: Modern Analysis of Automorphic Forms

1.1 Groups G' = SLy(R), SLy(C), Spi;, and SLy(H)

These four groups share some convenient simplifying features, which we will exploit. The first two examples
G are easy to describe:

a special linear group over R = SLy(R) two-by-two real matrices with determinant 1

G =
a special linear group over C = SLy(C) = two-by-two complex matrices with determinant 1

We will have occasion to use the general linear groups G Lo (R) of 2-by-2 invertible matrices with entries in a
ring R. Our other two example groups are conveniently described in terms of the Hamiltonian quaternions
H = R + Ri + Rj + Rk, with the usual relations

2= =k =-1 ij=—ji=k jk=—kj=1i ki=—ik=j

The quaternion conjugation i is a=a+bi+cj+dk=a—bi—cj—dk for « =a—+bi+ cj+ dk, the norm is
Na =a-@, and |a| = (Na)2. H can be modeled in two-by-two complex matrices by

a + bi c+di>

pla+bi+cj+dk) = (—c—|—di o bi

with det p(a) = Na. For a quaternion matrix g, let g* be the transpose of the entry-wise conjugate:

(G2 -(7)  wesnien

The third example group is a kind of symplectic group:
G = Spiyx = {g€GLx(H): g"Sg = S} (with S = ((1) (1)>)

The fourth example is a special linear group G = SLo(H). In the latter, SLs is more convenient than G Lo,
having a smaller center. However, since H is not commutative, the notion of determinant is problemmatical.
One way to skirt the issue is to imbed r : GLy(H) — GL4(C): with quaternions «, 8,7, 9,

vy 9 p(y)  p(d)

using the map p of H to 2-by-2 complex matrices, and require that the image in GL4(C) be in the subgroup
SL4(C) where determinant is 1:

SLy(H) = {9 € GLy(H) : r(g) € SL4(C)}

r (a B) = (p(a) p(ﬁ)) (identified with a 4-by-4 complex matrix)

Standard subgroups of any of these groups G are

R (T . e (R R U (1 DA (R RS

The Levi-Malcev decomposition P = N M is elementary to check. By direct computation from the defining
relations of the groups, one finds

{(73 m01) :m € RX} (for G = SLs(R))

. < 0 ) m e C*} (for G = SLs(C))
( mof ) m e HX} (for G = Spr,)

{(g 2) N(ad) =1, a,d € H} (for G = SL(H))
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1. Four small examples

and

{((1) ‘f) .z €R) (for G = SLa(R))
{((1) ‘f) .z €C) (for G = SLs(C))

{(1 a:> rx €H, x+7 =0} (for G=5pi,)

{(é f):er} (for G = SL,(H))

The subgroup P is the standard (proper) parabolic, N is its unipotent radical, M is the standard Levi-
Malcev component, and A7 is the standard split component. We will use these (standard) names without
elaborating on their history or their connotations.

In these examples, the (spherical) Bruhat decomposition is

G = || PwP = PuPw,P = PUPwN (where w, = ((1) _01))

w=1,w,
with the last equality following because w, normalizes M:
Pw,P = Pw,MN = P(w,Mw, Yw,N = Pw,N

The element w, is the long Weyl element. The small (Bruhat) cell is P itself, and the big (Bruhat) cell is
Pw,P. The (spherical, geometric) Weyl group is {1, w,}. It is a group modulo the center of G. The proof

of the Bruhat decomposition is straightforward: g = ¢ b) € P if and only if ¢ = 0. Otherwise, ¢ # 0,

d
and we try to find p € P and n € N such that ¢ = pw,n. To simplify, since ¢ # 0, it is invertible, so, in
a form applicable to all four cases, we can left multiply by 8 c(_)l € M to make ¢ = 1 without loss of

generality. Then try to solve

a b\ _ _ (P11 P2 0 -1 1 ni2\ _ (P12 pizniz —pu
(1 d)‘g_pw"”_<o 1)(1 o/J\lo 1)~ 1 e
From the lower right entry, apparently ni2 = d. For the case G = Spj ; the additional condition must be

checked, as follows. Observe that inverting g*Sg = S gives ¢g71S71(¢g*)~! = S~1, and then S = ¢gSg*. In
particular, this gives a relation between the ¢, d entries of g:

_ o (xx

T \x cd+dc

0 1 [ *x * 0 1 *
<1 0) =9 =95 = (c d)(l 0)(*
d) € N in that case. Thus, in all cases, right

For ¢ = 1, this gives d +d = 0, which is the condition for ((1) 1

[SUNeY

multiplying g by <(1) _1d> € N makes d = 0, without loss of generality. Thus, it suffices to solve

a b\ _ _ (p11 pi2 0 -1\  (pi2 —-pn1
(10)_g_pw°_(o 1)(1 0)‘(1 0)
-1 b a
o=\ o0 1)~ 7P

Since g € G, the entries a, b satisfy whatever relations G requires, and p € G. This proves the Bruhat
decomposition.

That is,
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Garrett: Modern Analysis of Automorphic Forms

1.2 Compact subgroups K C G, Cartan decompositions

We describe the standard maximal [2] compact subgroups K C G for the four examples G. With H' the
quaternions of norm 1, in a notation consistent with that for Spj , write

Sp; = {geGLi(H):g*g=1} = {geH* :gg=1} = H!

Letting 15 be the two-by-two identity matrix, the four maximal compact subgroups are

SO:(R) = {g€SLa(R):g7g=1s} (for G =SLy(R))
SU, = {g€SLy(C):g*g=13} (for G =SLy(C))

“ Sp; x Spt = H!' x H! (for G = Spj,)
Sp3 = {9€GLy(H):g"g =12} (for G =SLy(H))

In all four cases, the indicated groups are compact. Verification of the compactness of the first three is
straightforward, since their defining equations present them as spheres or products of spheres. Verification
that Sp3 is compact and is a subgroup of SLs(H) merits discussion. For the fourth, observe that the defining

condition ) y
(1 0) - (a b)* (a b) - lal® + |¢] ab +¢d
01 ¢ d ¢ d ba +dc  |b|?+ |d|?
makes Spj a closed subset of a product of two seven-spheres, |a|?+|c¢|?> = 1 and |b|?>+|d|? = 1, thus, compact.

Further, Spj lies inside S Lo (H) rather than merely G Lo(H). For the moment, we will prove a slightly weaker
property, that the relevant determinant is £1. Use the feature

p@) = ep(a)e! (where € = <(1) é), for o € H)

of the imbedding p of H in 2-by-2 complex matrices, and again let

(20) -G8 M) erenedem

viewed as mapping to 4-by-4 complex matrices. Then

r(g) = J-r(g)- I (where J = (5 5) ~ ! | | and g € GLa (D)

Thus, for g*g = 15 € GLo(H),
1y = r(1a) = r(g*g) = r(g*)-7(9) = J-r(¢)" - T -r(g)

In other words, r(g) " Jr(g) = J. B8] Taking determinants shows det r(g)? =1, so detr(g) = 1. Thus, g in
the connected component of Sp containing 1 has det r(g) = 1.

2l The maximality of each of these subgroups K among all compact subgroups in the corresponding G is not obvious,
but is not used in the sequel.

B3] Thus, r(g) is inside a symplectic group denoted Spy(C) or Spa(C), depending on convention.
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1. Four small examples
The copy K of Spy x Spj inside Spj ; is not immediately visible in these coordinates, which were chosen

to make the parabolic P visible. That is, defining Spj ; as the isometry group of the quaternion hermitian
form S obscures the nature of the (maximal) compact K. Changing coordinates by replacing S by

e Nt I (R R

-1
1 —1\ . (1 -1 \
(1 1) p1,1<1 1) = {geGLy(H) : g"F'g = 5"}

and makes the two copies of Sp} visible on the diagonal:

{k:(é‘) 2);/&5%:5’} _ {k:(ﬁ 2>:M,UEH1}

gives

That is,
pt+v  —p+v

K = (1 _D_l.{(g 2);u,ueH1},G —}) _ { AN :M7V€H1}

2 2

[1.2.1] Claim:

:|:12 (fOI‘ G = SLQ(R))

{(ﬁ NO1) tp e € ful =1} (for G = SL2(C))
KNP =KnM

I
—~
7~ N
=

0 *
0 N) € HY} (for G = Sp7 )

{('IS 2) :p, v € HY} (for G = SLy(H))

Proof: In all but the third case, this follows from the description of K. For example, for G = SL2(R) and

K = SO5(R), take p = <8 Zl> € P and examine the relation p'p = 15 for p to be in K:

() =520 ) = (o 522)

From the upper-left entry, a = +1. From the off-diagonal entries, b = 0. The arguments for SLs(C) and
SLy(H) are similar. For Spj ;, comparison to the coordinates that diagonalize K ~ Spj x Spy gives

(5 o) mmem= (0 DRG0 0) 6D SO0 )

g fa+ (@)t =b a—(a*)"t+b
T 2\a—(a*)"t=b a+(a*)"1+0b

For example, adding the elements of the bottom row gives a = ky € H!, and also (a*)~! = a. From either
off-diagonal entry, b = 0. ///

In all four cases, the same discussion gives M = AT . (PN K) = AT . (M NK).
The following will be essential in [7.1]:

[1.2.2] Claim: (Cartan decomposition) G = KATK.
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Proof: First, treat G = SLo(R). Prove that every g € G can be written as ¢ = sk with s' = s and s
positive-definite. To find such s, assume for the moment that it exists, and consider

g-g" = (sk)-(sk)" = sk-k~'s = s

Certainly gg' is symmetric and positive-definite, so having a positive-definite symmetric square root of
positive-definite symmetric ¢ would produce s. Such t gives a positive, symmetric operator on R2?, which by
the spectral theorem has an orthonormal basis of eigenvalues. That is, there is h € K such that hth" = § is
diagonal, necessarily with positive diagonal entries. With ¢ 2 be the positive diagonal square root of ¢,

h =h'6h =t

[

(WT62h)? = hT62h-hT62h = h'62 -6
Thus, take s = hT(S%h, and every g € G can be written as g = ks. Indeed, we have more:
g=rks =k-h6%h = (k-h")- 67 -h € K-A". K

giving the claim in this case. The cases of G = SLo(C) is similar, using g = sk with s = s* hermitian
positive-definite and k* = k~! € K, invoking the spectral theorem for hermitian positive-definite operators.
The same argument succeeds for G = S Ly (H) with quaternion conjugation replacing complex, with a suitably
adapted spectral theorem for s € GLy(H) with s* = s and z*sc real and positive for all non-zero 2-by-1
quaternion matrices x. 4]

The case of G = Spj; essentially reduces to the case of SLy(H), as follows. Since g*Sg = S,
SgS—1 = (g*)~!. Anticipating the Cartan decomposition g = sk, from gg* = ss* = s2, by the quaternionic
version of the spectral theorem, there is k € Sp} such that k~1gg*k = A with A positive real diagonal. We
want to adjust k to be in Spj ; N .Sp3, while preserving the property k~lgg*k = A. Unless gg* is scalar, the
diagonal entries are distinct. By SgS~! = (¢*)~! and Sg*S~! =g~ ! for g € G,

At = (A = SAST! = S(kTlggtk)ST! = (SkSTY) . Sgg*tSTt . SkST!

= (SkS™)7'-(gg") "t SkS™!
Inverting gives A = (SkS~1)~1. gg* - SkS™L. Also A = k~tgg*k, so

(SES™H -A-(SES™H ™! = gt = k-A-k7!

That is, k! - SES~! commutes with A, and § = k~! - SkS~! is at worst diagonal:

-1 _ . _ _aO
SkS —ké—k(od>

Since § € Spi, a-@=1and d-d = 1. To preserve k~'gg*k = A, to adjust k to be in K = Sp} NSpi 1, adjust
k by diagonal matrices € in Spj. The condition for ke to be in K is

(k-e) = ((ke)")™' = S(ke)S™! = SkS™!.SeS™ = k-§5-8571

so take e = S716S. The rest of the argument runs as in the first three cases. ///

[4] I all three of these cases, a Rayleigh-Ritz approach gives a sufficient spectral theorem, as follows. Let F' be R,
C, or H. Let (z,y) = y*z for 2-by-1 matrices z,y over F. Let T : F?2 5 F? be right F-linear, and positive hermitian
in the sense that (Tx,x) is positive, real for z # 0. Then z with (z,z) = 1 maximizing (T'z, z) is an eigenvector for
T. For non-scalar T, the unit vector y minimizing (T'y,y) is an eigenvector for T orthogonal to x. Letting k be the
matrix with columns z,y, the conjugated matrix k~1Tk is diagonal.
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1.3 lwasawa decomposition G = PK = NATK

The subgroups P and K are not normal in G, so the Twasawa decompositions G = PK = {pk:p € P, k €
K} do not express G as a product group. Nevertheless, these decompositions are essential.

[1.3.1] Claim: ([wasawa decomposition) G = PK = NATK. In particular, the map N x AT x K — G by
n X a X k —» nak is an injective set map (and is a diffeomorphism).

Proof: For g = (Z Z) € @, in the easy case that ¢ = 0, then g € P. In all cases, once we have g = nm € P,

we can adjust g on the right by M N K to put the Levi component m into A™.
One approach is to think of right multiplication by K as rotating the lower row (¢ d) of g € G to put it into

the form (0 %) of the lower row of an element of P. For g = <OCL fl) € G = SLy(R): right multiplication

by the explicit element p
c

k = \/62 + d? \/02d+ d? c K = SOQ(R)

—C

V2 +d2 V2 +d?

puts gk € P:
d c

a b\ [ VE+d V2 + &2 _ [ *
c d —C d - 0 =%
Ve +d? Ve +d?

b

Similarly, for g = ((Cl d

> € G = SLy(C), right multiplication by

d c
2 d2 2 d2
oo | VIPETE VR K — s

d S

VIeP+1dP? /el +]dP?

gives gk € P. Likewise, for G = SLy(H), nearly the same explicit expression as for SL2(C) succeeds, with
complex conjugation replaced by quaternion conjugation, accommodating the non-commutativity: (5]

¢ d 1
a b\ \/1—|— |c—1d|? \/1—|—|c_1d|2 B * % c p
c d -1 c1d o 0 =

\/1—|—|c—1d\2 \/14—|c—1d|2
a b

For g = (c d
gk € P. To be sure that the defining relation for Spj ; is fulfilled, use the more explicit coordinates

pv  —ptv )
K_{(3+U #JQFV):;L,VEH}
2 2

€ G = Spj ;, we hope that a matrix k of a similar form lies in K ~ Sp] x Spj, and then

C*

0
earlier, g*Sg = S implies gSg* = S, so ed+dé = 0, and with ¢ = 1 we have d+d = 0. Also, [1+d|? = 1+|d|*.

To reduce the issue to more manageable pieces, left multiply g = (Z Z) by ( 091 > to make c = 1. As

(51 This explicit element lies in the connected component of Sp5 containing 1, so this argument for the Iwasawa
decomposition is complete whether or not we have verified that Sp5 C SLo(H).
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: _ d+1 _ d-1 .
Thus, with pu = ] and v = =g K contains

d -1
ptv —ptv
2 2 _ VIHAR  \/1+]d]?
—putv ptv - —1 d
2 2 ViR /iR

Then gk € P, giving the Iwasawa decomposition in this case. In all cases, the fact that N N AT = {1} and
NAT N K = {1} proves the injectivity of the multiplication n x a x k — nak. ///

The following assertion is a generalization of the standard fact that

a b

Y (forz:m—i—iyefjandg:(C d)GSLQ(R))

mlez) = e

This is the foundation for reduction theory for these examples, that is, for determination of the behavior of
images v - gK as -y varies in I, as below. Let

ay = (\65 1/(\)/?> (with y > 0)

[1.3.2] Claim: For Iwasawa decomposition g = nayk with n € N, y > 0, and k € K, say that y is the height
of g. In all four cases,

. Y a b
height(g - nga,) = m (for g = <c d) € G, n, € N,and y > 0)

Proof: This is a direct computation.

Y [ G B e R A

For G = SLs(R), SL2(C), and SLy(H) with respect compact subgroups K, for D in R, C, H, respectively,

]{;:

D 1
V1+[D[2  /1+[D|?
1 D K

V1+IDZ  \/1+|DJ?

z+c'd

Yy 7

D 1
* 0 * * V1+IDI2 /14D

gnzay -k = (0 c\/§> <1 I+C_1d> . 5
V1+ID[2  \/1+|D|?

In those three cases, letting D =

Y

*
*

- (i eun) <3 \/%> o ey /T 1D it

E‘q o
N———

noting that <; 9) € K. Simplifying,

lel

x+c )2 ley|? + |ex + d|?
elViVIFIDP = lelyiy 1+ || = [
VY VY " y
Thus, in these three cases,

VY 0 . , Y
z e N K th = <7
Ity ( 0 1/Vy v YT P e+ dP
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1. Four small examples
For G' = Spj ;, the explicit element of K is slightly different
D —1
1D 14D
- (m i ) e K

V1+IDZ \/1+|D]?

but the conclusion will be the same: with D = ”CTM

D -1
x 0 * * V1+ID2  \/1+|DJ? x 0 * *
gnzay, -k = < )( w+cld) _ = ( _—14D"
’ VAN Y \/1+\1D\2 \/1f\D\2 evi) \° V1+IDP2

0
For Spi ;, as in earlier computations, the relation h*Sh = S gives hSh* = S, so for h = (i ;) we find
D+ D =0. That is, D is purely imaginary, so D? = —|D|?, and
* * * * « 0
gnzay -k = = o =c
0 —cyy\/1+|DJ? 0 |clyy+/1+|DJ? lel
The remainder of the computation is identical to the other three cases. ///

1.4 Some convenient Euclidean rings

We recall proofs that, just as the ordinary integers are Euclidean, the Gaussian integers Z[i] and Hurwitz
quaternion integers are Fuclidean. This will greatly simplify the geometry of quotients T\ X in [1.5.1] by
assuring that there is just a single cusp.

Recall the simplest version of Fuclidean-ness for a ring R with 1: there is a function |- | : R — Z such
that |r| > 0 and |r| = 0 implies » = 0, such that |rr’| = || - |7'|, and, for every a € R and every 0 # d € R,
there is ¢ € R such that |a — ¢d|| < |d].

Since |1] = |12] = |1] - |1] and 0 < |1], necessarily |1| = 1. Units r € R* have |r| = 1, because rs = 1
gives |r| - |s| = |rs| = |1] = 1, and | - | takes non-negative integer values.

Euclidean-ness implies that every left ideal is principal: let d be an element having the smallest norm in
a given non-zero left ideal I. For any a € I, there is ¢ € R such that |a — ¢d| < |d|. Thus, |a — ¢d| = 0, and
a = qd.

To show that R = Z[i] is Euclidean with respect to the square of the usual complex absolute value
|- =% for a € Z[i] and given 0 # d € Z]i], we need to find ¢ € Z[i] such that |a — dg| < |d|. The
requirement |a — ¢d| < |d| is equivalent to |a/d — ¢| < 1. Thus, given a/d € Q(i), we want g € Z[i] within
distance-squared 1. With a/d = u+ v with u,v € Q, taking v/, v’ € Z such that |u—u'| < % and |Jv—v'| < %
gives the desired [a/d — (v +iv")| < ()2 + ($)? < 1.

In the rational quaternions Hgp = Q + Qi + Qj + QF, the natural choice Z + Zi + Zj + Zk for integers is
not optimal. Instead, we use the slightly larger ring of Hurwitz integers:

1+i+j+k
0 = (Z+Zi+Zj+Zk)+Z-%
We prove that the Hurwitz integers are Euclidean, using the square of the quaternion norm: |- =|-[%. To

see that the norm-squared takes integer values on o, the only possible difficulty might be a denominator of
4, which does not occur, since

(2a+1)* + (20 +1)® + (2¢+ 1)? + (2d + 1)*> = 0 mod 4 (for all a,b,c,d € Z)

Given a € 0 and 0 # d € o, to show that there is ¢ € o such that |a—qd| < ||d| is equivalent to |ad~!—g¢| < 1.
For ad™! = z + yi+ zj + wk with z,y, z,w € Q, there are 2/,y/, z',w’ € Z differing by at most 1 in absolute
value from the respective x,y, z, w. However, the resulting estimate

Iz +yi+2zj +wk) — (@' +¢i+2j+w'k)] < (5 + () +(5)°+(5)° =1
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is insufficient. Nevertheless, being slightly more precise, if [zt —2/| < 1 or |y —y/| < J or [z — 2| < § or

lw —w'| < 3, then we do have the desired

[(z+yi+zj+wk) = (@' +yi+dj+w'k)] <1
That is, the only case of failure is |z — /| = |y — y/| = |z — 2’| = |[w — w'| = . Subtracting 1 from z,y,z,w
if necessary, without loss of generality x — o' =y —y' =2 -2 =w—w' = % In that case,
1+i+j+k)

2
proving that the Hurwitz integers are Euclidean. A qualitative version of the Euclidean-ness of o will
be useful in one of the proofs of unicuspidality: for a« = x + yi + zj + wk with z,y,z,w € Q, there is
2 +y'i+ 2§ +w'k € o such that

(x+yi+zj+wk‘)—((z’+y’i+z’j+w'k)+ =0

(z +yi+zj+wk)— (" +y'i+2j+w'k)| < @
Adjust a by an element of Z + Zi + Zj + Zk so that, without loss of generality, all coefficients are of absolute
value at most 1. If any one coefficient is smaller than 1/4, then |a|? < ()2 + (3)? + (3)* + (3)? = 13/16
as desired. When all coefficients are between 1/4 and 1/2 in absolute value, make them all of the same sign
by adding or subtracting 1 to either one or two, paying the price that those one or two are of absolute value
between 1/2 and 3/4, while the others are still of absolute value between 1/4 and 1/2. Adding or subtracting

(14+4i+j+k)/2 depending on sign, all coefficients are between —1/4 and 1/4, and the quaternion norm of
the result is at most % < @.

1.5 Discrete subgroups I' C G, reduction theory

We specify discrete (] subgroups I of each of the examples G, so that I'\G/K has just one cusp, in a sense
made precise below. Reduction theory is the exhibition of a simple approximate collection of representatives
for the quotient I'\G/K sufficient to understand the most basic geometric features of that quotient. [l The
simple outcome in the present examples, unicuspidality, simplifies meromorphic continuation of Eisenstein
series and simplifies the form of the spectral decomposition of the space of square-integrable automorphic
forms on I'\G/K. The four cases are !

SLy(Z) (for G = SLy(R)) (elliptic modular group)
SLy(Z[i]) (for G = SLy(C)) (a Bianchi modular group)

Spia(o)  (for G = Spi,)

SLy(0) (for G = SLy(H))

[6] As usual, a subset D of a topological space X is discrete when every point x € D has a neighborhood U such
that U N D = {z}. The topologies on our groups G are the subspace topologies from the ambient real vector spaces
of 2-by-2 real, complex, or quaternion matrices.

[l Tn some contexts, the goal of determination of an ezact, explicit collection of representatives in G/K for the
quotient I'\G/K is given high priority. A precise collection of representative is often called a fundamental domain.
However, in general determination of an explicit fundamental domain is infeasible. Fortunately, it is also inessential.
8] The elliptic modular group has its origins in dim antiquity. [Picard 1883] and [Picard 1884] looked at similar
subgroups of small non-compact unitary groups. L. Bianchi [Bianchi 1892] looked at a family of discrete subgroups
of SLy(C), such as SLa(Z[i]). W. de Sitter proposed a model of space-time in which the cosmological constant
dominates and matter is negligible, with symmetry group SO(4,1), and Sp”f’l is a two-fold cover of SO(4,1). No
automorphic forms directly entered his work, but his attention to specific groups, as in the more theoretical work
of [Bargman 1947] and [Wigner 1939], provided examples which eventually were appreciated for their illustration of
phenomena with mathematical significance beyond physics itself. [Hurwitz 1898] studied the quaternion integers o
which bear his name. See also [Hurwitz 1919] and [Conway-Smith 2003].
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where Spi ;(0) and SLz(o) denote the elements of Spj; and SLo(H) with entries in the ring of Hurwitz
integers o.
In all examples, TN P =T NM)-(T'NN). We have

€L (for T' = SLy(Z))

z € Z[i] (for I' = SLy(Z[i]))

'NN = {<(1) f) where
x € Zi+ Zj+Zk (for T = Spi (o))

T EO (for T' = SLy(H))
As in the discussion of Euclidean-ness, the quotients (I' N N)\N have (redundant) representatives

zeR, |z| < (for I' = SLy(Z))

1
2

zeC, x| < % (for T' = SLo(Z]1]))

T =ai+bj+ck, x| <% (for I = Spi (o))

TAN\N = {((1) f)}where

z € H, |z| < VI3 (for T = SLy(H))
In particular, (I' N N)\N is compact. We have
a=d ' ez* ={£1} (for T' = SLy(Z))

a=d'€Z[i]* = {£1,+i} (for T = SLy(Z[i]))

a O
a = (d ) co (for F = Spl’l(ﬂ))

a,d € o* (for T' = SLy(H))

The groups of units Z* and Z[i]* are well-known, and finite. The group o* is also finite, but less trivial.
As noted earlier, a € 0* implies |a| = 1. Certainly o C 3 - (Z + Zi + Zj + Zk) and

a?+ b2+ +d? a+bi+cj+dk2<1

4 a 2 =

implies |a| < 2, |b| < 2, |¢| <2, and |d| < 2, giving a crude bound on the number of possibilities for integers
a,b,c,d.
For compact C' C N, a standard Siegel set is a subset of G of the form

Sic = {nak:neC ke K, y>t}

This is essentially a half-infinite rectangle right-multiplied by K. On other occasions, a Siegel set is construed
as a subset of the quotient (I' N N)\G, or as a subset of G/K. These distinctions are inessential. Let
I's = PNT. Left multiplication by N does not change heights on G. Since I'ny, € N x (M NT) and
MNT Cc Mn K, left multiplication by I's, does not change heights. Siegel sets are a simple type of set
among which, as it turns out, we can find approximate sets of representatives for the quotient T\G/K. That
is, reduction theory for these examples is relatively simple:

[1.5.1] Theorem: For all four examples, I'\G is unicuspidal, in the sense that there is t > 0 and compact
C C N such that a single Siegel set covers G:

Ur-&ec = ¢

yel’
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Proof: For fixed z,y, the function q(c,d) = g, ,(c,d) = |cx+d|?+|cy|? is a homogeneous real-valued quadratic
polynomial function on R® R, CH C, or He H, in the respective cases, with y > 0 and appropriate x. It is
positive definite: q(c,d) = 0 implies ¢ = 0 = d. Thus, q(c,d) is comparable to |c|? + |d|?: there are positive
constants A, B depending on z,y such that

A-(lel* +1d*) < qle,d) < B-(|ef* +d]*)

The number of points (¢, d) in a lattice Z & Z, Z[i] & Z]i], or 0 & o inside a ball of finite radius is finite. In
particular, in the orbit I' - nya, there are only finitely-many values height(vy - nga,) above a given bound
t > 0. In particular, the supremum of these heights is attained. Thus, every I'-orbit contains (at least one)
nzay, of maximum height, and |cz +d|? + |ey|? > 1 for all lower rows (c d) of v € T. In particular, with ¢ = 1
and d =0, |z]? + |y|? > 1.

Thus, given nza,K € G/K, adjust on the left by v € T" so that ynya,K is (one of) the highest in its
orbit on G/K. In particular, this makes |z|> + |y|> > 1. From the specific estimates on parameters ¢ for
representatives ng of (I' M V)\NV, in all cases there is 0 < ¢ < 1 such that |{] < 1 — ¢t for all representatives.
Thus, if |x| > 1 — ¢, further adjust on the left by v € TN N so that |z| < 1 — ¢, without altering the height.
Thus, the new na, is still among the highest in its orbit, and |z|? + |y|? > 1 still holds. Thus

y? > 1—jz> > 1-(1-t)? = t(2—1t) >t
Thus, every I'-orbit has a representative in the Siegel set &, ¢, where C'= {n, € N : |z] <1 —t}. ///

The following part of reduction theory is more technical, but essential.
[1.5.2] Theorem: For given ¢, > 0 and compact subsets C,C’" of N, there are only finitely-many v € T’
such that &, c Ny -Gy ¢ # ¢. Further, given ¢ > 0, for sufficiently large t' > 0, &; c N Y&y ¢ # ¢ implies
v € TN
Proof: Continue in the context of the proof of the previous theorem. Given ¢t > 0, take ¢ > 1/¢. For

T= <z Z) Z T, c# 0,50 |¢c| > 1. For y >t/ and arbitrary z,

height(vy - nzay)

= Y < y < ! < 1 < t
o Jer+dP eyt T ey T Ly T
Thus, &;.c N7y - Sy ¢ # ¢ implies v € T, for such ¢,¢'.
For arbitrary 0 < t < t/, to show finiteness of the set of v so that &, c NySy o # ¢, take t” strictly
larger than ¢, ¢/, 1/t, and 1/¢'. The two sets

Q= {ngayk:neC, keK, t<y<t"} and Q= {ngayk:nel keK, t' <y<t}

are compact, and G, c = Gy o UQ and Sy o = Gypr o UQY. For the asserted finiteness, it suffices to treat
the pieces separately.

By the previous paragraph, &, ¢ = & ¢ UQ meets ySy ¢ only for v € T's. Since ' = (T'NN)-(T'NM)
and I'N M is finite, it suffices to consider v = n, € I'NN. In that case, Y84 ¢cr = &y cr4o. By the Iwasawa
decomposition, &; ¢ NSy vy # ¢ if and only if C N (C’ + ) # ¢. Equivalently, z € C — C’ and z is in a
lattice Z, Z[i], Zi+ Zj + Zk, or o, respectively. The set C' — C’ of element-wise differences is compact. Either
by the lemma below, or by more elementary considerations, the set of such x is finite.

Similarly &, ¢ meets v’ only for v € I',, and there are only finitely many possibilities.

The interaction of 2 and €’ is subtler. For v such that Q N~Q’ # ¢, there are w € Q and W’ € Q' such
that w = yw’. That is,

7 = wW)'nT c Q-97'nT

where Q7! is element-wise inversion. Inversion and multiplication are continuous maps O ¢ - G and
G x G — G, so they map compacts to compacts, so Q2€'~! is compact. By the following lemma, such a set

is finite. ///

O The multiplication of real, complex, or quaternion matrices is polynomial in the entries, so is continuous. The

continuity of inversion can be seen via the explicit formula in terms of determinants of minors over a field k, for

example: for g € SLn(k), letting A;; be the (n — 1)-by-(n — 1) matrix obtained by deleting the it" row and j**

column, (—1)""7 det A;j is the ij" entry of g~ L.
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[1.5.3] Lemma: The intersection Q N T of a compact subset 2 of a topological group [10] G and a discrete
subgroup I' C G is finite.

Proof: First, we prove that I' is closed, which would not necessarily hold for a discrete subset. For us, a
topological group is locally compact, Hausdorff, and countably-based. Let U be a neighborhood of 1 such
that U NT = {1}. By continuity of inversion and multiplication, there is a neighborhood U; of 1 such that
Ul_1 -Uy C U. For g ¢ T but g in the closure of I' in G, the neighborhood gU; of g contains infinitely-many
elements of I'. For v # § two such,

1#y 6 € (gh) " (gth) =U'-Uy CU

contradiction. Thus, I' is closed in G.

In a Hausdorff space G, a compact subset C' is closed, so C NI is closed. A closed subset of a compact
set is compact. Thus, C N T is compact, and it is (still) discrete. Discrete compact sets are finite, proven
as follows. For each v € C'NT, let IV, be a neighborhood of v in G containing no other element of I'. The
open cover {N, : v € C NI} of CNT has a finite subcover N,, U...UN,, . Since N,, NT' = ~;, necessarily
C N7 is finite. ///

1.6 Invariant measures, invariant Laplacians

Proofs of the assertions in this section require substantial preparation, and succeed for very general reasons,
so are postponed to [5.2] and [4.2]. In all four examples, the subgroup NA™T of P is transitive on X = G/K,
by the Iwasawa decomposition G = NA'K, giving a bijection

X = G/K = (NATK)/K ~ (NA")/(NA*NK) = NA*

In coordinate-independent formulations, notation x € X is reasonable, despite the fact that, somewhat
incompatibly, when convenient we will use coordinates

@ — e = (o 1) (7 1)

on NAt ~ G/K = X, as above, with y > 0, and 2 in R, C = R?, Ri + Rj + Rk ~ R?, or H ~ R*,
respectively. These coordinates (z,y) € R‘~! x (0, +00) are standard coordinates on real hyperbolic £-space,
with £ = 2,3,4, 5.

Although we will eventually need the right translation action of G on G and on functions on G, for the
moment we are considering the quotient X = G/K. Since K is not a normal subgroup, there is no sensible
right translation action of G on X = G/K, only the left translation action g - (g, K) = (g9g,) K.

The group G acts on the collection C2(X) of continuous, compactly-supported functions on X = G/K by
left translation

Lef(z) = f(g~'v)

with the inverse inserted to have the associativity

Lgngzf = Lglng

A G-invariant measure/integral p on the quotient X = G/K is characterized by the property

/Lgfdu = / fdu (for all g € G, f € C2(X))
X X

(10] A usual, a topological group is a locally compact, Hausdorff topological space G with a countable basis, and so
that the inverse map g — g_1 and multiplication g1 X g2 — g192 are continuous.
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In [14.4] we will see that such an invariant measure/integral is unique up to scalar multiples, and is given in
the x,y — nga, coordinates by

> dz d
f— / Re—1 flz.y) |xy|zy (where £ = 2,3,4,5, respectively)
0

[1.6.1] Corollary: (of reduction theory) The invariant volume of T\ X = T'\G/K is finite.

Proof: Since there is a Siegel set &; ¢ that surjects to I'\X for some compact C' C N and some t > 0, it
suffices to show that the invariant measure of a Siegel set is finite. In the z,y — n,a, coordinates,

*° dz d *d
/ ldp = / / 1 J:gy = (N—volumeofC)-/ —ZZ
Sy,c t {z:ny,€C} Yy t )

where £ = 2,3,4,5 in the respective examples. Each of these integrals is finite. ///

Test functions C°(G/K) should be compactly-supported, infinitely-differentiable functions on G/K.
However, while these groups G are smooth manifolds, it is less clear whether G/K is a smooth manifold.
This potential issue is rendered irrelevant by taking

C>*(G/K) = {right K-invariant test functions on G} = C°(G)¥

where right K-invariance means f(gk) = f(g) for all ¢ € G and k € K. The invariance of a G-invariant
Laplacian A on the quotient X = G/K is the property

A(Lyf) = Ly(Af) (for all g € G, f € C(X))

In [4.2] we will see that such a Laplacian is essentially canonical, and in the x, y coordinates is, up to constants
which we might want to adjust later for notational convenience,

y2<%+§7) (for G = SLy(R), z € R)
. y2<%+667+6%)_y6% (for G = SLy(C), x = x1 +ix2 € C)
B y2<% + % + % + (%22) *an% (for G = Sp} 1, © = 210 + 225 + x3k)
yQ(%+%+%+%+%)—3y% (for G = SLy(H), z = 1 + x2i + 23] + T4k)

In [6.6] we will see the symmetry property of A:
/Af~?du = /f~ﬁdu (for f,F € C(X))
X X
Also, the negative-semi-definite property
[oarFan <o (for f € C2*(X)
X

For G = SL3(R), where £ = 2, by chance the first-order term in y in A disappears, the powers of y in A and
w cancel, and the symmetry property reduces to symmetry of the Euclidean Laplacian, just integration by
parts. Although attractive, this coincidence is inessential.

The left G-invariance of 1 and A assure that they descend to the quotient I'\ X ~ I'\G/K. We will use the
same symbols for the versions on T'\X. As we see in [5.2], uniqueness of invariant measure/integral entails
unwinding identities such as

/F\X<Zva>d“ / (valw dp(x /fdu (for f € C2(X))
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For the Laplacian,
Afogq = A(foq) (for f € C(T\X))

The symmetry and negative semi-definiteness of A descend to C*®(I'\X) = C*(T'\G)¥, where we take
advantage of the fact that I'\G is a smooth manifold. Again, see [6.6] for proofs.

As expected, with invariant measure p descended to I'\ X, the usual hermitian inner product is [11]

(i F)nnx = /F\Xf'FdM

with associated norm i
[flezanxy = (i x

As usual, in the characterization
L*(T\X) = {measurable f : |f|r2\ x) < 0o}
elements of L?(T"\ X) are equivalence classes of measurable functions, with equivalence being equality almost-

everywhere. In [6.5] we will see that this characterization is equivalent to a characterization as L?-completion
of test functions C'°(T'\ X).

1.7 Discrete decomposition of L*(I'\G//K) cuspforms

The theorems stated below will be proven later, in [7.1-7.7], but we can set up precise statements.

In this section and much of the sequel, waveform, automorphic form, and automorphic function will be
used roughly as synonyms, referring to C-valued functions on I'\ X, meeting further conditions depending
on the situation. Such functions are identifiable with I'-invariant functions on X, by composing with the
quotient map X — I'\ X.

The constant term cp f of a waveform f on I'\X is a function on X = G/K defined by

(constant term) f(x) = cpf(x) = /(Nmr)\N fn-z)dn

Here the group N is abelian, isomorphic to R*~! for £ = 2,3,4,5, and N N T is a discrete subgroup with
compact quotient (N NT)\N. We give N the measure from the coordinate x — n, with z € R‘~!, and as
above and in [5.2] give the quotient the unique compatible measure for unwindings

/(Nm\N ( %:F%"(W)) dn = /Nso(n) dn (for all ¢ € C2(N))

By changing variables, we see that, although the constant term has probably lost left I'-invariance, cpf is a
left N-invariant function on X = G/K:

cpf(n’z) = / f(nn'z) dn = / f((nn')-x) dn = / f(n-z) dn (for n’ € N)
(NAD)\N (NAD)\N (NND)\N

Thus, constant terms of functions f on I'\G/K can be viewed as functions on the ray

N\X = N\G/K = N\(NATK)/K) ~ A* ~ (0,c0)

(11] While integrals of I'-invariant functions on $) on the quotient I'\X can be understood in an elementary way
as integrals over explicit fundamental domains, such a viewpoint impedes understanding of integration by parts on
C°(T\X). Tt is better to use an intrinsic integral on the quotient, characterized by the unwinding relation above, as
in [5.2].
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Similarly, since I'o, = P N T normalizes N NI, the constant term is left I'-invariant. (12] Altogether, cp f
is left invariant by the group NT .

All this presumes that cpf has at least as much sense as a function with point-wise values as did f, but
we need more than that. For example, unfortunately, it turns out that f € L?*(T'\G/K) does not imply
that cpf € L?2(N\G/K). More cautiously, suppose f is locally L', meaning that |f| has finite integrals
over compact subsets of I'\G. Fubini’s theorem implies that a compactly-supported integral of f in one of
several variables is again locally L'. This applies to n x y — f (nay). The nature of the constant term map
is clarified in [1.8].

Cuspforms are waveforms f meeting the Gelfand condition cpf = 0. In some contexts, the term cuspform
further connotes A-eigenfunctions in L?(I'\G/K), but for present purposes the latter usage is too-restrictive.
A genuine minor complication is that L? functions do not have good pointwise values, so vanishing of the
constant term must mean almost everywhere for L? functions. Thus, it is often better to consider the constant-
term map as a map on distributions, and the Gelfand condition as a distributional vanishing condition on
distributions, as below in [1.8]. As usual, put

LA(T\X) = {L?-cuspforms} = {f € L*(T\G/K) : cpf =0}

The first main theorem, proven in [7.1-7.7], is the discrete decomposition of the space of cuspforms: one
version is

[1.7.1] Theorem: The space L2(I'\G/K) of square-integrable cuspforms is a closed subspace of L?(I'\G/K),
and has an orthonormal basis of A-eigenfunctions. Each eigenspace is finite-dimensional, and the number of
eigenvalues below a given bound is finite. (Proof in [7.1-7.7].)

The closed-ness of the space of L? cuspforms comes from recharacterization of it in terms of pseudo-
Eisenstein series, in [1.8].

In contrast, the full space L?(I'\X) does not have a basis of A-eigenfunctions: as proven in [1.12], the
orthogonal complement of cuspforms in L?(I'\ X) mostly consists of integrals of non- L? eigenfunctions for
A, the Fisenstein series Es, introduced just below in [1.9].

The operator A presents some technical issues. For example, while L?(I'\ X) lies inside the collection of
distributions on I'\X, and interpreting A distributionally would make it well-defined on all of L?(T"\X),
it would not stabilize L>(T'\X). This would seem to obstruct use of its symmetry or self-adjointness as an
(unbounded) operator on a Hilbert space. On the other hand, indeed, no version of A can be defined on all of
L?(I'\ X) while retaining the symmetry (Af, F) = (f, AF) for test functions f, F in L?(I"\ X). This situation
requires careful treatment of unbounded, densely-defined operators on Hilbert spaces, as in [9.1-9.2].

1.8 Pseudo-Eisenstein series

Returning to L2(I'\X), we want to express the orthogonal complement of cuspforms L2(I'\X) in terms
of A-eigenfunctions, as discussed below in [1.12] and [1.13]. To exhibit explicit L? functions demonstrably
spanning the orthogonal complement to cuspforms, we intend to recast the Gelfand vanishing condition.
First, for f € L?(I'\X), the constant term cpf is a left NI -invariant function on G. It vanishes as a
distribution if and only if

/ p-cpf =0 (for all p € C°(NT\G))
NT o \G
with right G-invariant measure on NI, ,\G as in [5.2]. In fact, since f is right K-invariant, cpf is right
K-invariant, so we need only test against ¢ € C2°(NT o \G)¥X. The isomorphisms
N\X ~ N\G/K ~ N\(NATK)/K ~ A"

identify N\ X with the ray AT = (0, +00), and identify right K-invariant functions ¢ on N\G with functions
of y = height(nayk). As in the previous section, for f in L?, since f is locally integrable its constant term is
locally integrable, by Fubini’s theorem. Thus, c¢pf can be integrated against test functions on N\G/K.

(12] 1 the present examples, 'ooc = PNT is only finite index larger than N NT', but in other examples this index can
be infinite.
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Given ¢ in C°(NTw\G)¥, the corresponding pseudo-Eisenstein series W, should be a function in
C*(I'\X) fitting into an adjunction:

/ p-cpf = / U, - f (for f € L32(T\X))
NT.\G na

This adjunction will involve an unwinding/winding-up, so we might prefer that cp f be continuous, to easily
invoke properties of vector-valued integrals [14.1]. For general reasons [6.1], C¢(T'\G) is dense in L*(T'\G) in
the L? topology, and for general reasons [5.1] the left action of (NNT)\ NV on the Fréchet space C°((NNT)\G)
is a continuous map (NNT)\N x C°((NNT)\G) — C°(N\G), so cpf exists as a C°(N\G)-valued Gelfand-
Pettis integral [14.1]. For f € C°(T'\G), the integral of c¢pf against ¢ € C°(N\G/K) is the integral of a
compactly-supported, continuous function.

Direct computation yields a canonical expression for the desired ¥, using the left NI'o-invariance of ¢
and the left T-invariance of f, as follows. First, unwinding as in [5.2],

/NFOO\G*”'CPf - /NFM\G“’(Q)( /W\Nﬂng) an) dute) = | P9 ) )

Winding up, using the left I'-invariance of f,

Am\gf(g)eo(g) dp(g) = /F\G Y f-g9)e(y-g) dulg) = /F\G f(g)( > w(vg)) dp(g)

YET\T €T \T

The inner sum in the last integral is the pseudo-Eisenstein series [13] attached to ©:

Uo(g) = > ¢(9)

YED L\

The convergence of the sum needs attention:

[1.8.1] Claim: The series for a pseudo-Eisenstein series W, is locally finite, meaning that for g in a
fixed compact in G, there are only finitely-many non-zero summands in Wy(g) = > ¢(vg). Thus,
U, € CX(\X).
Proof: Given ¢ € C°(N\G/K), let C C G be compact so that N -C contains the support of ¢. Fix compact
C, C G in which g € G is constrained to lie. Then a summand ¢(vg) is non-zero only if vg € N - C, which
holds only if
7 €Tl-C-g!

SO

yeTl N Ty-C-Ct

In the quotient G — I',,\G, the image of T is closed and discrete. The image of the compact set N -C - C; !
under the continuous quotient map is compact, since (I' N N)\N is compact, and continuous images of
compacts are compact. Thus, left modulo I'y,, that intersection is the intersection of a closed discrete set
and a compact set, so finite. (Compare the [1.5.2] from reduction theory.) Therefore, the series is locally finite,
and defines a smooth function on T'\G. Summing over left translates certainly retains right K-invariance.
To show that ¥, has compact support in I'\G, proceed similarly. That is, for a summand ¢(vg) to be
non-zero, it must be that g € I' - C. The image T'\(T" - C) is compact, being the continuous image of the
compact set C' under the continuous map G — I'\G, proving the compact support. ///

[1.8.2] Corollary: Square-integrable cuspforms are the orthogonal complement in L?(I'\ X) to the subspace
of L*(T'\X) spanned by the pseudo-Eisenstein series ¥, with ¢ € C°(N\X). The map f — cpf is
continuous from L?*(T\G/K) to distributions on N\G/K.

(13] I 1966 Godement called these incomplete theta series. More recently Moeglin-Waldspurger reinforced the
precedent of calling them pseudo-Fisenstein series
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Proof: Again, as above, for general reasons [6.1] C¢(I'\G//K) is dense in L?(T'\G/K), and the constant terms
cpf are continuous for such f, so integrals against ¢ € C°(N\G/K) exist. Then the adjunction gives

| cpf Bl = |[(f,¥)] < [flez - [Wylre
N\G/K

Thus, f — fN\G/K cpf - is a continuous linear functional on L?. In particular, the kernels are closed, and

the intersection of all these is the space of L? cuspforms. The inequality is exactly the continuity of f — cpf
with the weak dual topology [13.14] on distributions on (0,00) = N\G/K. ///

Since A commutes with the group action, the effect of A on a pseudo-Eisenstein series is reflected entirely
in its effect on the data: the sum is locally finite, so interchange of the operator and the sum is easy, giving

AT, = A > poy = > Alpoy) = Y, (Ap)oy = Ta,
~€Lo\T ~ETo\T A€Lo\T

This correctly suggests that a suitable dense subspace of L2(I'\X) is indeed stable under A. However, at
this point we do not have a good device to prove density of smooth cuspforms with sufficient decay to prove
symmetry (Af, F) = (f, AF). For that matter, there is no reason to expect test functions in L2(I'\X) to be
dense, since smooth-truncation to arrange compact support can succeed directly in y > 1, but disturbs the
constant term as y — 0. A convincing argument for smoothness of cuspforms and behavior of A on them
can be given after the decomposition result of [7.1-7.7].

1.9 Eisenstein series

We can attempt to make a pseudo-Eisenstein series W, which is a A-eigenfunction, by using a function ¢
on N\X = N\G/K which is a A-eigenfunction. Using the y-coordinate on N\G/K ~ AT, the differential

equation is
2

) )
Ap = Ap = (yza?—(f—%yafy)@ = " = ({—2)y¢’

The differential equation y2¢” — (£ — 2)ye’ — Ao = 0 is of Euler type, that is, will have solutions of the form
y®, with o determined by

0=y ala-1)y* ?=(-2y-ay* ' =A-y* = y* (a(a—1)— (£ —2)a—))

That is, for given A, the corresponding exponents « are found by solving the indicial equation
alo—1)—(l—2)a—A=0,s80 A = a(a — (¢{ — 1)). This computation suggests incorporating the factor
¢ — 1 into the exponent. Thus, with a function  on N\G/K defined by

n(nayk) = yt (withn € N, k € K, and ¢ = 2, 3,4, 5, respectively)
we have
Ap® = (£=1)%-s(s—1)-7°
Unfortunately, #° is not in C°(N\G/K), although it is smooth. The genuine Eisenstein series E; on I'\X
is [14]
YEL o\

The following claim has a much more elementary proof in the two simplest cases I' = SLy(Z), SLo(Z]i]),
but something more is required for I' = Sp7 ; and SLy(H). We give an argument that applies uniformly to
all four:

[14] There is no universal choice of normalization. Here, the choice is made so that the critical strip is 0 < Re(s) < 1,
the rightmost pole is at s = 1, and the functional equation relates Es and F1_s. In more general contexts, other
considerations dominate.
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[1.9.1] Claim: For Re(s) > 1, the series expression for Es converges absolutely and uniformly on compacts,
to a continuous function on T\ X, of moderate growth

|Eo(g)| <io nte® (on & ¢, implied constant depending on t,C)

Proof: Tt suffices to consider s = o real. From [1.3.2], in x,y — nsa, coordinates,

% B Y -1
77((0 d)nmay) B (|ca:+d|2—|—|cy\2>

and (c d) — |cx + d|? + |cy|? is a positive-definite quadratic function on the real vector space in which (c d)
lies. The coefficients of the quadratic function depend continously on x,y, so for x,y in a fixed compact
there are uniform constants A, B such that

A (e +1d?) < lex+d? +|ey> < B (|ef* +d]?)
In particular, for another pair 2,4’ in the same compact,

B B
/ 2 N2 < B.(le2 2y _ D (142 2} « 2. 2 2
e’ +d? +ley|* < B (el + 1) = T (A (e +1d2)) < 7 (lew +d* + leyl?)

Thus, convergence of the series is equivalent to convergence of an averaged form, namely,

nynza —_—
c o ye

T \T

Similarly, since the inf of lengths of non-zero vectors in a lattice in a real vector space is positive, there is a
uniform non-zero lower bound for |cz + d|? + |cy|? for nya, € C and (c d) a lower row in I'. That is, the
sup of n(yg) over v € I' and g € C is finite, and is attained. Let the sup be p*~! for 4 > 0. Then I'- C is
contained in

Y = {nga, € X: Yl = N(ngay) < ,uefl} = {ngay, € X 1y < pu}

By discreteness of I' in G, we can shrink C' so that, for v in I, if yC' N C # ¢ then v = 1, so that

/ B, = / E,
c r\Ir-c
Unwind:

, dzdy , dzdy Yo dy
/ Es :/ n(neay) Tle/ n(neay)” =5 :/ 1~/ Uiy
r\r-c Foo\[-C Y Foo\Y Yy NNAT\N 0 Y

P oo By H -y By
<</ yle-ve W :/ ye--1) Y
0 Y 0 Y

This is convergent for o — 1 > 0. This argument also proves the uniform convergence on compacts.
To see the moderate growth property, without yet attempting to prove that E, is smooth, differentiating
the summands with ¢ # 0

0 1 0 1
. = < 0
Ay | (|ex + d|? + |cy|?)sE—1) Oy (|ex + d|? + |ey|?)Re ()-(¢=1)

shows that they all strictly decrease as 7(g) increases. Precisely, |Es(nay)| < |Es(nay)| for 0 < y < ¢/,
for every n € N. Since Ey is continuous, it has a bound B on a compact set {g € &, : n(g) < T}. Thus,
ly=°Es| < B on & ¢. ///

Of course, we want convergence to a smooth function:
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[1.9.2] Claim: The series for Es converges in the C* topology for Re(s) > 1, and produces a C* moderate-
growth function on T\X = T'\G/K. (Proof in [11.5].)

As in [13.5], the idea of the C*° topology is that it is given by the collection of seminorms given by sups on
compacts of all derivatives. One issue is which derivatives to use, and how to estimate them. In the present
setting, one might be tempted to use derivatives with respect to coordinates x,y, but there is a significant
disadvantage: 9/dz and 9/dy do not commute with the action of " on X, so that OF,/0z is unlikely to be
left T-invariant. For that matter, the effect of differentiating with respect to y (after removing the common
factor y*(—1)

2
A ! = sl 1) 2y |
Oy (lca +dJ? + |ey[?)s(= D) (lex +d|? + |ey|?)s(= D+
on convergence of the series is difficult to appraise. The less-elementary approach in [11.5] uses left-G-

invariant derivatives on G, which preserve left I'-invariance, and which stabilize a somewhat-larger class of
Eisenstein series.

[1.9.3] Corollary: In Re(s) > 1, E inherits the eigenvalue property from n®:
AE, = ((—1)?-5(s—1)-FE,

Proof: Granting the convergence in the C*° topology, in Re(s) > 1, and using the fact that A commutes
with translations by I', letting An® = Ag - n®,

A nlvg)t = Y Am(9)°) = D (Ar°)(vg) = As- Y 1°(79)

as claimed. ///

However, as we see below, Ey is never in L?(I'\G).

Granting adequate convergence of Fy, and granting that the differential operator A can move inside the
integral (see [14.1]) expressing the constant term, the constant term cpFEy is a A-eigenfunction with the
same eigenvalue:

AcpEs)(g) = A Es(ng) dn = / AE;s(ng) dn = / (€ —1)*-s(s—1)- Es(ng) dn
NAT\N NAT\N NAT\N

= (L-1)2-5(s—1)- /NOF\N Ey(ng)dn = (£ —1)%-s(s—1)-cpFEs(g)

[1.9.4] Claim: The constant term of the Eisenstein series E; is of the form

—S8

cplls = 778+Cs771

Proof: From the very beginning of this section, at least for s # %, n® and n'~* are a basis for the space

of A-eigenfunctions with eigenvalue (¢ — 1)2 - s(s — 1) on N\G/K. Thus, the constant term cpFE; is
a linear combination of n* and n'~*. The term n°® comes from the representative 1 € T',,\I'. Every

other representative v = (i Z) has ¢ # 0. Implicitly recapitulating the computation in the Bruhat

decomposition from [1.1],

y )s(é—l) / 1 / y )9(3—1)
v dn, = dn,
Jroow Z it D BIrEl NRED Croer

where the sum over c is over all possible lower-left entries of v € I', modulo M N T, and the inner sum over
d is over possible lower-right entries given lower-left entry c¢. With 2 = {£ : ne € I' N N}, this is

Y )s(f—l)
dn,
Z|C|S(Z 2 Z /NmF\NZ |+ €+ 22 + [y

d mod ¢
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Note that if v = (Z 2) €l and £ € =, then

. * % 1 ¢ . * *
'3 = (c d>'(0 1> o (c d—|—c§>

The integral unwinds, giving

s(£—1)
dn,
Z\Cl P> / |$+d|2+|y|2)

0#c d mod ¢

For each suitable d mod ¢, replace z by x — %, and let v(c) be the number of such d, so the whole becomes

Z / ( Y )8(5—1) dr — y(lis)(efl)z V(C) / ( 1 )3(6—1) da
e Lo (e 2 Jeo s \ P 1

0#c

upon replacing = by yx. This demonstrates the asserted shape of the constant term. ///

In fact, as usual, ¢; has an Euler product, and is identifiable as a ratio of L-functions, as we consider
further in the sequel.

[1.9.5] Corollary: The Eisenstein series is not in L?*(T'\ X).

Proof: By reduction theory [1.5], it suffices to show that it is not square-integrable on a quotient
(NND)\{nzay € X : y > t,} for t, large enough. Functions on such a set are left N NI'-invariant functions on
N x AT, so have Fourier expansions on the product of circles (N NT)\N, with Fourier coefficients depending
on a € At. Specifically, let ¥ be the collection of N N I'-invariant continuous group homomorphisms
¥ : N — C*. A function f in L2((N NT)\N) has a Fourier expansion converging (at least) in L?: the 3"
Fourier coefficient is

o~

fw) = /( o P S

giving (N NT)\N total measure 1, and

= Z ]?(LZJ) -1p(n) (n € N, convergent in an L? sense)

The Plancherel theorem for L?((N NT)\N) is

WP dn = f
/(Nmr)\N () Z |

For a function f on (N NT)\N x AT, the Fourier coefficients are functions of @ € AT, and
= D _JW)(a) ¥(n)
(
Plancherel for L?((N NT)\N) now gives
|f(na)* dn = Y |f(
/(an")\N Z
In particular, Bessel’s inequality applied to the trivial character ¥ = 1 gives
[ ol dn = 1F)@FP
(NNT)\N
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For f(na) = Es(na), that Fourier component for the trivial character in is exactly the constant term

cpEs =1+ ¢sn' 7%, so
o0 0o d
/ / |Es(na)|2 dn da > / ‘775 + Csnl—SIQ 7:2
(NOT)\N Jt, . Y

T T T
. d d . d
/ i+ e P Y, / P Y= / yon 2
t Yy to Yy to Yy

o

With o = Re(s) > 1,

T
_ / y2o=1(E=1) dy — TRo-1E=1) oD
to Yy

This blows up as T' — oo for 20 — 1 > 0. ///

1.10 Meromorphic continuation of Eisenstein series

Although special tricks [2.B] applicable to I' = SLo(Z) and T' = SLy(Z[i]) have been known for almost
100 years, those tricks almost immediately fail in any larger context. For example, they do not apply to
['=Spi 1(0) or I' = SLy(Z). [Selberg 1956] and [Roelcke 1956] first approached more general cases.

In [11.4] we will give a proof applying uniformly to our four example cases:

[1.10.1] Theorem: E has a meromorphic continuation in s € C, as a smooth function of moderate growth
on I'\G. As a function of s, F(g) it is of at most polynomial growth vertically, uniformly in bounded strips,
uniformly for g in compacts. (Proof in [11.4].)

Although we give further details in a somewhat different logical order in [11.4], some consequences of the
meromorphic continuation can be discussed directly:
[1.10.2] Corollary: The eigenfunction property AE, = A, - Eg with Ay = (£ —1)? - s(s — 1) persists under
meromorphic continuation.
Proof: Both AE and A - Es are holomorphic function-valued functions of s, taking values in the topological
vector space of smooth functions. They agree in the region of convergence Re(s) > 1, so the vector-valued
form [15.2] of the Identity Principle from complex analysis gives the result. ///

[1.10.3] Corollary: The meromorphic continuation of E, implies the meromorphic continuation of the
constant term cpFEy = n° + ¢,n' %, in particular, of the function c;.

Proof: Since Es meromorphically continues at least as a smooth function, the integral over the compact set
(NNT)\N expressing a pointwise value cp E(g) of the constant term certainly converges absolutely. In fact,
the function-valued function n — (¢ — Es(ng)) is a continuous smooth-function-valued function, and has a
smooth-function-valued Gelfand-Pettis integral g — cpE,(g) [14.1].

In particular, the constant term cpE, of the continuation of E, must still be of the form A,n® 4+ Byn'~
for some functions Ay, Bg, since (at least for s # %) n® and 7' =% are the two linearly independent solutions
of Af = X f for functions f on N\G/K =~ A*. In the region of convergence Re(s) > 1, the linear
independence of n°* and n'~* gives A, = 1 and B, = c,. The vector-valued form of the Identity Principle
from complex analysis implies that A = 1 throughout, and that B; = c¢s throughout. In particular, this
gives the meromorphic continuation of c. ///

S

The theory of the constant term in [8.1] asserts that a A-eigenfunction of moderate growth is asymptotic
to its constant term. For example,

[1.10.4] Claim: For every s away from poles of s — Ej, in a fixed Siegel set &, ¢,

Es(nayk) -+ Csnlis) < yiB

for every B > 0, with the implied constant depending on ¢, s and B. That is, Es — cpE is rapidly decreasing
in a Siegel set. More generally, for s, a pole of s — E of order v,

(s — 50)" Es(nayk) — (5= 50)"(n* +con*™%) < y B

=5, 5=5,
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1. Four small examples

Proof: Since E; is a A-eigenfunction of moderate growth, the theory of the constant term [8.1] exactly assures
that F, is asymptotic to its constant term, in the sense of the first assertion. Near a pole s, of order v,
writing a vector-valued Laurent expansion

o CV Cu—l
B, = (s — 80) + (s — 5,)vL te

as in [15.2], where the coefficients C; are moderate-growth automorphic forms. Application of A termwise

is justified, for example by invocation of the vector-valued form of Cauchy’s formulas [15.2]: with A\s =
(0 —1)%-5(s—1),

)\s~(( G, _ G +) AC, | Al

= )\S . ES = AES =
§—80)7  (s—8,)¥ 1 (s —80)Y  (8—80)" 1

Multiplying through by (s — s,)” and evaluating at s = s,, As, - C,, = AC, as claimed. Then apply the
theory of the constant term [8.1]. ///

Granting the meromorphic continuation and the asymptotic estimation of the Eisenstein series by its
constant term, the functional equation of Fy is determined by its constant term:

[1.10.5] Corollary: FE has the functional equation Ey_s = ¢1_sFEs, and ¢s - ¢1—s = 1. In particular, |cs| =1
on Re(s) = 3.

Proof: Take Re(s) = o > % and s ¢ R. Then f = F1_ — ¢1_sF, has constant term

cpf = P+ e_n®) —e1_s(° +en' ™) = (1—c1_gcs) -nt7°

For Re(s) > %, n'~* is square-integrable on &, ¢:

/ In'=*|2 # = (N-measure C) / |y(1=)(=1)2 —% = (N-measure C) / y—2000=1) il
(el ) t Yy t Y

Since 1 — 20 < 0, the integral is absolutely convergent. By the theory of the constant term [8.1], on a
standard Siegel set

f = cpf + (rapidly decreasing) <, n'~7 + (rapidly decreasing)
Thus, on &; ¢,
IfI> < |n*~7 + (rapidly decreasing)|?
— 772(1_0) + 2. 771_0 . (rapldly decreasing) + (I‘apldly deCreaSing)2 = 772(1_0) + (I‘apldly deCreaSing)

Thus, f = E1_s — c1_sEs € L*(T\X). It is a A-eigenfunction with eigenvalue A\ = (¢ — 1)% - s(s — 1),
which is not real for Re(s) > 1 and s ¢ R. But

)\s' <faf> = <>‘8f7f> = <Af>f> = <f7Af> = <f7)‘sf> = )‘S<faf> = >\8<f7f>
Note that we did not use symmetry properties of A, but only that (f, F) = (F,f). Thus, necessarily
FEy_s—c1_sFEs =0 for such s. For all g € G, by the Identity Principle applied to the C-valued meromorphic
functions s — (E1-s(g9) — c1—sFs(g)), the same identity applies for all s away from poles.
Since the constant term (1 — csc1—5) - 7)1*8 of E1_s — c1_sEs = 0 is identically 0, necessarily cscq_s = 1.
Further, s — G is holomorphic and equal to ¢s for Re(s) > 1, so the Identity Principle gives equality
everywhere. Then €15y = ¢;_(1 14y = €1_y, and \c%+it|2 =c1yuC1_y =1 ///

[1.10.6] Claim: For Re(s) # % and s € R, so that A\;, € R, the poles of s — E; are exactly the poles of c,,
and of the same order.
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Proof: For s, such a pole, of order v > 1, corollary [1.10.2] showed that the leading Laurent coefficient is a
A-eigenfunction with eigenvalue A;, and is of moderate growth, so is asymptotic to its constant term. The
Laurent expansion of the constant term is the constant term of the Laurent expansion, from the vector-
valued version of Cauchy’s formula [15.2], and using the good behavior of continuous, compactly-supported
vector-valued integrals [14.1]. Thus, if ¢ failed to have a pole at s,, then the leading Laurent coefficient of
E, at s, would have vanishing constant term, so (by the theory of the constant term) would be in L?(I'\ X).
Then A, € R, which is impossible for s, as in the hypotheses. ///

1.11 Truncation and MaaB-Selberg relations

The genuine Eisenstein series are not in L?(T"\ X), but from the theory of the constant term [8.1] the only
obstruction is the constant term, which is subtly altered by truncation, sufficiently removing this obstacle.
The MaaB-Selberg relations are computation of the L? inner products of the resulting truncated Eisenstein
series. As corollaries, we show that E has only finitely-many poles in Re(s) > %, that these are simple,
lie on (3,1], and the residues are in L*(I'\X). Granting the spectral decomposition of cuspforms [7.1], and
from the theory of the constant term [8.1] that the A-eigenfunction cuspforms are of rapid decay, we prove
that these residues of Eisenstein series are orthogonal to cuspforms.

The truncation operators AT for large positive real T act on an automorphic form f by killing off f’s
constant term for large y. Thus, for a right K-invariant function, with a normalized version of height given
by n(na,k) = y*~1, one might imagine

f(9) for n(g) <T

f(g) —cpf(g) forn(g)>T

(naive T-truncation of f)(g) =

This is not quite right. On a standard Siegel set &, ¢ this description is accurate, but it fails to correctly
describe the truncated function on the whole domain X or whole group G, in the sense that the truncation
is not properly described as an automorphic form, that is, as a left I'-invariant function. We want truncation
to produce automorphic forms. For sufficiently large (depending on the reduction theory) T' we achieve the
same effect by first defining the tail ¢k f of the constant term cp f of f to be

0 (forn(g) <T)
cpflg) =
cpf(y) (for n(g) >T)

For legibility, we may replace a subscript by an argument in parentheses in the notation for pseudo-Eisenstein
series: write
U(p) = ¥y

Although c}TD f need not be smooth, nor compactly supported, by design (that is, for T" sufficiently large) its

support is sufficiently high so that we have control over the analytical issues:

[1.11.1] Claim: For T sufficiently large, the pseudo-Eisenstein series ¥(ck f) is a locally finite sum, hence,

uniformly convergent on compacts.

Proof: The tail ¢& f is left N-invariant. The reduction theory of [1.5] shows that, given t,, for large-enough

t, a set {nayk : y > t,} does not meet v - {nayk : y > t} unless v € I'ns. Thus, for large-enough T,

{nayk : y > T} does not meet v - {nayk : y > T} unless v € I'ng. Thus, 71 - {nayk : y > T'} does not meet

Y2 - {nayk : y > T} unless 1o = 2. ///
Similarly,

[1.11.2] Claim: On a standard Siegel set &; ¢, ¥(cLf) = cL f for all T sufficiently large depending on .

Proof: By reduction theory, a set {nayk : y > t,} does not meet v - {nayk : y > T} unless v € 'y, for
large-enough T depending on ¢,. Thus, for large-enough T, {nayk : y > T} does not meet &, ¢ unless
7 € T'wo. That is, the only non-zero summand in ¥(cL f) is the term cLf itself. ///
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Thus, we find that the proper definition of the truncation operator AT is
Nf = f= ()

As desired, a critical effect of the truncation procedure is:
[1.11.3] Claim: For s away from poles, the truncated Eisenstein series AT E is of rapid decay in all Siegel
sets.

Proof: From the theory of the constant term [8.1], Es — cpEj is of rapid decay in a standard Siegel set. By
the previous claim, (Es — ¢5Es)(9) = (Es — cpEs)(g) for n(g) > T, so it is is also of rapid decay. ///

[1.11.4] Theorem: (Maaf-Selberg relation) Up to a uniform constant depending on normalization of
measure,

1 T . Ts+r—1 T(1=s)+r—1 Ts+(1-r)—1 T(1=s)+(1-r)—1
—— | ATE,-ATE, = s ’ -
t=1Jrx str—1 “U-9+r—1 “st(-n-1 ““U-s+1-n-1

Proof: First,

/ ANTE,-ATE, = / NTE, - E,
r\X r\Xx

because the tail of the constant term of E, is orthogonal to the truncated version AT E, of E,. Then

0 (forn < T)
/ ATE, - ATE, = / (fo(nS) — B,
rx rx W+ en' s (forn>T)
n® (for n < T)
- / o . E,
X\ —en'™® (forn > T)

Unwinding the awkward pseudo-Eisenstein series, noting that ', differs from N NT only by the finite group
M N K which commutes with AT, and the integrand is right K-invariant,

n® (forn < T) n® (forn < T)
/ BN
Lo \X | —enpl™® (fornp>T) NXJINO\N | —cpl=s  (for n > T)
n® (for n < T)
= / . (/ E.(ng) dn) dg
N\X 76577175 (for n> T) NN\ N
n® (for n < T) oo (1" + et (for n < T)
-/ 0 e ™) =

X —esn'™® (forn > T) O L —esn' (" + ") (forn>T)

T o
. d _ _.d
= / w0+ e )Y - / e (" + et )
0 Yy T Yy

Note that the measure dy/y is descended from the right G-invariant measure on N\G. Assume that Re(r)
is bounded above and below, so that Re(1 — ) is also bounded, and take Re(s) sufficiently large so that all
the integrals converge. The above becomes

T T oo oo
7d s 7r7d —s rfd —s 77‘7d
[ B [t [ e B [ s
0 Yy 0 Yy T Yy T Y

Since dn/n = (£ —1)-dy/y, this gives the expression of the theorem. Note that £ —1 = 1 in the most familiar
case of I' = SLy(Z). By analytic continuation (in s and in r) it is valid everywhere it makes sense. ///
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The following corollaries can be proven directly in special cases by use of explicit details about Fourier
expansion of the Eisenstein series. However, the arguments here generalize.

. . . . 1
[1.11.5] Corollary: There are only finitely-many poles of E in the region Re(s) > 3, all on the segment

(%, 1], and these are poles of c¢;. Any such pole is simple, with residue in L?(I'\ X). Specifically, with measure
normalized as in the previous proof,

/ |Res,, Es|> = (£ —1)-Resy,cs < 400
r\Xx

Such a residue is also smooth, and moderate growth, and has eigenvalue A5, = (£ — 1)? - s,(s, — 1).

Proof: The Eisenstein series is indeed treated as a meromorphic function-valued function, as in [15.2], so its
Laurent coefficients or power series coefficients are functions in the same topological vector space, by the
vector-valued form of Cauchy’s formulas [15.2]. From the identity principle, since Bz = E, for Re(s) > 1,
we have B, = Fs for all s away from poles, and similarly for truncated Eisenstein series. Thus, taking
r =35 = o — it in the theorem,

T2071 T72it T2it T172o'

AT Eg? = g — g e
| || 9% —1 % o TS g 120

R
=1 Jp\x

Suppose F; has a pole s, = o, + it, of order v with ¢, # 0 and o, > %

From corollary [1.10.4] to the theory of the constant term [8.1], with non-real eigenvalue, this is equivalent
to the assertion that cs has a pole at s, of order v. Also, cz = G, so ¢, has a pole at 5, as well, of the same
order, with leading Laurent term the complex conjugate of that at s,. Thus, the function AT E, also has a
pole exactly at poles of cg, of the same order, for non-real .

Take s = 0, + it in the above. In the real variable ¢, the left-hand side of the Maaf}-Selberg relation is
asymptotic to a positive constant multiple of (¢ —t,)~2” as t — t,, since the pole is of order v and inner
products are positive. The first term on the right-hand side is bounded as ¢t — t,, and the second and third
terms are asymptotic to non-zero constant multiples of (¢t —t,)™". Thus, the first three terms on the right can
be ignored as t — t,. The fourth term on the right-hand side is asymptotic to a positive constant multiple of
(t —t,) 2" from c4cs, multiplied by 7129 /(1 — 20,). The denominator is negative, so that, altogether, the
fourth term on the right-hand side is asymptotic to a negative constant multiple of (t —t,)~2". The positivity
of the left-hand side of the MaaB-Selberg, and negativity of the right-hand side (as t — t,), contradict the
hypothesized pole. Thus, F and c¢s have no poles off the real axis in the region Re(s) > 1/2.

Next, let s, = 0, be a pole of E, of order v > 1 on (%, 1]. Take r = s = g, + it, obtaining

1 . 9 9 T200—1 T—Qit T2it Tl—QU,,
- A Es = . ( s N = N sCs )
€—1/p\X| | 20 —1 ot TS g TS T o,

As t — t, = 0, the right-hand side goes to 0 unless ¢s also has a pole of order v at s,. The fourth term
is megative, and if v > 1 is the only term that survives on the right-hand side as ¢ — 0, contradicting the
non-negativity of the left-hand side. Thus, v = 1, in which case the second and third terms’ blow-up is of
the same order as the left-hand side and the fourth term on the right-hand side. This proves that any pole
on (1,1] is simple.

Letting t — 0,

T1—20'o

1— 20,

1

Ress,cs . Resq,cs

R, O—ETQZ
|eso S| 2 2

+ Res,, cs - Resg, cs

Since 1 — 20, < 0, the limit of the last term is 0 as T' — +o0, given the square-integrability of the residue.
General considerations about meromorphic vector-valued functions [15.2] and Gelfand-Pettis integrals [14.1]
assure that taking residues commutes with taking the limit as T — oo. The two remaining terms are equal,
since the pole is on the real line.

Now suppose s, is a pole of E, of order v > 1 on the line Re(s) = 1 and off R. The leading Laurent

2
coefficient C), of E at s, is a A-eigenfunction with eigenvalue A, , and is of moderate growth, again by the
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vector-valued form of Cauchy’s formulas. Thus, by the theory of the constant term [8.1], C,, is asymptotic to
its constant term cpC,,, which, again, is the the leading Laurent coefficient of the constant term n° + c,n'—*
of Es. The property |cs| =1 on Re(s) = % shows that ¢, has no pole there. Then ¢pC, =0, so ATC,, = C,,,
and C, is in L?(T'\X). By MaaB-Selberg with r =5 = o — it,

1 ) 1
e—l/F\XC” N 6—1/

) ( T2071 T*2it T2it Tl*ZU )

2
lim (s — s,)* AT E,
5—5,

= lm (s

50 1 %o %2 T4 T 2
Since v > 1, approaching s, from off the line, the limit of (s — s,)?/(20 — 1) is 0. Since |cs| — 1 as
S — 8o € % + iR, the whole limit is 0. Thus, Es has no pole on % +iR.

Finally, we see that the residues are not only in L?(T'\X), but are also smooth (and moderate growth
pointwise) A-eigenfunctions with the indicated eigenvalues. By the vector-valued form of Cauchy’s formula

for residues,
1 E
Ress—s By = — Y dw

211 LW—S

where v is a small circle around s,, traversed counter-clockwise. Since w — E, /(s — w) is a continuous
moderate-growth-function-valued function, Gelfand-Pettis [14.1] assures that the integral is in the same
space. In particular, the residue is smooth. Because the pole is simple, the function fs = (s — s,)Es has a
removable singularity at s,, and its value there is the residue. In the topology on moderate-growth functions
(as in [13.10]), A is a continuous map. From the theory of vector-valued holomorphic functions [15.2] and
Gelfand-Pettis integrals [14.1], evaluation commutes with continuous linear maps, so

A(Ress, Es) = A(fsls=s,) = (Afs)|sms, = As, - [,

demonstrating that residues are (smooth and) A-eigenfunctions. ///

For I' = SLy(Z) and SLo(Z[i]), there are special arguments that show that the only relevant residues of
Eisenstein series are at s = 1. The eigenvalue A\, = s(s — 1) of A at s =11is 0.

[1.11.6] Claim: Any smooth f € L?(I'\G/K) such that Af = 0 is constant.
Proof: Let V be the tangent-space-valued gradient on I'\G/K, as developed in more detail in [10.7],

Af-F = —/F\G(Vf,VF>

G
where, for the moment, (—, —) is a inner product on the tangent space. For Af = 0, this gives
o= [ os=[ arp--[ vrvp
NG nG \G
Thus, Vf is identically 0, so f is constant. ///

The other two current examples, I' = Spj ;(0) and SLz(0), do not admit those special arguments to
decisively locate poles, although they still do have poles at s = 1, with constant residues, by the same
argument. To treat residues in Re(s) > % generally:

[1.11.7] Corollary: Residues of Eisenstein series at distinct poles sy, s in (1,1] are mutually orthogonal.

Proof: Let f; be the residue at s;, with eigenvalue A;. The eigenvalues are real, since s1,50 € R. It is
reasonable to think that A has the symmetry (Afy, fo) = (f1, Af2) so that the usual argument

AL (fi.fo) = (Af1, f2) = (fi,Af2) = A2 (f1, f2)

would give (A1 — A2) - (f1, f2) = 0, and then (f1, fa) = 0. However, the defensible starting-point [6.6] for
this symmetry property of A is that it holds for functions in C°(I'\G/K), in effect avoiding any boundary
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terms in integration by parts. To preserve symmetry in an extension requires care. In fact, the method of
[9.10] shows that A is essentially self-adjoint in the sense of having a unique self-adjoint extension to an
unbounded operator densely-defined in L?(I'\G/K). The domain of that extension does include the residues
fj, but demonstration of the latter fact is more a consequence than starting-point.

Instead, the MaaB-Selberg relation (with s; # so both real, eliminating some complex conjugations) gives

1 T T
— N Eg - N Eg
g—l F\X S1 S2

Ts1+s2—1 T(1—52)+52—1 Tsl+(l—w2)—1 T(l—sl)+(l—52)—1

- 81+82—1+Csl(1—$1)+82—1+65281+(1—82)—1+Cslcsz(1—81)+(1—82)—1

With simple poles of Es at s; and s, multiplying through by (s — s1)(s’ — s2) and taking the limit as
s — s1 and s’ — so gives

Res,, Fs Ress, Fs, = 0+ 04 0+ Ress—s, Cs - Resg—s, Cs e
—_— /\7 -/\j s +0+0+ s . .
e_l/I\X s o € 2 (1—81)+(1—82)—1

[1.11.8] Corollary: The residues of E; for s € (3, 1] are orthogonal to cuspforms.

Proof: This uses the spectral decomposition of cuspforms [1.7]: there is an orthonormal basis for L? cuspforms
consisting of A-eigenfunctions, and each eigenspace is finite-dimensional. The theory of the constant term
[8.1] shows that any such eigenfunction is asymptotic to its constant term. Since constant terms of cuspforms
are 0, cuspform-eigenfunctions are of rapid decay in Siegel sets.

Thus, for a cuspform-eigenfunction f, granting [1.9.1] that Eisenstein series E; are of moderate growth on
Siegel sets, the literal integrals (f, Es) = fr\ «f - E, are absolutely convergent for all s away from poles.

These are not L? inner products, since E, is never in L2, but we use the same notation for brevity. In
the region of convergence Re(s) > 1, any integral fr\ « [+ Es unwinds to compute an integral against the
constant term of f, and the latter is 0:

fE. =/ P
I'\X T\ X

- /N . w*(o)( /( — dn) dg

Because s — FE; is a meromorphic function-valued function taking values in (at least continuous) functions
of moderate growth, the function s — (f, E;) is meromorphic on C. By the Identity Principle, since this
function is 0 on Re(s) > 1, it is identically 0. The vector-valued form of Cauchy’s formula expresses the
residue at s = s, as an integral:

‘/NFOO\X (/(NOF)\N f(ng) 77(”9)‘“’ dn) dg

| r@-enfordg = [ we)-0dg =0
NTo\X

NT o\ X

1 E
Ress=s Es = — v
21 NROESE

dw

where v is a small circle around s,, traversed counter-clockwise. Then

(. Reso, B) = (f. o / Lo )
Y

21 w— 8

The functional v — (f,u) is a continuous linear functional on functions of moderate growth, and
w — E,/(s —w) is a continuous, compactly-supported moderate-growth-function-valued function, so by
Gelfand-Pettis [14.1] the inner product passes inside the integral:

1 1 1 1
(f, Res,, E,) — (f, Ew) —— dw = /o. dw = 0
w— S v
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Again, (f, E,) is not an L? pairing, because E; is not in L?. Nevertheless, because of the rapid decay of f,
the implied integral is absolutely convergent. This proves that the residues of E, for s € ( %, 1], all of which
are in L?, are L?-orthogonal to cuspforms. ///

1.12 Decomposition of pseudo-Eisenstein series

We saw in [1.8] that the pseudo-Eisenstein series ¥, with ¢ € C°(N\G/K) generate the orthogonal
complement to cuspforms in L?(T'\G/K): since the orthogonal complement of these pseudo-Eisenstein series
is the space of cuspforms, the orthogonal complement to cuspforms is the L2-closure of the set of these
pseudo-Eisenstein series.

To express such pseudo-Eisenstein series as superpositions of A-eigenfunctions in the four examples at
hand, once we know the meromorphic continuation and functional equation of the genuine Eisenstein series
E, the essential harmonic analysis is Fourier transform on the real line, in coordinates in which it is known
as a Mellin transform. That is, the non-cuspidal part of harmonic analysis on I'\ X in each of these four
examples reduces to harmonic analysis on R.

For ¢ € C®(I'\G/K) = C2(N\G)X, the pseudo-Eisenstein series ¥, is in C°(I'\G)¥, so its integral
against F converges absolutely, since F; is continuous, even after meromorphic continuation. Thus, by
abuse of notation, we may write

<\I/<P7ES> :/ \IISD'FS
r\X

even though this (,) cannot be the L? pairing, since Es ¢ L*(T\X). The following is a preliminary version
of a spectral decomposition of the L? closure of the space containing pseudo-Eisenstein series, insofar as it
only treats W, with test-function ¢, only computes point-wise values, so does not consider the integral of
genuine Eisenstein series as a function-valued integral, and omits a Plancherel assertion.

[1.12.1] Theorem: (Numerical form) Let s, run over poles of E, in Re(s) > 1. For ¢ € C2°(N\G/K), the

pseudo-Eisenstein series W, is expressible in terms of genuine Eisenstein series, by an integral converging
absolutely and uniformly on compacts in T\G/K:

(=1

%«H’oo
Ami [ <\I/soa Eg)-Es(g)ds + ({—1) Z<\I’w Res,, E) - Res,, Eq(g)

E*ZOO

Vo(9) =

So
where we abuse notation by writing (¥, Es) = fF\G v, - E, even though E, is not in L2.

Proof: One form of Fourier inversion for Schwartz functions [15] f on the real line is
1 o0 (o) . .
@ = 5 [ (] e dn) e
27T — 00 — 00

Both outer and inner integrals converge very well, uniformly pointwise. The inner integral is a Schwartz
function in &. Fourier transforms on R put into multiplicative coordinates are Mellin transforms: for
p € C(0,400), take f(x) = p(e”). Let y = €® and r = e*, and rewrite Fourier inversion as

o) = 3 [ ([ et )y

The Fourier transform in these coordinates is a Mellin or Laplace transform. For compactly-supported o,
as we use throughout this discussion, the integral definition extends to all complex s in place of £, and d§
replaced by —¢ds. The variant Fourier inversion identity gives Mellin inversion

1 100 00 . dr )
ply) = Py </0 p(r)r r)y ds

—100

(15] A usual, Schwartz functions . (R) on R or any copy of it are smooth functions f such that f and all its derivatives
are rapidly decreasing, in the sense that (1 4+ z2)" - |f*)(2)| is bounded on = € R for every k and N. These sups are
a family of seminorms that give .”/(R) a Fréchet space structure. See chapter 12.
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By an easy part of the Paley-Wiener theorem [13.16], for f € C2°(R) the Fourier transform is an entire
function in s, of rapid decay on horizontal lines, uniformly so on strips of finite width, so the Mellin transform
of ¢ has rapid decay wvertically. This allows movement of the contour: for compactly-supported ¢, Mellin

inversion is

o+i00 0
ely) = . (/ o(r)yr—* dr) y®ds (for any real o)
0 T

2mi o—100

In the present context, adjust the coordinates so that the Mellin transform is an integral against n(a,)®

y~1s and inversion likewise: replace s by s(¢ — 1) (and re-adjust the contour):

oly) = (-1 /UU'HOO (/OOO q—(=1)s o(r) ﬁ) ys(éfl)ds

2mi Cico T
= ([ o) ) e

Identifying N\G/K ~ AT ~ (0, +00), this is

ota) = D ([Tt et ) s

27 s

Thus

)

o) = D[ ([T oo Dy gras Gorangea)

2me —ioo

The Mellin transform useful here is

and the pseudo-Eisenstein series is

o o+i00o
Vo) = X w00 = X wlan) = o S [ Mels) g as

21
YEL\T YEL\T YEL\T

Taking o = 0 would be natural, but with ¢ = 0 the double integral (sum and integral) is not absolutely
convergent, and the two integrals cannot be interchanged. For o > 1, the Eisenstein series is absolutely
convergent, so the rapid vertical decrease of My makes the double integral absolutely convergent, and by

Fubini the two integrals can be interchanged:

vote) = G [T Mot (X wter)as i s

211
e YEL o\

The inner sum is the Fisenstein series Es(g), so

_ o+ico
U,(g) = (62712'1) / Mep(s) - Es(g)ds (for ¢ > 1)

—100

Although this does express W, as a superposition of A-eigenfunctions, it is unsatisfactory, because it should
refer to McpW¥,, not to My, in order to give a direct decomposition formula for functions in the span of

the pseudo-Eisenstein series.

We want to move the line of integration to the left, to o = 1/2, stabilized by the functional equation of
E;. From the corollary [1.11.5] to the Maaf-Selberg relations, there are only finitely-many poles of E; in
Re(s) > 3, removing one possible obstacle to the contour move. From the theorem [1.10.1] on meromorphic
continuation, even the meromorphically continued E(g,) is of polynomial growth vertically in s, uniformly in
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bounded strips in s, uniformly for g, in compacts. Thus, we may move the contour, picking up finitely-many
residues:

(¢ —1) /;+ioo
Vo = —F— E -1 . E
® 271 1o Mop(s) Eg ds + (¢ );Mgo(so) Res;, Fs

since the poles of Ey are simple and My is entire. The 1/27i from inversion cancels the 27 in the residue

formula. By the adjunction/unwinding property of ¥, on Re(s) = 3,

<\I/<paEs> = _/ ‘Il%’ By = / prcpBios = / (77178 + 6175773) 2
r\X oo\ X Too\ X

s s dy < s —(-s dy
::/(# +mﬂnrﬂw7~:/ (" +cian 1) p(y) =
0 Yy 0 Yy

The integral part of the expression of ¥, in terms of Eisenstein series can be folded in half, integrating from

% +10 to % + 400 rather than from % — 100 to % + 700:

= Mo(s) + c1-sMp(l —s)

, (0 —1) [2rice (€ —1) [2rice
U, — (residual part) = - Mop(s)-Es(g)ds = - Mp(s) Es+Mp(l—8) E1_sds
2w J1 2w J14ao

3 —100

1 ; 1 :
f -1 3 ttoo é -1 5 +ioco
= u/ Mp(s) Es + Mol —s)c1—sEsds = ( - ) / (V,,E,) Esds
211 1.0 211 1450
2 2
by the functional equation and the computation of (¥, E;) just above. The integral can be written as an
integral over the whole line Re(s) = %, by the functional equation of F, and dividing by 2:

) (6 _ 1) %+ioo
U, — (residual part) = ——— (Yo, Es) - Egds

4 1 ico

It remains to explicate the finitely-many residues which appear. The notation is normalized so that in all
these examples there is a pole at s = 1. The coefficient M(1) is

Feo _, dy Feo dy dx dy
Mo) = [ pta) Y = [ea) Y = [ ) S
0 Y 0 Y Too\ X )

giving (N NT)\N total measure 1. Winding up,
dx dy dx dy dx dy

Mep(1) = / P(ynaay) - / U, (noay) - / U, (naay)-1 = (w,.1)

That is, M(1) is the inner product of ¥, with the constant function 1. For I' = SLy(Z) and I' = SLo(Z]1]),
special arguments [2.B] easily show that the only pole of E5 in the half-plane Re(s) > 1/2 is at s, = 1,
is simple, and the residue is a constant function. However, these special arguments do not easily extend
to Spi (o) or SLy(0), and, in any case, these are meant to be examples toward a larger context. As the
pseudo-Eisenstein series do, E, fits into an adjunction

Bof= [ wteers (for f on T\X)
r\X P\ X

whenever the implied integrals converge absolutely. Via the analytic continuation of F, the adjunction
asserts that integrals against Eisenstein series are Mellin transforms of constant terms:

E, - f :/0 CPf(ay)nS% :/0 CPf(ay)n_(l_s)% = McPf(l_S)

I\X

44



Garrett: Modern Analysis of Automorphic Forms

Again, at a pole s, of Es in Re(s) > %7 ¢s also has a pole of the same order. Since ¢, - ¢1_s = 1, necessarily
c1_s has a zero at s,. Thus, from

MepU,(s) = Mp(s) +ci—sMp(l —s)
at a pole s, of E; we have
MepUy,(so) = Mp(so) 4+ c1—s, Mp(1 —85) = Mp(s,) +0- Mp(l—5,) = Mep(s,)

That is, the value Mcp¥,, at s, is just the value of M, so the coeflicients appearing in the decomposition
of W, are intrinsic. Thus, the decomposition above has an intrinsic form as in the statement of the theorem.

I

To have an L? assertion and Plancherel require somewhat more care in the argument, as in the following
section.

1.13 Plancherel for pseudo-Eisenstein series

A refined form of the previous theorem, proving convergence of the integral as a C°°(T'\G/K)-valued
integral, from a corresponding result for behavior of Fourier inversion integrals, gives an immediate proof of
a Plancherel theorem for pseudo-Eisenstein series.

[1.13.1] Theorem: (Function-valued form) Let s, run over poles of E in Re(s) > 1. For ¢ € C°(N\X) =
C®(N\G)X, the pseudo-Eisenstein series ¥, is expressible in terms of genuine Eisenstein series, by an
integral converging as a Gelfand-Pettis C°(I'\G/K)-valued integral:

(.- 1)

47

1+ico
/2 (W, By) - By ds + (€—=1) 3 (W, Res,, By) - Res,, B,

1 .
5100

v, =

So

writing (U, Es) = fF\G VU, - B even though Ej is not in L?.

Proof: Let 1)¢(z) = e’® The integral expressing Fourier inversion for Schwartz functions f on the real line

1 [ —~

fla) = (] 1w du)vctards = oo [~ veta)- Fee)ae

2r J_
does not express f as a superposition of Schwartz functions, but as a superposition of exponentials z — €272,
These exponentials are not Schwartz, and are not L?. But the Fourier inversion integral does converge as
a Gelfand-Pettis integral with values in the Fréchet space C*°(R), by [14.3]. Changing coordinates to give
Mellin inversion for functions on (0, +00) = N\G/K gives convergence as Gelfand-Pettis integral with values
in C*(0,400) = C*°(N\G/K) C C*(G), with its Fréchet-space structure as in [13.5].
By the same steps as in the proof of the numerical form of the theorem,

_ 1) [3tico
v, = M/ Mp(s)Esds + (£ — 1)2/\/&,0(50) - Ress, Fs

At J1i_ieo

as a C°(G)-valued Gelfand-Pettis integral. As in [13.6] and the analogue for G as in [6.2], [6.4], left and
right translation by G are continuous maps on C°°(G), so the linear operators of left translation by I and
right translation by K commute with the integral, so the integral converges as a Gelfand-Pettis integral
with values in C*°(I'\G/K). Similarly, the rearrangement to the statement of the theorem preserves this
convergence. ///

[1.13.2] Corollary: For ¢,¢ € C°(N\G/K) ~ CX (A1) ~ C(0,+00),

(—1) [zFie S —
(U, Ty) = (47”.)/1 (W, B (U, Eyyds + (€—1) (W, Res,, Ey) - (¥y, Res,, Ey)
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Proof: For f € C°(I'\G/K), the map F' — fF\G F . f is a continuous linear functional on F' € C°(I'\G/K),
so the Gelfand-Pettis property legitimizes the obvious interchange:

(1) [Erie
(W, f) = <%/ (W, B Byds+ (0~ 1) (W, Res, B,) - Res, By, f)

(E _ 1) %Jrioo - -
= e By T B ds + 3, Res, B - T, R B2
Uy %71'00 So
where (E;, f) converges because f € C2(I'\G/K). Taking f = U, for ) € C°(N\G/K) gives the asserted
equality. ///
This corollary looks like an assertion of a Plancherel theorem, that is, inducing (extending by continuity)
an isometry from the L? closure of the span of pseudo-Eisenstein series ¥, with test function data ¢ to
spaces of functions on % +1R and a finite-dimensional space generated by residues. What remains to show is
surjectivity to a clearly specified space, and orthogonality of the residues to the integrals on % + 4R, neither
of which is surprising.

[1.13.3] Claim: The residues of E, in Re(s) > 3 are in the closure of the space of pseudo-Eisenstein series.

Proof: The residues Resy, Es are in L? by [1.11.5], mutually orthogonal by [1.11.7], and orthogonal to
cuspforms by [1.11.8]. By the adjunction property [1.8.2] they are in the closure of the span of the pseudo-
Eisenstein series. ///

Thus, for test function ¢ and expansion

1L
(67 ) 5 tioo

\IILP - 47 $—ioco <\I/<paEs> -Egds + (6 - 1) SZ<\I/<P3ReSSoES> : ReSSOES

the integral is itself in the closure of the span of the pseudo-Eisenstein series. The functions F' on % + iR
possibly arising as F'(s) = (V,,, E) are constrained by the functional equation Ei_s = ¢1_ Es:

(U, Bi1_s) = Uy, c1-sE5) = 15 - (Vy, Es) = c5- (U, Ey) (on Re(s) = 3)

Let
V = {FeLl*}+iR): F(1-s)=cF(s)}

[1.13.4] Claim: The images (V,,, E;) © (..., (¥, Res,, Es),...) are dense in V & C™.

Proof: The residues are in the closure of pseudo-Eisenstein series, so the integral parts of the spectral
decompositions are in the closure, as well, by subtraction. The remaining question is identification of the
L? closure of the functions s — (U, E;). Test functions ¢ are dense in the Schwartz space, and the map
p — Mo, essentially Fourier transform, is an isomorphism to the Schwartz space on % +¢R, so the images

M of test functions are dense in that Schwartz space, which is dense in L?. Noting that |c;| = 1 on
Re(s) = 3, the averaging map F(s) — F(s)+c1_sF(1—s) is a surjection of L?( +4R) to V, so the images
(U, Es) = McpV¥,, are dense there, so are dense in V. ///

A typical polarization argument finishes the proof of Plancherel. Recall

[1.13.5] Lemma: Let V be a Hilbert space with subspaces Vi and Va. If |vg + v2|? = |v1|? 4 va|? for every
vy € V7 and vy € V5, then V; and V5 are orthogonal.

Proof: We aim to show that (vi,ve) = 0. Adjusting vo by a complex number of absolute value 1, we may
suppose that this inner product is real. Then

4<U1,1}2> = ‘U1 + ’U2|2 — |’U1 — U2|2 = |U1|2 + ‘U2|2 — (|’U1|2 + |’U2|2) =0
as claimed. ///
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Thus, we can distinguish the residual part of ¥, by

Ul = (6-1)) (W, Res,, E) - Res,, E,

5j
and the continuous part

9o = g, —gr = L1 %Hw@ E,)-E,d

e T Fe ¢ T T 4mi 1 i @s s s 48

Both parts are in the closure of the images of pseudo-Eisenstein series, from above. Extending by continuity
the relation [1.13.2],

Welfe = [WEIE: + WL

and these two parts are orthogonal. We have the corresponding Plancherel theorem:

[1.13.6] Corollary: The map U, — (¥, E,) & (..., (V,,Res,, Ey),...) with test functions ¢ is an L?
isometry to its image in V @ C™, and that image is dense in V @& C". Extending by continuity gives an
isometry of the L? closure of the space of U,’s to V & C". ///

[1.13.7] Remark: Except on smaller subspaces, such as the span of the pseudo-Eisenstein series with test-
function data, the integrals above are not literal, but are the extension-by-continuity of those integrals, as
with Fourier transform and Fourier inversion on L?(R).

1.14 Automorphic spectral expansion and Plancherel theorem

Combining the decomposition of cuspforms and the decomposition of their orthogonal complement: letting
S run over the poles of E; in Re(s) > é, and letting F' run over an orthonormal basis for the space of
cuspforms on I'\G/K,

[1.14.1] Corollary: Functions f € L?(I'\G/K) have expansions

(E* 1) %+ioo
f= > (f£F)-F+ 7/ (f,Es) - Eqds+ (£ —1)> (f,Res,, E) - Res,, E,

47 ;
cfm F PRt So

and Plancherel

Ei oo
Moy = 2 1P+ [ B Pars (0= ) T 1. Ress, B P
cfm F - So

where integrals involving Eisenstein series are isometric extensions, as in the previous section. ///

Again, although the discrete part of the expansion converges in a straightforward L? sense, the
continuous/Eisenstein part only makes sense as an isometric extension of literal integrals. Nevertheless,
the Plancherel theorem is a literal equality.

The factor of (£ — 1) is purely artifactual, and could be normalized away.

47
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1.15 Exotic eigenfunctions, discreteness of pseudo-cuspforms

An important variant approach both to the discrete decomposition of the space of cuspforms as above,
and to the meromorphic continuation of Eisenstein series, as in [11.5], is the decomposition of spaces of
pseudo-cuspforms

L}y (T\G/K) = {f € L*(T\G/K) : cpf(a,) = 0 for y > b} (for fixed b > 1)

with respect to a self-adjoint operator [16] ﬁb closedly related to A, but subtly different. For any b > 0,
the corresponding space of pseudo-cuspforms contains the space of genuine cuspforms L2(I'\G/K). This
operator ﬁb is a pseudo-Laplacian. The basic, surprising result is

[1.15.1] Theorem: L?(I'\G/K) is a direct sum of eigenspaces for the pseudo-Laplacian Ay, each of finite
dimension. In particular, A, has compact resolvent. (Proof in [10.3].)

Without further information, this does not instantly prove that the subspace consisting of genuine
cuspforms decomposes discretely for A, because the description [9.2] of the domain A puts technical
requirements on possible eigenfunctions.

In any case, for b > 1, the space L?(I'\G/K) contains many functions not in the space of genuine
cuspforms, for example, pseudo-Eisenstein series ¥, with data ¢ supported in the interval [1,5]. Asin [1.12],
these are expressible as integrals of genuine Eisenstein series. However, by the theorem, apparently these
pseudo-Eisenstein series are (infinite) sums of L2-eigenfunctions for A, orthogonal to cuspforms. Further,
truncations AYE, of genuine Eisenstein series are square-integrable, by [1.11.3] or [1.11.4], for any s, € C
away from the poles of s — F;. By [1.12], these truncations are expressible as integrals of genuine Eisenstein
series, but, by the theorem here, are also infinite sums of L?-eigenfunctions for Ab. Thus, evidently, there
are many ezotic eigenfunctions for Ay, pseudo-cuspforms in a strong sense. Indeed,

[1.15.2] Corollary: The eigenfunctions for A, in LZ(I'\G/K) with eigenvalues A\ = s(s — 1) < —1/4 are
exactly the truncated Eisenstein series A’E, with cpE(ap) = 0. (Proof in [10.4].)

These particular truncated Eisenstein series are indeed not smooth. The slightly non-intuitive nature of
the operator A explains the situation, in [10.4]. For example, in addition to meeting the Gelfand condition
of constant-term vanishing about height b:

[1.15.3] Corollary: An L2-eigenfunction u for A, with eigenvalue )\ satisfies (Eb —A)u = 0 locally at heights
above b. ///

[16] This ﬁb is the Friedrichs self-adjoint extension [9.2] of the restriction of the unbounded operator A to the test
functions C°(D\G/K) N LE(T\G/K) in the space L} (I'\G/K) of pseudo-cuspforms.
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2. The quotient ZTGLy(k)\GLo(A)

Groups K, = GLs(0,) C G, = GLa(ky)

Discrete subgroup GLa(k) C GL3(A), reduction theory
Invariant measures

Hecke operators, integral operators

Decomposition by central characters

Discrete decomposition of cuspforms

Pseudo-Eisenstein series

Eisenstein series

Meromorphic continuation of Eisenstein series
Truncation and Maaf3-Selberg relations

Decomposition of pseudo-Eisenstein series: level one
Decomposition of pseudo-Eisenstein series: higher level
Plancherel for continuous/Eisenstein spectrum: level one
Spectral expansion, Plancherel theorem: level one

15. Exotic eigenfunctions, discreteness of pseudo-cuspforms
Appendix A: compactness of J!/k*

Appendix B: meromorphic continuation

Appendix C: Hecke-Maaf} periods of Eisenstein series
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This chapter treats a slightly less elementary example, automorphic forms on GLo(k)\GL2(A) for a
number field k. The shape of the group elements is still two-by-two matrices, but the contents are not
the purely archimedean R, C,H of the previous chapter, now involving p-adic and adelic scalars. Among
several advantages, this viewpoint consistently maintains the unicuspidality of the quotient. In contrast, a
classical approach to congruence subgroups of SLy(Z) apparently produces an ever-growing number of cusps,
and for Hilbert-Blumenthal groups GLy(0) for rings of integers o of totally real 171 pumber fields k, even
at level one, the number of cusps is a class number. Miraculously, in the adelic formulation, there is only
one cusp, regardless of class number or congruence conditions. That is, a single adelic Siegel set covers the
quotient, as below in [2.2].

In fact, very little subtle information about p-adic numbers or adeles or ideles is used. For most purposes,
it is merely the shape of matrices that matters, or their structural role, so things can be cast in a form
that scarcely refers to details of the distinctions. The significant result is the compactness of J!/k*, in the
appendix [2.A]. Earlier in the chapter, we prove p-adic and archimedean Iwasawa and Cartan decompositions
from the most basic features of completions of number fields, with the incidental goal of practicing the relevant
physical intuition and noting the truly relevant aspects.

Another point of this example is to accommodate more complicated data in Eisenstein series. With
or without congruence conditions, number fields beyond @ have non-trivial grossencharacters (Hecke
characters), and apart from complex quadratic extensions there are always unramified grossencharacters.
For non-trivial ideal class groups, there are non-trivial ideal class characters. Using GLs(A) unifies these
seemingly disparate features. Thus, the decomposition [2.11-2.12] of pseudo-Eisenstein series involves not
only the continuous parameter s, but at least one discrete parameter x running through grossencharacters
with various constraints on ramification. Further, congruence conditions specify further data in Eisenstein
series. The functional equation(s) of Eisenstein series will no longer relate one Eisenstein series to itself under
s = 1 — s, but must tell how the further data transforms. Suggested by physical analogues, the description
of the transformation of the further data is often called a scattering matriz or scattering operator.

Most of the analytical archimedean issues in later chapters are already well illustrated by the previous
chapter. The present chapter illustrates interaction of those archimedean issues with p-adic.

[17] A finite extension k of Q is totally real when all archimedean completions are isomorphic to R, rather than to C.
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2. The quotient Z+GLy(k)\GLa(A)

2.1 Groups K, = GLs(0,) C G, = GLy(k,)

Throughout this chapter, k is a number field. (18] Let o be its ring of algebraic integers. Denote the various
archimedean and p-adic (non-archimedean) completions by k., where v < oo means non-archimedean, and
v]oo means archimedean. For non-archimedean v, let 0, be the local integers. Normalize all the norms | - |,
so that the product formula [], [t[, = 1 holds for ¢t € k*, preferably by taking the norm in k, to be the
composition of the Galois norm to the corresponding completion Q, of Q and then the standard p-adic norm
on Qp, by [t|y = [Ny, /th|p7 and similarly for archimedean places. When useful, w, will be a local parameter
at a non-archimedean place v, that is, a prime element in o0,. Let A,J be the adeles and ideles of k.

Let G, = GLs(k,). Let Z, be the center of G,. Temporarily let r be the number of non-isomorphic
archimedean completions of k, thus not counting a complex completion and its conjugate as 2, but just 1.
That is, [k : Q] = r1 + 2ry where 71 is the number of real completions, and ro the number of complex, and
r =11 +ry. Let ZT be the positive real scalar matrices diagonally imbedded across all archimedean v, by
the map

§ it — (., 7)) (for ¢ > 0)

This map § gives a section of the idele norm map [t| =[], |ts]v, in that |6(¢)| = t. As usual, let

ro= (5 D)eon o=y 7)ec) = (5 ) e

We have already noted the compact subgroups K, ~ SO2(R) C SL3(R) and K, ~ SU(2) C SL(C) for
archimedean completions k, ~ R and k, ~ C, and the corresponding Iwasawa decompositions [1.3].

[2.1.1] Claim: For v < oo, the subgroup
K, = GLs(0,) = {two-by-two matrices with entries in 0, and determinant in o0
is a compact, open subgroup of G, = GLs(k,). We have Twasawa decomposition
G, = P,-K, = N,-M,-K,

and Cartan decomposition
G, = K,- M, K,

Proof: The local fields £, are finite-dimensional vectorspaces over respective Q,, and R, so are locally compact.
For non-archimedean v, the local integers are both closed and open:

0y = {‘T € kv : |I|U S 1} = {I € kv : |:C‘U < |w71|U}
Similarly for the local units:

o ={x€ky:|zly, =1} = {z€ky: |mlo <|z|p < |w_1|v}

From this, the conditions defining the subgroups K, are both open and closed. Since K, is a closed subset
of the compact set

a b
{<C d).a,b,c,deov} R0y X 0y X 0y X 0y

it is compact. Given <i Z) € G,, either |c|, > |d|, or |c|, < |d|y, so either d/c € o, or ¢/d € 0,,

respectively. Thus, either

(DI (T p)en

(18] The potential conflict with k£ being an element of a compact subgroup K is avoidable only by other notational

infelicities.
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<z g)(—cl/d (1]) - <S :) (when <_Cl/d ?)eKv)

giving the Iwasawa decomposition.

The Cartan decomposition is a corollary of the structure theorem for finitely-generated modules over a
principal ideal domain such as 0,, as follows. Given g € G,, multiply by a scalar matrix (in M,) so that all
entries of the modified g are in o0,. (Of course, this does not at all assure that the determinant is in 0..)
The columns of such g generate a rank-two o,-submodule V of 02. By the structure theorem, there is an
0,-basis fi, fo for 02 and dy,ds in 0, such that V = 0,d; f1 + 0,d2f2. Since {d; f;} is another o,-basis for
V, there is h € K, expressing the two columns of g as o,-linear combinations of d; f1, ds fo (and vice-versa).
That is, in terms of matrix multiplication, writing d; f1, ds fo as column vectors,

(CCL Z) = (d1f1 d2f2)'h

At the same time, there is b’ € K, such that h'e; = fi and h'ey = fa, where {e;} is the standard o,-basis

for 02. Thus,
a b _ ’ dl 0 .
(a) = (5 i)

giving the p-adic Cartan decomposition. ///

or

Unlike the archimedean situation, the compact K, has substantial intersections with both N, and M,,, so
with P,. Indeed, since k, is an ascending union k, = (J,+, w ¢ 0,, the subgroup N, is an ascending union
of compact, open subgroups: a

B 1 @, %,
w=U( ™
£>0
Again unlike the archimedean situation, K, has a neighborhood basis at 1 consisting of compact, open

subgroups, namely, the (local) principal congruence subgroups

K,o = {(? Z) € GLy(0,) : a=1mod w’, b=0mod @, ¢ =0mod w’, and d = 1 mod ="}

The corresponding adele group is Gy = GL2(A), meaning two-by-two matrices with entries in A, with
determinant in the ideles J. This group is also an ascending union (colimit) of products

Gs = H G, % H K, (S a finite set of places v, including archimedean places)
veES vgS

ordering finite sets S (of places v) by containment. Similarly, Py, My, N, and Z, are the adelic forms
of those groups, that is, obtained by allowing entries in A, or, equivalently, as colimits of products of
local groups. Let Ky = [[, K, C Ga. Let ¢ : (0,00) — J the usual diagonal imbedding of (0,00) to
the archimedean component of the ideles by §(t) = (...,t%/% ...) where d, is the local degree, so that
d:(0,00) — J gives a one-sided inverse to the idele norm |a| =[], <. |@|v. Then

Zp]Z" Zy = J/5(0,00) - k* ~ J'/k* = compact

where Zj, is invertible scalar matrices with entries in k. The compactness is non-trivial [2.A], but standard.
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2. The quotient Z+GLy(k)\GLa(A)

2.2 Discrete subgroup GLy(k) C GL2(A), reduction theory

Let Gy, = GLo(k), Py, My, Ny, be the groups with entries in k. Here we demonstrate that a single (adelic)
Siegel set surjects to the quotient G \Gy4, and that (adelic) Siegel sets behave well. First,

[2.2.1] Claim: G}, is a discrete subgroup of G, .

Proof: To show that a subgroup of a topological group is discrete, it suffices to show that there is a
neighborhood of the identity containing no element of the subgroup except 1, since multiplication U — gU
is homeomorphism of neighborhoods U of 1 to neighborhoods gU of g.

We do this in two steps. First, the subgroup H = Hv|oo Gy X [[y<o0o Kv is an open neighborhood of
1 € Gy, so it suffices to show that the group Gy N H is discrete. The condition on H is that entries are
locally integral at all finite places, and the determinants are local units. An element of k that is a local
integer everywhere is an integer, and an element of £* that is a local unit everywhere is a unit in 0*. Thus,
Gr N H = GL(0), and it suffices to show that the projection of GLs(0) to Goo =[], Gv is discrete in
the latter. The topology on G, is the subspace topology from the real vectorspace of 2-by-2 matrices with
entries in ko, = Hv‘oo k., which itself has the product topology. From classical algebraic number theory, o
is discrete in ko, giving the discreteness. ///

On some occasions, one uses

G' = {g€ Gy :|detg| =1}

noting that Gy = ZT x G'. The product formula []
particular, Gy, is still discrete in ZT\Gy ~ G*.

Now define local and global height functions h,, and h. For v-adic completion &k, ~ R, let h, be the usual real
Hilbert-space norm on k2 ~ R2. To accommodate the product formula, for k, =~ C, let h,, be the square of the
usual complex Hilbert-space norm on k2 ~ C2. For k, non-archimedean, let h, (21, z2) = max{|z1],, |22/, }.
Put h(z) = [[, <. hwo(z). There is good behavior under scalar multiplication, via the product formula: for

te k™,
ht-x) = [] holt-2) = J] [t ho(@) = T Ith- J] to(@) = 1- ] hol@)

v<o0o v<o0 v<o0o v<o0o v<o0o

[t|, = 1 for t € k* shows that G C G'. In

v<oo

Sufficient conditions are given below for finiteness of the product. By design, the isometry groups of the
height functions h, are the compact subgroups K, already specified.

For each prime v the group K, is transitive on the collection of vectors in k2 with given norm: at
archimedean places, this is because all vectors of a given length can be rotated to each other, while at
non-archimedean places the suitable analogue of length is greatest common divisor.

Let Gy, Py, Nk, My, Zi be the corresponding groups of matrices with entries in k, and use subscript A to
denote the adelic points.

Now we identify a class of vectors with finite height. First, given x € k? — {0}, for all but finitely-many
v the components of the vector x are all v-integral, and generate the local integers o,. In particular, for all
but finitely-many v the v local height h,(z) of z € k" is 1, and the infinite product for h(x) is a finite
product. Write vectors as row vectors, and let Gy = GLy(A) act on the right by matrix multiplication. A
non-zero vector x € A? is primitive when x € (k? — {0}) - G4.

[2.2.2] Theorem: For fixed g € G and for fixed ¢ > 0,
card (kx\{x €k*—{0}:h(x-g) < c}) < 0
For compact C C G there are positive implied constants such that
hz) <c hz-g) <c h(z) (for all g € C, for all primitive x)

Proof: Fix g € Gp. Since K = Ky = ][], K, preserves heights, via Iwasawa decompositions locally
everywhere, we may suppose that ¢ is in the group P, of upper triangular matrices in G,. Choose
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representatives = (x1,22) for non-zero vectors in k*\k? either of the form x = (1,22) or z = (0,1).
There is just one vector of the latter shape, so we consider = = (1, x2):

a b a b
z-g = (1 l’g)(o d) = (a b+ x2d) (forgz(o d))
At each place v, including archimedean ones, max(|al,, |b + z2d|,) < hy(zg), S0

b+ zodly T lale < [T hulzg) = hizg)

wF#v all w

Since g is fixed, a is fixed, and at almost all places |a|, = 1. Thus, for h(zg) < ¢,

—1
|b+ zod|, < c- ( H |a|w> Lge 1 (for fixed g, for & with h(zg) < ¢, for all places v)
wH#v

For the product formula to hold we are using the normalization of norms that |@,| = ¢, !, where w, is a local
parameter at v and g, is the residue field cardinality at v. There are only finitely-many places v with residue
field cardinality less than a given constant, so, in fact, |b+ x2d|, < 1 for v outside a finite set depending on
g and c. Therefore, b+ xod lies in a compact subset §2 of A depending on g, c. Since b, d are fixed, and since
k is discrete (and closed by [1.5.3]) in A, the collection of images {b + z2d : x2 € k} is discrete in A. The
intersection of a closed, discrete set and a compact set is finite, so collection of xo € k so that b+ xod lies in
Q is finite, proving the first assertion.

For the last assertion, use the Cartan decompositions G, = K, - M, - K, from [2.1]. The map
01 X m x 0 — Oymbs, with 61,00 € K, and m € M,, is not an injection, so we cannot immediately
infer that for a given compact C' C G, the set

{m e M, : for some ce C, c€ K,mK,}

is compact. Since K, is compact, ¢/ = K, - C - K, is compact, and now 6imb, € C' with §; € K,
implies m € C’ N M,, which is compact. Thus, any compact subset of G4 is contained in a set
{6imby : 01,60 € K,m € Cyp} with compact Cpy C My. Since K preserves heights and since the set
of primitive vectors is stable under K, the set of values {h(xg)/h(z) : x primitive, g € C} is contained in a
set

h(z0)
{ h(x)

for some compact Cjp; C M. Letting the diagonal entries of m be m;,

: x primitive, m € CM}

0 < inf inflm,| < < sup sup|m;| < +oo
meCnr i h(x) meCar i

This gives the desired bound. /1]

To compare to the purely archimedean height functions n used in the four earlier examples, for g upper-

triangular,
a b -
n(00-(5 %)) =m0 a) = a;

For example, with k, = R, for g = nzyay = (é f) <\{)ﬂ 1/(1/@) € SLy(R),

ho((0 1)-9) = hu(0 ;@) _

Sl
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2. The quotient Z+GLy(k)\GLa(A)

However, we want local height functions which are right K, -invariant and

a b\ _|a
”v(o d)“d

2

v

so put
nv(g) = |d6tg|v'hv((0 1)'9)7

and 7(g) =[], 7v(g). This matches earlier use for SLy(R). Left multiplication by v € G}, does not change
| det g| (with idele norm), because of the product formula:

((for g € Gy))

|det(yg)| = [dety-detg| = |dety|-[detg| = 1-[detg]

[2.2.3] Lemma: 7 is left Py-invariant, and Z-invariant.

Proof: Via the product formula, with p = (g Z) € Py,

n(p-g) = |detpg|-h((0 1)-pg)~> = |detpg|-h((0 d)-g) "

= |detp| - |detg|-|d|-h((0 1)-¢)* = |detg|-A((0 1)-g) "

For the center-invariance, with z = (é ?) € Zy,

n(z-g) = |detzg|-h((0 1)-29) " = |detzg|-h((0 t)-g) "

= [t?]-|detg| - [t h((0 1)-g) " = |detg|-A((0 1)-g)

as claimed. ///
[2.2.4] Corollary: For fixed g € G, there are finitely-many v € P;\G}, such that n(y - g) > n(g).

Proof: There is a natural bijection

N\ (k2 — {0}) +— P\Gx by < (c d) +— Py- (: 2)

for any invertible matrix with bottom row (¢ d). Indeed, Gy, is transitive on non-zero vectors, and Py, is the
stabilizer, acting on the right, of the line (minus a point) (0 *) = k> - {(0 1)}. The theorem shows that
there are finitely-many x € k*\(k? — {0}) such that h(zg) < ¢, that is, such that h(zg)~™' > ¢~!. Since
| det g| is Gi-invariant, the bijection just demonstrated gives the assertion of the corollary. ///

[2.2.5] Corollary: sup.cq, 7(7-g) < oo, and the sup is attained, and
Gr-{9€Ga:n(g) Z2n(y-g)foralye Gyt = Gy

Proof: The previous corollary shows that the sup is finite and that the sup is attained. Thus, the indicated
set is a (possibly redundant) collection of representatives for all orbits, by choosing group elements attaining
the sup in their Gy-orbit. ///
Critical in legitimizing treatment of truncated Eisenstein series:

[2.2.6] Corollary: Given ¢, > 0, there is t; > 1 such that, for n(g) > t1, if n(y-g) > t, then v € Py.

Proof: Tt suffices to take g = nm since 7 is right Ku-invariant, invoking Iwasawa. Since 7 is Z-invariant
mq 0
0 1
can take m;y of the special form my; = m, - 6(¢) for ¢ > 0 and m, in a sufficiently large compact subset of

it suffices to consider m = ( ) Adjusting on the left by My, by the compactness lemma [2.A], we
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J, where ¢ : (0,4+00) — J imbeds the ray (0,00) at archimedean places. Take compact C' C Ny such that

Ny, - C = Ny. For v € k? — {0},

h(v-nm) = h(v-m-m~'nm)

For m of the special sort indicated, given ¢; > 0, there is compact C' C Ny such that if n(m) = |mq/ma| > t1,
then m=1Cm C C’. Let (c d) € k* — {0}. From the second assertion of the theorem, there are constants
depending only on C’ such that, for all (primitive) z = v - m,

h(v-m) = h(z) <¢ h(z-n) <o h(z) = h(v-m) (for all n € C")
Thus, it suffices to treat simply g = m. In that case, with v = (¢ d) with ¢ # 0,

h(v-m) = h((c d)-m) = h(emy d) > |emy| = |- |m1] = |ma|
by the product rule, since ¢ € k*. Thus, with v = <z Z) € Gk, but not in Py,

| det ym| _ |y | | | 1

n(y-m) = W((e d)-m)2 ~ h((c d)-m)32 = 2 |m

With whatever constants are implied in the simplifications in the first part of the proof, a sufficiently high
lower bound 7n(m) = |m1| > t; assures that n(y - m) is below t,. ///

An element g € G such that n(g) > n(vy-g) for all v € Gy, is reduced. Given the above preparation, as an
application of Dirichlet’s pigeon-hole principle, after Minkowski, we can prove

[2.2.7] Theorem: There is a constant ¢, > 0 depending on k such that n(g) > ¢, for reduced g € G,
Proof: Since heights are right K-invariant, take ¢ = nm with n = n, € Ny and m € M,. Adjusting by the

center, take
_(y O _ (1 =z
=101 e = o1

with y € J, z € A. Let J! be the ideles of idele-norm 1, and let § : (0, +00) — J by

0(Yoo) = (yo’ig7 . ,yo%o, 1,1,1,...) (where, temporarily, n = [k : Q])

with non-trivial values at the archimedean components. Then J = J! x §(0,+00). Let U = [T B
[T,<oc 05 - The quotient k*\J' is compact, by [2.A], so k*\J' /U is finite.

v
(1)> :m1 € k*} and on the right by {<n81 (1)> :my € U},

we can suppose that y = 0(yoo) - 0 with yoo € (0,+00) and 6 in a finite list © of finite ideles, essentially
representatives for the ideal class group. We can take 8 € © everywhere locally integral at finite places.

Write 5(yeo) 0
_ e : _ Yo) O o 0
m = Moo * Men with Moo = < 0 1> Mfin = (0 1)

Thus, adjusting on the left by {<W(l)1

For fixed 8 € ©, with

Vo= 0( I o.)o™ Up = man (N0 JT Ko )i
v<o0 <00
we have

Up = {<é lf)iUEVb}

Let A = k ®g R be the archimedean component of the adeles. For each fixed ¢ € O, acting on n, on the
left by Nj is equivalent to adjusting x € A by k. By additive approximation, we can adjust « by k to be in
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2. The quotient Z+GLy(k)\GLa(A)

Ao + Vp. Right multiplication of n,m by Ny N[, K, is equivalent to adjusting by Vp. Thus, without
loss of generality, © € A. None of these adjustments changed the height n(nm).
The inequality
h((0 1)-mm) < A((1 —a)-nm)

holds for every « € k, by the reduced property of g = nm. Letting hg, =[]

, * %
(0 1) is fixed by (O 1)7

hy and hoo =[]

h,, since

v< oo v|oo

1 = Rh((0 1) nm) < heo(0(Yoo), T — Qo) * Atin (0, —tfin)

where oy and ag, are the projections to the archimedean and finite components of the adeles. This is

1 dy/2
- - < ( o2 4z — ay 12)/%)
R [T (Joecl | |

v|oco

where d,, is the local degree at the v archimedean place. We want to use Dirichlet’s principle to choose
a € k so that |z, — |, is much smaller than hg, (0, —aay ), thereby to give a lower bound on yuo.
Choose a Z-basis w1, ws, ... for o, and put

F = {er~wj:each0§rj <1} C Ax
J
Thus, given * € A, there is 8 € o such that x — 8 € F. For fixed large 1 < ¢ € Z, for each integer

1<a<&Q 4 1, let b = b, € o such that ax — b € F. Since F' is a disjoint union of Q] tranglates of
¢='F, by the pigeon-hole principle there are a,b and a’, b’ such that (ax —b) — (a’x — b') € £~1F. Thus,

b—v c 1

_ - .F
a—a La—a’)

T

Put p =0—-V € 0, g = a—d € Z, and a« = p/q. Without loss of generality, ¢ > 0. With

H = SUD,cF, vjoo |acv|12/d”7 we have
1 b\ PN
< Mlarge) ™ = (e @ip)
hin (0, —7) II (v (€ q? Yoo T 7 92

q v|oco

Now

1
han (0, _g) < H max{|9v|v, |§}U} < H max{\9U|v, 1}' H max{l, |6’v} =q"

v<o0o <00 v< 00

since § € © is everywhere locally integral. Then

1 n/2
7 < )

q (£-q)?
or )
I
= < Y+
s (£-q)?
Since 1 < ¢ < ¢™, this implies
1 I3 1 H 2
p(1-p) < ?'(1‘72) S Ve
Taking ¢?> > 2u gives a uniform positive lower bound 1o, > t; = ﬁ > 0. For each of the finitely-many

0 € 0O,
n(m) = n(moe - man) = N(6(yso)) - n(0) = yZ, -n(0) = 11 -mingecon(d)
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That is, every reduced g € G has n(g) bounded from below by that (positive) quantity. ///
For compact C' C Ny and t > 0, the corresponding Siegel set is
miq 0
Gy = {nmk:neC, ke Ky, Imi/mo| >t} (where m = 0 m )
2

[2.2.8] Corollary: Let C' be any compact subset of Ny sufficiently large so that Ny - C = N,. With ¢, as
in the theorem, G ¢, surjects to the quotient G\Gy. That is, Gy - S, = Gy.

Proof: The theorem asserts that S = {g : n(g) > t,} surjects to Gx\Ga. The set S is left Py-invariant
and left Np-invariant. Thus, we can certainly adjust on the left by Nj so that with ¢ € nmK in Iwasawa
coordinates n € C. /1]

2.3 Invariant measures

We seldom need explicit formulaic evaluation of integrals on groups G, = GLy(k,) or their subgroups.
Rather, qualitative features of the invariant integrals, such as uniqueness and unwinding properties, play the
main roles.

Locally, from [14.4], up to scalar multiples there is a unique right G,-invariant measure on G,, left P,-
invariant measure on P,, and (left and right) K,-invariant measure on K,, for each place v. Even though
P, N K, is non-trivial, given any two of the scalar multiple choices, the third is determined, so that

/Gvf - /PU/va(phMpdh

The idea of the proof from [5.2] and [14.4] is that the group H = P, x K, acts transitively on G, by
(p x k)(g) = p~tgk, with isotropy group P, x K, at 1 € G,. Since the modular function of P, x K, is
inevitably trivial on the compact P,NK,, there is a unique H-invariant measure on G, =~ (P,NK,)\(P, x K,).
Since the (left and right) G,-invariant measure is such, these must be the same, by uniqueness. For example,
for f right K,-invariant,

/ f= / f(p) dp (f right K,-invariant, left P,-invariant measure dp on P,)
Gy P,

Even more simply, P, = N,M, ~ N, x M, has a left (or right) invariant measure given by the product of
the invariant measures on N, and M,. Archimedean examples were already considered in [1.6], and p-adic
examples below.

Similarly, globally, there is a unique right G-invariant measure on Gy, Zy\Gja, and ZT\Gy. Given
these, there are unique right Ga-invariant measures on Gx\Gp, Z4Gr\Gy, and ZTG\Gy4 such that the
corresponding unwindings are correct: for example,

/Z+GA f= /ZJer\GA (vg(;k f 07) (for every f € C2(Z1Gy))

Comparisons between global integrals and products of local integrals are as expected: for f(g) = [, fo(gv)
in C2(Gy) expressible as a product of functions f, € C2(G,), up to a scalar depending on all the

normalizations,
f = H / f v
Gp o JaG,

despite the fact that the adele group G, is not the product of the local groups G,, but only the colimit of
the products Gs = [[,cq Gv ¥ ]1, 5 Hy. Indeed, in practice f, will be K,-invariant for all but finitely-many

v, SO
GAf = 1igl/c;sf = hgl(l;[s/Gfl;[s/Kf) = hgl(g/&fv.l) — H/Gva

veES
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2. The quotient Z+GLy(k)\GLa(A)

Nevertheless, on some occasions explicit computations are useful or necessary. Measures and integrals on
R and C are familiar. On Q, and its finite extensions, somewhat less so. However, the totally-disconnected
nature of Q, and finite extensions makes measure and integration simpler, at least for nice functions. We
treat QQp, and every non-archimedean k, is a finite cartesian product of such. We do not need to prove
uniqueness, since this follows for general reasons [14.4].

To give a (regular, Borel) measure it suffices to tell the measure of every open. Since Q, is a group whose
group operation and inversion are continuous, for an invariant measure it suffices to tell the measure of a
local basis at 0, since every translate (coset!) of a given basis element must have the same measure. Such
a basis is pZZp. Since these are subgroups, we can easily compare them: for 1 < £ < ¢’ the subgroup pe/Zp
is of index p* ¢ in p'Z,. The ratio of measures must be the index. Thus, normalizing everything by taking
the measure of Z, to be 1, the measure of pZZp is its index in Z,, namely, p~t. Larger opens are unions of
translates of sets pZZp. This gives the standard additive Haar measure on Q, for p < oo.

On finite extensions k, of Q,, the same process produces an additive Haar measure giving o, total measure
1. For k,/Q, unramified, this is almost always a good normalization. However, for k,/Q, ramified, other
choices may have advantages, for example with respect to local Fourier transforms.

A multiplicative Haar measure d*x on Q, can be arranged from the additive d*x, much as for RX or CX,

p—1

namely, d*z = d*x/|z|,. However, this gives the local units Zx measure E>=, not 1. Since Z; is the unique

mazimal compact subgroup of Q,;, we might prefer to give the local units measure 1. A similar device applies
to k, for v < co. In practice, the superscripts are not used, because context explains and determines which
measure is meant.

Since N, = k,, the invariant measure on N, is just the additive Haar measure from k,,. Since M, =~ kS Xk,
a product of multiplicative Haar measures is the invariant measure.

Much as in the archimedean cases considered earlier, a left-invariant measure on P, = N,M, is
d(nm) = dndm/|a(m)|,, where « (ml 0 > = my/mgy. That is,

O mao

0 1 0 mo -

d 1 =z m; 0 ) = dtz d*m; d*ms _ dtz dtmy dtms
[ma/mal, Ima[3

[2.3.1] Claim: Quotients ZT M;;\G¢ ¢ of Siegel sets have finite volume.

Proof: The notation has compact C C Ny and t > 0. Letting Ky =[] K, up to normalization,

v<oo

d d
/ 1dg:/1dn~/ 1 m-/ldkx/ i
Z+M\Sc C Z+ M \My la(m)| Sk Z+ M \My lo(m)]

Further, Mi\My ~ (k*\J) x (k*\J), and the integrand is My N Ky-invariant. By [2.A], the group k*\J
has compact subgroup k*\J', on which |a(m)]| is trivial, and k*\J ~ §(0,00) x kX\J'. For brevity, write
RT = §(0,00). In effect, Z7 is the diagonal copy of R in J x J. Thus,

ZFMAMy, ~ Z9\((RY x AT x (R x k\J1))

so, the further quotient by the kernel of m — |a(m)| has representatives a, = (5(0y) (1)> for y > 0. We

have |a(ay)| = y*@ for y > 0. Thus, up to normalization, the integral is

dy/y
Lﬁlyww <

The quotient My \S¢, without that further quotient by Z* will not have finite volume, because J/k* is

non-compact. /]
Thus,
[2.3.2] Corollary: The quotient ZTG}\G has finite volume. ///

o8



Garrett: Modern Analysis of Automorphic Forms

2.4 Hecke operators, integral operators

The simplest non-archimedean analogues of the differential operators on G, for archimedean v are integral
operators of the form

<p-f=/ o(g) g I dg (for ¢ € C2(G,) and € V)

v

for any continuous action G, x V' — V on a quasi-complete, locally convex topological vectorspace V. The
integrand is a continuous, compactly-supported V-valued function, so has a Gelfand-Pettis integral [14.1].
Thus, for f € V = L?(ZTG;\Gp), with G, acting by right translation, pointwise we have

(o)) = / o(9) (g- )(x) dg = / o(9) f(zg) dg (for ¢ € C2(G,) and f € V)

v Gy

at least almost-everywhere. Better, for general reasons [6.1] the right-translation action

Gy x L2 (ZTGp\Ga) — L?(ZT G \G,) is continuous, so the integral converges as an L?(Z TG \Gy)-valued
integral, and concern about pointwise values is unnecessary. The composition of two such operators is readily
described as the operator attached to the convolution: for ¢, € C2(Gy),

0 (1) = /GAso(gm-( [ vt an)ag = /GA/GAwg)wh)(gh-f)dhdg

because the operation of ¢ moves inside the Gelfand-Pettis integral. Replacing h by g~1h gives

/GA/GAw(g)?ﬁ(g—lh)h.fdhdg = /GA(/(;A‘p(gW(g_lh) dg) hef dh

by changing the order of integration. The inner integral is one expression for the convolution ¢ * ).

[2.4.1] Lemma: The adjoint to the action of ¢ € C2(Gy) on L?*(ZTGr\Gp) is given by the action of
¢ € C2(Gy), where ¢(g) = o(g™").

Proof: This is a direct computation: for f, F € L?(ZTG\Gy), by properties of Gelfand-Pettis integrals,

(p-f,F) = </C;Aso(g)g~fdg, F> = /GAcp(g) (9-f, F)dg = /GAsO(g) (f,g7'-F)dg

because the right translation action of G, is unitary:

lg-f, F) = / f(zg) F(@) de = / f(x)Flag N de = (f, ™" F)
ZHGi\Gy Z+G\Gp
by changing variables. This gives

(p- [, F) = <f» /G @g‘l-FC@ = <f/G so(g‘l)g-ng> = (f, ¢ F)
A

A

by replacing g by ¢~ !. ///
In the four earlier purely archimedean examples, we only considered automorphic forms invariant under
right translation by the standard compact subgroups. It is reasonable to consider comparable requirements
here, for simplicity possibly requiring right K,-invariance for all places v. It is also reasonable to relax this
condition to requiring right K,-invariance almost everywhere, that is, at all but finitely-many places.
A somewhat relaxed version of Kjy-invariance, to cope with the finitely-many places where right K-
invariance is not required, is K -finiteness of a function f on Gy or ZTGp\Gy or other quotients of Gy,
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2. The quotient Z+GLy(k)\GLa(A)

namely, the requirement that the vectorspace of functions spanned by {x — f(zh) : h € Ka} is finite-
dimensional. At the extreme of K-invariant f, this space is one-dimensional. [19]

[2.4.2] Lemma: For v non-archimedean, K,-finiteness is equivalent to invariance under some finite-index
subgroup K’ C K,.

Proof: Let f be in a topological vectorspace V on which G, acts continuously. For f invariant under K’, the
collection of translates of f under K, is finite, given (with possible redundancy) by g- f for representatives g
for K,/K’. On the other hand, when the collection of all right translates of f by K, is a finite-dimensional
(complex) vectorspace F' C V, the map K, — Autc(F) is a continuous group homomorphism p to some
GL,(C). Given a neighborhood U of 1 € GL,(C), there is a small-enough neighborhood U’ of 1 € K,, such
that p(U’) is inside U. In fact, we can take U’ to be a subgroup, for example, {g = 13 mod w!'} for varying
n. Then p(U’) is a subgroup of GL,(C) inside U. Granting for a moment the no small subgroups property
of real or complex Lie groups, that a sufficiently small neighborhood of 1 contains no subgroups except {1},
it must be that p(U’) = {1}. Since K, is compact and U’ is open, the cover of K, by cosets of U’ has a
finite subcover, so U’ is of finite index in K,. The proof is complete upon proof of the no small subgroups
property, following. ///

[2.4.3] Claim: GL,(C) has the no small subgroup property, that a sufficiently small neighborhood of 1
contains no subgroup larger than {1}.

Proof: For an n-by-n complex matrix z, let |x| be the operator norm

x| = sup |z -] (where |(vy,...,v,)] = \/|vl|2+...+|vn|2)
veCn:|v|<1

With r > 0 small enough so that > ,., r¢/0! < 1+ r, the matrix exponential z — e is a bijection from
E, = {z : |z| < r} to a neighborhood of 1 € GL,(C). We claim that U = {e” : x € E, 5} contains no
subgroup other than {1}. Given 0 # x € E, 5, thereis 1 </ € Z such that £-x € E,. ) but ({+1)-x € E, /5.
Then £-x € B3, but ((+1) -2 & E,/5. Still, ((+ 1) -2 € E,, so by the injectivity of the exponential on
E, e* ¢ U. /]

Unsurprisingly, it turns out that K-finite functions on Z+Gi\Gy are better behaved than arbitrary
functions. Of course, most f € L%(Z+G\Gy) are not K-finite.

For non-archimedean v, the spherical Hecke operators for G, are the integral operators given by left-and-
right K,-invariant ¢ € C2(G,), also denoted C?(K,\G,/K,). Since K, is open, such functions are locally
constant: given © € G,, p(zh) = p(z) for all h € K, but K, is a neighborhood of . Then the compact
support implies that such ¢ takes only finitely-many distinct values. Thus, the associated integral operator
is really a finite sum. Nevertheless, expression as integral operators seems to explain the behavior well.

[2.4.4] Claim: The action of spherical Hecke operators attached to ¢ € G, stabilizes K ,-invariant vectors
f in any continuous group action G, x V' — V for quasi-complete, locally convex V.

Proof: Granting properties of Gelfand-Pettis integrals, this is a direct computation: for f € V and h € K,

h~(<p~f):h‘/ @(g)g'fdg:/gh~(<p(g)g~f)dg:/Gw(g)hg'fdg:/ e(h™'g)g- fdg

v v Gy

by replacing g by h~1g. Since ¢ is left K,-invariant, this is just ¢ - f again. ///

[2.4.5] Claim: For v archimedean or non-archimedean, the spherical Hecke algebra C2(K,\G,/K,) with
convolution is commutative.

Proof: Gelfand’s trick is to find an involutive anti-automorphism o of G,, that is, ¢ — ¢ such that
(gh)? = h?g” and (¢g?)? = g, stabilizing double cosets for K, that is, using the Cartan decomposition [2.1],
such that (K,mK,)’ = K,mK, for all m € M,. Here, transpose g° = g' is such an anti-automorphism,
since we have a Cartan decomposition G, = K,M,K,, K, is stabilized by transpose, and the diagonal

(191 I the simplest example, Fourier series on the circle T, smoothness is equivalent to rapid decay of Fourier
coefficients, while T-finiteness is equivalent to having only finitely-many non-zero Fourier coefficients.
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subgroup M, of G, is fixed pointwise by transpose. Then for ¢ in the spherical Hecke algebra, with
g = kymks in Cartan decomposition,

©(g7) = @ksm?k]) = p(m?) = @(m) = p(kimk2) = ¢(g)

Then the commutativity is a direct computation:

(p*xY)(z) = (p*)(27) = / o(g) (g~ a%) dg = /G e(g”7) (g~ 27)7) dg

v

:/ o(g7) (x(g7)™") dg :/ o(g9)(zg™") dg
a,

v

1

by replacing g by ¢g°. Then replace g by g~ 'z, and then by ¢—!, to obtain

(o *)(@) = / o(gz) ¥(g™) dg = /G o™ 2)(g) dg = (% o))

GU

as claimed. /]

It is easy to see that the spherical Hecke algebra is stable under adjoints. Thus, it is plausible to ask
for simultaneous eigenvectors for the spherical Hecke algebra. That is, for f € L?(Z+G}\Gy), we might
additionally try to require that f be a spherical Hecke eigenfunction at almost all non-archimedean v, and be
an eigenfunction for invariant Laplacians or Casimir at archimedean places. However, in infinite-dimensional
Hilbert spaces there is no general promise of existence of such simultaneous eigenvectors.

2.5 Decomposition by central characters

We have seen that ZTG)\Gy has finite invariant volume, while G\Gp does not. The further quotient
ZpGp\Gp certainly has finite invariant volume.

Functions on Z, Gy \Gy are automorphic forms (or automorphic functions) with trivial central character,
since they are invariant under the center Z, of G,. Such automorphic forms give a reasonable class to
consider, but we can treat a larger class with little further effort. Namely, the compact abelian group
Zp|Z% 7y ~ J' kX, being a quotient of the center Z, of Gy, acts on functions on Z,Gj\G, in a fashion
that commutes with right translation by Ga. In particular, the action of Z,/Z%Z); commutes with the
integral operators on G, for v < oo, and with the Casimir or Laplacians on G, at archimedean places.

Thus, for each central character w of Zy/Z*Zy, we can consider the space L?(ZTG\Gy,w) of all left
Z T Gg-invariant f on G such that |f| € L?(ZyGr\Ga) and f(zg) = w(a) - f(g) for all z € Z.

[2.5.1] Claim: L?(Z1Gp\Gy) decomposes by central characters:

L*(ZTGy\Gy) = completion of @L2(Z+Gk\GA7w)

Proof: The argument applies to any compact abelian group A acting on a Hilbert space V by wunitary
operators, meaning {a - v,a - w) = (v,w) for all @ € A and v,w € V. For a character w of A, let V,, be the
w-eigenspace:

Vo ={veV:ia-v=w(a)- v, foralaec A}

For w # W', V,, and V,,» are orthogonal: with a € A such that w(a) # w'(a) and v € V,,, v/ € V,/,

N = — {g-v.0) = 1 Ua_lvl = 1 vw’a_lvl
<U7U> - w(a)< ’ > OJ(G,)< I > OJ((Z)< ’ ( ) >
_ @ ety - @

- w(a) < ’ ( ) > w(a) < ’ >

giving orthogonality.



2. The quotient Z+GLy(k)\GLa(A)

Give A an invariant measure with total measure 1. First, [, w(a) ™' a - v da exists as a Gelfand-Pettis
V-valued integral, so maps V' — V continuously, and in fact maps to V,,: using the commutativity of the
integral with continuous maps, for b € A,

b [ w)ta-vda = w(a) ™ ba-vda = wb™a)a-vda = wb) | wa) ta-vda
A A A A

Take v # 0 in V. The scalar-valued function a — (a- v, v) is continuous on A, and, since (1-v,v) = |v|*> # 0,
is not identically 0. By [6.11], L?*(A) is the completion of the direct sum of the one-dimensional spaces of
functions C - w as w ranges over characters. Thus, in L?(A),

0 # (av,v) = ZAw(b)_1<vaU> db-w(a) = Z</Aw(b)_1bvda, v> w(a)

Thus, not all the coefficients on the right-hand side can be 0, so the projection of non-zero v € V to some
V., must be non-zero. Thus, the completion of the sum of the V, is all of V. ///

2.6 Discrete decomposition of cuspforms

Automorphic forms or automorphic functions are functions of various sorts on G \Gp, with G, = GLo(k),
Gp = GL2(A). Here, because Gi\G has infinite volume, it is reasonable to look at the further quotient
Z+Gi\Gy, for example. Naturally L2(Z TG \Gy) is the space of square-integrable automorphic forms. The
constant term of an automorphic form f is

erf(g) = /N L, Sy an
EAYVA

[2.6.1] Claim: Constant terms are functions on Z+Ny M;\Gy.
Proof: By changing variables, we can see that g — ¢pf(g) is a left Ny-invariant function on Gy :

epf(n’z) = / fn-n'z)dn = / f((nn')-z)dn = / f(n-x)dn (for n’ € Ny)
Ng\Ny Ni\Ny Ni\Np
Similarly, for m € My,
cpf(mz) = / fn-mx)dn = / fim-m™tnm-z)dn = / fm™tnm - x) dn
Ni\Ny Ni\Ny Ni\Np

since f itself is left Mj-invariant. Then replacing n by mnm™! gives the expression for c¢pf(g), noting that
conjugation by m € M stabilizes Ni, and by the product formula the change of measure on Ny is trivial.
Invariance under Z* is even easier. ///

A cuspform is a function f on ZTGy\G, meeting Gelfand’s condition [20] cpf = 0. When f is merely
measurable, so does not have well-defined pointwise values everywhere, this condition is best interpreted

(20] 1y fact, the Gelfand condition for f on Gi\Gp to be a cuspform is that fNQ\NQ f(ng)dn = 0 as a function
EVA

of g € Gy for the unipotent radical N@ of every parabolic Q. For GLy(k), proper parabolic subgroups can be
characterized as stabilizers of lines in Icz, and their unipotent radicals as pointwise-fixers of lines. Since GLa(k) is
transitive on lines, all proper parabolics (and their unipotent radicals) are conjugate. Thus, vanishing of one constant
term (as a function on Gy ) implies vanishing of every constant term, by a change of variables in the integral: for
h € GLa(k),

/ f(ng)dn = / f(hnh™tg)dn = / fn-h~tg)dn =0
hNkhfl\hNAhfl Nk\NA Nk\NA

using the left GLa(k)-invariance. Thus, vanishing of the constant term along N implies vanishing along every
conjugate of N.
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distributionally, as is clarified in the next section, using pseudo-Eisenstein series. The space of square-
integrable cuspforms is
LYZTG\Gy) = {f € L*(ZTGx\Ga) : cpf = 0}

The fundamental theorem proven in [7.1-7.7] is the discrete decomposition of spaces of cuspforms. A simple
version addresses the space

LA (ZTGy\Gp/Ky,w) = {right-K-invariant square-integrable cuspforms with central character w}

where Kp = [[, <. Kv. This space is {0} unless w is unramified, that is, is trivial on Zy N Ky, since
K p-invariance implies Z, N Ky-invariance, and we also require Z, ,w-equivariance.

Since the spherical Hecke algebras act by right translation, and the Gelfand condition is an integral on
the left, spaces of cuspforms are stable under all these integral operators. It is less clear a priori how they
behave with respect to the invariant Laplacians [4.2].

[2.6.2] Theorem: L2(ZTGy\Gao/Ky,w) has an orthonormal basis of simultaneous eigenfunctions for
invariant Laplacians A, at archimedean places, and for spherical Hecke algebras C2(K,\G,/K,) at
non-archimedean places. Each simultaneous eigenspace occurs with finite multiplicity, that is, is finite-
dimensional. (Proof in [7.1-7.7].)

In contrast, the full spaces L?(ZT G \Ga /Ky, w) do not have bases of simultaneous L?-eigenfunctions: as
in [2.11-2.12], the orthogonal complement of cuspforms in L?(Z+ G} \G /Ky, w) mostly consists of integrals
of non- L? eigenfunctions for the Laplacians and Hecke operators, the Eisenstein series E, introduced just
below in [2.8].

For spaces of automorphic forms more complicated than being right K, -invariant for every place v,
there is generally no decomposition in terms of simultaneous eigenspaces for commuting operators. The
decomposition argument in [7.7] directly uses the non-commutative algebras of test functions on the groups
Gy:

compactly-supported smooth functions for v archimedean
Cx(Gy) =
compactly-supported locally-constant functions for v non-archimedean

Both cases are called smooth. Letting right translation be Ry f(z) = f(zg) for x,9 € G,, the action of
p € CX(G,) on functions f on Gi\Gy is

o-f = /G ©(g9) Ryf dg

This makes sense not just as a pointwise-value integral, but as a Gelfand-Pettis integral when f lies in any
quasi-complete, locally convex topological vectorspace V' on which G, acts so that G, x V — V is continuous.
Such V is a representation of G,. The multiplication in C2°(G,,) compatible with such actions is convolution:
associativity ¢ - (¢ - f) = (px ) - f.

Here, we are mostly interested in actions G, x X — X on Hilbert-spaces X. Such a representation is
(topologically) irreducible when X has no closed, G,-stable subspace. The convolution algebras C2°(G,) are
not commutative, so, unlike the commutative case, few irreducible representations are one-dimensional. In
fact, typical irreducible representations of C°(G,) turn out to be infinite-dimensional. Fortunately, there
is no mandate to attempt to classify these irreducibles. Indeed, the spectral theory of compact self-adjoint
operators still proves [7.7] discrete decomposition with finite multiplicities, for example, as follows.

For every place v, let K| be a compact subgroup of G, and for all but a finite set S of places require that
K! = K,, the standard compact subgroup. For simplicity, we still assume K| = K, at archimedean places.
Put K’ =[], K. Let w be a central character trivial on Zy N K, so that the space L2(ZTG,\Gp/K',w)
of right K’-invariant cuspforms with central character w is not {0} for trivial reasons. For v € S, we have a
subalgebra C2°(K!\G,/K!) of the convolution algebra of test functions at v, stabilizing L2(ZT G \Gp/K',w).
[2.6.3] Theorem: L2(ZTGi\Gy/K' w) is the completion of the orthogonal direct sum of subspaces, each
consisting of simultaneous eigenfunctions for invariant Laplacians A, at archimedean places, of simultaneous
eigenfunctions for spherical Hecke algebras C?(K,\G,/K,) at non-archimedean places v ¢ S, and irreducible
C*(K/\G,/K),)-representations at v € S. Each occurs with finite multiplicity. (Proof in [7.1-7.7].)

)
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The technical features of decomposition with respect to non-commutative rings of operators certainly bear
amplification, postponed to [7.2.18] and [7.7]. The notion of multiplicity is made precise in [9.D.14]. In
anticipation,

[2.6.4] Theorem: L2(ZTGi\Gp/Kjp,w) is the completion of the orthogonal direct sum of irreducibles V
for the simultaneous action of all algebras C2°(G,). Each irreducible occurs with finite multiplicity. (Proof
in [7.7].)

[2.6.5] Corollary: L2(Z+G}\Ga,w) is the completion of the orthogonal direct sum of subspaces, each
consisting of simultaneous eigenfunctions for invariant Laplacians A, at archimedean places, of simultaneous
eigenfunctions for spherical Hecke algebras C?(K,\G,/K,) at non-archimedean places v ¢ S, and irreducible
C*(K/\G,/K,)-representations at v € S. Each occurs with finite multiplicity. ///

Again, the various sorts of orthogonal complements to spaces of cuspforms are mostly not direct sums of
irreducibles, but are integrals of Eisenstein series, as we see below.

2.7 Pseudo-Eisenstein series

Returning to the larger spaces L2(ZTGp\Gp/Kp) or L2 (ZTGp\Gp/Kp,w) or L2(ZTGE\Gp/K',w), we
want to express the orthogonal complement of cuspforms in terms of simultaneous eigenfunctions for invariant
Laplacians at archimedean places, and for spherical Hecke algebras at finite places when possible. To consider
larger, non-commutative algebras of operators, the more complicated notion of irreducible representation
must replace the notion of simultaneous eigenvector. Therefore, we emphasize the commutating operators.
As it happens, the pseudo-FEisenstein series here and the genuine Eisenstein series in the next section avoid
some of the subtleties that cuspforms may require.

To exhibit explicit L? functions demonstrably spanning the orthogonal complement to cuspforms, we will
recast the Gelfand condition that the constant term vanish as a requirement of vanishing as a distribution
on ZT Ny Mp\Gy, and give an equivalent distributional vanishing condition on ZT G} \Gjy.

Vanishing as a distribution is that

/ p-cpf =0 (for all p € CX(ZTNyM\Gy))
Z+Np Mp\Gy

where C°(Z TNy M;\Gy) consists of compactly-supported functions on that quotient which are smooth
in the archimedean coordinates and locally constant in the non-archimedean coordinates. Smoothness of
such ¢ can be described more precisely in a fashion that makes clearer the non-interaction of this property
with taking a quotient on the left. Namely, smoothness for archimedean places should mean indefinite
differentiability on the right with respect to the differential operators coming from the Lie algebra, as in
[4.1], and, given the compact support, (uniform) smoothness for non-archimedean places should mean that
there exists a compact, open subgroup K’ of [], ., K, under which ¢ is right invariant.

As mentioned briefly in the previous section, the nature of cp f for f merely L? is potentially obscure. For
example, it is not likely that cpf € L?(ZT Ny Mp\Gy). Instead, for general reasons [6.1], C2(ZTG\Gy)
is dense in L?(ZTGy\G,) in the L? topology, and for general reasons [6.1] the left action of Niy\Ny on
the Fréchet space C°(ZTNp\Gp) is a continuous map (Ni\Np) x C°(ZTN\Ga) — C°(ZTNy\Gy), so
cpf exists as a C°(ZT Ny\Gp)-valued Gelfand-Pettis integral [14.1]. Then one sees directly that cpf is
left Mj-invariant. For such f, the integral of cpf against ¢ € C°(ZTNyM\Gy) is the integral of a
compactly-supported, continuous function. There is no immediate necessity of elaborating a general notion
of distribution on p-adic groups or adele groups, since cuspforms are ordinary functions, essentially having
pointwise values.

For ¢ € C°(ZT Ny Mp\G}), the corresponding pseudo-FEisenstein series is

Vo(g) = > o(v-9)

YEPL\G
Convergence is good:
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[2.7.1] Claim: The series for a pseudo-Eisenstein series W, is locally finite, meaning that for g in a
fixed compact in Gy, there are only finitely-many non-zero summands in ¥,(g) = Zv ©(vg). Thus,
U, € CX(ZTGL\Gy).

Proof: Grant for a moment that there is compact C' C G such that the image of C' in the quotient contains
the (compact) support of ¢. Fix compact C, C G in which g is constrained to lie. A summand ¢(~g) is non-
zero only if vg € Z+ Ny M, - C, which holds only if vy € ZT Ny My, -C-g~ 1, s0v € Gy N (ZTNyM;,-C-C;1).

In the quotient Z T Ny My \Gy, the image of Gy, is Py, \Gy, is closed and discrete [1.5.3], while the continuous
image of the compact set C'-C; ! is compact. Thus, left modulo Z+ Ny M, that intersection is the intersection
of a closed discrete set and a compact set, so finite, as in [1.5.3]. Therefore, the series is locally finite, and
defines a smooth function on ZTG,\Gx. Summing over left translates certainly retains right K s-invariance.

Similarly, ¥, has compact support in Z*G\Gp: for a summand ¢(vg) to be non-zero, it must be that
g € Gy - C. The image G\ (G, - C) is compact, being the continuous image of the compact set C.

To prove the existence of C, let q : G — ZT Ny M;\G 4 be the quotient map. Let U be a neighborhood
of 1 € G having compact closure U. For each g € Gy, gU is a neighborhood of g. The images q(gU) are
open, by the characterization of the quotient topology. The support spt(y) is covered by the opens ¢(gU),
and admits a finite subcover q(g1U),...,q(g,U). The set C = ;U U...U g,U is compact, and its image
covers the support of . ///

[2.7.2] Claim: Square-integrable cuspforms L2(Z TG \G,) are the orthogonal complement in L?(Z TG \Gp)
to the subspace spanned by the pseudo-Eisenstein series ¥, with ¢ € C°(ZTNyM;\Gy). In particular,
the pseudo-Eisenstein series W, fit into an adjunction

/ p-cpf = / W, - f (for f e L*(ZTGi\Gy))
ZH Ny Mi\G ZHG\Gy

Proof: As noted above, for general reasons [6.1] C2(ZTG\Gy) is dense in L2(Z+TG,\Gp), and we consider
f € C(ZTGL\Gy). This allows unwinding as in [5.2]:

/Z+NAMk\GAso.CPf = /Z+NAMk\cA <x>(g)(/Nk\NA f(ng) dn) dg = /Zwm\cA o(g) f(g) dg

Winding up, using the left Gg-invariance of f and N M}y = Py,

RICEULE > seaetegds = [ s (3 etm)d

ZTGR\GA yeP\Gy YEP\G

The inner sum in the last integral is the pseudo-Eisenstein series attached to ¢. By Cauchy-Schwarz-
Bunyakowsky;,

’ f@’ = ‘ f\l'w‘ < ‘f|L2 : ‘\I’</>|L2
Z+P\Gy Z+Gi\Gy

which proves that the functional f — fZ‘*‘Pk\GA foon C2(ZTGL\Gy) is continuous in the L? topology, so

extends by continuity to a continuous linear functional on L?(Z+G}\Gy). Indeed, this inequality asserts
continuity of f — cpf as a linear map from L?(Z+ G \G,) to distributions on Z+ Ny M \Ga with the weak
dual topology as in [13.14]. ///

Similarly, with
C(ZTNAMR\Gy,w) = {p € CX(ZTNAM\Gy) : p(29) = w(2) - p(g), for all z € Z, g € G}

we have the comparable assertion, now keeping track of complex conjugations:

[2.7.3] Claim: Square-integrable cuspforms L2(Z*G\Ga,w) with central character w are the orthogonal
complement in L?(ZTGp\Ga,w) to the subspace spanned by the pseudo-Eisenstein series U, with ¢ €
C(ZTNpoM\Gy,w). The pseudo-Eisenstein series ¥, fit into an adjunction

/ Goenf = / T, f (for f € L2(Z+Gi\Gp,w))
Z+ Ny MGy ZHG\Gy
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(Formation of pseudo-Fisenstein series respects central characters.) ///

It is useful to understand simpler sub-families of pseudo-Eisenstein series, toward their spectral
decomposition in terms of genuine Eisenstein series below in [2.11,2.12,2.13].

With

m 0
Ml = {( 01 m2>:m1,m2€J, \m1|:1:|m2|}

the group Mp\M?! is compact, because J'/k* is compact [2.A]. Certainly C°(ZTNyM;\G,) is inside
L?(Z+NyMp\Gy), so such functions ¢ admit decompositions in L?(ZT Ny M;\Gy) by characters x of the
compact abelian group My\M"! acting on the left, as in [6.11]. The integral expressing the x*" component

©X(g) = /M " x(m)~" ¢(mg) dm

is a Gelfand-Pettis integral converging in C°(ZT Ny M \G,) for any quasi-complete [14.7] locally convex
[13.11] topology on this space. That is, the Fourier components ¢X of a compactly-supported smooth
function along M} \M*! are again compactly-supported smooth, and their sum converges to the original in
L*(Z* Ny Mp\Gp), at least. The support of ¢X is worst (M \M?*) x spt ¢.

[2.7.4] Lemma: A function f € L?(ZTG\G,) has constant term cpf integrating to 0 against ¢ in
C(ZT Ny M \G,p) if and only if cpf integrates to 0 against every Mj\ M '-component X of .

Proof: The technicality is that there is no claim that constant terms of functions in L2(Z+tG\G,) are in
L*(Z* Ny Mg\Gp). Fortunately, this is not an obstacle: as earlier, it suffices to consider f € C2(ZTGr\Gy),
so cpf € C°(ZT NyMi\Gp). With u the characteristic function of (Mj\M?!) x spt ¢, the truncation u - cp f
is in L2(ZT Ny M;\G}), and truncation does not alter the integrals against pX or . Letting (,) be the inner
product in L*(ZT NpoMp\Gp), since ¢ = >- X in L*(ZT Ny M\Gy),

<CPf7(p> = <U'Cpf, <p> = Z<U'CPfa 90X> = Z(CPf7 (pX>

X X

giving the assertion. ///
For central character w and character y extending w to My\M?, define a space of functions on G by 21]
Jy = {p € CX(ZTNoAM\Gy) : p(mg) = x(m) - ¢(g) for allm € M*, g € Gu}

[2.7.5] Remark: In [2.13.5] we will show that pseudo-Eisenstein series made from J, and J,, with distinct
characters x’ # x and x’ # x* are mutually orthogonal.
[2.7.6] Corollary: Square-integrable cuspforms L2(ZTGp\Ga,w) with central character w are the

orthogonal complement in L?(ZTGp\Ga,w) to the subspace spanned by the pseudo-Eisenstein series v,
with ¢ € Jy, as x ranges over characters of M I extending w.

Proof: The lemma shows that it suffices to form pseudo-Eisenstein series from the M\ M!-components (X,
and each X is in J,. ///

[2.7.7] Claim: For any compact subgroup K’ C Kj, right K’-invariant square-integrable cuspforms
L2(Z+tGE\Gp/K') are the orthogonal complement in L*(Z+Gy\Gyx/K') to the subspace spanned by the
pseudo-Eisenstein series ¥, with ¢ € C°(NyM\Gp/K').

Proof: The point is that for f right K/-invariant, cpf remains K -invariant, so we need only test against
test functions ¢ with the same right K/ invariance as f, at all places v, because integration against more
general ¢ has the same effect as integrating against right K -invariant ones: giving K total measure one

for convenience,
/ ¢-6pf=/ @(g)(/
Z+Np Mp\Gy Z+ Ny Mp\Gy K

[21] phis space Jy is an instance of an induced representation, but we use no properties of such. Rather, the natural

cpf(gh) dh) dg

’
v

appearance of this function space explains attention to induced representations.
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/ crflghe(g)dgan = [ [ cr 1(g)p(ah™) dg dh
Z+ Ny Mp\Gp 1 JZH Ny MGy

= /Z+NAM,€\GA CPf(!J)(/K

as claimed. ///

Right K,-invariance requires that x|z, be right (M, N K,)-invariant, so x is unramified at v, as is w. That
is, the set of right K,-invariant elements of J,, is just {0} unless x is unramified at v.

- ).

’
v

plgh™")dh) dg

’
v

[2.7.8] Claim: Fix a central character w, and character x of M;\M?! extending w. Fix a place v. The
space of right K -invariant pseudo-Eisenstein series ¥, with ¢ € J, is stable under the invariant Laplacians
for archimedean v, or under spherical Hecke operators for non-archimedean places v: A ¥, = Ea,, for
archimedean v and - ¥, = E,,., for n € C°(K,\Gy/K,) for non-archimedean v.

Proof: Since the Laplacians A, commute with the group action, the effect of A, on a pseudo-Eisenstein
series is reflected entirely in its effect on the data: the sum is locally finite, so interchange of the operator
and the sum is easy, giving

Av\llgo = A, Z poy = Z Av(@O'Y) = Z (Avgo)o’y = EAMO
AET\T YET o \T YET o \T

Similarly, the action of the spherical Hecke algebra is on the right, while the winding-up to form a pseudo-
Eisenstein series is on the left:

nW, =n- Y poy= Y n-(poy) = >, (-g)oy = En,

HET o \T' NET o \I' FET o \T'

as claimed. ///

As a simple special situation, consider cuspforms f right invariant under the standard compact subgroup
K, for all v. Thus, we can invoke the Iwasawa decomposition G, = P,K, everywhere locally, and the
constant term cpf is a function on

ZENAMNG /Ky =~ ZYNAM\NAMyKy /Ky =~ ZTM\My/(My N Ky)

The quotient Z+ M\ M, is the quotient of k*\J x k*\J by a diagonal copy of the ray R* = §(0, +00), as
above, thus, with representatives of the form

R+ x JU/k* 0
0 Itk

Thus, for fixed central character w and character y on My\M?! extending w, a test function ¢ on
ZYNpAM\Gp/Kp =~ ZT M\ My that is in J, is entirely specified by a test function ¢., on the ray 6(0, co):

fa)m = pn)xtm) e, = ("9 ) anamenry>0)
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2. The quotient Z+GLy(k)\GLa(A)

2.8 Eisenstein series

We can attempt to make a pseudo-Eisenstein series ¥, which is an eigenfunction for an invariant Laplacian
A, (or Casimir operator) at archimedean v, or for Hecke operators at non-archimedean v, by using a right
K ,-invariant ¢ which is such an eigenfunction. However, we already saw in [1.9] that left NV,-invariant right
K ,-invariant eigenfunctions on G, with trivial central character are

ZyNy (g 2) K, — y° (for y > 0, for suitable s € C)

with eigenvalues s(s — 1) (up to normalization). That is, these are characters on M,,, and are not compactly
supported modulo Z,. At non-archimedean places, a parallel computation, but now of the effect of spherical
Hecke operators, gives a parallel result, illustrating the constraints on eigenfunctions for spherical Hecke
algebras:

[2.8.1] Claim: Let f be a function on N,\G,/K,, with (unramified) central character w,, which is an
eigenfunction for the spherical Hecke algebra C°(K,\G,/K,). Then there is a character x,, on M, extending
w, such that f is a linear combination of two Hecke eigenfunctions of the special form fi(nmk) = x,(m)
and fo(nmk) = xo,(m)~! - w(m)|my/msl|, for n € N,, m € M,, k € K, and character x, on M, extending
Wy ON Zy.

Proof: By the Iwasawa decomposition, the right K,-invariance and left N,-invariance of f, and central

¢
“ 0). We need just a single Hecke

character, determine f completely by its values on elements g¢ = < 0 1

operator, the one attached to the characteristic function 7 of the set C' = K, (Tg (1)> K, Letn-f=M\f

for A € C. Then
N F9) = (- f)lg) = / n(h) f(gh) dh = /C f(gh) dh

v

By the p-adic Cartan decomposition [2.1], C' is exactly the collection of two-by-two matrices with entries in
0, and determinant in wo with local parameter w = w,. By p-adic Iwasawa decomposition [2.1], C' is the
disjoint union of right K, -cosets

co (3 w7 e

b mod w

Giving K, measure 1 and letting ¢, be the residue field cardinality,

vt = [raman = (1) (; g)>+;f<(ff D(E )
(5 0 (70 ) e (7 ) s (0 Y)
= w(@) - flo") + - flg")

(560) - (=) (i)

The eigenvalues of that two-by-two matrix are

{a’ﬂ} — {Ai— V/\j%’}

2q

This gives the recursion
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with eigenvectors ( ?) and (f) Thus, there are two such eigenfunctions, both with value 1 at 1:

filg") = o f2(g") = B

extended to My to have central character w. That is, on My, these two functions are characters. Since
a- 8 =w(w)/q, the two characters are related as asserted. ///

This last claim shows the impossibility of making Hecke eigenfunction pseudo-Eisenstein series with ¢ in
C(ZT Ny M\Gy). However, it does illustrate a systematic device to make Hecke eigenfunctions:

[2.8.2] Claim: For non-archimedean v, any function f on G, of the form f(nmk) = x(m) for unramified
character xy on M, is an eigenfunction for the spherical Hecke algebra.

Proof: Let I, be the space of smooth functions f on G, with the property f(nmk) = x(m) - f(k) for all
n € Ny, me M,, and k € K,. [22] Here the smoothness means that, for each f, there is a compact open
subgroup K’ C K, such that f is right K'-invariant. Thus, by p-adic Iwasawa decomposition, I, is a colimit
of finite-dimensional spaces (compare [13.8]). The action of G, on I,, by right translation (g- f)(h) = f(hg) is
continuous, so 7 in the spherical Hecke algebra C°(K,\G/K,) acts by the integrated version of the action:

(n- (k) = / n(g) f(hg) dg

Gy

By changing variables in the integral, the action of such 7 preserves right K,-invariance. By p-adic
Iwasawa decomposition, the subspace of I, of right K,-invariant functions is one-dimensional, spanned
by f(nmk) = x(m) itself. Since this one-dimensional space is stabilized by the spherical Hecke algebra, this
f is inevitably an eigenfunction for the Hecke algebra. ///

We wish to decompose pseudo-Eisenstein series ¥, into A,-eigenfunctions and spherical Hecke algebra
eigenfunctions to the extent possible. We have already seen that we can take ¢ in the spaces J, of [2.7], for x
a character on M\ M?!. The previous two claims suggest taking this further: every character on Z+ M\ My
can be written in the form

vix tay-m — |y|° - x(m) (for a, = (5(0y) ?),andeMl,y>0)

for suitable complex s and character x on M;\M®. Let
I = {f € C¥(ZTNaAM\Gy) : f(nmg) = (v*x)(m) - f(g) for alln € Ny, m € My}

A genuine Eisenstein series Ey for f € I, is

Ei(g) = > fly-9) (for f € I )

’YEPk\Gk

One immediate issue is convergence: unlike pseudo-Eisenstein series ¥, where ¢ has controlled support,
the sum for Ef is not locally finite. Ignoring convergence for a moment, E¢ is genuine in the sense that
it is a spherical Hecke algebra eigenfunction at all but (at worst) finitely-many non-archimedean places,
since smoothness at finite places requires that f is right K'’-invariant for some compact open subgroup
K" = T],co0 K}, of T], <o Kv, and the product topology requires that K = K, for all but finitely-many
v < 00.

[22] s space Iy is an example of an unramified principal series representation of G, meaning that it is induced
from x(nm) = x(m) on P,, with x unramified. The previous two claims touch on the importance of principal
series representations in the application of representation theory of p-adic groups to automorphic forms. A strong
form of the generalization of these claims to a wide class of p-adic groups is in [Borel 1976], [Matsumoto 1977],
[Casselman 1980].
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The extreme, simplest case is that f € I, is right K,-invariant at all places v, that is, is spherical
everywhere locally. From all the Iwasawa decompositions for groups G,, up to a scalar there is a unique
such f, namely, f(nmk) = f(m) = (v*x)(m). The everywhere spherical Eisenstein series attached to an
unramified grossencharakter x is

Eox(9) = > f(r-9) (for f(nmk) = f(m) = (v*x)(m))

YEPL\G

[2.8.3] Claim: Assuming the series expression for the everywhere-spherical Eisenstein series FEj, is
convergent, it is an eigenfunction for the invariant Laplacians at archimedean places, and for the spherical
Hecke algebras at non-archimedean places.

Proof: Assuming convergence, the invariance of Laplacians and spherical Hecke operators under left

translation implies that we need merely check that the function f(nmk) = f(m) = Y(m) itself is an
eigenfunction. In [1.9] we saw the archimedean assertion, and the claim above proves the non-archimedean
assertion. ///

[2.8.4] Claim: Assuming the series expression for the everywhere-spherical Eisenstein series FEj ., is
convergent, its constant term is

cpEsy(znmk) = (V%) (m) + cs\ - (W 75x™)(m) (for 2 € Zt,n€ Ny,m € My, k € Kp)
" e 0 1
where x*(m) = x(wmw™"') with long Weyl element w = 1 0) and
A(2s —1,x1/x2) . my 0
oy = th —
Cs,x A(ZS, Xl/XQ) (Wl X 0 Mo Xl(ml)XQ(mQ))

where A(s,x1/x2) is the Hecke grossencharacter L-function completed by multiplying by the appropriate
Gamma factors.

Proof: Via the Bruhat decomposition G = Py, L PywNg,
Pk\Gk = Pk\Pk I_IPk\Pkka ~ {1} L wNy

The small Bruhat cell P produces the first summand in the constant term:

[ % stmedn = [ gy = g9 [ van
Ni\NA e Py Ne\Ny Nie\Ny
The large Bruhat cell PrwNy gives
/ > flyg) / > flwyng) f(wng) dn
N N

k\NA ~yEwWN k\NA YEN NA

by unwinding, as in [5.2]. Since cpf will be left Ny-invariant and right K 4-invariant, it suffices to evaluate
this integral on g = m € My. Then

flwnm) dn = fwm -m™tnm) dn = flwm - n) v(m) dn
Na Na Na
by replacing n by mnm™!, with v(m) resulting from change-of-measure. This is
flwmw™ -wn) v(m) dn = v(m)v®(wmw ™) x(wmw™ / f(wn)
Na
= v(m)" S x(wmw™') - f(wn) dn
Na
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Since the right Ka-invariance is preserved by integrating on the left, this is (unique up to constant) the
spherical function in I;_ . That normalization constant is very significant, being a ratio of L-functions,
as follows.
Let fo(nmk) = (vSx.)(m) be the normalized spherical vector on G,,, where v, is the v'" local factor of
VX,
(m1 0 ma) — [m1/mal® x1(m1)x2(mz) (on M)

The integral giving the normalizing constant factors over primes:

(wn) dn = H /N fo(wn) dn

Na v<o00
To evaluate the v*" factor, we must determine the local Iwasawa decomposition of wn for n € N,. At k, ~ R,
as in [1.3]
—1 * =z _=1_
w<1 x>_<0 1>_(¢1+7 )(ulﬁ m)
T
01 Lo 0 Vite?) \ i i
with that last matrix in SO2(R). Unramified unitary characters on kX ~ R* are of the form «,(y) = |y|*

for some purely imaginary it,. With |y|** = x1(y)/x2(y), the corresponding local integral is evaluated via
the standard trick [~ e~ ¢ dt/t = y~*T(s): first, with it, =0,

1 1 00 2 dt
. _ 1 -t —mt(14z®) 45 &7
/Rfv (wn) dn /R L dz W*SF(S)/O /]R{e t t

EEESION S t =T(s)

Replacing s by s — it,, the general unramified case is

—_—d -
T xz)s_m T 7Tf(sfm)r(s — itv)

1 _(S_itv_l)r _ .t'u _ 1
[ setonyan = [ il Pl(s — ity — 3)
R R (

Similarly, at k, ~ C, with trivial x1, x2,
1 x —1
(b= (01 - (m ' >.<¢lt'“"2 wﬂmz)
X
01 1w 0 V1t zf? Vi+z[2 /1422

With the normalization of local norms |t|c = |Nﬁ%t| for the product formula, up to measure constants the
local integral is

/f"(um) dn = /;d;ﬂ - #/Oo/e—m(mxﬁ) 425 dt
c”’ c (1+ |z]?)? m>1(2s) Jo Jr t

1 /00/ —mt—n|z|?) t2$—1 dt 7.[.—(23—1)11(28 — 1)
= - e —_— =
5728 J, Je 7 25T (23)

In the general unramified case, with x1(t)/x2(t) = |t|(ié” = [t|?**» | again there is a shift s — s — it,,.
At non-archimedean places, the Iwasawa decomposition has a different nature:

=t 1 1 0
e\ (01 (0 x)(i 1) for |x|, > 1
Yo 1)~ \1 2) ™ 1 0\/0 1 ; <1
0 1/\1 = or |z, <
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2. The quotient Z+GLy(k)\GLa(A)

There is a non-archimedean analogue of the Gamma trick: with ch the characteristic function of o,, with
multiplicative Haar measure giving 0 total measure 1,

[2.8.5] Lemma: .

1—qv

(for y € 0,)

/ ch(ty) ch(t) [¢]° dt —
Fo ly|~*
1—-qu

pp (for y & 0,)

Proof: For y € 0,, the integral becomes an Iwasawa-Tate local zeta integral

/ch ) |t]® dt = Z/ =310 = 1_
kX

v £>0 >0 1—q

For y & 0, replace t by t/y in the integral, producing the |y|, ® factor and then the integral just evaluated.

I

Returning to the evaluation of the non-archimedean local factor in the constant term, let

s = [ ehlem)cnie) ety @

v

emphasizing that it is multiplicative Haar measure. With trivial x1, x2, the lemma gives

/ fo(wn)dn = (1 —qv_zs)/ v(2s,z) dv = q % / / ch(tz) ch(t) [t|?* dxd*t
N, ko ko
= (1-¢q;%) / / ch(z) ch(t) |t|?>*~1 dax d*t

by replacing « by x/t. The integral in z is just meas (0,), which at k, unramified over the corresponding Q,
is reasonably taken to be 1. Thus,

) . 1 g, 1/(1— g0 > Y)
fo(wn) dn = (1—q, > / ch(t) [t|*~ ! a*t = = 52
., 5 ) Jy M e V(e

v

The adjustment for a general unramified character again shifts s to s —it,. The products over all places give
the indicated ratios of completed L-functions, apart from ratios of powers of the conductor, which correspond
to the additive measure normalization at ramified places. A ratio of a value and a shift only leaves a constant,
not immediately important here. ///

[2.8.6] Claim: For Re(s) > 1, the series expression for Ey with (continuous) f € I, , converges absolutely
and uniformly on compacts, to a continuous function on ZTGp\Gy.

Proof: The function f is dominated by the spherical vector, since |f(znmk)| = |(v*x)(m)| - |f(k)| and the
continuous function f is bounded on the compact K. Also, x has absolute value 1, so we may as well
take x trivial. And it suffices to treat s = o € R. Use the height functions h, on k2 and h on A%, and

mi 0 ) Also, v(m)~! dndm is left
ma2

n(g) = | det g|/h(v,9)?. In particular, n(znmk) = |my/ma| for m = ( 0

Haar measure dp on Py. Thus, it suffices to prove convergence of

> ontvg)” = Y. ldetygl” - h(veyg) > = |detgl” Y h(vevg) ">

YEPL\Gy, YEPL\Gy, YEPL\Gy,
By reduction theory [2.2], for compact C' C Gy, there are constants 0 < ¢ < ¢/ < 400 such that
c-h(v) < h(vg) < ¢ -hv) (for all g € C, for all primitive v € A?)
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s0
/

Mvovg) < ¢ - h(vyy) < e h(voryg") (for all g,¢" € C, for all v € Gi)
c

Thus, convergence of the series is equivalent to convergence of an averaged integral f o Es. By discreteness
of G in G, we can shrink C' so that, for v in Gy, if yC N C # ¢ then v = 1. Then

/CE / > | detyg|7h(voyg) > dg = Idetgl"/ h(vog) 2 dg

"/GPk\G Pk\Glc'C

Let p be the infimum of h(v) over non-zero primitive v in A%, From reduction theory [2.2] this infimum is
attained, so p > 0, and ¢- u < h(v,yg) for all g € C and v € G, and Gy, - C' is contained in a set

Y = {g€Gp:h(veg) > c-pand c; < |detg| <ea} (with 0 < ¢; and ¢3 < +00)

The set Y is right K-stable, since h is K g-invariant. Using Iwasawa decompositions, with left Haar measure
dp on Py,

/ | det g|° h(vog)72” dg < /| det g|” h(vog)72” dg = / | det p|” h(vop)fzd dp

The set Y is left Ny-stable, and the induced measure on the compact quotient Ni\Ny is finite, so up to a
constant the integral is

| det | h(vem) =27 v(m)~" dm = / v(m)” " dm

/Mk:\(MAﬂY) Mi\(MyNY)

From
m 0
MynY C {( 01 m2> my/ma| > ep, e1 < Imima| < e}

and compactness of J!/k*,

Mp\(My NY) = compact x {(5(31) 6(1?/2)>} (with yo > cp and ¢ < 192 < ¢2)

c2/y2 o—1 ( d
/ v(m)°tdm = / dm - / / yl 1 4h2
M\ (MyNY) M\ (M'NY) c1/y2 Y1 Y2

Replacing y1 by y1/y2, the latter elementary integral becomes

o=1 dy, d o d
/ / yl 292 _ (constant) / (y2)—o a2
cp yl y2 Ccl y2

which converges for ¢ > 1. This also proves the uniform convergence on compacts. ///

Thus,

We also want moderate growth on Siegel sets: forn € Ny, k € Ky, z € Z1, and m = a,,-m’ with m’ € M?,

Re(s)

|E;(znmk)| <o y (on &;,¢, implied constant depending on ¢, C')

And we want convergence to a smooth function:

[2.8.7] Claim: The series for Es converges in the C* topology for Re(s) > 1, and produces a C* moderate-
growth function on ZTGy\Gyp. (Proofs in [2.B], [11.5].)

As in [13.5], the idea of the archimedean aspect of the C'™ topology is that it is given by the collection
of seminorms given by sups on compacts of all derivatives, for example left-G-invariant derivatives on
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2. The quotient Z+GLy(k)\GLa(A)

Goo = Hv|infty G, from the Lie algebra, preserving left Gi-invariance, and stabilizing a useful class of
Eisenstein series. The non—archimedean smoothness is simpler, being right invariance under some compact
open subgroup of K’ C [], .., Ky, which leads to taking an ascending union (colimit) over such K.

The everywhere spherical computation of constant terms applies to computation of local components of
cpf at good primes for general f € I, ,, that is, places v where f is right K,-invariant and x is unramified.
However, at the other, bad, primes for f € I, where f is right K -invariant only for K, C K, of high
index, the local integrals

f — (g—>/N flwng) dn)

are naturally more complicated. Still, these maps visibly commute with the right translation action of G,
and have predictable left-equivariance under M,, for the same reason as in the simpler computation:

[2.8.8] Claim: The constant term of the Eisenstein series Ey for f € I, is
cpEp = [+ Csx(f) (with Csx f(g fN (wng) dn)

The map Cs  is a Gy-map in the sense that g - (Cs f) = Cs (g - f) where g - f is right translation.

Proof: Integration on the left certainly commutes with right translation. As in the earlier, simpler, case, the

small Bruhat cell gives
[ tegan =@ [ v

and the volume of Ni\ N, is reasonably normalized to 1. The big Bruhat cell integral unwinds:

/N > flwyng) f(wng) dn

F\NA yeN, Na
For m € My,
/ flwnmg) dn = / flwm -m™nmg) dn = / v(m)f(wmw™" - wng) d
Na Na Na
= v(m)' x(wmw™") flwng) dn
Na
showing that this part of the constant term is in Iy _ yw. /]

The scattering matriz/operator is the map (23]

f— (g — f(wng) dn) (from Iy to Iy s w)

Np

Since the unwound integral over Ny is a (limit of) product(s) of integrals over N,, it is a (tensor) product
of local maps Cj y,, among corresponding local spaces

Isyo = {f €C®(Gy): f(nmg) = (v’x)(m) - f(g), for alln € N,, m € M,,, g € G}

in the natural way. For example, for monomial f € I, that is, of the form f(g) = [[, <. fo(gv), With f,
the spherical vector for v outside a finite set S of places, B

f(wng) d / 1 f:(wng) 1:[ /N U fo(wng) dn

Np Np o

(23] Since this map respects the right translation action of Gy and/or of G on functions, it is an instance of an
intertwining operator among representations of G, and/or G A
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The earlier, simple constant term computation shows that for places v ¢ S, the local operator sends
the spherical vector in I, to the spherical vector in I;_g yw ,, multiplied by the v" Euler factor of
A(2S - 1a Xw)/A(287X)

[2.8.9] Remark: The space of functions I, , has central character

z

(S 0) e ((Z) 2) x1(2)x2(2) = x1(2) x2(2)

The condition x* = x is that x1 = x2. Thus, for f € I, ,, the normalized function g — x1(det g) ™' f(g) has
trivial central character, and, further, is in I ;.

2.9 Meromorphic continuation of Eisenstein series

This is an issue of showing that a family of Eisenstein series F; with f; € I, has a meromorphic
continuation in s beyond the range of convergence Re(s) > 1. So certainly E;, must be holomorphic in
Re(s) > 1, and the dependence of fs on s must be constrained for this to be plausible. The simplest
example is to take fs to be the everywhere-spherical vector in I, ,, with x unramified everywhere. As special
argument applicable to GL, is in [2.B], and instantiation of a more general approach is in [11.5]. The basic
theorem is

[2.9.1] Theorem: The everywhere-spherical Eisenstein series E , has a meromorphic continuationin s € C,
as a smooth function of moderate growth on Z*Gj\Gy. As a function of s, E; ,(g) is of at most polynomial
growth vertically, uniformly in bounded strips, uniformly for ¢ in compacts. (Proofs in [2.B] and [11.5].)

[2.9.2] Corollary: At archimedean v, let ¢, € R be associated to the character x, as in the proof of [2.8.4], so
that E , is an eigenfunction for the v* invariant Laplacian A,, with eigenvalue Asx = (s —ity) (s —it, — 1).
This eigenfunction property persists under meromorphic continuation.

Proof: Both A,Es, and A, - Es, are holomorphic function-valued functions of s, taking values in the
topological vector space of smooth moderate-growth functions. They agree in the region of convergence
Re(s) > 1, then apply the vector-valued form [15.2] of the Identity Principle from complex analysis. ///

[2.9.3] Corollary: The meromorphic continuation of E;, implies the meromorphic continuation of the
constant term cpEs , (m) = (v°x)(m) + cs - (¥175x*)(m), and, in particular, of the function

A(25 —1,x1/x2) . (m1
Csy = with
. A(2s,x1/x2) ( o

0
ma

) = x1(ma)xa(m2)

Proof: Since E ,, meromorphically continues at least as a smooth function, the integral over the compact set
Ni\Ny expressing a pointwise value cpE; , (g) of the constant term certainly converges absolutely. In fact,
the integral converges as a continuous-function-valued function n — (g — E; ,(nm)), so has a continuous-
function-valued Gelfand-Pettis integral m — cpFE;,(m). In brief, the constant term has a meromorphic
continuation. Then the vector-valued form of the Identity Principle from complex analysis implies that the
form of the constant term persists outside the region of convergence Re(s) > 1. In particular, this gives the
meromorphic continuation of cg . ///
The theory of the constant term in [8.2] yields

[2.9.4] Claim: For every s away from poles of s — Ej ,, in a fixed Siegel set &, ¢,

Boe(rnmk) = (v"X) (m) + e,y (' X")(m) ) <5z w(m) ™"

That is, F,, — cpFs, is rapidly decreasing in standard Siegel sets.

Proof: Since E, , is an eigenfunction for invariant Laplacians and for spherical Hecke algebras, and is of
moderate growth, the theory of the constant term [8.2] exactly assures that E , is asymptotic to its constant
term, in the sense of the assertion. ///

[2.9.5] Corollary: The poles of E; , are exactly the poles of the constant term c; . ///
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Granting the meromorphic continuation and the asymptotic estimation of the Eisenstein series by its
constant term, the functional equation is determined by its constant term:

[2.9.6] Corollary: E ., has the functional equation Ey_, = ¢1—syEsyw, and ¢sy - ¢1—s v = 1.
[2.9.7] Remark: Note that the functional equation does not generally relate Ei_s, to Es ,, but to Eg yw.

Proof: Take Re(s) > % and s off the real line. The function f = Ey_, — ¢1—syEs v has constant term
erfm) = (' 730(m) + e1ma - (X)) = 1 - (X)) + o - (17 X) ()

= 17 (m) - (1= e1mone ) - x(m)

For 0 = Re(s) > i, v!'7° is square-integrable on &;¢: via an Iwasawa decomposition, noting that

v(m)~tdndm is left Haar measure on Py,

oo

d
/ |1/1_s|2 = / 1/2_2‘7(m) V(m)_ldndmdk < / V(m)l_% dm < /y1_2‘7 ?y
(CFe]

thc m,€Z+Mk\MA:V(m)Zt t
By the theory of the constant term [8.2], on a standard Siegel set
f = cpf + (rapidly decreasing) <, n'~7 + (rapidly decreasing)

Thus, on G, ¢,
If|> < |v'77 + (rapidly decreasing)|?
= 209 9. pyl-o. (rapidly decreasing) + (rapidly decreasing)2 = 204 (rapidly decreasing)

Thus, f € L*(ZtGi\Gy). For archimedean v, f is a A,-eigenfunction, with eigenvalue of the form
A= (s—ity,)(s —it, — 1) for it, purely imaginary, depending on x. This eigenvalue is not real for Re(s) > %
and s ¢ R. But

We did not use symmetry properties of A, but only that (f, F) = (F, f). Necessarily E1_s y —c1—s yEs v =
0 for such s. For all g € Gy, by the Identity Principle applied to the C-valued meromorphic functions
s — (B1—sx(9) — c1—sxFs y»(g)), the same identity applies for all s away from poles. Since the constant
term is identically 0, necessarily ¢1_s Cs v = 1. ///

The more general scenario needs some restrictions to stay near enough to the simple case to apply the
same causal mechanisms. In particular, generalizing right K-invariance, the function f € I,, must be
right Ku-finite, in the sense that the collection of right translates of f by K spans a finite-dimensional
space of functions. For non-archimedean places, this is equivalent to being fixed by a finite-index subgroup
in [], .. K, but for archimedean places there is no such equivalence. Also, unsurprisingly, the dependence
of f on the complex parameter s must also be controlled: take f(nmk) = (v*x)(m)f,(k) with the function
fo on Ky independent of s, and right Ka-finite, and write E(s,x, f,) = Ey. Of course, to avoid the
potential ambiguity due to the non-triviality of My N Ky, it must be that y is trivial on M' N Ky, and
Jo(mk) = x(m)fo(k) for m € M' and k € Ky, or else f = 0. The scattering operator Cs, not only flips
s —1—sand x = x¥, but also acts on the function f, by (possibly a meromorphic continuation of)

(Csxfo)k) = flwnk) dk (for k € Ky)
Na

The constant term becomes
CPEf = CPE(‘SvXa fO) = VSX ® fo+ Vlisxw ® CS7X(fO)
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[2.9.8] Theorem: E(s, X, f,) has a meromorphic continuation in s € C, as a smooth function of moderate
growth on T'\G. As a function of s, E(s,x, f,)(g) is of at most polynomial growth vertically, uniformly in
bounded strips, uniformly for g in compacts. (Proofs in [2.B] and [11.5].)

The general analogue of the argument in the special case proves meromorphic continuation of scattering
matrix/operators, with the qualification that they be restricted to Kju-finite functions I?’;‘( in Iy,
commensurate with the conditions for meromorphic continuation of Eisenstein series.

[2.9.9] Corollary: The scattering matrix/operator C;  restricted to a map Cf2 : It — Jin ., has a
meromorphic continuation.

Proof: The appropriate sense of meromorphic continuation is that C , f has a meromorphic continuation as
a If .-valued function for every f € If. The meromorphic continuation of Ey gives the meromorphic
continuation of cpE; = f + Cy , f, and the special form of f assures that s — f is entire, so Cs, f has a

meromorphic continuation. ///

[2.9.10] Corollary: For f, as in the theorem, the functional equation E(1 — s, x, fo) = E(s, X", Ci—s,xv fo)
holds, and Ci_syw o Cs, = 1. The operator C?‘;C has poles exactly where Ey has a pole for some f € I?‘;(

Proof: Arranging to cancel the v® part of the constant terms,
cp (E(l — 5 X, fo) - E(Sa va les,xw fo))

= (VliSX & fo + stw & Ol—s,xfo) - (stw @ Cl—s,xfo + VliSX ® Cl—s,x’“’ Cl—s,xfo)

=7 ® (fo - les,chlfs,xfo>

The theory of the constant term [8.2] implies that Eisenstein series E(s, x, f,) are asymptotic to their constant
terms. In Re(s) > %, the function v'7% is in L? on Siegel sets, so E(1 — s,X, fo) — E(s, X", C1—s v [o) is
in L?. However, the eigenvalues of the invariant Casimir operators ), at archimedean places are not real in
Re(s) > % off the real line, so this difference must be 0. This holds for all f,. ///

2.10 Truncation and MaaB-Selberg relations

The genuine Eisenstein series are not in L?(Z TGy \Gy), but from the theory of the constant term [8.2]
the only obstruction is the constant term, which is sufficiently altered by truncation. The Maaf-Selberg
relations are computation of the L? inner products of the resulting truncated Eisenstein series.

The truncation operators AT for large positive real T' act on an automorphic form f by killing off f’s
constant term on g = nmk for large v(m). Thus, for a right Ky-invariant function, one might imagine that

f(g) for v(m) <T
(naive T-truncation of f)(nmk) =

flg) —cpflg) forv(m)>T

This is flawed. On a standard Siegel set &; ¢ this description is good, but it fails to describe the truncated
function on the whole group G, in the sense that this failed truncation is not an automorphic form, that
is, as a left ZTGy-invariant function. Truncation should produce automorphic forms. For sufficiently large
T the same effect is achieved by first defining the tail ¢L f of the constant term cp f of f:

0 (for v(m) <T)
& f(nmk) =
cpf(nmk) (for v(m) > T)

Although % f need not be smooth, nor compactly supported, by design, for T large, its support is sufficiently
high to control analytical issues: writing ¥(¢) = ¥, for legibility,

[2.10.1] Claim: For T sufficiently large, the pseudo-Eisenstein series ¥(cL f) is a locally finite sum, hence,
uniformly convergent on compacts.
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Proof: The tail cL f is left Ny-invariant. The reduction theory of [2.2] shows that a set {nmk : v(m) > t,}
does not meet v - {nmk : v(m)y > t} for v € Gy, unless v € Py, for large-enough ¢ depending on t,. Thus,
for large-enough T, the set S = {nmk : v(m) > T} does not meet its translate v - .S unless v € P,. Thus,
~1 - S does not meet v, - S unless v P, = 2 Pg. ///

Similarly,
2.10.2] Claim: On a standard Siegel set &; ¢, V(c5f) = cLf for all T sufficiently large depending on t.
; P P

Proof: By reduction theory [2.2], for large-enough T' depending on ¢,, a set {nmk : v(m) > t,} does not
meet 7y - {nmk : v(m) > T} unless v € Py. Thus, for large-enough T', {namk : v(m) > T} does not meet
&,, ¢ unless v € Py, and the sole non-zero summand is % f. ///

A proper definition of the truncation operator AT is
T T
AN = f—=3¥cpf)

The critical effect of the truncation procedure is to have

[2.10.3] Corollary: For Ku-finite f € I, for s away from poles, the truncated Eisenstein series ANTE tis
of rapid decay in all Siegel sets.

Proof: By the previous claim and by the theory of the constant term [8.2], Ef — cpEy is of rapid decay in
standard Siegel sets. (Meromorphic continuation uses K 4-finiteness.). ///

Surprisingly, inner products of truncated Eisenstein series have a useful explication. Let

X~ = {9€Z"Ny\M\Gy : n(g) <T} Xt = {ge Z"Ny\M;\Gy : n(9) = T}

[2.10.4] Theorem: (Maafi-Selbery relation) Given x, X’ characters of Mp\Mp and f € I, and f' € I,

/Z%;MGA NE; - ANTE; = /f 7+ /f Cry () /C,x /C,x - Co ()

Ter?fl — - T(1*5)+F*1 w=F 7
= siF_1 / XX/f‘f + (T / XX/Cs,x(f) f
Ka

Mp\M?! Ky Mi\M?

Ts+(1-7)-1 — . T(1=5)+(1-7)-1 — :
A

M\ M? Ky M\ M1

[2.10.5] Remark: The integrals over M;\M?! are 0 unless the integrand is the trivial character on M?!.
Proof: Because the tail of the constant term of E; is orthogonal to the truncation AT E; of Ey,

ANTE; - ATE; = / NE; - Ey
Z+Gi\Gy Z+Gr\Gp
This is
0 (forn < T) L f (forn < T)
(B -w ) By = / v o
Z+Gk.\GA f + CS,X(f) (for n > T) Z+Gk\GA _CS,x(f) (for n > T)

Unwinding the awkward pseudo-Eisenstein series gives
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f (forn < T)

Lo
2 NpMAGY TNV, | —C (f) (for > T)

f (for n < T)

/ / E(ng) dn) dg
zvgncn | Coy() (ornzT) I

f (for n < T)

(O (1)

/Z+NAM"\GA —Csx(f) (forn=T)
= /f? + /f'Cr,x’(f/) - /Cs,x(f)? - /Cs,x(f)'cr,x’(f/)
X- X- X+ X+

The sets X * are stable under the left action of M;\M?!. Since f is left y-equivariant for M \M* and f is
left x’-equivariant, via the Iwasawa decomposition, noting that v(m)~! dn dm is left Haar measure on Py,

;T = / F(mk) - FGmE) v=Y(m) dm dk
X7 KA
Z+Mk\MA cv<T

- / W) (m) - ) v m) dm- [ f(k)- TR dk

Kp
Z+rMg\My : v<T

The left-most integral is left M\ M!-equivariant by xx’. When this is a non-trivial character the integral is
0, by the usual cancellation trick: with m, € M* such that x(m,) # x’(m.,), by replacing m by m,m in the
integral,
m) N dn = [ 0mem) - X Tmgm) dm
Z+Mk\MA:l/<T Z+N[k\MAZU<T

= W (m) / (v*x)(m) - X(m) dm
Z+M\My : v<T

For x' = ¥, the integral over M;\M?! gives a volume. What remains is the integral over the image of the
fragment (0,T) of the ray (0,00), giving

/T i1 dy Ts—&-?—l
y _
0

Y s+7r—1
The other three summands are similarly evaluated. ///
2.10.6] Corollary: Unless X' = x or X' = x%, for f € I,, and f’' € I,., the corresponding truncated
[ y X =xorx =x X X g
Eisenstein series AT Ey and AT E}: are orthogonal.
Proof: For ' # x and x' # x%, all four integrals over M\ M vanish. ///

The situation x* = x can be adjusted, by multiplying by xi(det g)~!, to have trivial central character.
Thus, the following corollary refers essentially to the case of trivial central character:

[2.10.7] Corollary: For characters x' = x = x" of M;\M,, and simplest Eisenstein series Es,, E;
attached to the everywhere-spherical elements of I, and I, ,

Ts+T—1 Cs.x T(l—s)—i—F—I crx Ts+(1—?)—1 CsxCrx T(l—s)+(1—?)—1

N'Es NTE,, =
/ X x s+7—1 (1—8)+F—1+3+(1—F)—1 1-s)+(1-7)—-1
rréhe, W
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The following result has a special, more direct argument, but the proof mechanism used here is more
broadly applicable.

[2.10.8] Corollary: For f € I, of the form f(nmk) = (v°x)(m) - f(k) for n € Ny, m € My, and k € K,
with f|x A independent of s, neither the Eisenstein series F'y nor the scattering operator Cs , has any poles

in Re(s) > % off the interval (%, 1]. The poles on (%, 1], if any, are simple. When x # x", there are no poles
on (1,1]. Any residues in Re(s) >  are square-integrable.

Proof: Suppose Ef has a pole s, = 0, + it, of order £ > 0 with ¢, # 0 and o, > % Certainly the order of
pole of the constant term can be no greater than that of Ey, so the second summand Cs , (f) has a pole of
order at most £ at s = s,. The first summand, f itself, as a function of s is entire, by the assumptions about

the dependence of f on s. Take r = s = g, + it in the theorem, giving an equality of the form

T20071 T72it T2it T17200
/ |/\T Ef|2 = A+ — Ay + — A3+ Ay
Z+Gi\Gy 20, —1 —2it 21t 1-—20,

The left-hand side of the MaaB-Selberg relation blows up like (t —t,)~2¢ as t — t, on R. The second and
third terms blow up at most like Cs ,(f) does, which is at worst (t —¢,)~*. The fourth term blows up
at worst like |Cs ,(f)|?, which is at worst (¢t —t,)~2¢. Thus, as t — t,, the left-hand side and the fourth
term on the right dominate. However, the left-hand side is positive, while the fourth term is negatrive, since
1 —20 < 0. That is, there can be no such pole.

Next, let s, = 0, be a pole of Ef of order £ > 1 on (%, 1]. Looking at the same expression, again, A
does not blow up as t — t, = 0, unlike the previous case the second and third terms blow up at most like
t=+1) since t, = 0, and the fourth again at most like t~2¢. Again, the fourth term is negative, and if £ > 1
dominates the right-hand side as t — 0, contradicting the positivity of the left-hand side. Thus, £ = 1, in
which case the second and third terms’ blow-up may be the same order as the left-hand side, and as the
fourth term on the right-hand side. This proves that any pole on (%, 1] is simple. Further, when x # x*,
the second and third terms are identically 0, so there can be no pole on (%, 1] in that case.

To prove square-integrability of a residue at o, € (%, 1], treat the Eisenstein series as a meromorphic
function-valued function, as in [15.2]. Its Laurent coefficients coefficients are functions in the same topological
vector space, by the vector-valued form of Cauchy’s formulas [15.2]. From the Maaf-Selberg expression
again, at r = s = 0, + it, multiplying through by ¢2 and letting ¢ — 0, the first term on the right-hand side
disappears, the powers of T in the second and third terms become T°, giving

Res,, A2  Res, A3 T'172%
/ |ResgaE;‘f|2 — o2 | e,y lim %A,
Z+Gk\G«A 2 2 1-— 200 t—to

Since 1 — 20, < 0, the limit of the last term is 0 as T'— +o00, given the square-integrability of the residue.
Properties of meromorphic vector-valued functions [15.2] and Gelfand-Pettis integrals [14.1] assure that
taking residues commutes with taking the limit as T — oco. The two remaining terms are equal, since the
pole is on the real line.

Suppose s, = % +it, is a pole of Ey of order £ > 1 with t, # 0. Take r = s = 0 + it, with o > % in the
theorem, giving an equality of the form

T2071 T72ito T2it0 T1720'
/ | AT Es? = A+ Ay + —— Az + Ay
Z+Gk\GA

20 — 1 —2it, 2it, 1—20
The left-hand side is positive, and blows up like (o — %)_% as o — %+, while the first three terms on the
right blow up with orders at most 1, and the fourth term is negative, impossible.
For a possible pole at s, = %, take r = s = % + 5(1+4 i) with € > 0, giving an equality of the form

Te T—ie Tie T—¢
/ ATE 2 = e DA+ A
Z+Gk\GA E —1€ 1€ —&

Ay

with the second and third terms absent unless x* = X. Thus, for x* # %, the left-hand side is positive
and blows up like e=2¢ as ¢ — 0%, while the first term on the right blows up like e~!, and the fourth term
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fin

is negative, so this is impossible. For x* = ¥, for Re(s) = %7 the functional equation 1 = C?I;( o O Jw

becomes
fi fi fi fi
L= OB o Ol = OfoCi:
Thus, (C’me)2 =1, s0 C’?g‘( has neither pole nor zero at s = % Thus, the first three terms on the right blow
2> ’
1

up like e, while the last is negative, impossible. ///

2.11 Decomposition of pseudo-Eisenstein series: level one

From [2.7], the pseudo-Eisenstein series ¥, with ¢ € J, and varying x generate the orthogonal complement
to cuspforms in L?(ZTG\Gy). Thus, the orthogonal complement to cuspforms is the L?-closure of the set
of these pseudo-Eisenstein series. For this section, we take trivial central character, and consider only the
simplest case, right K 4-invariant pseudo-Eisenstein series. These are everywhere spherical case, or level one.
As earlier,

X <Tr81 1’22) = x1(m1) - x2(ma2) (for my, mo EJl)

SO X2 = X1—17 and x¥ = x~1. Since M \M" is compact, ¥ = x~!. Thus, ¥ = x~' = x“. The potential

ambiguity in the decomposition g = nmk must be accommodated in y, or else f = 0, so x is unramified
everywhere locally. Thus, for genuine Eisenstein series E¢, we take f € I, right K-invariant, so necessarily
of the form f(nmk) = (v*x)(m) for n € Ny, m € M, and k € K, up to a constant multiple. In principle,
the constant multiple could depend on s, but we want f|x 5 to be independent of s, for meromorphic
continuation. Thus, take f|KA =1.

The essential harmonic analysis is Fourier transform on the real line, as Mellin transform on functions on
the ray (0, 4+00).

From [2.7], pseudo-Eisenstein series Uy, are in C2°(Z1 G \Gy), so their integrals against genuine Eisenstein
series I/y converge absolutely, since Iy is continuous, even after meromorphic continuation. Thus, even
though this (,) cannot be the L? pairing, since Ey ¢ L*(ZTGj\Gy), write

1

(¥y, Es) :/ v, - Ef
Z+G\Gy

First consider x* = x.

[2.11.1] Theorem: Fix unramified x with x* = x. Let ¢ € J, be right Ka-invariant, with trivial central
character. Let s, run over poles of Es, in Re(s) > % The pseudo-Eisenstein series W, is expressible in
terms of genuine Eisenstein series I, by an integral converging absolutely and uniformly on compacts in

ZTGR\Gp: pointwise, uniformly on compacts,

1 %-l—ioo
Yo = ami )i (Uy, Boy) - By ds + Y (¥, Res, B ) - Res,, B,y (9)
2 Re(s0)>%
1L
1 3Teee x1 o det
= — U, B, ) -Es ., d U, det) - — 22—
4mi )1 oo (Wior Beix) - Bux ds + (T, xa 0 det) [x1 o det |2,

[2.11.2] Remark: By various devices, for example the Poisson summation argument of [2.B], the only

possible pole in Re(s) > % is at s, = 1, with residue a constant multiple of x; o det. However, the general

pattern of argument does not depend on our fortuitous knowledge of these further details.

Proof: By an easy part of the Paley- Wiener theorem, the Mellin transform of ¢, € C2°(0, 00) is entire, and
has rapid decay vertically, and Mellin inversion is

1 o+1i00 o)
Yool(y) = (/ Yoo (r)r™? f) y®ds (for any real o)
0

27” o—100
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With
— + _ (6 O 1
p(zaynmk) = oo (y)x(m) (for z € Z%, ay = 0 1 ,y>0,ne Ny, me M, ke Ky)

define a kind of Mellin transform J,, — I, , by

Mo(s)(g) = /000 % p(arg) dr (with a, = (6((;) (1)) with 7 > 0)

r

We decompose the pseudo-Eisenstein series ¥, along the ray (0, 00):

o+1i00
1
Vo)=Y et =5 S [ MeGhgds
YEPL\Gk YEPE\GE 5 oo

Since x is specified, and ¢ is right Ka-invariant, in fact
Mep(s)(zaynmk) = Me(s)(1) - y* x(m)

Thus, although M(s) is a function on Gy for each s, it is simply a scalar multiple of the everywhere-
spherical function in Is,. Thus, for subsequent computations, suppress the argument g € Gy, and just
write

e d
Mep(s) = / r—*p(ar) a (with a, = ((5(7“) O) with r > 0)
0 r 0 1
and, commensurately,
1 o+ioc0
Vo)=Y w0) = 5o S [ Mels)u,x(myy) ds
YEPL\Gy YEP\Gr 5 00

Taking 0 = 0 would be natural, but with ¢ = 0 the double integral (sum and integral) is not absolutely
convergent, and the two integrals cannot be interchanged. For o > 1, the Eisenstein series is absolutely
convergent, so the rapid vertical decrease of My in s makes the double integral absolutely convergent, and
by Fubini the two integrals can be interchanged:

1 o+i0o N )
Uolg) = 5= | Mo (X wix(may))ds (with o > 1)
oee YEPK\Gr

The inner sum is the everywhere spherical Fisenstein series E ., so, pointwise in g € Gy,

1 o+i00
v, = — Mo(s) - Es \ ds (for o > 1)
2mi o—100
Although this does express ¥, as a superposition of eigenfunctions E, , for invariant Laplacians and for
spherical Hecke operators, it is unsatisfactory, because it should not refer to M, but to ¥, to have an
intrinsic integral formula. Elimination of this issue is the remainder of the argument.

We move the line of integration in
1 o+i00
v, = i) Mo(s) - Es \ ds (for o > 1)
to the left, to o = 1/2, which is stabilized by the functional equation of E; ,. From the corollary [2.10.8]
to the MaaB-Selberg relations, there are only finitely-many poles of Fs in Re(s) > %, removing one possible
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obstacle to the contour move. From the theorem [2.B], [11.5] on meromorphic continuation, we know that
even the meromorphically continued E , is of polynomial growth vertically in s, uniformly in bounded strips
in s, uniformly for g in compacts. Thus, we may move the contour, picking up finitely-many residues:

1 %+ioo
b= g [T M) B+ S Mets) s B

since the poles of E; , in Re(s) > % are simple and Mg(s) is entire in s. The 1/27¢ from inversion cancels

the 277 in the residue formula. The integral in the expression of ¥, in terms of E, , can be folded in half,

integrating from % + 40 to % + ¢00 rather than from % — 100 to % + i00:

%—&-ioo %-i—ioo
1 1
U, — (residual part) = 5 / Mep(s) - Es x(g)ds = 57 / Mp(s) Esx + Mp(l = s) By, ds
1 —ico 30

The functional equation is F1_,, = c1—sFs y», and we are assuming x* = x, so

%Jrioo
1
U, — (residual) = 5 / Mo(s) Egy + Mp(l —s)ci1—s yEs y ds
3+i0

To rewrite this in terms of ¥, use the adjunction/unwinding property of ¥,:

<\IJ¢7Es,x> = / p-cpEs, = / ©(g) - (y§X(mg) + Cs,xy;_sxw(mg)) dg
Z+Ny Mi\Gy ZHNy Mi\Gy

=/ / @(Pk) - (U2 X(Mpk + Csxpr, *X® (Mypr)) dp
Z+Ny M \Py J Ky

= a ay)x(m) - (y¥x(m) + cs,y =5x¥(m m@
= [ v [ e G e ) dn

dy

2 /0 olay) - (y* + oy =) 7

=[] ete)xm) TR ey ) dm
0 Jmp\Mm1
by using the Iwasawa decomposition, the right K4-invariance, and x* = x. On Re(s) = %, this is

> s s Ay > s —(1-s)\ QY
/0 P 0+ aaxy) 5 = /0 oay) - 0+ ermexy™ N Y = Mo(s) + eruxMo(1 — 5)

Y
Using X = x;
(o, B\ ) = Mp(s) + ci_s yMp(1 — 5)

Thus,

L +ioco

1
U, — (residual) = 37 / (Vo, Es ) - Es y ds
2+i0

The integral can be restored to be over the whole line Re(s) = 3, since the integrand is invariant under
s — 1 — s: by the functional equations of F , and c; y,

(U E1—sx) - E1msy = (Yo, 15 xEs x) - C1osxEsx = CiosxC1—s,x(Yp, Esx)  Esx = (Yo, Es ) - Es x
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Thus, dividing by 2,
1 34ioo
U, — (residual part) = — (U, Eq ) - Esyds
A J1_i0
2
It remains to explicate the finitely-many residual contributions Me(s,) - Ress, Es . In fact, by [2.10.8] or
[2.B], there are no poles unless x1/x2 = 1 on J!, and then the only pole in that region is at s, = 1, with
residue x; o det. However, we want to illustrate more widely applicable methods, as follows.

As do the pseudo-Eisenstein series, E, 5 fits into an adjunction
[ rEs- cr £(g) -3 X(my) dg (for f on Z+Gy\G)
Z+GR\Gy Z+Ny M \Gy

whenever the implied integrals converge absolutely. By the identity principle from complex analysis, the
same formula holds for the meromorphic continuation of E, 5 for s away from poles. For right K4-invariant
f, via Iwasawa decomposition,

dy

s @) vy omdg = [ [ eostom)-yom)

Z+ Ny M \Gp,

even though Py N Ky is not simply {1}. The integration over the compact group M;\M' computes the
x-component (cpf)X of cpf with respect to the left action of M1:

0 s — @ o o0 . X(a.) - y* ! @ _ c X(1— s
/0 /]\/Ik\Ml cpf(aym) -y x(m) Y2 - /0 (cpf)*(ay) -y Y M(epf)*(1 )

On Re(s) = %, where s =1— s, using 1 — (1 — s) = s,

(f, Esy) = / fEsx = / f-Esx = / f-Ei_sx = M(cpf)X(s)
ZHG\Gy ZHG\Gy ZTG\Gy

Taking f to be the pseudo-Eisenstein series ¥,

(Yo, Esy) = M(cp¥,)X(s) (on Re(s) = 2)

At a pole s, of E ,, in Re(s) > %, s also has a pole of the same order. Since ¢;y - c1—s, = 1 for x* = x,
necessarily ci_s  has a zero at s,. Thus, from

MepU,(s) = (Uy, Esy) = Mp(s) + ciosyMep(l —s)
at a pole s, of E,
Mep¥,(s,) = Mp(se) 4+ c1os, xMp(l —55) = Mp(so) +0- Mp(l —5s,) = Mep(s,)

That is, the value Mcp¥, at s, is just the value of M¢ there, so the coefficients appearing in the
decomposition of ¥, are intrinsic. Thus, the decomposition above has an intrinsic form as in the statement
of the theorem. This completes the argument for the decomposition of right K -invariant pseudo-Eisenstein
series ¥, with ¢ € J,, with trivial central character, and x* # x. In fact, the residues at poles are constant
multiples of xi(det g), from [2.B]. ///

Still with trivial central character and right K a-invariance, consider x* # x:
[2.11.3] Theorem: Fix unramified x with x* # x. Let ¢ € J, be right Ka-invariant, with trivial central
character. The pseudo-Eisenstein series ¥, is expressible in terms of genuine Eisenstein series Ej, by an
integral converging absolutely and uniformly on compacts in Z+Gp\Gy:
1 3 +ioco

V,(g) = (o, Es ) - Es x ds

4mi 1ico
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[2.11.4] Remark: As in the corollary [2.10.8] to the MaaB-Selberg relation, there is no pole at all unless
X1/x2 = 1 on J'. This absence of poles is also visible by the Poisson summation argument [2.B].

Proof: As in the situation of the previous theorem, pointwise in g € Gy,

1 o+1i00
v, = Me(s) - Es ds (for o > 1)

2mi T —100

Move the line of integration to the left, to o = 1/2, using the lack of poles for these Eisenstein series in
Re(s),
v, = Me(s) - Esy ds

211 % —ico

To rewrite this in terms of W, by the adjunction/unwinding property of ¥,

(Uy, Eq ) = / 0 cpEs, = / o(g) - (ysx(mg) + csnyg “x*(my)) dg
Z+ Ny Mp\Gy Z+ Ny M\Gy

= s 1—s5w dy = 25 dy
= elay)x(m) - (y*x(m) + sy =5x*(m)) dm — = elay) - y* —
0 M\ M? Yy 0 Y
by using the Iwasawa decomposition and the right Kj,-invariance, since ¢ is left y-equivariant under M*
and X" # x. On Re(s) = 3, this is

(e’ . d e’} . d
(U, B} = / olay) v W = / o)y Y = Me(s)
0 ) 0 Y

Since the functional equation Eq1_,\ = c1—s,Fs y» involves E, y» and x* # x, we anticipate needing the
complementary computation

(¥, Bue) = |

p-cpEsyw = / ©(g) - (ysx“’(mg) + Cs,x‘”y;_sX(mg))
Z+Ny M \Gy Z+Ny M \Gy

o0 — dy o) — dy
= olay)x(m) - (ysx*(m) + csxwy'=*x(m)) dm — = play) - csywy'™* —
0 M\ M1 Yy 0 Y

using the Iwasawa decomposition and the right K4-invariance, since ¢ is left y-equivariant under M* and
X" # x. On Re(s) = %, using x = X due to the trivial central character, this is

- s dy - _1-s) Y
(Uy, B yw) = /OW(ay)'clfs,xy E = /O‘P(ay)'clf&xy @ )? = c1-s Mp(l —s)

The integral in the expression of ¥, in terms of E,, can be folded in half, integrating from % + 10 to

% + 400 rather than from % — 100 to % + 700:

) %Jrioo ) %Jrioo
v, = 9 / Mop(s) - Esy(g)ds = o / Mop(s)Egy + Mp(l —s) E1_s, ds
%—ioo %+¢0

The functional equation is Fq_,\ = c1—s,yFs,y», and x* # X, so

Ltico
1
‘I’Lp = % / MSO(S) ES,X + M(p(l — S) cl—S,XEs,X“’ ds

3+i0
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%Jrioo %+ioo
1 1
= Tm / <\I/Lpa ES,X> . E87X ds + Tm / <\If¢,E37Xw> . ESwa ds
30 3+i0

using (¥, Es ) = Mop(s) and (Yo, Es yw) = c1—sxMep(1 — ). The integrals can be restored to be over
the whole line Re(s) = %, since the two integrals are interchanged under s — 1 — s:
(o, B1—sx) - Eimsx = (Yy, ClosyBsyw) - ClosxEsyw = Cios 153 (Y, Esyw) - Eg v
= CoxwClosx (Vo Esxw) - Esyw = 1- (Vo B yw) - Eg yw
and similarly for E . Dividing by 2,
U, = (U, Esy) - Es yds + — (U, Eg yw) - Esywds

4mi 1 ico 4mi 1 ico

This completes the argument for the decomposition of right K-invariant pseudo-Eisenstein series ¥, with
¢ € Jy, with trivial central character, and x* # x. ///

2.12 Decomposition of pseudo-Eisenstein series: higher level

A similar argument applies to decomposition of pseudo-Eisenstein series without the everywhere-spherical
constraint, necessarily tracking the additional information about the restriction of f € I , to (PyNKy)\Kj.
We retain the trivial central character condition, for simplicity. For meromorphic continuation and analytical
properties of Eisenstein series, f|x A should be Kj-finite and fx A should not depend on s. For simplicity,
still require invariance under K., = Hv‘m K, so the relaxation of conditions will be at non-archimedean
places. Putting Kgy = Hv<oo K, we require Kgy-finiteness.

Let ©, = P, N K,, and Og, = HU<OO ©,. With fixed x, restrictions of ¢ € J, or f € I, to Kgy,

necessarily lie in [24]
O = {ue C®°Kgn) : u(0k) = x(0) - u(k), for 0 € Oqp, k € Kan}

where smooth in this context means means locally constant. There is a natural right Kg,-invariant inner
product on ® by
(u1,uz) = / Uy - Uz
Kp

For each irreducible representation p of the compact group Ksy, let @ be the p isotypic component in @,
namely, the sum of all isomorphic copies of p inside ® [9.D.14]. The dimension of the space Homg,, (p, P)
of Kgy-homomorphisms of p to @ is the multiplicity of p in ®g,. It is not obvious that the following claim
is true, nor that it will be needed in the proof:

[2.12.1] Claim: @ is a direct sum of irreducible representations of Kg,, and is multiplicity-free, in the sense
that multiplicity of any irreducible p in ® is at most 1. (Proof after proof of the theorem.)

Similarly, let J{ be the elements of J, which restrict to ®f,  on Ky, and are right K-invariant. Let I o
be the collection of elements in I, , which restrict to @gn on Kgy, and are right K-invariant. Indeed, for
each fixed s, I? is in bijection with the space ®f by extending u € ®f by

Us x (zaymk) = y*x(m)u(kan) (for € ZT,me Ny, y>0,mée M, k, € Kin, koo € Koo)

with corresponding Eisenstein series

E(s,x,u)(9) = Y usx(y-9)

vEP\Gy

[24] Again, this @ is an induced representation, but we do not immediately need any properties of such.
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Let uq,...,ur be an orthonormal basis for ®°, and let u;,, € I be the corresponding extensions. We
use the fact from [2.B] that the only poles of Eisenstein series are at s = 1, and the residues are constant
multiples of y; o det.

[2.12.2] Theorem: For ¢ € J{ and x* = x, the pseudo-Eisenstein series W, is expressible in terms of
genuine Eisenstein series E(s, x,u;) by an integral converging absolutely and uniformly on compacts in
ZTGR\Gy: pointwise, uniformly on compacts,

1L
1 3+ie0 x1 o det
= 2]347”/1200 (Wy, E(s, x5 u3)) - E(s,x,u5) ds + (Vg x1 0 det) - X1 o det |2,

Proof: To track the dependence on v € ®, modify the earlier notation slightly: let

> d

Mp(g) = / % p(arg) & (with a, = (§(T) 0) with 7 > 0)

0 T 0 1

Thus, M is a map J{ — 17, . By Mellin inversion,
1 o+io0o
o0 = 5 [ Muelo))ds (for o € J7)
Further, Mo = Zﬁ:l <Ms<p|KA, uj> “Uj s.xs SO
1 o+i00
Volg) = Y w9 = ), 5 / Mp(vg) ds
YEPL\G YEPR\G oc—ioco
o+ioco
- Y YR [ M) o

yEP\Gy, 7=1 o—i00

For o > 1, the integral and the infinite sum can be interchanged, giving
¢ 1 o+1i00 1 o+1i00
Yo | ety (T wenton) = gy [ (Mool ) B
=1 o ico YEPL\Gr J=1 o—ico

As in the simpler cases, fold up the integral:

o+i00

</\/l<p(s)\KA, Uj>E(5,X,Uj) + <./\/l<p(1 — 8)|KA’ uj>E(1 — 8, X, uj) ds
o+1i0

The functional equations of such Eisenstein series can be written

E(]- —5X u) = E(‘Sa Xw, 01*51X(u1*5ax)|}(&>

SO
o+4i00
\IJ@ = Z / <M890|KA7 uj> : E(S7Xauj) =+ <M1—S¢|KAa U’j> ' E(57Xw7Cl—S»X(uj71—37X)|KA> ds
J o+1i0
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Here x* = x, but it is not obvious that Cl,s,x(uj,1,s,x)| is simply related to u;, unlike the simple case

K
A
of right Ky-invariant functions. The maps

w— -y — Ciogy (U1-s5) — Ciog x(u1-5)| € (for u € ®7)

K
all respect the right translation action of K4, so the image is again in ®”. Now we use the claim: ®” consists
of a single copy of p, so the composition of these maps is an automorphism of p respecting the action of Kyy,.
Irreducible Hilbert-space representations of compact groups are finite-dimensional [9.C.7], so by a suitable

form [9.D.12] of Schur’s lemma, u — Cl—s,x(ul—s,x)’;(f, is a scalar c’f_&x depending on s, x, and p, but not
on u € ¢”:
o+i00
b, =y / <<M580‘KA7 uj) + (Mi—spliy Uj>c’f—s,x) - E(s, x,u;) ds
7 otio

As in the simpler cases, to express this in terms of W, itself, not ¢, unwind and use the Iwasawa
decomposition:

<\II¢7E(S7X’ u)> =

@ CPE(S,X,U) = / 2 (us,x + Cs,xus,x)

/Z+NAMk\GA Z+NAM)€\GA

= / / @(pk) - (us,x (pk) + Cs xus,x (pk) dp dk
ZTM\My J Ky

- /Oo/ / x(m)p(ayk) - (y>x(m)us (k) +y1=5x (m)Cs 5 (us 1) (k) di,jdmdk
0 M \M? J K p '

On Re(s) = %, and with x* = x =X, we have Cs, = Ci—s 5 = Ci—s,y, and Uy = Ui—s,x = Ui—s,y. Also,
of course, us, is just u itself on K. Again use the fact that u — Ci_s(u1—s,x is a scalar cf_ ,, so
this is

) ’Kfin

= e s . d
/ / playk) - y=*a(k) + playk) -y~ Cr_ay @) (k) 2 dk
0 Ky Yy

— Mp(k) (k) dk + Mi_sp - Crosx (U-s5) (k) dk
Ky Kp

= Mp(k) -u(k) dk + Mi_sp(k) - cf_, - u(k) dk = <MSSD‘KA + Mi_splk, s u)
Kp Kp
Thus, the coefficients in the expression for ¥, are these inner products, apart from the residue picked up by
moving the contour from ¢ > 1 to o = % Regardless of choice of the basis u;, the residues are all constant
multiples of y1 o det, so their sum must be as indicated. ///

[2.12.3] Theorem: For ¢ € J{ and x" # x, the pseudo-Eisenstein series W, is expressible in terms of
genuine Eisenstein series E(s,x,u;) by an integral converging absolutely and uniformly on compacts in
ZTGE\Gy: pointwise, uniformly on compacts,

1400

2
] <\I/¢,E(S,X,Uj)> 'E(S,X,Uj) ds + <\IJL,07E(87Xw7U’j)> 'E(vawauj) ds

1
=Y
i 2

(The proof combines the argument from the level-one analogue with the multiplicity-free claim. ///

Now we prove the multiplicity-free property dimg Homg,, (p, ®) < 1: First, continuity of p requires that
it restricts to 1 on all but finitely-many K,. Irreducibles of finite products of compact groups are (external)
tensor products of irreducibles of the factors [9.C.8]. Thus, it suffices to prove a local fact, that

b, = {ueC®K,):u(k)=x(0)- u(k), ford € ©,, k€ K,}
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is multiplicity-free. By the Gelfand-Kazhdan criterion [6.11], it suffices to find an involutive anti-
automorphism o of K, such that every left and right ©,-invariant distribution u on K, is invariant under o,
u® = u, where u°(p) = u(¢?), for all p € C*(K,), where (poa)(k) = u(k®). We will use g° = w(g" )w?
with w the Weyl element, which stabilizes ©,. We find representatives for ©,\ K, /0,, for v non-archimedean.

Suppress the subscript v in what follows.

Given g = (Z Z) € K, for ¢ = 0, we have representative 1. For ¢ € 0*, left multiplication by © can
make ¢ = 1, and also a = 0 by subtracting an integer multiple of the lower row from the upper. Then (the
modifed version of) b is in 0*, so can be made 1, and right multiplication by © makes d = 0, by subtracting
an integer multiple of the left column from the right. This gives representatives w. For the intermediate
cases 0 < ordc = ¢ < oo, both a,d must be units for the determinant to be a unit. Right multiplication
by © makes b = 0, by subtracting an integer of the left column from the right, and then a = d = 1 by left
u 0
0 1
a =d =1, and makes ¢ = w’ with chosen local parameter w. Thus, there are representatives

/10 (o1 (1 0\  _ (1 0\ _ _(1 0
Te={p 1) \1 0) """ \w 1) =2 1) (& 1)

Each representative is fixed under o, so the double cosets are stabilized by o. Every double coset ©r0© is
closed, being continuous images of compacts. The double coset Or,,© = O is not open, but all other double
cosets Or¢© are open, being defined by the open condition |&**!| < |c| < |w’~!|. The characteristic function
g of OryO is a test function for ¢ < co. The integrations

or right multiplication by ©. Then left and right multiplication by ( with u € 0* does not disturb

@)= [0 w@=[¢  w=[o . (for € O (K))
©

or,0 Or;0

are left and right ©-invariant, and o-invariant.

The uniqueness of invariant functionals [14.4] shows that wuy is the unique © x ©-invariant distribution
on K supported on the compact, open set Or;,0 for { < oo, up to constants. Left and right ©-invariant
distributions factor through the two-sided averaging map ¢ — f@x o ¢(0k0") df d9’. The space D = C*(K)
is the colimit over compact open subgroups H of the finite-dimensional spaces D of test functions left
and right H-invariant: indeed, by smoothness, u € D is left Hi-invariant and right Hs-invariant for some
compact-open subgroups H;, and take H = H; N Hy. For ¢ € DH, the © x O-averaged ¢ is constant on
OHO. The representatives ry approach ro, = 1o € K. Thus, ©r,0 for every ¢ > ¢, with ¢, = {,(H)
depending on H. Letting chege be the characteristic function of © HO,

u(p) = u(p —¢(0) - chene) + »(0) - u(chene) = ul(p — (0) - chone) + s (¢) - u(chone)

The test function ¢ —¢(0)-chene) is supported on the finitely-many double cosets Or,© with 0 < ¢ < {,(H).
The restriction of u to test functions supported on this finite union of compact, open double cosets is a linear
combination of ug,u1,...,us,—1, and the constant u(chgpe) does not depend on the individual ¢ € DH.
Thus, the restriction of u to D is g-invariant. Thus, u is o-invariant on colimy D, the ascending union
of the spaces DH. This verifies the hypothesis for application of the Gelfand-Kazhdan criterion, so ®, is
multiplicity-free. ///
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2. The quotient Z+GLy(k)\GLa(A)

2.13 Plancherel for pseudo-Eisenstein series: level one

The previous decompositions can be refined to prove convergence of the integral as a C®(Z1Gi\Gy)-
valued integral, from a corresponding result for behavior of Fourier inversion integrals. This refinement gives
a Plancherel theorem for pseudo-Eisenstein series. For simplicity, we treat trivial central character. This
entails yo = Xfl, so X =X = x~'. More significantly, we restrict our attention to level one, that is, right
K p-invariant, pseudo-Eisenstein series W, in this section. One corollary, awkward to obtain otherwise, is
the mutual orthogonality of pairs of pseudo-Eisenstein series made from data in J, and J,, with x’ # x and
X' # x¥ on M \M*.

[2.13.1] Claim: With x* = ¥, the integral in
1 14ico

U, = — U, E..) Eay d U, vy odet) - —XL2C%
ks 47 1 ico (e ) x ds & (Fg, a0 det) \X1Odet|iz

x1 o det

converges as a vector-valued integral, taking values in the Fréchet space C°(ZTGp\Gy) of continuous
functions on ZTGi\G4.

Proof: Let 1¢(z) = €¥** on R. From [14.3], and as already applied in [1.13], the integral expressing Fourier
inversion for Schwartz functions f on the real line

1 [ ~

fla) = (] 1 Betw) du) veterde = 5 [~ vete) - Fie)as

2r /o

converges as a Gelfand-Pettis integral with values in the Fréchet space C°(R). Changing coordinates, Mellin
inversion gives convergence as Gelfand-Pettis integral with values in smooth functions C°(0, +00). With

p(zaynmk) = Qoo (y)x(m) (for z€ Z*, a, = (5(y) 0

0 1),y>0,neNA,meM1,keKA)

define a transform J, — I, by

Mep(s)(g) = /000 % p(arg) dr (with a, = (6((;) (1)) with 7 > 0)

-
Because ¢ is completely determined except as a function on the ray (0,400), the inversion integral

o+1i00

o(g) = 0 / Me(s)(g) ds

211
o—100

converges as a vector-valued integral with values in the Fréchet space C°(Gy). From [6.1], left and right
translation by G are continuous maps on C°(Gp ), so the linear operators of left translation by Gy commute
with the integral, and in the region of convergence, the expression of the pseudo-Eisenstein series ¥,

o+i00

Vo) = Y et = 5m S [ Mo

YEPL\G YEP\GE 5 "o

converges as a vector-valued integral with values in that Fréchet space. By the same steps as in the proof of
the numerical form of the theorem,

1 1t+ico
U, = o 2 (Y, Es ) Esy ds + (¥, x1 0 det) -
)

x1 © det
X1 0det|7,

1 .
E*ZOO
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as a C°(Gy)-valued Gelfand-Pettis integral. Since the integrand is in C°(Z+ G\ G4 )-valued and the topology
on this subspace is the restriction of that from C°(Gy), the integral converges in C°(ZTG\Gy). ///
[2.13.2] Corollary: For ¢, right K s-invariant functions in J,, with x* = x,
1 [atieo — (Py, x1 0det) - (Ty, x1 0det)

U, B, ) (W, E.ld
1 i < > 7X>< P 7X> s + |X1 odet|2L2

U, Wy = —
<§07 '¢'> 471_7/

Proof: For f € C9%(ZTGr\Gya), the map F — fZ+Gk\GA F - f is a continuous linear functional on
F € C°(ZTGE\Gy), so the Gelfand-Pettis property legitimizes the obvious interchange:

»
1 R Xlodet
v, :<—, U, ) By ds+ (U, dt-7,>
Wonf) = (g [, (ForBad Bus (0 s 0det) - 200
.
1 [t (U, x1 0det) - (x1 odet, f)
= — U, Es ) (Es, f)d £ i
AT J1 i (Wir Box) (B f) ds + |x1 o det |3,

where (Es ., f) converges because f € C2(Z1Gy\Gy). Taking f = E, for ¢ right Ku-invariant in .J,, this
gives the asserted isometry. ///

The discussion for trivial central character, x* # x, and right K 4-invariance proceeds along similar lines:
[2.13.3] Claim: With x™ # ¥, the integral

1, -
1 §+1oo
v, = — (Ve, Es ) - Esy + (Yo, Eg yw) - Eg yw ds

4'/TZ %_100

converges as a vector-valued integral, taking values in the Fréchet space C°(ZTGp\Gy) of continuous
functions on ZTGi\G,. ///

[2.13.4] Corollary: For ¢, right K-invariant functions in J, with x* # x,

L
1 5 +ioco - -
<\I/¢vEs,x> (Wy, Es x) + <\IjgaaEs,x“’> (Wy, B xw) ds

1.
3 100

U, 0,) = —
(Wor Uy) = 7

I

These decomposition formulas facilitate comparison of pseudo-Eisenstein series:

[2.13.5] Corollary: For x’ # x and x’ # x", pseudo-Eisenstein series made from J,, are orthogonal to those
made from J,-.

Proof: For ¢ € J,, for X = x or not, we have a convergent C*°(Z*G}\Gy)-valued integral

1 L +ioco
Y, = i - Mep(s) - Esy ds + SZMSO(SO) -Resg, Es

where s, runs over poles of E;, in Re(s) > % Inner product with the compactly-supported ¥, is a
continuous functional, so this inner product passes inside the integral by [14.1], giving

1 %-ﬁ-ioo
(W, Uy) = Mep(s) - (Esx, Uy) ds + ZMW(SO) - (Ress, Esx, Uy)

So

2 1 ico

Similarly, from [15.2], taking residues commutes with application of the functional. Unwinding,

<Es,X7 \de)> - / CPES,X . E - (QDS,X + Cs,xsﬁl—s,xw) . 7/}

Z+ Ny M \Gy /Z+NAMk\GA
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Under left multiplication by M?, the function ¢, , is equivariant by x, and ¢1_, ,w» by x*, while ¢ is left
equivariant by x’. Thus, the integral is 0. ///

As in [1.13], these decomposition formulas suggest the form of a Plancherel theorem for the x*" fragment
of the complement to cuspforms. As in [1.13], for each fixed x we must identify the closure of the image of

(Yo, Esy) @ (Yo, Ress=1Es ) (when x* = x, with Ky-invariant ¢ € J, )
v, —
(U, Es ) @ (¥y, Eg ) (when x™ # x, with Ku-invariant ¢ € J,)

and certify that residues behave compatibly with the simplest outcome. The functional equation of Ej ,
constrains the functions s — (¥, F, ) and s = (¥, Es yw):

(Up, Brosx) = (Yo, ClosyEsx) = Tosx (Yp, Esx) = cspw - (Vo B xw)

We wil show that the L? closure of the set of images is as large as possible, given these obvious constraints. In
both cases, the map ¢ — M is essentially Fourier transform, so maps test functions to a space of functions
dense in the Schwartz functions on LQ(% + iR). Then we proceed differently depending on whether x* = y
or not. The case X = x is much like [1.13]: for x* = x, let V be the subspace of L?(3 + iR) functions
meeting f(1 —s) = cqy - f(5).

[2.13.6] Claim: With fixed x* = x, the map

U, — (Vy, Esy) ® (Y, Ress—1FEs )

has dense image in V @ C, and is an L?-isometry.
Proof: In this case, (V,,, Es ) = McpU,(s) = Mn(s) + c1—syMn(1l —s). For F in the Schwartz space on
% + iR, the averaging F(s) + c¢1—s,F(1 — s) maps to a dense subspace of V. Thus, ignoring for a moment
the residual summand, the images (¥, E, ) are dense in V, as desired.

The residue is x; o det, and this should be orthogonal to ¥, with ¢’ € J,. and x’ # x. Indeed, unwinding
the pseudo-Eisenstein series and using Iwasawa,

dm

d(m)

where § is the modular function of Py. Let r be the number of isomorphism classes of archimedean
completions of k, and let

(W xa 0 det) = #o)-ermidette) dg = [ plm) - (det(m)
K\Mp

/Z+NAMk\GA

v|oo MU)

1/r
At = {(t(j ?) 2t >0} (on the diagonal in My, =[]
Using ZT Mp\My ~ AT x M} \M*, the integrand is equivariant by a non-trivial character of M;\M?!, so is
0. Even more simply, the various functions y; o det are mutually orthogonal.

Since x1 o det is in the orthogonal complement to cuspforms, it is in the closure of the space generated
by pseudo-Eisenstein series. We have just shown that it is orthogonal to all of these except those with data
from J,, so it must be in the closure of the images from J, alone. By subtraction, the integral part of the
decomposition is also in the closure of the pseudo-Eisenstein series, so the images are L? dense in V & C, as
claimed.

Then the spectral-coefficient map extends by continuity, to give an L? isometry, the statement of a
Plancherel theorem for this fragment of L2. ///

For the x* # x case, let
V={f=holfecl’t+iR)oL* & +iR) : fi(1-s)=fo(s)} C L*L+iR)®L*(} +iR)
[2.13.7] Claim: With fixed x* # x, the map
Wy — (Vo By ) & (Vs Egyw)
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has dense image in V, and is an L?-isometry.

Proof: In this case, (U, Es ) = Mcp¥, = Mn(s), and this is in the Schwartz space on % + iR, which is
dense in L2. The functional equation relating E,  determines (U, By, ). Thus, the images are dense in
V, as desired. Then the spectral-coefficient map extends by continuity, to give an L? isometry, the statement
of a Plancherel theorem for this fragment of L2. ///

2.14 Spectral expansion, Plancherel theorem: level one

From [2.7], the collection of right K-invariant pseudo-Eisenstein series ¥, with ¢ € J, and x running
over pairs x of unramified characters x1, Y2 with x2 = x ! (due to trivial central character) is dense in the
orthogonal complement in L?(Z%Gj\Gy) to right Kg-invariant cuspforms.
mq 0

0 mo
pseudo-Eisenstein series show that (¥, E,) = 0 for ¢ € J, and ¢’ € J,/. Lettin F' run over an orthonormal
basis for the space of cuspforms on Z+Gy\Gy /Ky with trivial central character, we have an automorphic
Plancherel theorem at level one:

[2.14.1] Theorem: With trivial central character, for f € L*(ZTG\Gyp/Ky),

For unramified y; on J, let = x1(m1/mg). For x| # xi!, the adjunctions [2.7] satisfied by

Fe S E e Y ([ R B o 20 oy
X1 2

P e 1o det |2,

%-{-ioo

1 .
+ Z (4171'1/; (Yo Es y ) Es (Yo, Es yw) - Eg yw ds) (in an L? sense)

XX #EX

—100

and

5% od 5
il = SRR+ 3 (g [ 0B+ S0

2
cfm F XXV =X - o det [,

1 oo
b2 (] My P + 100 By i) )
XXV FEX e
The integrals suggested by the notation are not literal integrals, but are the extension-by-continuity of the
corresponding literal integrals, as with Fourier transform and Fourier inversion on L?(R). ///

Combining the decomposition of right K-invariant L? cuspforms (with trivial central character) and the
decomposition of their orthogonal complement:

[2.14.2] Corollary: Functions f € L?(ZTG\Gp/K,) with trivial central character have L? expansions

1,
1 3 Fioco (f, x1 odet) - x1 odet
f = (f,F)-F + (—/ (f.Esr) - Eords +
gF Z: Ami J )i X X1 o det |2, )
1 %-i—ioo . ,
+ Z (fm[ (W, B x) B x (Yo, B yw) - Es xw dS) (in an L? sense)
XX F#X 270

with corresponding equality of L? norms, where integrals involving Eisenstein series are isometric extensions,
as in the previous section ///
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2.15 Exotic eigenfunctions, discreteness of pseudo-cuspforms

An important variant approach both to the discrete decomposition of the space of cuspforms [1.7] and
[2.6], and to the meromorphic continuation of Eisenstein series as in [11.5], is the notion of pseudo-cuspform.
The largest space of pseudo-cuspforms with cut-off height b > 0 is

Ly (ZTGp\Gp) = {f € L*(ZTGi\Gy) : cpf(m'ayk) =0form’ e MY, b<yeR, ke K}

The idea is that the constant terms vanish above height b. With b = 0, this is the space of square-
integrable cuspforms. More precisely, via the adjunction [1.7.3], LE(Z TG \Gp) is the orthogonal complement
in L*(ZTGk\Gy) to all pseudo-Eisenstein series ¥, with data ¢ € C2°(ZT Ny My\Gy) supported on

ZTNpAMp\ {znmayk :2€ ZT, n€ Ny, me M*, b<y€R, k€ Ku}

That is, these are pseudo-Eisenstein series ¥, with data ¢ supported above height y = b.

However, as throughout this chapter, right K -finiteness assumptions avoid some relatively uninteresting
secondary complications. Thus, for simplicity, we consider only right K., K’-fixed functions for K’ a fixed
open subgroup of Kg,.

The pseudo-Laplacian Ay is the Friedrichs self-adjoint extension [9.2] of the sum A = Zv‘oo A, of the
invariant Laplacians on the archimedean quotients G,/K,, restricted to the test functions in the space
LY (ZTGr\Gp/K + 00K') of pseudo-cuspforms. For any b > 0, the corresponding space of square-integrable
pseudo-cuspforms contains the space of genuine cuspforms L2(Z+Gy\G). The basic, unexpected result is

[2.15.1] Theorem: LZ(ZTGy\Gy) is a direct sum of eigenspaces for Ay, each of finite dimension. In
particular, A, has compact resolvent. (Proof in [10.5].)

Without further information, this does not immediately prove that the subspace consisting of genuine
cuspforms decomposes discretely for A,, because the description [9.2] of A, imposes technical conditions
on possible eigenfunctions, and one should check that the smooth cuspforms are dense in the space of L?
cuspforms.

In any case, for b > 1, the space L}(ZTGj\G,) contains many functions not in the space of genuine
cuspforms, for example, pseudo-Eisenstein series ¥, with data ¢ supported in the interval [1,b]. Asin [2.11]
and [2.12], these are expressible as integrals of genuine Eisenstein series. However, by the theorem, apparently
these pseudo-Eisenstein series are (infinite) sums of L2-eigenfunctions for Ay, orthogonal. Similarly, by [2.10.3]
and [2.10.4], truncated Eisenstein series A’ E} are in L?(Z TG \Gy). Because they are in the span of pseudo-
Eisenstein series with compactly supported data, by [2.11] and [2.12] they are integrals of genuine Eisenstein
series. Again, however, by the theorem, they are also (infinite) sums of ﬁb—eigenfunctions. Evidently, there
are many ezxotic eigenfunctions for Ay, Indeed,

[2.15.2] Corollary: The eigenfunctions for Ay in L2(Z1G\Gs/KanK') with eigenvalues A = s(s — 1) <
—1/4 are exactly the truncated Eisenstein series A’Ey with cpEy(ap) = 0, for right K.o-invariant right
K'-right-invariant f € I, for s(s — 1) < 0 and character x on My\M'/(M' N Ky K'). (Proof in [10.4].)

These truncated FEisenstein series are not smooth. The slightly non-intuitive nature of the operator A,
explains the situation, in [10.4]. For example, in addition to meeting the Gelfand condition of constant-term
vanishing about height b, eigenfunctions of the pseudo-Laplacian Zb are pseudo-cuspforms in a stronger
sense:

[2.15.3] Corollary: An L2-ecigenfunction u for A, with eigenvalue A satisfies (A, — \)u = 0 locally at heights
above b. ///
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2.A Appendix: compactness of J!/k*

The following compactness result has both finiteness of class numbers and Dirichlet’s units theorem as
corollaries. Indeed, the compactness can be proven as a consequence of these two results. However, the
compactness can be proven directly, and is what proves useful here.

[2.A.1] Theorem: J!'/k* is compact.

Proof: As in [5.2], Haar measure on A = A;, and Haar measure on the (topological group) quotient A/k are
inter-related in the sense that choice of one uniquely determines the other by the relation

/Af(at)dx = /A/k Z f(y+=x)dx (for f € C2(A))

vek

Normalize the measure on A so that, mediated by this relation, A/k has measure 1. We have a Minkowski-
like claim, a measure-theoretic pigeon-hole principle, that a compact subset C' of A with measure greater
than 1 cannot inject to the quotient A/k. Suppose, to the contrary, that C injects to the quotient. With f
the characteristic function of C,

1< /Af(a:)dxz/A/ka(wx)dxg/ ldr =1

YEK A/lk

with the last inequality by injectivity. Contradiction. For idele «, the change-of-measure on A is given

conveniently by
meas (aF)

meas (E) = |of (for measurable F C A)

Given a € J', we will adjust « by k* to lie in a compact subset of J'. Fix compact C C A with measure
> 1. The topology on J is strictly finer than the subspace topology with J C A: the genuine topology is by
imbedding J — A x A by a — (a,a™1!). For a € J!, both aC and a~'C have measure > 1, neither injects
to the quotient k\A. So there are z # y in k so that © + aC = y + aC. Subtracting,

0#a=z-y € a(C-C)Nk

That is, a-a~! € C — C. Likewise, there is 0 £ b € a™'(C —C)Nk, and b-a € C — C. There is an obvious
constraint

ab = (a-a)(b-a™t) € (C—C)*Nk* = compact N (discrete subgroup) = finite
as in [1.5.3]. Let Z = (C' — C)?2 N k* be this finite set. Paraphrasing: given o € J!, there are a € k* and
£ € E (£ = ab above) such that (a-a™!, (a-a™1)7!) € (C—C)x&HC —C). That is, ™! can be

adjusted by a € k* to be in the compact C' — C, and, simultaneously, for one of the finitely-many & € =,
(a-a™H)~le ¢ (C—CO). In the topology on J, for each ¢ € Z,

((O—C) ><§*1(C—O)> N J = compact in J

The continuous image in J/k* of each of these finitely-many compacts is compact. Their union covers the
closed subset J'/k*, so the latter is compact. ///
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2.B Appendix: meromorphic continuation

A somewhat special argument gives precise information about the meromorphic continuation of certain
Eisenstein series for G Lo, in particular about possible poles. Analogous arguments are possible in a few
other situations. As above, with y denoting a pair of characters 1, x2 on J' as above, take

fznarm - k) = |r|® - x1(m1) xa(mz) - fo(k) (with m = (77(1)1 Trl) € M)

with f, independent of s. In particular, this argument for meromorphic continuation uses the following
expression for f.

With diagonal map ¢ : (0, +00) — J as earlier, abuse notation by extending x1, x2 to characters on J by
extending trivially on 6(0, +00):

X;(0(r)-0) = x;(0) (forr>0and 0 €J', j=1,2)

By changing variables in the integral, one finds that any function f expressed as

det (det .
flg) = 4(2837%1?% etg) /| |2SX1 D(t-e-g)dt (with e = (0 1))

with Schwartz function ® on A? and global Iwasawa-Tate zeta integral
(2 X, 000,)) = [ X0 2(0,1)
X2 J X2

is in I, . The division by ¢(2s, il ,®(0,—)) normalizes f(1) = 1. We do not consider the issue of exactly
which f € I, can be expressed in this form.
Every Schwartz function ® is a finite sum of monomial functions ® = @, ®,, so permissible functions f

are finite sums of monomial functions f = @), f, with the local functions f, on G, expressible as

_ _ldetglxi(detg) 25 X1 .. with e —
10 = 2o oy L @) @ eo gt (withe=(0 1)

’X)

The product formula makes f left Pj-invariant. The corresponding Eisenstein series is

Ef(9) = E(s,x,®)(9) = Y. f(v-9)

YEPK\Gk

0 -1
Let w = (1 O)'
[2.B.1] Theorem: These Eisenstein series admit meromorphic continuations to C, and have no poles in

Re(s) > 1 unless x1/x2 = 1, in which case there is a unique pole in Re(s) > 1, at s = 1, with residue a

constant multiple of x1(det g). The functional equation is

C(st P (I)(Oa _)) C(2 B 283 p717 (ZI; © ’LU)(O, _)) w xR
= 77 L F d) = -E(1— P
Y1 o det (5,x, @) o o det ( 5, X", @ ow)

[2.B.2] Corollary: For trivial central character w, these Eisenstein series E; have no poles in Re(s) > %

unless x? = 1, in which case there is a unique pole in Re(s) > %, at s = 1, with residue a constant multiple
of x1(det g).

Proof: (of Corollary) With trivial central character, yo = x ' ///
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Proof: To isolate the Poisson summation effect, for unitary character p = x1/x2 on J/k*, let

E(s.p.B)(g) = W E(s,x, ®)(g) = /J L2 0() O#Zekfa o g)dt

With Jt ={t€J:|t| > 1} and J~ = {t € J: [t| < 1}, we follow Riemann, Hecke, Iwasawa, and Tate, and
break the integral into two pieces:

— 2s .qx- 2s -
(.0 0)(0) = [ 1 RIS Jw A 3 el

By the first lemma below, the integral over J* is absolutely convergent for all s € C, so is entire. Adelic
Poisson summation converts the integral over J~ to an integral over J*, plus two elementary terms: first,

S Blteg) = Y Dltwg) — D(0) = |1 7|det gt 3 Bt talg) ) - B (0)

0A£zEk? z€k? z€k?

= [t *[detg| - D B(ta(g") ) — (0) +|¢] | detg| ! - B(0)
0#£z€k?
Thus, inverting ¢ to replace the integral over J~ by one over J7,

J et 3 atag)ar

0#z€k?

— [ itPope) (Je 2l detgl ST B algT) )~ 0(0) + f] 2 detgl - B(0)) e
I- 0#£zek?

~ et g /J P20 3 BlealsT) ) e+ BO) [0 012 ) - 0(0) [0 de

0#x€k? J 7
Altogether,
E(s,p, B)(g) = / 120(0) S Btz g)dt — B(0) / 425 p(1) dit
It O#zek? I
#ldetg ([ 1P 3D BenleT) ) de+ B(0) [0 o )
It O#zek? I

Multiplying through by | det g|2 symmetrizes this:

detglt - E(s.p. ®)(0) = |detglt - [ () YD @r-ag)di—|detglt-000) [ o)
0#£zek? -

+[det(g ") ( /J BN YD Bltate™) ) de+ | detlg ) B(0) [J () 11 at)
0#£x€k2
= |det(g")7!? £ =507, ®)((g") )

We examine the two elementary integrals which, if non-zero, give the poles. If p(7) # 1 for some 7 € J!,
then by changing variables,

J ey ae = [ty an = o) [ ot i
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2. The quotient Z+GLy(k)\GLa(A)

so the integral must vanish. On the other hand, when p(7) = 1 on J!, we give the compact group J!'/k*
measure 1, and

1 1
d 1 d 1
/ t> dt = / o = and / t>>72 dt = / y =
- 0 Yy 2s - o Y 25 — 2

Thus, when x1/x2 is not identically 1 on J!, there are no poles. When p = x1/x2 is identically 1 on J!,
there are polar terms in | det glz - E(s,x, D) (9), and they are symmetrical:

®(0) - |det gz D(0)-|det(g™)*|>
2s 2(1—s)

Thus, the preliminary form of the functional equation:
1 11 w B _
[detg|? - E(s,x, P)(g) = |det(g") !z -E(1—5,x",®)((g") ")

We would prefer not to have a relationship involving (g )~!. Fortunately, w™'(¢g") 'w = g/(det g). Thus,
replacing 2 by zw~! in the sum, replacing ® by ®ow, and replacing t by ¢-det g, in the region for Re(1—s) > 1
for convergence,

—1|5 w oG — —3 —2s X w3
[det(g7) 72 - E(1—5,x",®)((¢7)™") = |detg| % -|detg|*> X—j(detm-al—s,x ,® o w)(g)

Thus, by the identity principle,

|det g|7 - £(s,x,®)(g) = |detg| % - |detg|2*2S§<detg>~s<1—s7xw,&>ow><g>

and
<(287 P, CI)(O, _))

1
det 2 .2 7fC NG 77
|detg] | det g[*x1(det g)

’ E(S, X5 (b)(g)

C(2—2s,p71, ®ow(0,—))
| det g|1 =5 x2(det g)

= |detg|~* - detg*">* X2 (det g) - CE(1-5,X",® ow)(g)
X1

simplifying to

—25,p7 1, ® o w(0, — ~
B #)(g) = SEEL RO s B )y

4(287 P, @(07 _))
x1(det g)

I

[2.B.3] Lemma: Half-zeta integrals over J* are absolutely convergent for all s € C.
Proof: Fix g € Gy, let p(t) = ®(teg) and @, (t) = ®,(teg). By the lemma below,

lp(t)] <N l_Isup(\tvL}7 1)~ (for adele t = {¢,}, for all N)

For idele ¢ let v(t) = [, sup(|to|v, |tuly ). Almost all factors on the right-hand side are 1, so there is no
problem with convergence. Apply

1
(sup(a, 1))2 = sup(a?, 1) = a-sup(a, 5) (for a > 0)
to every factor:

[Tsup(ltolo, 72N = 17N T sup(tolos 1851 10) ™ = [t~ Nw(t) ™
v v
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Thus, on JT,

[Isup(tele, )N = 1 Nu@)™ < v(t)™N (when t € J*, N > 0)

With o = Res, for every N > 0
1
[l eta] < [ v ae < [ oo de = TL( [ 1w, ) d)
i i 7 o Nk g
For N > |o|, the non-archimedean local integrals are absolutely convergent:

[N = N = N 1 ¢ " 1—q~ 2"
t|7 sup(|t], =)~ dt = E g, "+ E @ N = + =
/| | 2] It — v 1_go N 1_gN (1—qg o N)(1—¢goN)
kX

The archimedean local integrals are convergent for similar reasons. For 2N > 1 and N > |o| + 1, the Euler
product is dominated by the Euler product for the expression (i (N 4 0)(x(N — 0)/C(2N) in terms of the
zeta function (i (s) of k, which converges absolutely. ///

[2.B.4] Lemma: For all N, a Schwartz function ¢ on A satisfies

o) <o [ sup(ftolw, )Y (for t € A)

v

Proof: By definition, a Schwartz function ¢ on A is a finite sum of monomials ¢ = @), ¢,. Thus, it suffices
to consider monomial ¢, and to prove the local assertion that for ¢, € .7 (k,)

loo(t)] <N sup(|tyly, 1) 72N (for t € ky)
At archimedean places, the definition of the Schwartz space requires that

sup (1 + |t[,)N - oo (t)] < oo (archimedean k,, for all N)
t€ky,

SO
o] < (L4 [to) ™Y < sup(ftfo, 1) 72"

Almost everywhere, @, is the characteristic function of the local integers. At such places,

1 (for |t|, <1)
lpo ()] = < sup(|t],, 1)V (for all N)
0 (for [t], > 1)

At the remaining bad finite primes, ¢, € #(k,) is compactly supported and locally compact. Then, similar
to the good prime case,

L (t €sptey)
|S07) (t)| <<W1) <<<P171N sup(|t|1}7 ]‘)72N (for all N)
0 (t ¢ sptyy)

This proves the lemma. ///
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2.C Appendix: Hecke-MaaB periods of Eisenstein series

These examples, essentially due to Hecke and Maafl, include as special cases both sums of values at
Heegner points, and integrals over hyperbolic geodesics. The set-up of the previous appendix allows a simple
computation for GLy over a number field k.

Let ¢ be a quadratic field extension of a number field k. Let G = GLa(k), and H C G a copy of £* inside
G, by specifying the isomorphism in

0 C Auty(f) =~ Autgp(k?) = GLy(k)

Let P be the standard parabolic of upper-triangular elements in G. Factor the idele class group J,/¢* =
(0,00) x J} /€% where the ray (0,00) is imbedded on the diagonal in the archimedean factors. Let y be a
character on J;/k* trivial on the ray (0,00), and define a character on Py by

w(oa) =13

Let s be a left xs-equivariant function on G: s h(pg) = Xs(P) - s, (9) for all p € Py and g € Gp. At
places v where x is unramified, we may as well take ¢, , to be right K,-invariant, where K, is the standard
maximal compact in G,. This function has trivial central character. Ignoring the ambiguity at bad primes,
put

" (@) - x"(d)

E&X(g) = Z WS,x(’Y'Q)

YEPL,\Gy,

Let Z be the center of G, and w the quadratic character of ¢/k. Let S be a (finite) set of places including
those ramified in £/k or ramified for x.

[2.C.1] Theorem:

/ o _ L) LG x o w)
Zy Hi\Hy ox L3(2s,x?)

x (bad prime factors)

where L°(s,a) denotes the L-function attached to a Hecke character o over k dropping the local factors
attached to places v € S.

[2.C.2] Remark: In fact, as in the proof, the numerator arises as an L-function over the quadratic extension ¢,
namely Lf (s,xoN), where N is the norm ¢ — k. Then quadratic reciprocity gives the indicated factorization
into L-functions over the base field k.

Proof: The subgroup Pj is the isotropy group of a k-line k - e for a fixed non-zero e € k? ~ £. The group Gy,
is transitive on these k-lines, so P\G\ = {k — lines}. The critical-but-trivial point is that the action of £*
on { is transitive on non-zero elements. Thus, Py - Hy = GL2(k). That is, the period integral unwinds

/ ES»X :/ @S’X :/ @S’X
Zp He\Hp Zp(PeNHp)\Hy Zp\Hy

since H N P = Z. With ¢, chosen to factor over primes ¢, = @, ¢s,x,v, the unwound period integral
likewise factors over primes

/ B,y = / Psx = H/ Psx0
ZpHi\Hp Zy\Hy Y Z,\H,

A graceful way to evaluate the local integrals is to use an integral representation of the local vectors ¢ .
akin to well-known archimedean devices involving the Gamma function. That is, express ¢, in terms of
Iwasawa-Tate local zeta integrals

Liow(25,42) :/ #2532 () Byt €) dt
kX

v
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as
1

%,X,v(g) = m

.| det g2 xu(det ) - / 22 (0) - @t - e - g) dt

v

for suitable Schwartz functions ®, on kﬁ ~ l, = { ® k,. The leading local zeta integral factor gives the
normalization ¢, (1) =1 at g = 1. Then

. 5.2 25 2
Ps,x,v = 7/ dethvxv det h / tuth .(I)vt_e_h dt dh
/ZU\HU X Ly (25, x2) R\ | | ( ) o |t] (t) ( )

Let N, be the k,-extension ¢ ®j k, — k, of the norm map ¢ — k. Since
|det hlw, = [Nhlg, = |hle,

and since x,(det h) = x,(Nh), the local factor of the period becomes

1
- . hl$ th./ H zt‘@yﬁe-h dt dh
Lro(25) /ki\M' 12, x0(Nh) . 1217, (1) - o )

v

1 / / ,
Liew(28,X3)  Jrxves Jix | 2, (N (eh)) ( )

1
= —F" bl xo(Nh) - ®@,(e-h)dtdh = “Lyy(s,x0 0 N
@y L M) 2o ) (00 N)

Liw(25,X3)
where the local L-function Lg, is the product of the finitely-many local factors L, ,, for places w of ¢ lying
over v.

Let S be the collection of ramified primes for xy and primes ramified in ¢/k. Let w be the quadratic
character attached to ¢/k, with local characters w,: at finite primes v splitting in ¢/k, the character is trivial.
Let g, be the residue field cardinality at a finite place v € S, and w, a local parameter.

At a finite place v of k splitting in £/k, we immediately have

1 1
LZ,'L}(57XUON) = — s = Lk,v(S7Xv>2
1-— Xv(wv)Qv 1- Xv(wv)qv

Since local L-functions of unramified local characters are determined by their values on local parameters, at
a finite place v of k inert in £/k, in which case N : £ ® k, — k, is the local field norm and <, remains
prime in ¢ ® k,,, we similarly have

1 1
Lpy(s,xvo N) = =
wlsxeeN) = TGN @ T T @ @)
_ 1 1
1 - Xv(wv)q;S 1 + Xv(wv)q;S

1 1
= s s = Lk,v(57Xv) ! Lk,v(57XU 'wv)
1- Xv(wv)Q'U ) 1—- Xvwv(wv)QU ’

Thus, the good-prime part of the global L-function is
LE(&XON) = HLE,U(SaXvON) = HLk,v(57Xv)’Lk,v(57Xv’Wv)
vgS vEZS

Thus,

_ LG5 x) L (s, x - w)-
E&X - S 2
Zy Hi\Hy, Ly (2s,x?)

as claimed. ///

x (bad prime factors)
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[2.C.3] Remark: In this normalization, the unitary line is Re(s) = %7 and

/ 5 L83 4t x) - LO(E +it, x - w)
Zy Hi\Hy B LS(1+ 2it, x?)

x (bad prime factors)

[2.C.4] Remark: The basic remaining issue about the finitely-many bad-prime local integrals is to be
sure that we can choose local data ¢, ., so that the local inegrals do not vanish identically. This can
be accomplished, for example, by taking the bad-prime local functions ¢ ., to be 0 off a very small
neighborhood of the local points P, of the parabolic P.
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3. SL4(Z), SLu(Z), SLs(Z), ...

1. Parabolic subgroups of GL,

2.  Groups K, = GL,(0,) C G, = GL.(k,)

3. Discrete subgroup GL,(k), reduction theory

4. Invariant differential operators and integral operators
5. Hecke operators and integral operators

6. Decomposition by central characters

7. Discrete decomposition of cuspforms

8.  Pseudo-Eisenstein series

9. Cuspidal-data pseudo-Eisenstein series

10. Minimal-parabolic Eisenstein series

11. Cuspidal-data Eisenstein series

12. Continuation of minimal-parabolic Eisenstein series
13. Continuation of cuspidal-data Eisenstein series

14. Truncation and MaaB-Selberg relations

15. Minimal-parabolic decomposition

16. Cuspidal-data decomposition

17. Plancherel for pseudo-Eisenstein series

18. Automorphic spectral expansions
Appendix A: Bochner’s lemma
Appendix B: Phragment-Lindel6f theorem

We keep most of the conventions and context of the previous chapter, except now G is the group GL,
of r-by-r matrices. The novelties originate in the greater variety of parabolic subgroups in GL,., the latter
explicated in the first section. This variety increases the subtlety of the Gelfand condition defining the
space of cuspforms, with pursuant proliferation of types of pseudo-Eisenstein series and Eisenstein series on
GL, corresponding to the various parabolic subgroups. One new phenomenon is the necessary formation of
pseudo-Eisenstein series and Eisenstein series using cuspforms on smaller groups G L, .

To narrow somewhat the scope of complications, later in the chapter we mostly treat level one automorphic
forms, that is, right K -invariant ones, for K a maximal compact subgroup of GL,(A). This specializes to
automorphic forms for GL,(Z) when the ground field is Q.

3.1 Parabolic subgroups of G L,

It is perhaps impossible to anticipate the significance of these subgroups. Nevertheless, they subsequently
prove their importance. [25] Let G = GL, (k) with an arbitrary field k, acting on k" by matrix multiplication.
A flag F in k™ is a nested sequence of one or more non-zero k-subspaces (with proper containments)
Vi C ... C V, C k". The corresponding parabolic subgroup P = P¥ is the stabilizer of the flag F. The
whole group G stabilizes the improper flag k”, so is a parabolic subgroup of itself. The proper parabolics are
stabilizers of flags V7, C ... C V; C k" with £ > 1.

The maximal proper parabolic subgroups are stabilizers of flags consisting of single proper subspaces
V C k". Every proper parabolic subgroup P¥ for flag F = (V; C ... C V, C k") is the intersection of the
maximal proper parabolics PVi€*" . A minimal parabolic, stabilizing a mazimal flag, is a Borel subgroup.

With eq, es, ..., e, the standard basis for k", identify k% = ke, +. ..+ keq. By transitivity of G on ordered
bases of k", every orbit in the action of G on flags has a unique representative among the standard flags,
namely, for some ordered partition dy +da+...4+d; = r with 0 < d; € Z, the corresponding standard flag is

PVCkT

Fd17---1d2 — (k.dl C kd1+d2 cC k,d1+d2+d3 Cc...C kd1+"'+dl)

25] Also, the terminology itself has a long and complicated history, and admits a much larger context, inessential to
the present illustrative discussion.
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The stabilizer of F@»d¢ is the standard (proper) parabolic subgroup P94 of G, and is the intersection
of the maximal proper parabolics containing it, namely

Pdly---7d2 _ ﬂ P(d1+<~-+di)7(d'i+1+-~+dl)
1<i<e—1
Two standard parabolics P4+ and Pvdy are associate when ¢ = ¢ and the lists dy,...,dy and
d,...,d; merely differ by being permutations of each other. A parabolic Pdide g self-associate when

d; = d; for some 7 # j. These notions are important for discussion of constant terms of Eisenstein series,
meromorphic continuations, and functional equations. The standard maximal proper parabolics are block-
upper-triangular, in the sense

ror—r" a b . o o
P {(0 d) :a€GLy, b=7r"x(r r),dGGLT_r/}

That is, the diagonal blocks are 7' x " and (r — 7’) x (r — r’), and the off-diagonal blocks are sized to fit.
Next-to-maximal proper parabolics have the shape

ma k *
prorars — { 0 my * :my € GLy,, my € GL,,, mg € GLTS_} (forry+ro+r3=m)
0 0 ms

with off-diagonal blocks to fit. The general standard proper parabolic P9 consists of block-upper-
triangular matrices with diagonal blocks of sizes di X dy, do X da, ..., dy X dy. The standard Borel subgroup
is the subgroup of upper triangular matrices.

The unipotent radical N¥' of a parabolic P stabilizing a flag F = (V3 C ... C V; C k") is the subgroup
that fixes the quotients V,/Vy_1 pointwise. This characterization shows that N¥ is a normal subgroup of P.
For the standard maximal parabolic P = P”/*T*’"'7 the unipotent radical is

N = NP = N7 = {(10 b > b=1'x (r—1)}

17“77"’

Containment of parabolics reverses the containment of unipotent radicals: P C @ implies N¥ > N®. For
example, for next-to-maximal standard proper parabolic P = P""2:"3 the unipotent radical is

1., = *
N = NP = N = L0 L, x|
0 0 1,

The standard Levi component (or standard Levi-Malcev component) M = MP = M4 of the standard
parabolic P = P4 ig the subgroup of P = P% % with all the blocks above the diagonal 0, namely,

mg 0 0 ... 0

M = MP = Mot = { o0 Sl e my GGLdj}
SN
0 0 my

Unlike the unipotent radical, the standard Levi component is not normal in the standard parabolic.
Nevertheless, we have the Levi-Malcev decomposition P = N¥ - MT for matrices with entries in any field.
For the standard parabolics and standard Levi components, this is simply an expression of the behavior of
matrix multiplication in block decompositions. For example,

1
(8 Z) = (16/ fd )(8 2) (in blocks)
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The standard mazimal split torus in G is the subgroup of diagonal matrices, which is also the Levi component
M™n of the standard minimal parabolic P™* = PL.1--1 The standard Weyl group W can be identified
with permutation matrices in G, namely, matrices with exactly one non-zero entry in each row and column,
and that entry is 1. The Weyl group normalizes M™i" [26] The simplest Bruhat decomposition is

[3.1.1] Claim: With P™® the standard minimal parabolic and N™ its unipotent radical, we have a disjoint
union
GL, (k) _ |_| Pmin wpmin _ |_| Pmin wNmin
weWw weWw

Proof: The second equality follows from the first, by the Levi decomposition: letting P = P™" and N = N
and M = MP,
PwP = Pw(MN) = P-wMm™' -wN = PM-wN = P-wN

For the first equality, given g € GL,.(k), left multiplication by N can add or subtract multiples of a row of
g to or from any higher row. Similarly, right multiplication by N adds or subtracts multiples of a column
of g to or from any column farther to the right. Thus, letting g;, 1 be the lowest non-zero entry in the first
column (maximal index 41), left multiplication by N makes all other entries in the first column 0. Right
multiplication by N makes all other entries in the i%" row 0. Next, let g;, » be the lowest (maximal index is)
non-zero entry in the (new) second column. Without disturbing the effects of the previous step, all higher
entries in the second column, and all entries in the i5* row to the right, can be made 0 by left and right
action of N. An induction produces a monomial matrix, that is, one with a single non-zero entry in each
row and column. Then left multiplication by M normalizes all non-zero entries to 1. Thus, M NgN € W.

In fact, the positions of the lowest non-zero entries g;, ; in each column are completely determined by this
procedure, and there is no other way to reach a monomial matrix by left and right multiplication by N. This
explains the disjointness of the decomposition.

Rather than set up notation for the general case, the induction is better illustrated by an example: writing
x for unknown entries and x for non-zero entries, with suitable values in the elements of N, the first stage,
using the non-zero 2,1 entry, is

* ok % 1 x 0 P T 0 *x =« 0 * 1 *x % 0 * =x
X x x| —= [0 1 O X x *x|=|x *x x| —=1]x *x x 0O 1 0)J=x 0 O
0 X = 0 0 1 0 * 0 x = 0 x =« 0 0 1 0 X =

The second stage, using the non-zero 3,2 entry, is

0 * = 1 0 = 0 * = 0 0 =« 0 0 = 100 0 0 =

x 0 0]—=10 10 x 0 0]=(x 0 0J—=(x 0 O 01 =|=x 0 0

0 x = 0 0 1 0 x = 0 x = 0 x = 0 0 1 0 x 0
The upper-right entry must be invertible, since the original matrix is. ///
[3.1.2] Corollary: G = J, ¢y Pw@ for any standard parabolics P, Q. ///

[3.1.3] Remark: Letting W = WNP and WY = WNQ, we have a disjoint union G = UweWP\W/WQ PwQ.
However, except for minimal or maximal-proper parabolics, this requires a subtler proof. Our subsequent
examples will not need this precise form of the general case, although it would become relevant in other
examples.

Below, to distinguish matrices with entries in k from entries in k,, we will write Py, M}, and Ny in place
of the unadorned P, M, N above.

[26] A more extensible form of the definition of Weyl group is as the normalizer of M min - modulo the centralizer of
M™™ | that is, monomial matrices (with one non-zero entry in each row and column) modulo diagonal matrices.
However, for G = GLy, it is very often convenient to fix a set of representatives in G.
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3.2 Groups K, = GL.(0,) C G, = GL,(k,)

Now k is again a number field with integers o, completions k,, and local rings of integers o0, at non-
archimedean places. Let G, = GL,(k,), and let Z, be the center of G,. At non-archimedean places v, let
K, = GL,(0,). At real v, let K, be the standard orthogonal group O, (R) = {g € GL,(R): g"g = 1,.}, and
at complex v let K, be the standard unitary group U,, = {g € GL,(C) : g*g = 1,}.

Temporarily, let £ be the number of non-isomorphic archimedean completions of k, thus not counting a
complex completion and its conjugate as 2, but just 1. That is, [k : Q] = ¢; + 2¢2 where ¢; is the number of
real completions, and £, the number of complex, and £ = {1 +¢5. Let ZT be the positive real scalar matrices
diagonally imbedded across all archimedean v, by the map

t— (..t (for t > 0)

This map 6 gives a section of the idele norm map |t| =[], |tu]v, in that [6(t)] = t.

The group P, of v-adic points of a standard parabolic P = P¥ = Pd1:d¢ ig the stabilizer in G,, with the
same shape as the k-rational points Py in the previous section, but with entries in k, rather than k. That is,
the v-adic version of the flag F' = (k% C k®1+d2 C ... C k") is the natural F, = k& C khtdz C ... C k),
and P, = P-4t is its stabilizer. [27) Similarly, N, = NI is the v-adic points of the unipotent radical
N = N of P, and M, = M is the v-adic points of the standard Levi component of a standard parabolic
P. That is, again, the shapes of the matrices are the same as in the previous section, but with entries in k,
rather than k.

Twasawa decompositions are analogous to the previous chapter’s, with proofs merely iterations of the
arguments there:

[3.2.1] Claim: G, = P, - K, for standard minimal parabolic P.

Proof: For archimedean v, the right action of K, rotates the rows of given g € G,,. The bottom row can be
rotated to be of the form (0,0,...,0,0,*). Without disturbing this effect, the second-to-bottom row can be
rotated to be of the form (0,0, ...,0,%,x). Continuing with higher rows puts the result in P .

For non-archimedean v, right multiplication by K, can subtract local-integer multiples of the largest entry
in the bottom row from all others, to put the bottom row into the form (0,0,...,0,%,0,...0) with a non-zero
entry at just one position. Then a permutation matrix (in K, ) can move the non-zero entry to the far right.
Without disturbing this effect, the first » — 1 entries of the second-to-bottom row can be dealt with similarly,
putting it into the form (0,0,...,0, %, *). Because the determinant is non-zero, the second-to-right entry in
the new second-to-bottom row is non-zero. Continuing to modify higher rows puts the result in P,. ///

As in [1.2] and [2.1], Cartan decompositions follow from the spectral theorem for symmetric or hermitian
operators at archimedean places, and from the structure theorem for finitely-generated modules at finite
places:

[3.2.2] Claim: G, = K,M,K, with M = M™® the standard Levi component of the minimal parabolic.

Proof: For archimedean v, letting g — ¢* be either transpose for k, =~ R, or conjugate-transpose for
k, =~ C, the matrix gg* is positive-definite symmetric or hermitian-symmetric. The spectral theorem for
such operators gives an orthogonal or unitary matrix k such that k(gg*)k* = ¢ is diagonal with strictly
positive real diagonal entries. Let v/ be the positive-definite diagonal square root of 6. Then h = k*V/dk is
a positive-definite hermitian/symmetric square root of gg*. Then

(h—l g) - (h—l cg)f = htoggt bt = TR = 1,

Inverting k*k = 1, gives k=1 (k*)~! = 1,, and then 1, = kk*, so the latter condition also defines K,. That
is, g€ K,,and g € k*Vok - K, C K,VoK,.

For non-archimedean v, multiply through by scalar matrix c¢- 1, so that all entries of cg are in 0,, though
of course the determinant may fail to be a local unit. The rows of Ry,..., R, of g € G, are linearly

[27] The ky-vectorspace k;, has many subspaces and flags not obtained by extending scalars from subspaces and flags
in k", but these will play no role here.
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independent, and generate a free o,-module F' of rank r inside o!. Observe that K, = GL.(0,) is the
stabilizer of o). Since 0, has a unique non-zero prime ideal, the applicable form of the structure theorem for
finitely-generated modules over principal ideal domains is even simpler, and produces an 0,-basis fi,..., fr
of o] and elementary divisors di]...|d, such that {d;f;} is an 0,-basis of F. Let k1 € K, be the change-
of-basis element such that the j** row of ki - g is d;f;. Let {e;} be the standard basis of o}, and ks € K,
such that f; - g = e; for all j. Then 6 = kigks is diagonal with entries dy,...,d,. We can undo the initial
multiplication to get g € ky ‘¢~ 'k, ' € K,M,K,. ///

As in GLs, unlike the archimedean situation, for non-archimedean v the compact K, has substantial
intersections with N and M for every standard parabolic P. As for GL,, unipotent radicals NI of
standard parabolics P are ascending unions of compact, open subgroups:

NP = U{ne NP :n =1, mod =’}
>0

Again, unlike the archimedean situation, K, has a basis at 1 consisting of compact, open subgroups, namely,
the (local) principal congruence subgroups

Ky¢ = {g€ K, =GL,(0,) : g=1, mod we}

The corresponding adele group is Gy = GL,(A), meaning r-by-r matrices with entries in A, with determinant
in the ideles J. This group is also an ascending union (colimit) of products

Gs = H G, x H K, (for S a finite set of places v, including archimedean places)
veES V€S

ordering the finite sets S by containment. Similarly, Py, M 15 , N g , and Z, are the adelic forms of those
groups. Let Kj = [[, K, C G,. With the usual one-sided inverse to § : (0,00) — J the idele norm
[+ = (0,00),

Zp)Z" Zy = J/5(0,00) - k* ~ J'/k* = compact

where Zj; is the invertible scalar matrices with entries in k, with compactness demonstrated in [2.15].

3.3 Discrete subgroup G = GL,(k), reduction theory

As expected, G, = GL,(k), and Py, M, NF are the corresponding groups with entries in k. Proof of
the discreteness of Gy, in G is essentially identical to that for GLs in [2.2], and we will not repeat it. Let

G' = {g€ Gy :|detg| =1}

and Gy = ZT x G'. The product formula ], |t|, =1 for t € k* shows that G, C G'. In particular, G,
is still discrete in Zt\G ~ G'. As in the simpler cases [1.5] and [2.2], reduction theory should show that
the quotient G \Gy is covered by a suitable notion of Siegel set, and that these Siegel sets interact well with
each other. We prove that a single Siegel set covers the quotient, but omit the discussion of their interaction.

The notion of (standard) Siegel set becomes somewhat more complicated. The notion of a single numerical

height as in [1.5] and [2.2] is replaced by a family: the standard positive simple roots 28] are characters on
M = MF = M™" with P = P11 = P™" the standard minimal parabolic:

my
m; ;
a; = . (for 1 <i<r)
Mit1

my

[28] A5 with nomenclature for other objects, the terminology simple root is the correct name, but the origins, general
definitions, and abstracted properties of simple roots would not help us here.
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These simple roots make sense on My or M, or My, taking values in k™, k)¢, and J. A standard Siegel set
adapted to or aligned with P = P™™" is a set of the form

&r = 650 = {g=nmk:neC, me My, ke K, and |az(m)| >tforl <i<r}

with idele norm | - |, for 0 < ¢ € R and compact C' C Nf. Let N™* = N with P = pmi»,

[3.3.1] Theorem: For given k, there is ¢ > 0 and a compact subgroup C C Ng‘in such that Gy, - 65(1 =Gy
That is, Gx\G, is covered by a single, sufficiently large Siegel set.

Proof: We need a notion of height on A" as in [2.2] for r = 2. Let G4 act on the right on A" by
matrix multiplication. For real primes v of k the local height function h, on x = (z1,...,2,) € k} is
hy(z) = /2% + ...+ x2. For complex v, take hy(z) = |z1|c + ... + |z,|c with |z|]¢c = |Nﬁgz\R to not disturb
the product formula. For non-archimedean v, h,(x) = sup; |x;|y.

A vector x € A" is primitive when it is of the form z,g for g € Gy and z, € k". For z = (x1,...,x,) € k",
at almost all non-archimedean primes v the z;’s are in ¢, and have local greatest common divisor 1. Elements
of the adele group g € G are in K, almost everywhere, so this is not changed by multiplication by g. That
is, a primitive vector x has the property that at almost all v the components of x are locally integral and have
local greatest common divisor 1. For primitive « the global height is h(x) =[], ho(xy). Since z is primitive,
at almost all finite primes the local height is 1, so this product has only finitely many non-1 factors. The
proof of the following is mostly identical to the r = 2 case [2.2.2]:

[3.3.2] Claim: For fixed g € GL,(A) and for fixed ¢ > 0,

card (k‘x\{x €k"—{0}:h(z-g) < c}) < 0
For compact C C G there are positive implied constants such that
hMz) <c¢ hz-g) <c h(z) (for all g € C, for all primitive x)

Proof: Fix g € Gp. Since K = Ky = ][], K, preserves heights, via Iwasawa decompositions locally
everywhere, we may suppose that g is in the group P, of upper triangular matrices in Gy. Let g;; be
the (i,7)"" entry of g. Choose representatives x = (x1,...,2,) for non-zero vectors in k" modulo £* such
that, with p the first index with x,, # 0, z, = 1. That is, « is of the form = (0,...,0,1,z,41,...,2,).

The more easily written-out case r = 2 of the first assertion was treated in [2.2.2]. For x € k" — {0} such
that h(zg) < c, let p — 1 be the least index such that z, # 0. Adjust by £* such that z,, = 1. For each v,
from h(zg) < c,

|9p—1,0 + TpGuplo H G-t u—1lw < h(gz) <c
w#v

For almost all v we have |g,—1,—1]v = 1, so there is a uniform ¢ such that

|9p—1,0 + TpGpuple < ¢ (for all v)

For almost all v the residue field cardinality ¢, is strictly greater than ¢/, so for almost all v

19u—1,0 + TpGuple <1

Therefore, g,,—1,, + Z.9u,, lies in a compact subset C' of A. Since k is discrete, the collection of x,, is finite.

Continuing, there are only finitely many choices for the other entries of . Inductively, suppose x; = 0 for
i<pu—1,and x,,...,z,-1 fixed, and show that x, has only finitely many possibilities. Looking at the vt
component (xg), of xg,

H |g#—17u—1|w < h(zg) < ¢
wH#v

|g,u—1,u + TuGu,v +...+ Ty—19v—-1,v + TyGu,vlv
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For almost all places v we have |gu,1’,t,1|w =1, so there is a uniform ¢’ such that for all v
|(xg)u‘v = |gu—1,y + TuGu,v +...+ Ty—19v—1,v + xugu,u|'u < C/

For almost all v the residue field cardinality g, is strictly greater than ¢, so for almost all v

‘gufl,l/ + TuGu,v +... .+ Ty—19v—-1,v + xugl/,lllv < 1

Therefore,
Iu—1p +TpGuy + .-+ Tv—19v—10 + Tugo v

lies in the intersection of a compact subset C' of A with a closed discrete set, so lies in a finite set. Thus, the
number of possibilities for x, is finite. Induction gives the first assertion of the claim.

For the second assertion of the claim, let £ be a compact subset of Gy, and let K = [[, K,. Then
K - FE - K is compact, being the continuous image of a compact set. So without loss of generality F is left
and right K-stable. By Cartan decompositions the compact set £ of GG is contained in a set KCK where
C C My is compact. Let g = 01mfy with 0; € K, m € C, and x a primitive vector. By the K-invariance of

the height,
h(zg) h(z61mbs) h(z61m) h((z6;)m)

hz) — h@) 0@)  h((x0)

Thus, the set of ratios h(zg)/h(x) for g in a compact set and x ranging over primitive vectors is exactly the
set of values h(xm)/h(x) where m ranges over a compact set and x varies over primitives. With diagonal
entries m; of m, by compactness of C,

0 < infC inf |m;| < < sup sup |m;| < oo (for all primitive x)
me 1 i

h(l‘) meC i

This proves the second assertion of the claim.

Analogous to [2.2] for r = 2, we could put n(g) = |detg| - h(e, - g)~", where {e;} is the standard basis for
k". The parabolic Q = P"~1! is the stabilizer of the line k - e,.. This modification makes 7 invariant under
Zy, as well as left Qp-invariant and right Ka-invariant.

[3.3.3] Corollary: (of claim) Given g € Gy, there are finitely-many v € Qi \Gy such that n(y-g) > n(g).
Thus, the supremum sup, n(y - g) is attained, and is finite.

Proof: There is a natural bijection Q;\Gj «— k*\ (k" —{0}) mapping a matrix to its bottom row. The claim
shows that there are finitely-many x € k*\ (k" — {0}) such that h(zg) < ¢, that is, such that h(xg)~! > ¢ 1.
Since | det g| is Gg-invariant, the bijection gives the assertion. ///

Now we prove the theorem by induction on r. Given g € Gy, by the corollary there is € k" — {0} such
that h(xg) > 0 is minimal among values h(x'g) with 2’ € k" — {0}. Take 7, € Gy so that e,7y, = z, so
h(zg) = h(e;vo9) is minimal, and 1(v,g) is mazimal among all values n(y - v,g9) for v € Gj. By Iwasawa,
there is € K such that ¢ = 7,90 € Q4. Then h(ygf) = |q.| where g;; is the ij" entry of ¢, and n(q) is
maximal among all values (7 - q) for v € Gy. Let H C M® be the subgroup of G fixing e, and stabilizing
the subspace spanned by ej,...,e.—1, so H &~ GL,_1(A). By induction on r, beginning at » = 2 in [2.2],
by acting on ¢ = g0 on the left by Hy, and on the right by Hy N Kp, we can suppose that ¢ € PK““ and
|¢ii/Gi+1,i+1] > t for i < r — 1, without altering n(q). The induction step reduces to the case r = 2. The
extremal property h(e,q) < h(a’-q) for all 2’ € k" — {0} certainly implies h(e,q) < h(z’ - q) with 2’ ranging
over the smaller set of vectors of the form 2’ = (0...0 x,—1 x,-). Thus, the lower right 2-by-2 block ¢’ of ¢ is
reduced as an element of GLo(A). This reduces to the r = 2 case treated in [2.2.7], giving |¢r—1.r—1|/|¢rr| > ¢
for sufficiently small ¢ and proving the theorem. ///
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3.4 Invariant differential operators and integral operators

For archimedean G,, for some purposes, such as meromorphic continuation of Eisenstein series [11.5],
[11.10], [11.12], the Casimir operator or Laplacian as in [4.2], [4.4] suffices. 291 Beyond that, the tractability
of integral operators, as in the rewriting of non-archimedean Hecke operators as such, suggests using integral
operators at archimedean places, as well, especially in light of the commutativity result [3.4.3].

As usual, for a continuous action G, x V' — V on a quasi-complete, locally convex topological vectorspace
V', the corresponding integral operators are

w-fz/G<p(9)9-fdg (for ¢ € C2(G,) and f € V)

The integrand is a continuous, compactly-supported V-valued function, so has a Gelfand-Pettis integral
[14.1]. Thus, for f € V = L3(Z*G\Gp), with G, acting by right translation, pointwise

(0 ) = / o(9) (9- )(x) dg = / o(9) F(zg) dg (for ¢ € C2(G,) and f € V)

v Gy

In fact, for general reasons [6.1] the right-translation action G, x L*2(ZtGp\Gpn) — L*(ZTGi\Gy) is
continuous, so the integral converges as an L?(Z+G},\Gy )-valued integral, obviating concern about pointwise
values. The composition of two such operators is the operator attached to the convolution: for ¢, € C2(Gy),
by the same computation as in [2.4] and [3.4],

o) = [ etarg- ([ winran)ds = [ [ eta)vihiiah- ) dndg

because the operation of ¢ moves inside the Gelfand-Pettis integral. Replacing h by ¢~ h gives

/Gv /G o(g)¢(g~"h) h- f dhdg = /G (/G o(g) v(g~h) dg) bt dh

by changing the order of integration.

[3.4.1] Lemma: The adjoint to the action of ¢ € C2(G,) on L?(ZTG;\G,) is the action of ¢ € C2(G,),

where @(g) = ¢(g1). (Proof identical to [2.4.1].) ///
For simplicity of discussion, we restrict attention to functions on ZTGy\G, right K,-invariant for

archimedean v. In that situation, for archimedean v, the integral operators given by left-and-right K-

invariant ¢ € C2(G,), also denoted C2(K,\G,/K,), act on right K,-invariant functions on Z+Gi\Gy.

[3.4.2] Claim: The action of integral operators attached to ¢ € C2(K,\G,/K,) stabilizes K,-invariant
vectors f in any continuous group action G, X V' — V for quasi-complete, locally convex V. (Proof identical

to [2.4.5].) /!
Invoking Gelfand’s trick [2.4.5],

[3.4.3] Claim: The action of integral operators attached to ¢ € C2(K,\G,/K,) with convolution is
commutative, for both non-archimedean and archimedean v.

Proof: To apply [2.4.5], we need an involutive anti-automorphism o of G,, that is, ¢ — ¢ such that

(gh)? = h%? and (¢°)° = g, stabilizing K, and acting trivially on representatives for double cosets
K,\G,/K,. Use the Cartan decomposition [3.2] G, = K,M,K, and use transpose g° = g'. Transpose
stabilizes K,, and acts trivially on M,,. ///

As in other cases, the algebra of integral operators attached to ¢ € C2(K,\G,/K,) is stable under adjoints.
Thus, it is plausible to ask for simultaneous eigenvectors for this commutative algebra of integral operators.

[29] por SLy(R) or SL,(C), with r > 3, the center of the universal enveloping algebra Ug of the corresponding algebra
g is generated by r — 1 commuting operators.
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3.5 Hecke operators and integral operators

For non-archimedean G,, for any continuous action G, x V" — V on a quasi-complete, locally convex
topological vectorspace V, the corresponding integral operators are

<p-f=/G<p(9)9-fdg (for ¢ € C2(G,) and f € V)

The integrand is a continuous, compactly-supported V-valued function, so has a Gelfand-Pettis integral
[14.1]. Thus, for f € V = L?(Z+Gy\G,), with G,, acting by right translation,

(0 ) = / o(9) (g- )(x) dg = / o(9) F(zg) dg (for ¢ € C2(G,) and f € V)

v Gy

and for general reasons [6.1] the right-translation action G, x L?(ZT G \Gp) — L*(ZT G} \G}) is continuous,
so the integral converges as an L?(Z 1 G}, \Gy)-valued integral. The composition of two such operators is the
operator attached to the convolution: as in [2.4] and [3.5], for ¢, € C2(Gp),

et f) = [ ([ elayotan) dg) n- g an

[3.5.1] Lemma: The adjoint to the action of ¢ € C2(G,) on L?(ZTG;\G,) is the action of ¢ € C2(G,),
where @(g) = ¢(g1). (Proof identical to [2.4.1].) ///

It is reasonable to restrict attention to functions on Z1TG\G, right K,-invariant for all v. But it is
also reasonable to relax this condition to requiring right K,-invariance almost everywhere, that is, at all
but finitely-many places. A variant of Kj-invariance, to cope with the finitely-many places where right
K ,-invariance is not required, is Ky -finiteness of a function f on G or ZTGy\G, or other quotients of
G, namely, the requirement that the vectorspace of functions spanned by {z — f(zh) : h € Kp} is
finite-dimensional. At the extreme of Ky-invariant f, this space is one-dimensional.

[3.5.2] Lemma: For v non-archimedean, K,-finiteness is equivalent to invariance under some finite-index
subgroup K’ C K,. (Proof identical to [2.4.3].) ///

Unsurprisingly, it turns out that K-finite functions on Z+tGi\Gy are better behaved than arbitrary
functions. Of course, most f € L?(ZTG\Gy) are not K ,-finite.

For non-archimedean v, the spherical Hecke operators for G, are the integral operators given by left-and-
right K,-invariant ¢ € C2(G,), also denoted C¢(K,\G,/K,). Since K, is open, such functions are locally
constant: given © € G,, p(zh) = p(z) for all h € K,,, but K, is a neighborhood of x. Then the compact
support implies that such ¢ takes only finitely-many distinct values. Thus, the associated integral operator
is really a finite sum. Nevertheless, expression as integral operators explains the behavior well.

[3.5.3] Claim: The action of spherical Hecke operators attached to ¢ € G, stabilizes K,-invariant vectors
f in any continuous group action G, x V. — V for quasi-complete, locally convex V. (Proof identical to

[2.4.].) /M

[3.5.4] Claim: For non-archimedean v, the spherical Hecke algebra C2(K,\G,/K,) with convolution is
commutative. (Again, Gelfand’s trick [2.4.5].) ///

It is easy to see that the spherical Hecke algebra is stable under adjoints. Thus, it is plausible to ask for
simultaneous eigenvectors for the spherical Hecke algebra. That is, for f € L2(ZTG\Gy), we might try to
require that f be a spherical Hecke eigenfunction at almost all non-archimedean v, in addition to conditions
at archimedean places. However, it bears repeating that, in infinite-dimensional Hilbert spaces, there is no
general promise of existence of such simultaneous eigenvectors.

111



3. SL3(Z), SL4(Z), SL5(Z), ...

3.6 Decomposition by central characters

While ZT G \Gy has finite invariant volume, G\Gp does not. The further quotient Z4 G \G4 certainly
has finite invariant volume. Functions on Zy G \Gp are automorphic forms (or automorphic functions) with
trivial central character, since they are invariant under the center Z, of G. We can treat a larger class with
little further effort. Namely, the compact abelian group Z,/Z+Z), ~ J'/k*, being a quotient of the center
Zy of Gy, acts on functions on Z,Gr\Gpx and commutes with right translation by G4. In particular, the
action of Z /ZT Z), commutes with the integral operators on G, for v < oo, and with differential operators
coming from the Lie algebra g, of G, at archimedean places. Thus, for this chapter, an automorphic
form or automorphic function is a function on ZTGp\Gy. For each character w of Z,/Z% 7}, the space
L?(Z*TGp\Gp,w) of all left ZTGy-invariant f on G such that |f| € L?(Z,Gr\Ga) and f(zg) = w(a) - f(g)
for all z € Z, is the space of L? automorphic forms with central character w.

[3.6.1] Claim: L?*(ZTGy\Gy) decomposes by central characters:

L*(ZTGx\Gy) = completion of @L2(Z+Gk\GA7w)

(Proof identical to that in [2.5].) ///

3.7 Discrete decomposition of cuspforms

For a standard parabolic subgroup P of G with unipotent radical N = NPT the constant term of an
automorphic form f along P is

cpf(g) = /N\N f(ng) dn
R\NA

For general reasons [6.1], the group Ny acts continuously on the Fréchet space C°(ZT Ni\Gy), and Ni\Ny
is compact, so for f € C°(ZTN;\G4) the constant-term integral exists as a Gelfand-Pettis integral, and is
a continuous function.

[3.7.1] Claim: Constant terms are functions on Z+t Ny M\Gy.
Proof: By changing variables, g — cpf(g) is a left Ny-invariant function on Gj:

cpf(n'z) = / f(n-n'z)dn = / f((nn') - z) dn = / fn-x)dn (for n’ € Ny)
Ni\Np Ni\Ny Ni\Np
Similarly, for m € My,

cpf(mz) = / fn-mzx)dn = / fm-m™nm-z)dn = / f(m™nm - z) dn
Ni\Np Ni\Ny Ni\Np

since f itself is left Mj-invariant. Replacing n by mnm™! gives the expression for cpf(g), noting that
conjugation by m € M), stabilizes N, and by the product formula the change of measure on N, is trivial.
Invariance under Z71 is even easier. ///

A cuspform is a function f on ZT G \G a4 meeting Gelfand’s condition cp f = 0 for every standard parabolic
P. When f is merely measurable, so does not have well-defined pointwise values everywhere, this condition
is best interpreted distributionally, as in [2.7] for GLg, and addressed below in [3.8], in terms of pseudo-
Eisenstein series. The space of square-integrable cuspforms is

LA2(ZTG\Gp) = {f € LA(ZTG\Gyp) : cpf = 0, for all P}

The fundamental theorem proven in [7.1-7.7] is the discrete decomposition of spaces of cuspforms. A simple
version addresses the space

L3(ZTG\Gpo/Kp,w) = {right-K-invariant square-integrable cuspforms with central character w}
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where Kp = [[, <., Kyv. This space is {0} unless w is unramified, that is, is trivial on Zy N Ky, since
K -invariance implies Z N K -invariance, and we also require Z, ,w-equivariance.

The spherical Hecke algebras C?(K,\G,/K,) act by right translation, and the Gelfand condition is an
integral on the left, so spaces of cuspforms are stable under all these integral operators. The everywhere-
spherical form of the decomposition result is

[3.7.2] Theorem: L2(ZTGy\Gao/Ky,w) has an orthonormal basis of simultaneous eigenfunctions for
spherical Hecke algebras C?(K,\G,/K,). Each simultaneous eigenspace occurs with finite multiplicity,
that is, is finite-dimensional. (Proof in [7.1-7.7].)

In contrast, the full spaces L?(Z+Gx\Ga/Kpa,w) do not have bases of simultaneous L2-eigenfunctions.
Instead, as in [2.11-2.12] and [3.15-3.16], the orthogonal complement of cuspforms in L?(ZTGx\Gp /Ky, w)
mostly consists of integrals of non- L? eigenfunctions for the Laplacians and Hecke operators, the Eisenstein
series introduced below in [3.9].

For spaces of automorphic forms more complicated than being right K, -invariant for every place v,
there is generally no decomposition in terms of simultaneous eigenspaces for commuting operators. The
decomposition argument in [7.7] directly uses the larger non-commutative algebras of test functions on the
groups Gy:

compactly-supported smooth functions for v archimedean
c (Gv> =
compactly-supported locally constant functions for v non-archimedean

Both cases are called smooth. With right translation R, f(x) = f(xg) for z, g € G, the action of p € C°(G,)
on functions f on Gp\Gy is

- f = / e(9) Ref dg
This makes sense not just as a pointwise-value integral, but as a Gelfand-Pettis integral [14.1] when f lies
in any quasi-complete, locally convex topological vectorspace V on which G, acts so that G, x V — V is
continuous. Such V' is a representation of G,,. The multiplication in C$°(G,) compatible with such actions
is convolution: associativity ¢ - (¢ - f) = (@ *) - f.

Here, we are mostly interested in actions G, x X — X on Hilbert-spaces X. Such a representation is
(topologically) irreducible when X has no closed, G,-stable subspace. The convolution algebras C°(G,) are
not commutative, so, unlike the commutative case, few irreducible representations are one-dimensional. In
fact, typical irreducible representations of CS°(G,) turn out to be infinite-dimensional. There is no mandate
to attempt to classify these irreducibles. Indeed, the spectral theory of compact self-adjoint operators still
proves [7.7] discrete decomposition with finite multiplicities, for example, formulated as follows.

For every place v, let K| be a compact subgroup of G,, and for all but a finite set .S of places require that
K] = K,, the standard compact subgroup. For simplicity, we still assume K| = K, at archimedean places.
Put K’ =[], K. Let w be a central character trivial on Z, N K’, so that the space L2(ZTG\Gp/K', w)
of right K'-invariant cuspforms with central character w is not {0} for trivial reasons. For v € S, we have a
subalgebra C2°(K!\G,/K!) of the convolution algebra of test functions at v, stabilizing L2(ZT G \Ga/K',w).

[3.7.3] Theorem: L2(Z*Gi\Gy/K' w) is the completion of the orthogonal direct sum of subspaces, each
consisting of simultaneous eigenfunctions for spherical algebras C?(K,\G,/K,) at v € S, and irreducible
C*(K!\G,/K])-representations at v € S. Each occurs with finite multiplicity. (Proof in [7.1-7.7].)

The technical features of decomposition with respect to non-commutative rings of operators certainly bear
amplification, postponed to [7.7]. In anticipation,

[3.7.4] Theorem: (Gelfand and Piatetski-Shapiro) L2(Z+Gi\Gp/Ka,w) is the completion of the orthogonal
direct sum of irreducibles V for the simultaneous action of all algebras C2°(G,). Each irreducible occurs
with finite multiplicity. (Proof in [7.7].)

Again, the various sorts of orthogonal complements to spaces of cuspforms are mostly not direct sums
of irreducibles, but are integrals of Eisenstein series, as below, with a relatively small number of square-
integrable residues of Eisenstein series. For GLy or GLj3 the square-integrable residues of Eisenstein series
are relatively boring, but for GL4 and larger there are highly non-trivial square-integrable residues, namely,
the Speh forms, since for GL4(R) the relevant unitary representations appear in [Speh 1981/2]. The
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general pattern for residual spectrum for GL,, was conjectured in [Jacquet 1982/3] and proven in [Moeglin-
Waldspurger 1989].

3.8 Pseudo-Eisenstein series

We want to express the orthogonal complement of cuspforms in the larger spaces L?(ZTGi\Gy/Ky)
or L2(ZTG\Gp/Ky,w) or L2 (Z1Gp\Gp/K',w) in terms of simultaneous eigenfunctions for spherical
Hecke algebras almost everywhere. Therefore, we emphasize the commutative algebras of integral operators
attached to left-and-right K,-invariant test functions on G,. To exhibit explicit L? functions demonstrably
spanning the orthogonal complement to cuspforms, recast the Gelfand condition that all constant terms
cpf vanish as a requirement that cpf vanishes as a distribution on ZT Ny Mp\Gp, and give an equivalent
distributional vanishing condition on ZTGy\Gj.

For each standard parabolic P, with N = N¥| the condition that cpf vanishes as a distribution is that

/ prepf =0 (for all ¢ € C2°(N, M \G))
ZH Ny M\G p

where, again, C°(Ny M \Gy) is compactly-supported functions on that quotient, smooth in the archimedean
coordinates and locally constant in the non-archimedean coordinates. Smoothness for archimedean places
should mean indefinite differentiability on the right with respect to the differential operators coming from
the Lie algebra, as in [4.1]. Given the compact support, (uniform) smoothness for non-archimedean places
should mean that there exists a compact, open subgroup K’ of [[, ., K, under which ¢ is right invariant.

Beyond perhaps having pointwise values almost everywhere, the nature of cp f for f merely L? is potentially
obscure. For example, it is not likely that cpf € L?*(ZTNyM;\Gp). Instead, for general reasons [6.1],
C2(ZTGr\Gp) is dense in L?(Z*TG}\Gy) in the L? topology, and for general reasons [6.1] the left action
of Ni\Ny on C°(ZTP,\G,) is a continuous map Ny x C°(ZTP\Gy) — C°(ZTNyM\Gp), so cpf
exists as a C°(ZT Ny M \G,)-valued Gelfand-Pettis integral [14.1]. For such f, the integral of cpf against
p € C°(ZT Ny M \G,) is the integral of a compactly-supported, continuous function.

The simplest type of pseudo-Fisenstein series is

Uo(g) = ¥o(9) = D ¢(v-9) (for ¢ € C&(Z NoM\Ga))
YEPK\Gy

Convergence is good:

[3.8.1] Claim: The series for a pseudo-Eisenstein series W, with ¢ € C(ZTNyM;\Gy) is locally
finite, meaning that for g in a fixed compact in G, there are only finitely-many non-zero summands in
Py(9) = >, ¢(vg). Further, ¥y, € C°(ZFGx\Gy), so these pseudo-Eisenstein series are in L*(Z+Gi\Go)-
(Proof identical to [2.7.1].) ///

[3.8.2] Claim: For f € L2(ZTGj\G,), for a standard parabolic P, pseudo-Eisenstein series U, = \Iff; with
p € C(ZTNyMi\G,) fit into an adjunction

/ prens = | v, f (for f € L2(ZGy\Gy))
ZT Ny M\Gy, Z+G\Gy

In particular, cpf = 0 if and only if fZ*Gk\GA U, - f=0forall ¢ € CX(ZTNyMp\Gy).

Proof: The mechanism of the proof is that of [2.7.2]. For general reasons [6.1] C2(ZTG\Gy) is dense in
L*(Z*GE\Gp), and we consider f € C2(Z+tG,\Gp). This allows unwinding as in [5.2]:

/Z+NAMk\GA(p'CPf = /Z+NAMk\GA <P(9)</Nk\NA f(ng) dn) dg = /Z+NkMk\GA w(g) f(g) dg

Winding up, using the left G-invariance of f and N M}y = Py,

RCEULE > taetgds = [ s (3 etm)d

ZYG\GA yeP\Gy, YEPN\G
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The inner sum in the last integral is the pseudo-Eisenstein series attached to ¢. By Cauchy-Schwarz-
Bunyakowsky,

| fol =| F O] < [flp2 - Wy
ZHP\Gy Z+Gi\Gy

which proves that the functional f — fZ+Pk\GA fo on CX(Z+G\Gy) is continuous in the L? topology,

so extends by continuity to a continuous linear functional on L?(ZTGj\Gy). Indeed, this inequality asserts
continuity of f — cpf as a linear map from L?(Z+G)\G,) to distributions on Z+ Ny M\ G with the weak
dual topology as in [13.14]. ///

Similarly, with
CZ(ZTNaAMi\Ga,w) = {p € CZ(NaAM\Ga) : ¢(29) = w(2) - p(g), for all z € Zy, g € G}

analogously, keeping track of complex conjugations:
[3.8.3] Claim: Let N = N¥. For f € L?>(ZTG\Gp,w), with ¢ in C2°(Ny M \Gy,w),

/ Bocnf = / T, f
Z+NAMk\GA Z+Gk\GA

Thus, cpf = 0 if and only if fZJer\GA@ -f=0forall ¢ € C°(NyMp\Gp,w). ///

For P = P™" the minimal standard parabolic, especially for right K -invariant functions, as in [2.7.4] for
G Lo, minimal-parabolic pseudo-Eisenstein series with test-function data can be broken up into sub-families
parametrized by (tuples of) Hecke characters, as follows. With P = P™in et

mi
Mp = { tma,...,mye €J, my| == |my| =1}

my

The group M\M?! is compact, because J'/k* is compact [2.A]. Certainly C°(ZTNyM\G,) is inside
L?(ZT Ny Mi\Gy), so such functions ¢ admit decompositions in L?(Z+ Ny M;\G4) by characters x of the
compact abelian group M;\M?! acting on the left, as in [6.11]. The integral expressing the x*" component

S = [ ) elmg)

is a Gelfand-Pettis integral converging in C°(ZT Ny M \G,) for any quasi-complete [14.7] locally convex
[13.11] topology on this space. That is, the Fourier components ¢X of a compactly-supported smooth
function along M} \M?! are again compactly-supported smooth, and their sum converges to the original in
L*(Z+T Ny Mg\Gp), at least. The support of ¢X is worst (M \M*) x spt .

[3.8.4] Lemma: A function f € L?(ZTGy\G4) has constant term cpf integrating to 0 against ¢ in
C2°(ZT Ny M \G,p) if and only if cp f integrates to 0 against every My \ M '-component pX of .

Proof: The potential pitfall is that there is no claim that constant terms of functions in L?(Z+G3\G,) are in
L?(Z* Ny Mi\G,). Fortunately, this is not an obstacle: as earlier, it suffices to consider f € C2(ZTG\Gy),
socpf € C°(ZT Ny M \Gy). With u the characteristic function of (M \M?) x spt ¢, the truncation u-cp f
is in L?(Z TNy M\Gy), and truncation does not alter the integrals against ©X or ¢. Letting (,) be the inner
product in L?(ZT Ny M\Gy), since p = 3. X in L*(ZT Ny M;\Gy),

(cpfro) = (u-cpf, ) = Y (u-cpf,9X) =Y (cpf, %)

X X

giving the assertion. /1]
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[3.8.5] Corollary: With P = P™" and M = M* | to know cpf = 0 it suffices to know orthogonality to v,
for ¢ in
{p € CZ(ZT Ny Mi\Ga) : p(mg) = x(m) - p(g) for all m € M}

with y ranging over characters of the compact group M\ M!. ///

3.9 Cuspidal-data pseudo-Eisenstein series

The simplest pseudo-Eisenstein series \Ilf; with ¢ € CSO(Z'*‘NAM;C\G@) having compact support on the
relevant quotient, behave well, as in [3.8.1]. For minimal-parabolic P, such pseudo-Eisenstein series suffice
for the corresponding part of spectral theory, as they have good decompositions in terms of corresponding
genuine Eisenstein series, much as in [2.11] and [2.12], as below in [3.15]. However, for » > 3 and for
non-minimal P, genuine Eisenstein series with best behavior involve cuspforms on the Levi component
MPF . Anticipating this, we want pseudo-Eisenstein series \Ilg that facilitate this part [3.16] of the spectral
decomposition. This entails minor analytical complications, since the data ¢ can no longer have compact
support.

Let ¢ : (0,+00) — J be the usual imbedding of the ray in the archimedean factors of the ideles, so that
|6(t)| =t for t > 0. The centers of the factors GLg4, (A) of the standard Levi component M are copies of J.
The standard archimedean split component A; of a parabolic P = P%»% is the product of the copies of
6(0,00) in the product of the centers of the factors of M (A). Another important subgroup of M} is

mi
M}) ={ c|detmy|=...=|detmy| =1, m; € GLy,(A)}
my

By design, M}; = Alt M}, and M € M},. As already in G Lo, the center of MT is larger than the center of
G, so Zy M\ My is not quite a product of quotients of the form ZTGy\Gp or ZyGi\G4. This discrepancy
necessitates looking at test functions on the archimedean split components A; or their quotients Z 4‘\14;7
in addition to automorphic data on My\Mp.

In brief, the data ¢ on ZT Ny M;\Gy appropriate for spectral decompositions of pseudo-Eisenstein series
\I!f; in terms of genuine Eisenstein series with good behavior, must specify test function data on the split
component A;, and cuspforms on the M;\M4p. For the minimal parabolic, the cuspidal data is vacuous,
since the Levi component is a product of copies of GL1, and test function data and specification of character
on the compact abelian group M;\M} ~ (k*\J')" suffices for the spectral decomposition [3.15] of minimal
parabolic pseudo-Eisenstein series in terms of genuine Eisenstein series with analytic continuations and
functional equations. In contrast, for a non-minimal parabolic, some factor of the Levi component is GL,~
with > 1, and the cuspform condition is non-vacuous.

Further, we only consider everywhere spherical automorphic forms, that is, right Ky-invariant and left
Zp-invariant functions. This has the convenient simplification, via Iwasawa decomposition, that constant
terms cp f are identifiable with functions on the quotient of the Levi component of P:

ZANAM\Gp /Ky = ZyNyM\N\MyKy /Ky = ZyM\Mp/(Mp 0 JKy) <— ZyMi\My

This allows easier description of the cuspidal data, as follows. Let fi, fo be cuspforms on GL,, (A) and
GL,,(A), right invariant by the standard maximal compacts everywhere, with central characters w; and
wo, necessarily unramified. Anticipating the behavior of corresponding genuine Eisenstein series, we require
that f; and fo be eigenfunctions for all the spherical Hecke algebras, including the archimedean places.
This includes an eigenfunction condition for invariant Laplacians. That is, f; and fy are cuspforms in the
strong sense, beyond satisfaction of the Gelfand condition on vanishing of constant terms. The theory of
the constant term [8.3] shows that cuspforms in this strong sense are of rapid decay. Then f = f1 ® fy
is a function on GL,, (A) x GL,,(A) = M} . In the extreme cases where r1 = 1 or rp = 1, the situation
degenerates a little: there is no corresponding f;, that is, the corresponding f; is simply the identically-1
function. For a test function 5 on the ray (0, 00), define

|det ml\”
| det mo|m™

lenmt) = g stemmk) = ( )+ fatm) - ol
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mq 0

0 mo
idele norms of the determinants make ¢ invariant under Z,. The corresponding pseudo-Eisenstein series is
formed as expected,

with m = € Mfg, 2 € Z%t, nc& Ny, k€ K. The possibly counter-intuitive exponents on the

Wi = D e(v-9)

YEP\Gy

However, this sum is not locally finite, so convergence is subtler, and needs properties of strong-sense-
cuspform data. Convergence will follow from comparison to similarly-formed genuine Eisenstein series in
their range of absolute convergence, in [3.11.2].

[3.9.1] Remark: The argument of [3.11.3] for orthogonality of genuine Eisenstein series with cuspidal data
attached to mon-associate parabolics applies to pseudo-Fisenstein series with cuspidal data as well, showing
orthogonality of those attached to non-associate parabolics. For associate parabolics P, Q, as for GLs in
[2.13.5], spectral decompositions of pseudo-Eisenstein series will make clear [3.17.3] that pseudo-Eisenstein
series \I/f;f and ng, with test functions 7, 0 and cuspidal data f, f’, are orthogonal if P = @ but {f, f’) =0,
or if MP = wM®w=! but fv # f.

3.10 Minimal-parabolic Eisenstein Series

In the often-treated example of automorphic forms on GLsg, there are no Eisenstein series made from
cuspidal data, because G L is so small. In contrast, for GL,, with n > 2, cuspidal-data Eisenstein series play
an essential role. However, the minimal-parabolic Eisenstein series for GL, involve no cupidal data, because
the Levi component is a product of groups G L1, where the cuspidal condition is vacuous. Further, especially
in the everywhere-spherical case of right Ku-invariant minimal-parabolic Eisenstein series, much of the
behavior reduces to GLsy via Bochner’s lemma [3.B], as we will see. Hartogs’ lemma on separate analyticity
implying joint analyticity [15.C] removes several ambiguities and potential imprecisions in discussion of
functions of one complex variable versus several.

With § mapping (0,00) to the archimedean factors of J so that |6(¢)] = ¢, as earlier, describe Hecke
characters x as

X(O(t)-t1) = t°-x(t1) (with t >0, t; € J!, s € C)
Given an r-tuple of Hecke characters X1, ..., X, with the relation s; + ... + s, = 0 among the complex
parameters s = (81,...,8), the right Kj-invariant, Za-invariant minimal-parabolic Eisenstein series

_ min : .
E;s = EJY" on GL, is formed as usual:

Eaxlg) = > @2(v-9)

YEPL\Gy
where
my
go‘s’,x(nmk) = x(m1) ... - xr(my) (forneNgli“,m: ke Ky)
my
For Hecke characters all of the simplest form X, (6(¢) - t1) = ¢°, this is
pe(nmk) = ¢ (nmk) = [ma[*|mg[> .. |m,|>

That is, in terms of the parameter s, E , is a function-valued function of » — 1 complex variables, but the
parameter space is the complex hyperplane s, +...+s, = 0 in C", rather than C"~!. In terms of the positive
simple roots «;(m) = m;/m;s1, using s1 + ...+ s, =0,

G mmk) = fan(m)[" - Jaa(m)| - fag (m)] T gy ()
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[3.10.1] Claim: (In coordinates) The minimal-parabolic Eisenstein series FEs,(g) on GL, converges
(absolutely and uniformly for g in compacts) for =4+ > 1for j = 1,...,r—1, where s = (s1,...,s,) € C"
and o = (Re(s1),...,Re(s,)). (Proof below.)

The inequalities describing the region of convergence can be rewritten in a more intrinsic form later relevant
to functional equations, as follows. Let gl,.(R) be the Lie algebra of GL,(R), that is, all »-by-r real matrices.
Let a be the Lie algebra of the diagonal matrices in GL,(R). The non-zero eigenvalues (roots) of a on gl,.(R)
are functionals a — a; — a; in the dual space a*. For ¢ # j, the corresponding eigenspace (rootspace) is
matrices with non-zero entry only at the ij*"* entry. The standard positive roots and rootspaces are those
with ¢ < j. Write 8 > 0 for positive root 3, and 8 < 0 when —f8 > 0. The standard simple positive roots
are a — a; — a;—1 The half-sum of positive roots is

pla) = D (ai—a)) (for a € a)

i<j
There is a sort of logarithm map My — a by

my log [m |

m, log [m,|

and then for m € My and o € a*, write
a a(log |m|)

m® = e
This enables interpretation of the parameter s as lying in the complexification a* @ C of the dual a* of a.
Using (z,y) = tr(zy) on a, we can identify a with a*, and transport to a* the pairing (, ).

[3.10.2] Corollary: (Intrinsic/conceptual version) The minimal-parabolic Eisenstein series F; ,(g) on GL,
converges (absolutely and uniformly for ¢g in compacts) for (a, o — 2p) > 0 for all positive simple roots .
(Proof below.)

That is, the Eisenstein series F , converges absolutely for ¢ € a in the translate by 2p of

positive Weyl chamber = {z € a*: (x,a) > 0, for all positive roots a} C a”

Proof: (of claim) For convergence, it suffices to treat Hecke characters only of the form X(y) = |y|*. With
number field k, let h be the standard height function on a k-vectorspace with specified basis. Let P = P™in
be the standard minimal parabolic of G. Let eq,...,e, be the standard basis of k". Any exterior power
Af(k") has (unordered) basis of wedges of the e;, and an associated height function. Let v, = e; A ... A ey,
and

h(vy - NT7IHLg)

mlo) = = (for g € GL, (4)

where Afg is the natural action of g on A’k". The spherical vector ¢, = ¢4 1, from which the st" minimal-
parabolic Eisenstein series Iy = F, ; is made, is expressible as

S2—S81 ,,83—S81—S2

o =ty s

Sp—81—S82—...—Sp_1

S (where s = (s1,...,8))
From reduction theory, given compact C' C Zy\G,, for some implied constants depending only on C,

h(v) <¢ h(v-g) <c¢ hv) (for all 0 £ v € k" and g € C)

and similarly for heights on A’k". Therefore, convergence of the series defining the Eisenstein series E,(g,)

is equivalent to convergence of
/ > #lg) dg
c

VEZAPk\Gk
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Shrinking C' sufficiently so that v - C N C # ¢ implies v =1,

/C > ¢vg) dg =/Z ©2(g) dg

YVEP\Ci APE\GC

From reduction theory, the infimum 1 of h(v) over non-zero primitive v in A¢(A") is attained, so is positive.
In particular, u < h(v,vg) for all g € C' and v € Gy. Thus, Gy, - C is contained in a set

Y = {geGy : 1<¢ n,(g) forj=1,...,r}

Thus, convergence of the Eisenstein series is tmplied by convergence of

/ 10%(9)| dg
Zy P\Y

The set Y is stable by right multiplication by the maximal compact subgroup K, C G, at all places v, so
by Iwasawa decomposition this integral is

/ l2(p)| dp (left Haar measure on Zy\ Py )
ZpP\(YNPy)

With p the half-sum of positive roots, the left Haar measure on Zy Py is d(nm) = dndm/m?’, where dn is
Haar measure on the unipotent radical and dm is Haar measure on Zy\M,. Since ¢¢ is left Ny-invariant
and N\ N, is compact, convergence of the latter integral is equivalent to convergence of

dm

— = / m’ % dm (where o = (Resy,...,Res,))
m=P Zy Mp\(YNMy)

/ 10
ZAM]‘,\(YQMA)

The quotient k*\J! of norm-one ideles J! is compact, by [2.A], and the discrepancy between Z,\G, and
SL,(A) is absorbed by Ma N[, K,. Thus, convergence of the following integral suffices.
Parametrize a subgroup H of SL,(A) by r — 1 maps from (GL;(A), namely,

1
1
hj : t — t -1 (at j** and (j + 1)** positions)
1
1
From
[t|=t (fori=j+1)
ni(h;(t)) =
1 (otherwise)
we have

YN MyNSLy(A) = {[[hi(t;) : t; €T and [t;']>1}
J
Again using compactness of k*\J', noting that h;(¢)?* = [¢|* for all j, convergence of the Eisenstein series
is implied by convergence of the archimedean integral

<1 dt
tojftfj+1*2 —_ (forjzl,...,’f'*]-)
0 t
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These integrals are absolutely convergent for o; — o417 —2 > 0 for all 4. ///

Proof: (of corollary) The absolute convergence condition is (o — 2p, a) > 0 for all simple roots «. ///
The general shape of the P = P™" constant term of the simplest P Eisenstein series is easily determined:

[3.10.3] Claim: In the region of convergence, for suitable holomorphic functions s — ¢, 5, with ¢; s = 1, the
constant term is

cpEY, (m) = mPte + Z Cop s MPTYS (with m € M)
1#weWw

[3.10.4] Remark: We could explicitly compute the coefficients ¢, s as part of the proof of this claim, but
essentially the same computation occurs in the proof of the functional equations [3.12.1] and the corollary
[3.12.3]. Quoting [3.12.3] and [3.12.6] to have a more complete statement here:

[3.10.5] Corollary: ¢, s = &(s,a)/&(1+4 (s, a)) for reflections 7, and the cocycle relation ¢y 4.5 Cw,s = Cww’ s
holds for w,w’ € W and s € a* @ g C. We have

§(s, B)
Cus = s B
3>0::l_w[.5<0 £((s,8) +1)

"

Proof: This begins with an archetypical unwinding argument, using the disjointness of Gy, = ||, PswNi
from the Bruhat decomposition [3.1.1].

crEfLm) = [ BLemdn = [ S g enm) dn
Ni\Ny Ni\NA e PGy

- %:/N > Wy nm) dn = Z/ > Pors(wB - nm) dn

K \N g ~E P\ Pyw Ny, w Y NE\Np Be(w—1 PywnNg)\ N

= 0o (w-nm)dn = / 0o (w-nm) dn
Ew: /(w—lpkmek)\NA rr zw: (w= ! NwNNg)\Ny o

Since ¢§ , ; is left Np-invariant, g — o9, (wg) is still left invariant by w ' NywNNy. Thus, with the volume
of (w™'Nyw N Ny)\(w™ ! Nyw N Ny ) normalized to 1, the constant term is

/ @ s(w-nm) dn
(’wilNA’wﬂNA)\NA

w

The case w =1 gives @7, (m) = mPT5. More generally, there is a convenient complementary subgroup N*
to w™Nyw N Ny inside Ny:

[3.10.6] Lemma: Let N°PP be lower-triangular matrices with 1’s on the diagonal, and let
N* = NNw tN°Py. Then

NYN(w *NwnN) = {1} and N"-(w 'NwnN) =N
Proof: (of Lemma) First, of course,
w NPy Nw 'Nw = w ' (NPPAN)w = w  {1}w = {1}
For a root a(m) = m;/m; for i # j and m € M = M™" | the corresponding root subgroup is
L= a(m) -z} (n = Lie algebra of V)

N = {n=¢€":z €n, mem~
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where z — €* is the usual matrix exponential. Thus, IV is generated by all the Ng for positive roots 3, and
NOPP is generated by the Ng with negative roots 3. The action of W permutes roots, so it permutes root
subgroups. Every root subgroup is inside either w ™! Nw or w ™' N°PPw, so the intersections of these with N
generate N. ///

Then
CPE’p+g Z/ ©prs(w-nm) dn

Each root subgroup is stable under conjugation by M, so any product that is a subgroup of N is stable by
M. Thus, in the integral replace n by mnm™!: letting 5 (m) be the change of measure d(mnm=1)/dn,

CPEP+S Z(Sw / @ors(wmn) dn = Z(S“’ / gag+s(wmw_1 ~wn) dn

Ng

w
w A w

= Z(S“’(m) (wmw_l)”*'s/ hrs(wn) dn = Z(S“’(m) mw”(ets) / @5 1s(wn) dn
A

As usual, the sign in the exponent of w in the latter expression is necessary for the action of W on a* @ C
to be associative. Thus,

Cw.s :/ @Z_ks(w*ln) dn
N&

1

Optimistically, to understand 6% (m) m® ) = §v~" () m@? . ™S apparently
[3.10.7) Lemma: §°  (m)m™? =m® for m € M.

Proof: (of Lemma) Write 8 > 0 or § < 0 as 3 is a positive or negative root. The character m — §*(m) is
the modular function of N Nw ™! N°PPw, so §*(m) = m? where

y= ), wlp= Y wl(f=- ) wlp

B<0:w=135>0 B>0:w~18<0 B>0:w—18<0
Meanwhile,
“Tetss ¥ wtse X wtg
B>0 B>0:w=1-8>0 B>0:w—1-8<0
- Y s Y et
B>0:w-1-8>0 B<0:w—1-8>0
Thus, w™ - p4+ v = p. ///
Thus, we obtain an expression for ¢pEs(m) of the asserted form. ///
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3.11 Cuspidal-data Eisenstein series

To keep things relatively simple, our examples of cuspidal-data Eisenstein series for non-minimal proper
parabolics will include only mazimal proper parabolics. In fact, the general case is a combination of the
features of the minimal-parabolic and maximal-proper parabolic.

Let f1, fo be cuspforms on GL,,(A) and GL,,(A), right invariant by the standard maximal compacts
everywhere, with trivial central characters. We require that f; and fo be eigenfunctions for all the spherical
Hecke algebras, including the archimedean places. This includes an eigenfunction condition for invariant
Laplacians. That is, f; and fo are cuspforms in a strong sense, beyond satisfaction of the Gelfand condition
on vanishing of constant terms.

The corollary [7.3.19] of the discrete decomposition of cuspforms shows that cuspforms in this strong sense
are of rapid decay. The cuspidal data f = f; ® fo is a function on GL,, (A) x GL,,(A) = M}g. In the
extreme cases where 7y = 1 or 72 = 1, the situation degenerates: there is no corresponding f;, that is, the
corresponding f; is simply the identically-1 function. Let

Eiiiii fr(ma) - fo(m)

p(znmk) = ps ¢(znmk) = ’

with m = (m1 0
O meo
determinants make ¢ invariant under Z,. The corresponding genuine Eisenstein series is formed as expected:

Eoflg) = Y. @as(r-9)

YEPL\G

> € M§, 2 € ZT, n € Ny, k € K. The exponents on the idele norms of the

[3.11.1] Claim: The cuspidal-data Eisenstein series E f(g) converges (absolutely and uniformly for g in
compacts) for Re(s) > 1.

[3.11.2] Corollary: All cuspidal-data pseudo-Eisenstein series converge (absolutely and uniformly on
compacts).

Proof: (of corollary) The genuine Eisenstein series with any Re(s) > 1 and the same cuspidal data dominates
every pseudo-Eisenstein series with that cuspidal data. ///

Proof: (of claim) As above, hypotheses on the cuspform f assure that it is bounded, so it suffices to prove
the claim with f replaced by 1. Then the argument becomes a variant of that of [3.10.1] and [3.10.2], with
s, ¢ replaced by

(detmq)"2|”
(det mg)™

ps(nmk) = ‘

The sum

Ei9) = > ¢s(v-9)

YEPK\G

dominates that for F; . This E is a degenerate Eisenstein series when either r + 171 > 2, so-called because
it is missing the cuspidal data, and does not play a direct role in spectral theory.

With ey, ..., e, the standard basis of k", let h be the standard height function on k-vectorspace A" (k")
with basis consisting of ro-fold exterior products of the e;. Put

h(er,41 ANepqa Ao Aep - A2g)
h(er, 41 Neppa Ao Aey)

n(g) = (with g acting on A™2 (k") by A"2g)

Note that 7 is right K,-invariant at all v, left Nj-invariant, and 7 <n81 ﬂj > = | det ma|. Thus,
2
| det g|™2\ @ .
vslg)] = (7) with o = Re(s
lvs(9)] ) ( (s))
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From reduction theory, given compact C' C Zy\Gy, h(v) <c h(v-g) <c h(v) for all 0 # v € k" and g € C.
Therefore, convergence of the series defining F(g,) is equivalent to convergence of

/C > olvg) dg

YEPL\Gy

Shrinking C sufficiently so that v-C N C # ¢ implies v =1,

/C Y. welyvg)dg = /ZAP;C\G;CCSDU(Q) dg

YEP\Gy

Let p be the infimum of h(v) over non-zero primitive v in A™(A"). From reduction theory, this infimum is
attained, so it is u > 0, and p < h(v,yg) for all g € C and v € Gy. Thus, Gy, - C is contained in a set

Y = {g€Gy : |detg]™/n(9)" <c 1}

and convergence of the Eisenstein series is implied by convergence of

/ vo(9) dg
Zp Pe\Y

The set Y is stable by right multiplication by the maximal compact subgroup K, C G, at all places v, so
via the Iwasawa decomposition this integral is

/ v (p) dp (left Haar measure on P)
ZAP;C\(YQPA)
The left Haar measure on Py is
dndm my 0
d = h —
(nm) [det ma|™= - [detmg| T (where m ( 0 m2>)

where dn is Haar measure on the unipotent radical and dm is Haar measure on M }g . Since ¢, is left
N fg -invariant and IV, ,f \N f; is compact, convergence of the latter integral is equivalent to convergence of

dm B /
|det mq|™2 - | det mo|— Zy Mp\(Y M)

vy (m) | det my |2~ | det my| "1 dm

/ZAMk\(YﬂMA)
We have
YNMy = {me My : |detm|?/n(m)" <c 1} = {m € My : |detmq|™/|det ma|™ <¢ 1}

By reduction theory, for example, the quotients GL,, (k)\GL,,(A)! have finite total measure, and
|det my|™2 /| det ma|™ is ZyM'-invariant. Let M?' be the copy of GL,, (A)! x GL,,(A)! inside My. It
suffices to prove convergence of

dm

|’I"2(T
| det mq|m2 - | det mo| T

|7r1c7

| det mi . | det mo

/ZAMl\(YﬂMA)

| det |2~ . | det mg| @Y dm

/ZAMI\(YQMA)
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The map
Alt) = (té 10> (for t > 0)
2

surjects to Zy M\ My, so it suffices to prove convergence of

<1 <1
/ (det(t . 1r ))7’2(0—1) ﬂ _ / t'r'lrg(a—l) @

Convergence is implied by o > 1. /]

One benefit of cuspidal data for Eisenstein series is that many constant terms vanish for general reasons.
For maximal proper parabolics, the outcome is especially clear. Continue to assume that f; and fo are
everywhere spherical, for simplicity. The wvanishing conclusion in the following follows without assuming
much beyond the Gelfand condition on the cuspforms f;, fs, and enough decay for convergence of the
Eisenstein series in Re(s) > 1. However, the explicit computation of constant terms in the non-vanishing
case will need more.

[3.11.3] Theorem: Let P = P™"2 and f = f; ® fo cuspform(s) on M = M. Let Q be another parabolic.
Then cQEﬁf =0 unless Q = P or Q = P™"™, the associate of P.

Proof: First, since we claim that it suffices to consider mazimal proper @, the underlying reason being that
all standard parabolics are intersections of maximal proper standard parabolics, and for standard parabolics
N@Q' = NQ.NQ Giving X = (N,f2 N N,?l)\(]\/'lg2 N Ngl) measure 1, and noting that the constant-term
integrals make sense for any left P -invariant functions,

cana f(g) = / f(ng) dn =

QnQ’ QnQ’ /QOQ’ QNQ’
NRNN\N N2OY\NE

/X f(nzg) dzdn

- /N,f?\NX /N,?/\NX/ /Xf(n/ng) drdn = cg(cg f)(g)

Next, we show that CQEff = 0 for maximal proper @, unless ) = P or its associate. Let Q = P’"i”“;‘, and
write ¢ = ¢, ¢. Take Re(s) > 1 for convergence of the series expression for ES 7

cQEs(9) = /Q QEff(ng)dn = /Q 0 > ¢(y-ng)dn
NEANG NEANL veP\Gr

= /NI?\NK > > (07 - ng) dn

0EP\Gr/Qr YE(O~PronQr)\Qk

= > / > ©(67 - ng) dn

Q Q
5ePNGL/Qi " NE VA 1e(6-1 PLonQi)\ Qs

It certainly suffices to show that the integral vanishes for every d. The idea is that enough of the unipotent
radical Ng conjugates across each - so that the integral vanishes because of the Gelfand property of f. We
need to understand § ' P,6 N Q.

By the Bruhat decomposition [3.1,1], the Weyl group W gives a collection of representatives for Py\G}/Q.
Indeed, letting W¥ = P, N W and W® = Q, N W, a set of representatives for WX\W/W® is a set of
representatives for Py\G/Qr. In fact, WEP\W/W is in bijection with P,\Gr/Qr by WFwW® ¢— PLawQy,
although we only proved this for P = Q = P™™ in [3.1]. We determine representatives for WF\W/W<&.
Write a permutation matrix w € W in blocks corresponding to the Levi components of P, Q:

a b .
w = (c d) (witha=ry xrj,b=r1 xrh, c=ro xri,d=1ry x1})
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The left action of the upper-left GL,., part of W inside GL,, x GL,, ~ M and the action of the upper-left
GL,; part of W< inside GLyy x GLyy ~ M@ adjust the matrix a to the form a = (161 8) for some size
t1, so w becomes
1, 0 0
w = 0 0 =
0 * =

The lower-right parts of W and W further adjust the lower right block of w to be of the form <8 10 )
tyq

for some t4, putting the permutation matrix w into the form

1

OO O+
S

O ¥ O O
o O ¥ O
o O O

Necessarily the remaining entries can be adjusted to be identity matrices of suitable sizes. That is,
WE\W/WH® has representatives of the form

1, 0 0 0
o 0o 1, o

v 0 1, 0 0
0 0 0 1,

where t1 4+ t3 = r1, t1 + t2 = r}, and so on. With suitable block sizes,

1 0 0 O * ok ok % 1 0 0 O
1 10 0 1 0 * ok k% 0010
wrPwn@ =14 1 9 0floo « «|{o100]"¢
0 0 0 1 0 0 *= =« 0 0 0 1
x % % % x ok ok k
0 = 0 =« 0 = 0 =«
_****QQ_OO**
0 x 0 = 0 0 0 =x

Thus, writing the sum as an iterated sum and unwinding,

> p(wy - ng) dn

NI?\NX yE(w I PrwnQir)\Qk

- / 3 > p(wyv - ng) dn

N,?\Nx ’yE(w‘lPkwﬂMkQ)\M]? VE((w'y)_lPkw'yﬁNkQ)\N]?

= Z / oo e(wy - ng) dn
we(w*lPkwﬁM,?)\M,? (wy) = PewyNNy )\NA
For fixed v, replacing n by vy~ 'n~y gives
/ o(wn - ~g) dn = / p(wnw™' - wyg) dn
(w*lPkwﬂN,?)\Ng (w*lPkwﬁNl?)\NK

125



3. SL3(Z), SL4(Z), SL5(Z), ...

A similar computation to that above shows that

1t1 * 0 *

o 1p_ [0 1, 0 o
wN*w™ NP 0 0 1, =
0 0 0 1,

This contains the unipotent radical N’ of the parabolic P/ = P!i:ts x Pt2:ts of the Levi component

M? ~ GL,, x GL,, of P. Unless (r},75) = (r1,72) or (},75) = (ra,71), at least one of those parabolic
subgroups of GL,; must be a proper parabolic of the corresponding GL,,. That is, for each fixed v the
integral over (w™!Pyw N N,?)\ng2 has a subintegral over N;\N}, which computes the P’ constant term of
the cuspidal data f, giving 0.

This almost gives the vanishing assertion of the theorem. One anomalous case remains, namely, P N Q
when P = P™" and ) = P"™"™ with r # rp. Still, use the fact that cgnp = cg o cp. Compute the
constant term along P, using the fact from above that only w = 1 gives a non-zero outcome. Thus, for
non-self-associate proper maximal P and cuspidal data,

crELy(g) = dtngyin = [ ulng) dn

/<PmN,? NN A

= Ps, (g) dn = Ps, (g)/ 1dn
/N,?\Ng d P v e

Because 71 # 19, N9 N N¥ contains a unipotent radical of some proper parabolic in M, so the cuspidality
of f means cqps, ¢ = 0. Thus, chpEf:f =0. ///

[3.11.4] Remark: More generally, Eisenstein series with cuspidal data for parabolics P = P "¢ have
constant term 0 along parabolics @) unless ) contains some associate of P, that is, contains some Pri-ere
with the 7}’s a permutation of the r;’s.

The same arguments and vanishing conclusions apply to constant terms of pseudo- Eisenstein series with

cuspidal data:

[3.11.5] Corollary: For maximal proper P and cuspidal data f on M*, for another parabolic Q, cqQ¥} ; =
unless @ is associate to P. /1

An optimist would have to hope that cuspidal-data Fisenstein series Ef s formed from spherical Hecke
eigenfunction cuspforms f = f; ® fo would itself be a spherical Hecke eigenfunction, and that this is so
because ¢, s is a spherical Hecke eigenfunction for all s. Happily, this is nearly true, with a yet-stronger
notion of cuspform, as follows. Fix a non-archimedean v and square-integrable right K,-invariant cuspform
f, and consider the space

7, = {finite linear combinations of right translates g — f(gh) with h € G, }

generated by f under the action of G, by right translation, suitably topologized. The most direct way to

begin description of a suitable requirement (30 op f at v is that 7, be isomorphic as G, representation to a

30 Our description of what is needed to have cuspidal-data Eisenstein series be Hecke eigenfunctions would usually
be the conclusion of a highly non-trivial chain of reasoning. That is, we have directly described what is needed to set
up the proof that Eisenstein series formed from spherical Hecke-algebra eigenfunctions on Levi components are Hecke
eigenfunctions. A more usual characterization, inherited from the chaotic historical order of developments, would
be to require that the local representation generated by the cuspform be admissible and irreducible. Admissibility
is equivalent to K,-finiteness of every vector in 7, and irreducibility has the usual meaning of having no closed
Mf -stable subspaces, with the representation space suitably topologized. The Borel-Casselman-Matsumoto theorem
[Borel 1976], [Casselman 1980], [Matsumoto 1977] asserts that m, is a subrepresentation of an unramified principal
series. Given that, the key point is that induction in stages is legitimate, as in [6.9]. Unitariness of the representation,
which follows from square-integrability of the cuspform, implies admissibility, from [Harish-Chandra 1970], for
example. The global result, stated in [3.7] and proven in chapter 7, on discrete decomposition of cuspforms, in fact
proves there is an orthogonal basis for everywhere-locally spherical square-integrable cuspforms generating irreducible
representations of the global spherical Hecke algebra Ce°(Kp\Ga/Ky).
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G,-subrepresentation of an unramified principal series attached to the standard minimal parabolic B:
= {F € C®(G,) : F(bg) = x(b) - F(g) for allb € B,, g € G,} (for unramified x on M?)

Since f is K,-fixed, its image in If contains the subspace of K,-fixed vectors, which is one-dimensional by
the Iwasawa decomposition G, = B, - K,,. This is the right feature to prove

[3.11.6] Theorem: Fix a non-archimedean place v. With f; and fo as just described, that is, under right
translation by GL,, (k,) generating representations isomorphic to subrepresentations of unramified principal
series representations of GLTJ. (ky), with trivial central characters, the function s, ¢ is a spherical Hecke-
algebra eigenfunction for G,,. In the region of convergence, Ei s is a spherical Hecke-algebra eigenfunction
with the same eigenvalues as s 5. (Proof in [8.5].)

[3.11.7] Remark: Quantitative details about the spherical Hecke eigenvalues of ps 5 and EY s for G, in
terms of the spherical Hecke eigenvalues of f = f; ® fo for M, and s € C are visible in the proof [8.5].

[3.11.8] Remark: In the cases of cQE& ¥ # 0, the proof above shows that non-vanishing occurs only in a

1., O
for Q = P"" for both 7 = ry and r; # ro. Happily, in both these cases, w™!Pyw N M,?) = M,?, so the
sum over v € (w1 Pyw N M,CQ)\M,CQ is trivial. Thus, for Q = P and w = 1,, that part of the constant term
is easily made explicit, as in the proof above:

. 1
few cases: w = 1, for Q = P always gives the summand <p£f of the constant term, and w = ( 0 ”)

erEP5(g) = was(9)- / 1 dn
! ’ NN

The other part of the constant terms is significantly more complicated, as follows. With or without r1 = ry,

when Q = P™"™ and w = ( 0 1n

1 0 ), that part of the constant term is unwound completely, since
T2

w Pk-w Nk} - {1}, SO
\/IV’Z\N; ” N '

A

Since we have supposed that f is right K-invariant, the integral produces a left ZT Ny M ,? -invariant, right
K p-invariant function, so by Iwasawa is a function on M kQ \Mg2 and right My N K -invariant. The behavior
under the center of Mg is also easy to assess by changing variables in the integer. Thus, it is reasonable
to imagine that it is of the form cp?is’ s for some cuspform(s) on M Q. However, we would not want f’ to
depend on s, so the dependence on s should be somehow separate, and this integral should be expressible as
Co.f - ‘P%s,f' (m) with cuspform(s) on M independent of s, and m € Mg.

This conclusion does hold, but only with substantial assumptions on f ~ f; ® f2, as follows. Continue
to assume that f is a spherical Hecke algebra eigenfunction on M for all non-archimedean MYF. The best
further simplifying hypothesis Bl is a form of strong multiplicity one, that the only other cuspforms on
MP ~ GL,, x GL,, with the same spherical Hecke eigenvalues at all finite primes are scalar multiples of
f=fi®f Let f¥=(fi® f2)" = fa® fr.

[3.11.9] Theorem: In the non-vanishing cases, with maximal proper P, and Q = P or its associate, with
the strong multiplicity one assumption above,

CPEf:f = goﬁf (for 1 # ro (not self-associate))
cPEff = cpif + cf,fcpf_&fw (for r1 = ry (self-associate), meromorphic cf_f)
cQEf:f = cgf . <p1Q_S7fw (for 11 # ry, @ = P"™"™  meromorphic cgf)

B3] The strong multiplicity one assumption convenient for GL, is a theorem of [Shalika 1974]. See also [Piatetski-
Shapiro 1977]. It apparently does not hold for most other groups. That is, in general, only more complicated
conclusions can be reached about unwound integrals appearing in constant term computations.

127



3. SL3(Z), SL4(Z), SL5(Z), ...

Proof: From the proof of [3.11.3], due to the cuspidal data f, most summands of cQESF: ¢ corresponding to
double cosets PowQy € Py\Gr/Qy are 0. In all cases, for P = @, the small Bruhat cell P = P -1-Q gives

contribution
/ > p(wy - ng) dn = / ¢(ng) dn

N’?\Ng yE(w— PrwnQpr)\Qr Nf\Ng
= ¢l9) / 1dn (with w =1 and P = Q)
NPANE

since ¢ is left Ny-invariant.

Now consider P = P™" and Q = P™"t. From the end of the proof of [3.11.3], a double coset Pw@ can
give a non-zero contribution to the constant term only if w N®w~! N P contains no unipotent radical of a
proper parabolic of the Levi component M? of P. As in the proof of [3.11.3], P,\Gr/Qr =~ WE\W/ W&

has representatives
1,, O 0 0

we |0 0 1, 0
“lo 1, 0o o
0 0 0 1

where t; + t3 = r1, t1 + t2 = r1, and so on. The only case other than w = 1 meeting the condition is with
t1 =0 =14 and t3 = r1, to = 7. This has the effect that w='PwNQ = M®. This summand in the constant
term unwinds completely:

> p(wy-ng) dn = / Y. w(wy-ng)dn

NNG yew ! PrwnQx\Qxk N\NE YEMI\Qx
= / > p(wy-ng) dn = /@(w-ng)dn
NZ\NG VENY N

Let ¢'(g) be the latter integral. With ¢ right K,-invariant at all places, to understand ¢'(g) it suffices to

take
. o mo 0 o -1 mi 0
g_m_(o ml)_w (O m2>w
by the Iwasawa decomposition.
Certainly ¢’ is left Ng—invariant and invariant under the center. It is left M ,? -invariant, since for v € M ,?

¢'(ym) = /sﬁ(w'mg) dn = /@(w~7n9) dn = /w(wvw’1~wng) dn = /w(wng) dn = ¢'(m)

Q Q Q Q
N Ng N Na

by changing variables in the integral, and observing that the change-of-measure is 1, by the product formula.
Since the right translation action commutes with the integration along Ng on the left, my x my — ©'(m) is
a spherical Hecke eigenfunction on GL(r1) x GL(r3) with the same eigenvalues as .

To see the behavior of the s parameter, it suffices to consider left translation by

o (t 1, 0N (1, 0
h_( 0 1h>_w (0 t-1r2>“’

with ¢ > 0 imbedded diagonally at archimedean places. Then

o' (hm) = /gp(w~n~hm) dn = |det(t-1,,)|™ /go(w-h-nm) dn = |det(t-1,,)|™ /g@(whw*l-wnm) dn

Q Q Q
Na Na Na
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by replacing n by hnh~!, picking up the indicated change-of-measure. The left equivariance of ¢ under
elements of the form whw™! is

S

o(whw™ - wnm) = ll/det(t 1) - p(wnm)

Thus,
1-s
@ (hm) = |det(t-1,,)/1] - ¢'(m)

as claimed in the assertion of the theorem.
Finally, the multiplicity-one assumption says that mj; x ms — ¢’(m) must be a scalar multiple ci ¥ of

©(m). Since s — ES fisa meromorphic smooth-function-valued function of s, composition with c? gives a

meromorphic smooth-function-valued function of s. Since it differs by the scalar cg f from ¢, f, this scalar
must be meromorphic in s. ///

[3.11.10] Remark: The meromorphic functions ¢, s have Euler product expansions attached to fi; and fo,
but we do not have immediate need of this fact. [32]

In parallel with the spherical Hecke algebra behavior of E 5,f at finite places, keeping the assumption that
f1, f2 have trivial central character and are right K- 1nvar1ant

[3.11.11] Theorem: For v archimedean, for f = f;® fo with fi, f2 eigenfunctions for the invariant Laplacians
on the factors GL,, (k,) and GL,,(k,) of ML the function <p£ 7 is an eigenfunction for the invariant Laplacian

on G, and, thus, Esf is also an eigenfunction. In particular, letting A; be the eigenvalue of f;,

Q- ng = (?“17’2(7“1 + 7"2)(52 —8)+ M\ + /\2) . Eif

In particular, the eigenvalue is invariant under s — 1 — s.

Proof: For simplicity, treat G, ~ GL,(R). Accommodations for the complex case are illustrated in [4.6].
This is a purely local issue, and it suffices to consider arbitrary functions f1 ® f2 on GL,, (R) x GL,,(R) with
trivial central character. That is, the possibility that fi, fo are automorphic forms of any sort is irrelevant.
Similarly, we have a purely locally defined function

a ~|(deta)"

e <0 d> ’ (detd)"

As in [4.2] and [4.4], the invariant Laplacian on G, /K, is Casimir 2 on G,, descended to that quotient, and

then to any further quotient. For any choice of basis {x;} of the Lie algebra g of G,, and and dual basis

{zf} with respect to the pairing (z,y) = tr(zy), Casimir is expressible as an element in the (center of the)

universal enveloping algebra [4.2], [4.3] as Q = >, ;z}. It is easy to exhibit a basis so that the summands

separate into three pieces: Casimir ; of GL,, (R) actlng only on f1, Casimir 5 of GL,,(R) acting only on
f2, and a leftover acting only on |(det a)™/(det d)™|*.

Let h; be the diagonal matrix with 1 at the i** place 0’s otherwise. For i < j, let z;; be the matrix with

a unique non-zero entry, a 1, at the 35" location, and for i > j let ¥i; be the matrix with a unique non-zero

entry, a 1, at the ij'" location. The {z;;} and {y;;} are dual under (,). Thus, the Casimir operators for
GL,,(R) and GL,,(R) are

Ql - ZhQ Z xzjyji+yjixij) QQ = Z h22+ Z (I'ijﬂ—l-yﬂx”)

1<j<ry i=r;+1 ri<j<r

fi(a) - fo(d) (for a € GL,,(R), d € GL,,(R), k € O(r,R))

and Q = Qq + Qs + Q' with leftover

Q= > (Tiyji + YjiTij)

1<i<ry, mi<j<r

(32] [Langlands 1971] considers consequences of the appearance of Euler products in constant terms of Eisenstein
series series. A part of that program is completed in [Shahidi 1978] and [Shahidi 1985].
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Use the fact that Casimir commutes with conjugation by G,,, so we can let the associated differential operators

[4.1] act on the left on left N -invariant functions such as ¢, so that the Lie algebra n of N annihilates
such functions. There is a sign or order-of-operations issue: for a smooth function ¢ on G,, the effect of

Casimir acting on the right is
tix; tox?
certtiL e
- S )

Invoking the invariance under conjugation by G,,, this is

tlwi . eth:
Z ot 8t2 9)

Thus, terms x;;1;; with 1 < ¢ <7y and r; < j < r annihilate ¢,, because, after conjugating, x;; acts first
and is in n. For 1 < <r; and 1 < j <7, we can move toward invocation of this annihilation property by
noting that LTijYji — yijCC” = hz - hj, SO

TijYji + YjiTi; = 2TiY5i + YjiTip — TijYii = 2TiY5i — [Tig, Yjil = 2%45Y50 — hi + by

which acts just by —h; + h; on left N -invariant functions:

g, = Z (Tijyji + yjizij) - ps = Z (=hi + hy) = —7“22 hi-¢s + T1Z hj - s

1<i<ry, M <j<r 1<i<ry, m<j<r 1<i<r r1<j<r

Thus, with z; = Zlgz‘gm h; and z9 = Zr1<j§7" hj,
Q- ps = (Ql — 7“22’1) . |d€t m1|r25f1(m1) + (QQ + 7“12:2) . \det mg‘rlsfz(mg)

Since z; is in the Lie algebra of the center of the GL,, factor of M¥ and f; has trivial central character,
z1-f1 =0, and

(Ql—r2z1>-|detm1\”2sf1(m1) - Ql-(|detm1\”5f1(m1)) - (r2z1-|detm1\r2s)f1(m1)

and similarly for Q9 4 7129. The effect of z; on that power of determinant is straightforward:

0
z1 - |detmq|™?° = &‘t70| det(e -my)|[™* = =| (e")™"™°.|detmy|™?® = rires- |detmq|™®
Similarly, zo - |det mo| ™% = —ryras - |detma| ™5, Thus, the —re2; + r122 terms combine to —riro(ry +
T2)S - Qs.

The effect of 1 on fi(m) adjusted by a power of determinant is only slightly more complicated, using
Leibniz’ rule. The terms z;;y;; and y;;z;; annihilate the determinant, and h; - | det mq|™° = ros- | det mq|™*,
SO

Ql<|detm1|”5'f1(ml)) = Y hi-(detm[™- fi(ma)) + [detma|™® D" (wijysi + yjizi;) - f1(m)

1<i<r; 1<i<j<r;

= Z (h?|detm1|’"2s ~f1(m1) + 2hi|detm1|r2s ~hif1(m1)) + |detm1|r2591f1(m1)

1<i<ry

= rl(rgs)Q\detmﬂ”S-fl(m1) + 2r25|detm1|r2s ( Z ]’L) f1 ml) + |detm1|r2591f1(m1)

1<i<r;

= r1(r2s)?|detmy ™ - f1(ma) + 04 | det my |[2°Qy f1(m1) = |detmy|™* (r1(r2s)® + Q) - f1(ma)
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since ). h; annihilates f; due to the latter’s trivial central character. A similar computation applies to
and fo. Letting Q1 f;1 = A1 - f and Qs fo = Ay - fa, these computations give

Q'%Os = (7“1’[“2(7"1 +T2)(S2—S)+)\1+)\2) '(PS

That is, ¢, is an eigenfunction for Casimir on G,, and by the invariance so is ESIT - ///

[3.11.12] Remark: The argument can be recast as an application of induction in stages, in the archimedean

case, analogous to the corresponding non-archimedean argument [6.9]. [33]

3.12 Continuation of minimal-parabolic Eisenstein series

We show that the meromorphic continuations of some simple types of minimal-parabolic Eisenstein series
on GL, follow from the GL, case [2.B] via Bochner’s Lemma [3.B]. That determines the r! functional
equations corresponding to elements of the Weyl group W, the latter identified with permutation matrices
in GL,. We can also use this to compute the minimal-parabolic constant terms. To illustrate the points
with minimal clutter, we consider just the simplest Eisenstein series

Es(g) = Z ey 9) (where p2(nmk) = |my|®t|mg|®2 ... |m,|°" with s; + ...+ s, = 0)

YEPR\Gk

with P = P™in n e Ny = N™n m ¢ Mg‘i“, and k € Kp. Let £(s) be the completed zeta function of the
underlying number field. For s € a* @ C, write w - s for the action of w € W, that is, (wmw=1)* = m™*. In
the following, because the fixed point in a* ® C of all the functional equations turns out to be the half-sum

r—1 r—3 r—5 3—r 171“)
2 72 7 2 72 79

p = (p1,.-,pr) = (

of positive roots, we will express the functional equation in terms of

Ep+s(g) — Z gpz+s (’Y . g) (Where @Z+S(nmk) — ‘m1|P1+51 ‘m2|/72+52 . |mr p'r~+5'r')

YEPL\G

We prove the following theorem and the corollary together.

[3.12.1] Theorem: (Selberg, Langlands, et alia) Minimal-parabolic Eisenstein series Es have meromorphic
continuations in s € a* Qg C, with functional equations

_ -1
EP‘HU'S = Cy,s” EP+S

[3.12.2] Corollary: The meromorphic continuation of E,,, is holomorphic for s off the zero-sets of

E((s,B8) +1), 1+ (s,8), and (s, 3), for positive roots [. ///
[3.12.3] Corollary: ¢, = £(s,a)/E(1+ (s, o)) for reflections 7, and the cocycle relation ¢y y.s - Cuw,s = Cww’,s
holds for w,w’ € W and s € a* ®@p C. ///

Proof: In brief, the idea is to view the minimal-parabolic Eisenstein series as an iterated object, variously
as an Eisenstein series for all the next-to-minimal parabolics Q* = pl,...,1,2i,...,1 with the 2 at the i*" place,
formed from data including a suitably normalized G Lo Eisenstein series E on the Levi component factor
GL, of Q7 rather than cuspidal data on that GL,. Phragmén-Lindelof gives boundedness of the analytic
continuation of E in vertical strips, yielding convergence of the Q* Eisenstein series in a larger region

Q, = {se€C" : Re(s;) —Re(sj+1)>2forj #i}

B3] The archimedean analogue of the Borel-Casselman-Matsumoto result [Borel 1976], [Casselman 1980], [Mat-
sumoto 1977] is the sharper subrepresentation theorem [Casselman Mili¢i¢ 1982], considerably improving the sub-
quotient theorem of [Harish-Chandra 1954].
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That is, in €; there is no constraint on Re(s;) — Re(s;4+1). This applies to all the 2-by-2 blocks along
the diagonal, giving a meromorphic continuation of E, to | J,; ;. Then Bochner’s lemma [3.B] analytically
continues the whole Eisenstein series to the convex hull of (J, ©;, namely, C™.

Partial analytic continuation: Let P = P™". For each fixed index 1 < ¢ < r, there is the next-
to-minimal standard parabolic Q = @; with standard Levi components and unipotent radicals given by
Q = N@ . M® with

1 x x % x

O = ¥ ¥
— O * %
— % % % ¥ %

*

*

*

o

* o

* ¥ OO O

* *x OO O

*x Oocooco o
T oocoococo o

I
%* % % % %

*

1

with the anomalous block at the (i,4), (i,4+1), (i +1,4), and (i + 1,4+ 1) positions. The minimal-parabolic
Eisenstein series can be written as an iterated sum

Edg) = > v = >, ( > wi(évg))

YEPL\Gr YEQK\Gr dEPL\Qk

*¥ O OO OO O O

The quotient P,\Qy has representatives

1 0 00 0 0 0 O
’ 00 0 0 0 O
1 0 0 0 0 O
a b 0O 0 O a b 1,1 1,1
MP\MP ~ {5= cdo o ol (C d) € P,'\GLy(k)} =~ P, \GLa(k)
1 0 O
' 0
1
where P11 is the standard upper-triangular parabolic in GL,. Further,
ap  * * * * * * %
* * * * * %
a;_1 % * * * %
o a; * * * % B s s,
Ps 0 Ai+1 * * * - ‘a1| ‘a |
ai+2 * *
*
Ay
S1 Si—1 ST il Sitsit1 Si42 s
= |CL1| ...|a,»_1 K \ai/aiﬂ 2 |aiai+1 2 |CLZ'+2 i+ ...|CL7-| T
Thus, the inner sum in the expression for Ej is
ay ok * * % * * %
* * % * * %
a1 * % * * %
of s a b x )
Z s (6 c d x %
0€PL\Qx Qito % %
*
ar
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a b a b e
Si—1 , El,l ( ) . ‘ det( > ’ . |a, Si42 |a Sy
si—sit1 142 oo |Up
fivisl \e d c d

where E1! is the usual GL, Eisenstein series with trivial central character. So let ¢ = nmk be an Iwasawa
decomposition with n € N?, m € M?, and k € 1, K, with m in the form just displayed, and put

= |CI,1|Sl e |ai_1

sitsitl
. P Si_ 1,1 a b a b 3 . .
Pi(g) = |anf* .. Jaica | E( d)"d“(c d>\ a2 arl?
Then

EJg) = >, ®i(vg) (for g € GL,)
vEQK\Gx

This expresses the GL, minimal-parabolic Eisenstein series as Q-Eisenstein series formed from the P!
Eisenstein series on the GLy part of its Levi component.

The usual normalization of the GLo Eisenstein series to eliminate poles, for boundededness on vertical
strips for g in compacts in GLo(A), and to be invariant under s — 1 — s, is

Ey(g) = s(1—s)-&(25) B (g) (for s € C)

Thus, let

i Si— 5§ Si— 5§ i
2, = (— (1~ 5 ) - E(si = sip1) - @

An argument similar to [3.10.1] for convergence of the minimal-parabolic Eisenstein series F, and [3.11.1]
for maximal-proper-parabolic Eisenstein series will prove the absolute convergence of

(B = 2 (s —si) - Eulg) = Y. Bilyg)
YEPK\G
for w > 1 for j # i, with no condition on s; — s; 11, because we use the analytically-continued
Eisenstein series on G L, rather than the expression of it as a series.
The convergence argument is as follows. For ¢ in a fixed compact and s; — s;41 in a fixed vertical strip,
®%(g) is dominated by the function obtained by replacing E'1 by a constant, namely, with oj = Re(s;j),

b oitoitl

) a 2 )

o o o
’ 1"(1613(6 d> ’ '|ai+2 1+2"'|an‘ "

We prove the absolute convergence of the Eisenstein series E(g) = >_ ¢ Po\Gi 0(vg), which is degenerate in
the same sense as the approximating Eisenstein series in the proof of [3.11.1]. As in the earlier convergence
arguments, convergence is equivalent to convergence of an integrated form, namely

/ZA\C > 6(vg) dg

YEPR\G

G(g) = \a1|”1...|ai_1

Shrinking C sufficiently so that v-C N C # ¢ implies v =1,

/ZA\C > 0(vg) dg :/ 0(g) dg

YEPL\Gk ZpP\Gr-C

As in the earlier convergence arguments, letting n; be the norm of the determinant of the lower right n — j
minor, G, - C' is contained in

Y = {ge€Gy : 1<¢ n,(g) forj=1,...,n}
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To compare with M ¥ with Q = Q?, drop the (i + 1)** condition: Gy - C is contained in
Y' = {geGy : 1<c njlg) forj#i+1}

Thus, convergence of the Eisenstein series is implied by convergence of

/ 0(g) dg

As Y is stable by right multiplication by the maximal compact subgroup K, C G, at all places v, by an
Iwasawa decomposition this integral is

/ 0(p) dp (left Haar measure on Q)
ZaQr\(Y'NQp)

Let a = o; be the i*" simple positive root, and p the half-sum of positive roots. The left Haar measure
on Qp is d(nm) = dndm/m?’~%, where dn is Haar measure on N9 and dm is Haar measure on the Levi
component M?. Since 6 is left Ng—invariant and N kQ \Ng is compact, convergence of the latter integral is

equivalent to convergence of

dm
o(m T
ZyME\(Y'NMY) meP—a

As in the earlier convergence argument, the compactness lemma [2.A] and right action of M N[], K, reduce
the convergence question to that of a simpler integral.
As in the proof of [3.10.1], parametrize a subgroup H of SL,(A) by » — 1 maps from (GL1(A), namely,

1

(at j*" and (j + 1) positions)

1
1
/ a b a b -th . th el
h; c 4 — e d (at i"* and (i + 1)*" positions)
1
1
Then
Y'AMZNSLy(A) = {[[hit;) : t; €T and [t;'[> 1} x {hj(T):T € SLy(A), |detT| > 1}
J#i

Noting that h;(t)* = |t|?, convergence is implied by convergence of

<! dt
/ oot =2 2 (for j # 1)
O t
/ 1dt (right invariant measure dt)
SLy(k)\SL2(A)
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The GL; integrals are absolutely convergent for o; — ;41 —2 > 0 for j # i. By reduction theory [2.2] and
[3.3], for example, SLo(k)\SL2(A) has finite volume, so the SL, integral is convergent. This is the desired
convergence conclusion: there is no constraint on o; — o;11. Thus, the iterated expression for the Eisenstein
series analytically continues as indicated.

Functional equations for reflections: In addition to a partial analytic continuation, the previous
argument gives the functional equations for the reflections in W attached to the simple roots, as follows.
The main issue is making the functional equations understandable. In the iterated expression for £ above
in terms of a G L, Eisenstein series, the functional equation E; ’_12 = EL1 of that GL, Eisenstein series gives

sitsit1
sio1 . gLl (a b> ) ’det (a b> ’72 Naivo)P 2 L lar)r
s;—s; i e |G
fiTvidl \ e d c d

b b Sitsiq1
: Si 1,1 a [ 2 )
=l a0 B, ( d)'\det( d>! a7

B (g) = |arl* ... |aiz

- c
This is not presented immediately in terms of s = (s1,...,s,), but, instead, says
Si = Si+1 Si+ Sit1 Si = Sit+1 Sit Sit1
(Sla"'7si—17 ,57;+2,...,S7~) — (81;"'351'—1;17 )Si+27"'7ST)

2 ’ 2 2 ’ 2
We hope for clarification by identifying the simultaneous fized point(s), if any, of all these, for i = 1,...,r,
together with the condition sy + ...+ s, = 0: the i*" transformation fixes all by the i*" and (i + 1)*"

coordinate, and in those two coordinates the fixed-point condition is

Si T Sitl _ o SiT Sit and SitSi41 _ St Siq
2 2 2 2
The second equation is a tautology, so the i fixed-point condition is simply s; — 5,41 = 1. These conditions
fori=1,...,r—1and s +...+ s, =0, give a unique fixed point,
n—1n-3 n—-5 3—n 1—n
fixed point = ( , , e , )
2 2 2 2 2

This is the half-sum p of positive roots

p = (p1,.--spr) = %Z(O,...,0,1,0,...,0,—1,0,...,0) (at the i*" and j** places)
i<j
Replacing s by p + s replaces s; — s;01 by (pi + 8;) — (pix1 + Si+1) = 8 — Si+1 + 1, and the map

Pk L E
TSl 5 ] — 258 becomes

(pi + 8i) = (pit1 + Siv1) 1 (pi + 8i) = (pit18i41)
2 2

which simplifies to s; <— s;411. That is, in the p+ s coordinates, this functional equation is the interchange
of s; and s;41:

p+ (817 s 381580y Sit1ySig2, - 787“) — p+ (817 sy 8i—1ySi415Sis Sit2y - 787“)
This is the same as the effect m® — (r;m7; !)® with

1

ew (at i*" and (i + 1)*" positions)

= O
O =
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This 7; € W is usually considered to be attached to the ith simple root a;(m) = m; —m;11 on the Lie algebra,
as it is characterized by interchanging +o; and permuting the other positive roots Bj,(m) = m; —my: for m
in the Lie algebra of M™"  unless j =i and £ =i + 1,

Bie(romrh) = = (romm; 1) = (mim7; Y)e = my —mp (for some j' < £')

thus giving some other positive root evaluated on m. When j =i and £ = ¢ + 1, the effect is qualitatively
different, reversing the sign, producing —q;.

To rewrite the above in more geometric terms, use the pairing (z,y) = tr(zy) on the Lie algebra g of GL,
to identify a and a* and give each of them a non-degenerate inner product. The Weyl group preserves this
inner product, since

Lwyw™) = tr(wxw‘l -wyw_l) = tr(wxyw_l) = tr(my) = (z,y)

(wzw™
by conjugation invariance of trace. The geometric characterization of the reflection 7 = 7, associated to a
vector (here a simple positive root) « is that 7 should fix the hyperplane orthogonal to «, and should send
a — —a: this is expressed by

e (for x € a* ~ diagonal matrices)

Via this pairing, «; is identified with

0
0
L0 th : th D aaiti
o = 0 —1 (at ** and (i + 1)** positions)
0
0
because a;(m) = (m,q;). Similarly, s; — s;11 = (s,q;). It is immediate that 7- o = Tar™! = —a, as

the reflection should. Since 7 preserves (,), it preserves the orthogonal complement to «, so truly is the

associated reflection. Since 7 flips the sign on a and permutes the other positive roots, we can compute,

using 77! =7,

<2p,Oé> = —<2p77"05> = —<T~2p77'-04>
and
T-2p:T~ZB:T-( Z ﬁ)+7~a=( Z ﬁ)—a:2p—2a
B>0 B>0, B#a B8>0, B#£a
Thus, (2p,a) = —(2p — 2a, a), from which (p,a) = (a,a)/2 = 1. Thus, the o!* functional equation,

inherited from the G Lo Eisenstein series, is
Ep+T1-s,a) Epprs = Ep+s,a)- Eypg (reflection 7 = 74)

Using {p, @) = 1, this is

EQ+{(T-s,a)) Epprs = E1+(s,0)) - Epys (reflection 7 = 7,)
or, since (7 s,a) = (5,7 - a) = (s, —a) = —(s, ),
_ f04(sa) o Et(sa) L, E1t(sa) et
Borrs = ixfrosa) 200 = = (sa) T T T gy e lefledt 2
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using the functional equation (1 — z) = £(z).
Application of Bochner’s Lemma: The n — 1 partial analytic continuations can be organized to allow
application of Bochner’s Lemma. Above, for a = «; the i** simple root, we showed that the function

Efys = {pts,a)-(I={p+s,a)) &p+s.a) Eps = (1+(s,0)) - (1= (s,0)) -§(1+ (s,) - Epys

admits an analytic continuation in which s; — s;4+1 = (s, &) is not constrained, and this normalized version
of E, ., is invariant under p 4+ s — p + 7, - s for the reflection 7,. This might suggest adding normalization
factors for all positive roots, to obtain an eventually W-invariant expression:

Epps - [T+ (5,8) - (1= (s,8) - €1+ (5, 8))

B>0

The intention is that £, o is invariant under the reflection 7, for each simple root «, and the remaining
factors should be permuted among themselves, since the other positive roots are permuted among themselves
by 74.

A minor technical issue arises: to be sure to cancel the pole of (1 + (s,8)) at 14 (s,8) = 1, in order
to most easily justify application of Bochner’s lemma, add additional polynomial factors, squared to avoid
disturbing the sign in functional equations: let

Ef.. = Bpo - [[(+(s,8)- (1= (5,8)) - (5,8)? - (1 + (s, 8))

B>0

The exponential decay of the gamma factor in £ is more than sufficient to preserve boundedness in vertical

strips for real part s in compacts.
[3.12.4] Claim: E;ﬁs has an analytic continuation to a holomorphic function on C", and is invariant under
s—w-sforalweW.

Proof: By the G Ly discussion and the above adaptations, E,is has an analytic continuation to the tube
domain = {z € C" : Re(z) € Qo } over Q, C R” given by

Q, = {ceR" : (p+0,a) > 1for all but possibly a single simple root o}
is bounded, so certainly has sufficiently modest growth for application of

In Q, for Re(s) in compacts, Eﬁr

S

Bochner’s Lemma, and E;ﬁs has an analytic continuation to the convex hull of 2, which is C". It is invariant
under all reflections attached to simple roots, and these generate W. This proves the claim. ///

Returning to the proof of the theorem, this last claim gives the meromorphic continuation of F,4,,, and
the first corollary.
Given the meromorphic continuation of F, 4, the functional equations

§0+ (s, )
£(s, @)

Epprs = B,y (reflection 7 = 74)

of K, proven above for reflections 7 = 7, attached to simple roots o can be iterated. Taking constant
terms gives, by the general form of the constant term [3.10.3],

§0+ (s, ) §(+ (s, )

Co mp+w-r~s = cpE o= ccpE, L. = 728 m”+w's
Z W, TS PLptT-s §<s7a> PLp+s §<s,a> — w,s

w

For generic s € a* @ C, the coefficients of the various characters of m € My must be equal, so by the
identity principle are equal for all s. In particular, equating the coefficient of m?™7¢ gives

f1+(s0)
o)
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That is, ¢; s = (s, a)/E(1 + (s, ), and

1 1
Epprs = W cEops = - “Eoys (for reflection 7)
) TS
Equating the coefficients of m?T%'7¢ gives
P G o 15 ) O S
’ (s, @) ’ Cr,s ’

from which ¢y r.5 - €15 = Cyr,s. For two reflections o, 7,

Cwor,s = Cwo)r,s — Cwo,rs  Cris = Cw,ors Cors Cris = Cwors Cor,s
Induction gives cyw’,s = Cw,w'-s * Cuwr,s- Then

1 1 1 1
Ep+UT-s = Ep+a-(7--s) = 7'Ep+‘r-s = 7'Ep+s = T'Ep—i-s

Co,r-s Co,r-s Crys oT,S

and a similar induction on the length of w € W gives the general functional equation. Qualitatively, the
number of factors in both numerator and denominator of ¢, (s) is the length of w. This proves the theorem
and corollary. ///

[3.12.5] Example: For G = GL3 there are two simple positive roots,
(x,0) = 1 — 2 (z,8) = 22— 3 (for € a with diagonal entries ;)

The other positive root is a + 5, so p = %(a + 8+ (ag)) = a+ B. Let 0,7 be the reflections corresponding
to a, 3, respectively. The whole Weyl group is W = {1, o, 7, o7, 70, 070} and o070 = 7o7. From the GLs
computation,
L s Y
7T ((s,0) + 1) (s B) + 1)
By the cocycle relation ¢y s = €y r.s - € s for reflection » € W and w € W, we have

C, = C .c — £<T'S,Oé> . £<875>
e T e T (rsa)+ 1) €((s, B+ 1)

Since {1z, a) = (z,7a) = (z,a + 8),

o _Esatp) Esp)

T Es,a+ B +1) (s B) +1)
Similarly,

. _ s, a+pB)  Es,)

T Es,a+ By +1) (s, ) +1)
Finally,

£<0'87a+6> £<U'535> . £<87a>

o = foron = Comon ot = iy srat B4 1) Elo s f) + 1) & a) + )

Using 08 = a+ § and o(a + ) = B, this is

§(s, ) s, a+p) s o)

Cror,s = Coros = £(<5,6>+1) §(<$,0¢+6>+1) £(<Saa>+1)

The latter example suggests that more can be said about ¢, s:
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[3.12.6] Claim:

(s, B)
Cus = _&(s.B)
5>01:u[.g<0 (s, B) +1)

Proof: Induction on the length of w in the generating reflections associated to simple roots. With 7 = 7, for
simple root a the cocycle relation gives

§(r-5,8) ) (s, )
1 E(r-s.8)+1)  &((s,) +1)

Cwr,s = Cw,rs " Cr,s =
B>0: w-B<0

_ £(s, 7 B) ) (s, @)
- 1 §{s,7-B)+1)  &({s,a) +1)

B>0: w-5<0

The effect of 7 = 7, on roots is to interchange £, permute the other positive roots, and permute the other
negative roots. There are two cases.

First, if w -« < 0, then « itself appears in the product, and (w7,) - @ = w(—a) = —w - a > 0. So « will
not appear in the corresponding product for wr. Using the functional equation {(1 — z) = £(z),

7o) Esa) s —aq) §s,0) 0 -(sq)+1)  &s )

(s, 7 a)+1) &(s, ) +1)  &((s,—) +1) &({s,a) +1) 1 —(s,a))  &({s,0) +1)

s+ Esa)

&s,a)  &((s,a) +1)
Thus, the leftover factor from the product for w cancels the new factor from the cocycle relation, and the
desired relation holds for w7, in the case that w-a < 0.
Second, similarly but oppositely, suppose w - a > 0. Then « does not appear in the product for w. But
(wTe)a = w(—a) < 0, so a should appear in the product for wr,. The extra term provides this, proving the
relation in this case. ///

3.13 Continuation of cuspidal-data Eisenstein series

The functional equations of Eisenstein series attached to non-minimal parabolics P involve all the
parabolics Pide with dy,...,d; a permutation of dy,...,dp, called the associates of Pdiode This is so
even with the simplifying assumption of cuspidal data, without which the situation is messier. Then, the
expression of pseudo-Eisenstein series for such parabolics in terms of genuine Eisenstein series, even with the
corresponding assumption of cuspidal data, involves all these. Thus, as in [3.11], we consider only maximal
proper parabolics P = P2 right Mfg N K p-invariant cuspidal data f = f1 ® fa on Mfg with trivial central
character. Assume f1, fo are spherical Hecke eigenfunctions at all finite places, so by [3.11.6] the Eisenstein
series Ef: 7 is a spherical Hecke eigenfunction at all finite places. Similarly, at archimedean places v, we
assume (at least) that f; and fo are eigenfunctions for the invariant Laplacians on the factors of the Levi
component, so by [3.11.11] ng is an eigenfunction for the invariant Laplacian on G,,.

Assume strong multiplicity one for f1 ® fa, as in [3.11.9], so that the constant terms of ESf are as simple
as possible. With P = P™"™2 let Q = P™", so ) = P for self-associate P and otherwise is the unique
other associate of P. Thus, the following is special, but perhaps more palatable than the general case. Write

fr=(hef)"=rfh

[3.13.1] Theorem: (Langlands, Bernstein, Wong, et alia) With the constant-term conventions as in [3.11.9]
such Eisenstein series E£ 7 have meromorphic continuations in s, with functional equation

P P -1 P
Ef ;= () B2 and &gl =1

(Proofs in [11.10], [11.12].) /1
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Although the proof of meromorphic continuation is postponed to [11.10], [11.12], if we grant meromorphic
continuation then the form of the functional equation is determined by the constant term, using the theory
of the constant term [8.3], as follows. As in [3.11.9], the constant terms of ng and E?,S’fw are explicit.
First, for P self-associate,

CPELwa = QOSPif“’ +Csyf“’90{afs,f and CPEffs,f = wffs,f—i_clf&f(pif“’

and all other constant terms are 0. Thus,

P — P —1 P
CP(Elfs,f - CS.}UJ .Es,f"”) == (01757')‘ - Cs7fw) 'Sps’fw

and all other constant terms are 0. The functions f; and f> are cuspforms in a strong sense, so by [8.2] are

bounded. Thus,
det ml)Tz Re (s)

P k < (
el stmh)| < |

is bounded in standard Siegel sets for Re(s) sufficiently negative. By the theory of the constant term [8.3],
Ef_syfw - c;}w ~E5f is bounded in Siegel sets. Thus, this difference is in L?(Z+G,\G4). However, from
[3.11.11], both Ef_& o and Ef, ¢ have the same eigenvalues for invariant Laplacians at archimedean places,
namely, r172(r1 + 72)(s% — ) + A1 + A2 where ); is the eigenvalue for f; on the corresponding archimedean
factor GL,, of M”. Thus, the difference has that eigenvalue. There are many choices of s with Re(s) < 0
which make this eigenvalue non-real, however, which is impossible for an L? eigenfunction other than 0, as
in the proof of [1.10.5]. Thus, this difference must be 0, and have constant term 0. This gives the functional
equation, assuming the meromorphic continuation, in the self-associate case.

For the non-self-associate case, for P and its other associate @), both constant terms must be considered
to invoke the theory of the constant term. Starting from

P P P P P
cPEi_ 5 =¥1s s QB ;=i 925 cPEl 0 = b ol s OBl = 03 pu
we have P (P 1 @ _ 0
CP( 1—s,f (cs,fw) s,f’“’) -
P P\ Q — Q P\ Q
CQ(Elfs,f = (5 5u) 1‘Es,fw) - (le&f - (e ) 1) P

and all other constant terms are 0. As usual, the cuspforms are bounded by [8.3], so, for Re(s) sufficiently
negative, the constant term along @ is square-integrable on Siegel sets. By the theory of the constant term
[8.3], the difference Ef_&f - (cfdcw)_1 -ngw is square-integrable. However, again by [3.11.11], this difference
is an eigenfunction for invariant Laplacians at archimedean places, with non-real eigenvalues for many choices
of s. Thus, it is identically 0. ///

3.14 Truncation and MaaB-Selberg relations

First, we make precise a notion of truncation of automorphic forms, relative to a choice of parabolic
subgroup, especially maximal proper parabolics. For the self-associate maximal proper parabolic P™" in
G Ls,, the computation of inner products of truncations of P™" Eisenstein series with cuspidal data is
parallel to the computation for GLy. As in [1.11] and [2.10], corollaries give information about possible poles
of Eisenstein series, and square-integrability of residues of Eisenstein series.

This bears upon the occurrence of non-trivial residual square-integrable automorphic forms coming from
cuspforms on smaller groups, anticipating that such automorphic forms occur as residues of Eisenstein series.
For example, there is no non-constant non-cuspidal discrete spectrum for GL2(Z) nor for GL3(Z), but only
for GL4(Z) and larger. Namely, the Eisenstein series on GL3 with G Ly cuspidal data have no poles in the
right half-plane, as follows immediately from the MaaB-Selberg relations below.

The simplest non-trivial examples of Maaf-Selberg relations and corollaries concern spherical Eisenstein
series on GL,, associated to cuspidal data on the Levi component of maximal (proper) parabolics P = P™"2.
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For simplicity, we continue to consider only right K4-invariant Eisenstein series Ef: fi@fy0 Where f1, fo
are cuspforms in the strong sense of being spherical Hecke eigenfunctions everywhere, with trivial central
characters, allowing the simple outcomes of computations of constant terms as in [3.11.8] and [3.11.9]. When
r1 # 19, that is, when P is not self-associate, let Q = P">"™ be its other associate parabolic.

Let 6 be the modular function of Py

5<m1 0 ) _ ‘Edetml)“

0 mo det mg)m

and extend this to a height function aligned with P, by making it right K-invariant: h* (nmk) = 6¥(nm) =
6P (m) for n € N}g, m € MFP, and k € K,. For fixed large real T, the T-tail of the P-constant term of an
automorphic form F is
cpF(g) (for h(g) > T)
cpF(g) =
0 (for hP(g) < T)

Similarly, the T-tail of the @-constant term is

cqF(g) (for h®(g) > T)
coF(g) =
0 (for h9(g) < T)

Suitable truncations of these cuspidal-data Eisenstein series should be square integrable (potentially
accomplished a number of ways), and their inner products calculable in explicit, straightforward terms.
There should be no obstacle to meromorphic continuation of the tail in the truncation. These requirements
are at odds with each other. Writing ¥% () = \115 for the pseudo-Eisenstein series attached to data ¢, the
truncation at height T of the Eisenstein series is

Eﬁf — \Ilp(cgE;Tf) (for ny = ng, i.e., for P self-associate)
NTEL; =
Eif — \I/P(cgng) — \IIQ(cgng) (for ny # no, i.e., for P not self-associate)

[3.14.1] Proposition: The truncated Eisenstein series /\TESF:f is of rapid decay in Siegel sets.

Proof: The argument is simpler in the self-associate case, which we carry out first. From the computations in
[3.11.8] and [3.11.9] of constant terms of such Eisenstein series, for self-associate maximal proper P in GL,
all such constant terms are 0 except that along P itself. By the theory of the constant term, on standard
Siegel sets Eif — cPESf is of rapid decay. Thus, Eif — cgEﬁf is of rapid decay on standard Siegel sets,
and then the automorphic form

NE(; = By — U7 (cpESy)

is of rapid decay on all Siegel sets.

As in the discussion immediately prior to [3.10.2], for a root a of G, for a € M‘,‘gi“, let a® = ea(oglal),
For g € Gy, in an Iwasawa decomposition let g € N™" . q, - Kp with a, € M, so we can consider the
functions g — ag. The ambiguity of a by Mg N Ky does not affect the value of this function. In the
non-self-associate case, let v, 3 be the simple positive roots corresponding to P and @Q, in the sense that N
contains the a root subgroup

L=qa”. 2} (n = Lie algebra of N™i)

N = {n=¢€":2z €n, axa”
and N? contains the § root subgroup N?. Because f is a cuspform and P is not self-associate, only a single
Bruhat cell contributes to CPESF: 7, and cPE£ = gaf) #» which is rapidly decreasing on standard Siegel sets
as aj — +oo for any simple positive root v # «a, because f is a cuspform in a strong sense. Similarly, only
a single Bruhat cell (corresponding to the longest Weyl element) contributes to the constant term cQEf: 2
which similarly is rapidly decreasing on standard Siegel sets as aj — +oo for any simple (positive) root
v # B. Thus, the truncation

T 2P P P( T P T [P
NTEL = EF — WP (cpEL) — U9(chEY)
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has decay properties as follows. If aj — +o0 for v other than a, 3, then all three terms on the right-hand side
are of rapid decay in standard Siegel sets. If @« — 400, then each of the two expressions Ef; — \IIP(cgEf;) and
\I/Q(cgEg) is of rapid decay. If § — 400, then each of the two expressions E. — \I/Q(cgEg) and UF(cLEL)
is of rapid decay. Thus, as the value of any simple positive root goes to +oo in a standard Siegel set, the
truncation goes rapidly to zero. ///
Let h = hy ® hy be a another cuspform on M = MF. Let (f,h)arp be the inner product on the quotient
Zy M\ My. For brevity, write f* = (f1 ® f2)* = f2 ® f1.
[3.14.2] Theorem: (Maaf-Selberg relations) The hermitian inner product </\TE£f, ATEL,) of truncations
of two cuspidal-data Eisenstein series for maximal proper parabolic P is given as follows. For P self-associate,

Ts+r-1 Ter(lfF)fl

+ <f7 hw>M . Cr,hm

ANTEP . ATEF) = hyng - ———
< s, f r,h> <fa >M s+7—1

T(1—s)+7—1 o _ p-9+a-m-1
s rr-1 WU

R VARIOF YR
For P not self-associate, that is, for r1 # ro,

Ts-l—?—l P T(l—s)+(1—?)—1
w pw LQ Q
+ <f ) >MQ Cs,fcr,h(1_8)+(1_f)_1

NEP . ATEP Y = (f h —
< s, f r,h> <f7 >MP s+7—1

[3.14.3] Remark: The expression for the not-self-associate case is that of the self-associate case with the
middle two terms missing. In the non-self-associate case the inner products (f*,h) and (f, h*) would not
make sense, because in that case wMPw™" # MF, so the two functions live on different groups.

[3.14.4] Corollary: For maximal proper parabolics P in GL,, on the half-plane Re(s) > 1/2 an Eisenstein
series ESIT 7 with cuspidal data f has no poles if P is not self-associate. If P is self-associate, the only possible
poles are on the real line, and only occur if (f, f*“)as # 0. In that case, any pole is simple, and the residue
is square-integrable. In particular, taking f = f, ® f,

(Ress, E£f7 Ress, E£f> = (fos f0>§u’ -Ress, ¢s,r

Proof: (of theorem) The self-associate case admits a simpler argument, because in this case the truncated
Eisenstein series /\TE;T ¢ s itself a pseudo-Eisenstein series

/\TEf,f = U (psr) — ‘I’P(CgEﬁf) = U (s s _CgEf,f)

As in smaller cases [1.11], [2.10], the pseudo-Eisenstein series made from the tail of the constant term
integrates to zero against the truncated Eisenstein series: fortunately, for cuspidal-data Eisenstein series this
fact need not refer to subtle reduction theory, but only needs the r; = ro instance of the following:

[3.14.5] Lemma: With P = P""2, Q = P™2"2 and w = (10 162 )7
T

R (wn -m) < hY(m)™! (for all m € N, m € MY)
Proof: This lemma observes a qualitative aspect of Iwasawa decompositions of special elements. First,
he(wnm) = AP (wmw™' - wm™tnm) = §°(wmw™t) - ke (wmtnm) = 67 (m)7t - RO (wmlnm)
since w conjugates MT to M®, and inverts the modular function. Since M’ normalizes N, it suffices to

prove h(wn) <1 for all n € N Because h€ is right K-invariant, this is equivalent to

1 > h9wnw™t) = K9 (1;2 10 ) (with = r1-by-r3)
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In fact, we claim that the same inequality holds locally at every place v with the local analogues h? and h?.
8 Z with a, d upper-triangular.

For finite v, we imagine achieving the Iwasawa decomposition in stages, first putting the bottom row into
the correct shape, then the next-to-bottom, and so on. To begin, right multiply by k; € K, to put the ged
of the bottom row of x and of 1 into the far right entry of the bottom row of the whole, and to replace the
bottom row of z by 0’s. This can be done without disturbing the left r1-by-(r; — 1) part of the lower right
block of wnw™'. Next, without disturbing the adjusted bottom row, right multiply by ks € K, to put the
gcd of the next-to-bottom row of (the new) x and 1 in the next-to-last entry of the next-to-bottom row of
the whole, and to replace the next-to-bottom row of (the new) z by 0’s. Continuing, every diagonal entry of
d will be a ged of some v-adic numbers and 1, so not divisible by the local parameter t. Thus, |detd|, > 1.
At the same time, the entries of @ are among the entries of an element of K, so are all v-integral, and
|detal, < 1. Thus, h%(wn) = hQ(wnw™') < 1.

Somewhat analogously, for archimedean v, the i*" diagonal entry of d is lengths of vectors with entries
including the diagonal 1’s in the lower-right block of wnw™!. Thus, all the diagonal entries of d will be at
least 1 in size, and certainly | det d| > 1. At the same time, the rows of a are fragments of rows of a matrix in
K, so have length at most 1. The absolute value of the determinant of a is the volume of the parallelopiped
spanned by those rows, so is at most 1. ///

At all places v, right multiplication of wnw~! by K, produces g = <

Returning to the computation of the inner product in the self-associate case, the integral of
U (pay — CITaEfjf) against \I'P(CITDETI,?h) unwinds to the integral of ¢, y — cITDEf’f against \PP(CIT:,th), which
is then the integral of ¢, 5 — cITDng against cp(UF(cpEF),)). By construction, (g — cgEf:f)(m) is
supported where h”(m) > T, for m € MF. The proof of [3.11.3] and remarks in [3.11.8] apply as well to
pseudo-Eisenstein series, so

cp (\I/P(cgth))(m) = cITath —|—/ (cngth)(wn -m) dn (for m € M)

-
Na

By definition of the truncation, the integrand is 0 unless h” (wn - m) > T. The lemma gives h* (wn - m) <
h¥(m)~!. Thus, for T > 1, there is no overlap of supports of ¢, y — cgEf)f and the second part of the
constant term. That is,

(NTED; NTED,) = /‘I’P(%J —cpEy;) - WP(cLER,) = /(%,f —cpByy) - cpEF,

— [ WP (ous ~ FEL BE = (WTED, ED)

Unwind the truncated Eisenstein series:

(NTEL Ely) = / VP (ps s — cpEL) ED, = / (5,5 = cpELy) EF,
Z+CE\Gy Z+-P\Gy
o P1ose (for hP > 1)
= / N EP
rh
ZHP\Gp s, f (for hP <T)
This is
—Cs.fp1s,w  (for KT >T)
/ . Cpth
ZENpAMNG s, f (for hP < T)
—Cs fp1—s,pw  (for ht >T)
= / : (sﬁr,h + 1 pw (Plfr,h’“’)
ZHNpM\Gp Ps.f (for hP < T)
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Since the integrand is now left Nj-invariant, Z-invariant, and right K4-invariant, this integral may be
computed as an integral over the Levi component MT, using the Iwasawa decomposition, noting that the
Haar integral on GG in such coordinates is

m

d
dg = nmk) dn ———~ dk
G, f(g)dg /NA /MA - f(nmk) 57 ()

Then

—Cs, pP1-s,fw  (for ht >T) dm

</\TE5f’ ATES}’) - / ’ (‘phh + Ci—rpw Spl—nh“’) m
ZpMA\My ©s,f (for hP < T)

This gives the four terms of the theorem for the self-associate case. We evaluate one in detail, as follows.
Use Zt Mp\My ~ Z+t\A} x M\M" and the Aj-invariance of f, parametrizing Z+\ A} by

1/rs .
t — a = (6(t) 02 L 1O> (for t > 0)
T2

with the diagonal imbedding of the ray (0,00) into the archimedean part of the ideles, so that 6¥(a;) = t.
Then, for example,

Ps,f - Pl—r,hw 5P (m) = / t* - flagmy) - 1= - b (aymy) 7dm1

meZAMk\MA : hp(m)<T O<t<T,m€ZAMk\M1

s+(1—r)
:/ pran & / Flmy) - FoQm) dmy = —— ()

0 Zy M \M*

The other three integrals are evaluated in identical fashion.
In the non-self-associate case, invoking the Lemma in similar fashion,

<E§f —‘Ilp(cf,Eff), ‘I’P(CJTDEQL» =0
(EF, —WQ(cLEL,), WR(cLED,)) = 0
(PP(cHEL ), WOHED)) =0
so the inner product of the truncated Eisenstein series is
(NTEE ., ATED) = (EF, —UP(cLEL), Ef,) + (W9(cHEL,), U9 (chED,))

The pairings unwind. First,
0 (for K'Y >T)

(EF, — WP(BET,). B = (VP (cpEP, — (LEF,) EF,) = / A
ZEPNGy | 9l (for B < T)

Because of the left Np-invariance of the first part of the integral, this is

0 (for A" >T) 0 (for A¥ >T)

P _ P
~epEL, = Pr.h

/Z+NAM’C\GA ol (for K <T) /Z*NAMk\GA ol (for kP <T)
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Again, the integrand is left Nj-invariant and right K4-invariant, so may be computed as an integral over
the Levi component using the Iwasawa decomposition: it is

P
/ 0 (for A" >T) [
rh SP (o)
ZRI ME\M p <p§f (for ¥ < T) 6% (m)

giving one term in the non-self-associate case. The other pairing unwinds similarly, and becomes

cgf w({?is’fw (for he > T) dm

T P
<‘I’Q(CQEs,f) ‘I’Q( QET'}L)> :/ 'C?,h@?_nhw W

ZAMP\ME 0 (for 9 < T)

giving the second term of the theorem for the not self-associate case. ///

Proof: (of corollary). From the theory of the constant term, the only possible poles of the Eisenstein series
are at poles of the constant terms, which in this case means a pole of ¢, . Invoke the Maaf-Selberg relation
with r = s and h = f. In the non-self-associate case this is

20—1 Tl 20
W pw ; 2
(PR el T

(NTEY vaTE5f> = (f, f>2 (with o = Re(s))

The non-self-associate case is slightly unlike the simple case of GLs, in that the inner product of truncated
FEisenstein series is missing the two middle terms which for GLs made a pole possible. Specifically, in the
non-self-associate case, let s, = o, + it, be an alleged pole s, of ¢, of order ¢ in that half-plane. Letting
s = 0, + it approach s, vertically the left-hand side of the relation is asymptotic to a positive multiple of

t~2¢, while on right-hand side only the second of the two terms blows up at all. In particular, that expression
Tl 20
e ()
o

is asymptotic to a negative multiple of t~2¢, since o = Re(s) > 3. Thus, there is no pole in that half-plane.

Similarly, in the self-associate case, for there to be any pole in the right half-plane the two middle terms
on the right-hand side of the relation must not vanish, or the same contradiction occurs, so (f, f*) must
be non-zero, and the alleged pole must be on the real axis, and must be simple: if any of these conditions
fail, the middle terms cannot keep up with the negative value of the fourth term. Letting f = f, ® f, with
real-valued f,, we have f* = f and (f, f) = (fo, fo) - {fo, fo). Letting s = o + it,

201 2it —2it 1-20
A

T
<foafo> Sf 2t <f07f0> cs,fm—i_<f07f0>2|05,f|21_20,

< Esf7 > <f07f0>

Multiplying through by t? = (it)(—it) and taking the limit as t — 0 gives

1-20

1 T
(Res, AT Eg > Res, AT E£f> = (fo, fo)? Resqcs, 1 - 3 + (fo, fo)? Resgcs £y + (fo, fo)? |Res<,c,;7f|21 3
Letting T — 400 causes the last term to go to zero, and yields the indicated finite limit in the self-associate
case, since ¢z ¢ = G5, ¢ and the supposed pole is on the real axis. ///

[3.14.6] Claim: All residues of Eisenstein series EZ s are orthogonal to cuspforms.

Proof: There exists an orthogonal basis for cuspforms consisting of strong-sense cuspforms [3.7.3]. Thus, by
the theory of the constant term [8.3], that basis consists of functions of rapid decay in Siegel sets. Eisenstein
series are of moderate growth even when analytically continued, so the integral for (F; ¢, F') with strong-
sense cuspform F is absolutely convergent, and is 0. By properties of vector-valued integrals [14.1] and
holomorphic vector-valued functions [15.2], taking residues commutes with the integral, so the integral of
any residue against a cuspform is 0, whether or not that residue is square-integrable. ///
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3.15 Minimal-parabolic decomposition

The harmonic analysis required to express pseudo-Eisenstein series in terms of genuine Eisenstein series
reduces to Fourier transform on Euclidean spaces. Here we treat the extreme case P = P™™ where no
cuspidal data enters. We consider minimal-parabolic pseudo-Eisenstein series ¥, with test function data ¢.
All the r! functional equations [3.12.1] of the genuine Eisenstein series are needed to obtain the expression
of pseudo-Eisenstein series as integrals of Eisenstein series.

Let A* be the archimedean split component of M = M™" = MP that is, the image of r copies of
(0, +00) imbedded diagonally on the archimedean factors My, = Hu| M, of M. With M* the subgroup of
M = M‘g‘in with diagonal entries m; all satisfying |m;| = 1, we have Mg‘in = AT . M'. Via the exponential
R — (0,+00), we have AT ~ R” and ZT\AT ~ R"~!. Spectral decomposition along the Euclidean space
ZFT\ AT and the functional equations of the minimal-parabolic Eisenstein series £, = ET yield the spectral
decomposition of minimal-parabolic pseudo-Eisenstein series. Let (,) be the invariant pairing on the Lie
algebra q of ZT\ A", as in [3.10.2], where it was shown that E; converges nicely in the cone

{s € q®r C: (o, Re(s) — 2p) > 0, for all simple positive roots a}

For simplicity, we only consider right Kj-invariant ¥, with trivial central character formed from ¢ €
D(Z*T\AT). Further, suppose that the pseudo-Eisenstein series W, is orthogonal to all residues of E,, in
the cone

{s € q®r C: (a,Re(s)) > 0, for all simple positive roots a}

[3.15.1] Theorem: ¥, is an integral of Eisenstein series:

1

Yo = 7‘1(27ri)7'—1/ia*<q]*0’EP+8>'Ep+s ds

[3.15.2] Remark: From [3.8.1], the pseudo-Eisenstein series ¥, is compactly supported on ZGj\Gy, and
E, s is of moderate growth, so the integral

<‘I/¢7Ep+s> = / \I’sa ’ Ep+s
Z+Gr\Ga
implied by (¥, E,4s), while not an inner product, converges well.

Proof: To decompose right K 4-invariant pseudo-Eisenstein series as integrals of minimal-parabolic Eisenstein
series, begin with Fourier transform on the Lie algebra q ~ R"~1 of ZT\AT. Let (,) : ¢* x ¢ — R be the
R-bilinear pairing of q with its R-linear dual q*. For f € D(q), the Fourier transform and inversion are

R e R g I OL

q

Let exp : ¢ — ZT\AT be the Lie algebra exponential, and log : ZT\AT — gq the inverse. Given
© € D(ZT\A™), let f = ¢ oexp be the corresponding function in D(q). The Mellin transform Mg of
 is the Fourier transform of f:

~

Mep(i€) = f(§)
Mellin inversion is Fourier inversion in these coordinates:

1 1

plew) = f(r) = G / 0O = G / &%) Mepli€) dg
qr q*

Extend the pairing (,) on ¢* x q to a C-bilinear pairing on the complexification. Use the convention

(expz)’é = %67 = (li&o)
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With a = expz € ZT\ A", Mellin inversion is

1 . 1
_ ¢ , _ s . iy
pla) = 2T /q* a' Mo(ig) d¢ = @ri)T /iq* a® My(s)ds (with a € ZT\ A" and s = i€)
With this notation, the Mellin transform itself is
Mep(s) = / a"*p(a)da (with s € iq*)
ZH\A+

Since ¢ is a test function, its Fourier-Mellin transform is entire on ¢* @z C. (It is in the Paley-Wiener space.)
Thus, for any o € q*, Mellin inversion can be written

1 S
pla) = @mi)y T /Jﬂq*a Mop(s)ds

Via Iwasawa, identify Z+ Ny M1\Gp /Ky ~ AT, and let ¢ — a(g) be the function that picks out the A*
component. For o € q* suitable for convergence [3.10.1], the following rearrangement is legitimate:

Vo(g) = Y. elalyog) = > ﬁ Mep(s) a(yg)® ds

YEP\Gr YEP\Ci, otiq

= ﬁ Mso(S)( > a(vg)s> ds = ﬁ Me(s) - Es(g) ds

o YEP\Gr otia’

Anticipating the invocation of the functional equations, using the rapid vertical decay of Mp(s), we can
move the (r — 1)-fold integration to p + iq*. For simplicity, we assume VU, is orthogonal to any (multi-)

residues: .
\Ijga = W /iq* MC,O(,D‘F S) . Ep+s dS

This does express the pseudo-Eisenstein series as a superposition of Eisenstein series. However, the
coefficients M¢ are not expressed in terms of W, itself. This is rectified using the functional equations
of E,., as follows.

Since dndm dadk/a?’ with n € Ny, m € M, a € A", k € K, is a Haar measure on Gy, dadk/a® is a
right G-invariant measure on Ny M*\G,, and da/a?’ is the associated measure on NyM\Gy /Ky ~ AT
and it descends to ZT\AT. In the region of convergence, for ¢ € D(ZTG\Gp),

[ rEe= [ et [ smgatgyt dn dg
Z+Gk\GA Z+Pk\GA Z+NA]\/fk\GA NkﬁNA

cpf-a’t® = / cpf(a)-af™® d—za = / cpf(a)-a= P da = Mecpf(p—s)
ZH\A+ ZH\A+

/zﬂvAMk\GA asr

That is, with f = ¥,

/ U, -Epps = Mcp¥yu(p—5)
Z+Gk\GA

On the other hand, a similar unwinding of the pseudo-Eisenstein series, and recollection of the constant term
cpE,; s from [3.10.3], gives

da da
v, -F S:/ pla) - cpEyis(a —:/ ola) - cw75a"+w's—
/Z o, e B @ crByna) g = [, w2

= w,s 7(p7w.s)d = w,.s M —w-
S [ elaya 0 = Fews Molp=w-9)

w
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Combining these,
Mep¥y(p—s) = / U, -E,fs = ch,s Mp(p—w-s)
Replacing s by —s,

MepU,(p+s) = / Uy Ep o = Y Cus Mp(p+w-s)
ZTG\Gy w

The Eisenstein series E; behaves reasonably under complex conjugation: E, = E5. This is visible in the
region of convergence, and persists under analytic continuation, since F5z = F, is an equality of meromorphic
functions. Thus, the previous equality becomes

MepU,(p+s) = / U, E,ps = Zcm_s Mo(p+w-s)

w

Behavior under complex conjugation is inherited by the constant term along P:

Y o T _ +wF
E Cuw,s - 0PTYVS = cpl, s = cpEys = E Cws - a’
w w

Since artws = Pt S| this gives Gy 5 = ¢y 3. For p+ s on the unitary hyperplane p + ia*, conveniently

5= —s,and cy,—s = Cy,s, SO
Mcp¥,(p+s) = / U, E,ps = Zm Mep(p+w-s)
Z+GI\Gy "
With these points in hand, average the relation
G ! Mo(p+s)-E,ysd
= — sS) - s as
T riy L S ot

over w € W to convert it a W-symmetric expression, thereby to obtain an expression in terms of cp¥,,
using the functional equations:

1 1 1 1 1
¢ |[W| - (2mi)r—1 /iq.j\/lgo(p—i—w 8) Bprus ds |[W| (2mi)r—1 /ia* ( — ¢ Mep(ptw S)) prs ds

w,s
Fortunately, from [3.12.6], |cy,s| = 1 for s € ig*, so this becomes

1 1 1 1
Yo = Wiemy T w,s 08)) Bppads = oo | (W Eyyl) Bypod
¢ Wl my /ia*@wc’M@(P*“’ 9) Bpeds = sy [ (o Bpr) - By ds

The cardinality of the Weyl group W is r-factorial. ///
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3.16 Cuspidal-data decomposition

Now we treat the opposite extreme, the case of maximal proper parabolics P = P™"2, where cuspforms on
Levi components unavoidably enter. With § : (0,00) — J the diagonal imbedding at archimedean places,
the split component of P is

S(t1) -1 0
+ _ 1 T1 .
AP = {( 0 6(1&2).1”) ct1 >0, If2>0}

Let

M= {m= (ﬂgl 732) € MP ¢ |detmy| = 1 = |det ma|}
The family of pseudo-Eisenstein series U, with fixed cuspidal data f = f1® fo on M! with test-function data
just on the quotient Z +\A} =~ (0,00) of split components, as in [3.9], constitute the smallest natural vector
spaces of functions expressible as integrals of genuine Eisenstein series. In contrast, the pseudo-Eisenstein
series with test-function data on ZyMp\M,, as in [3.8], are smeared out across these smaller spaces of
functions.

For simplicity, we only consider everywhere spherical automorphic forms with trivial central character, that
is, right K y-invariant and left Z4-invariant functions. Thus, via Iwasawa decomposition, constant terms cp f
are identifiable with functions on the quotient of the Levi component of P. allowing easier description of
the cuspidal data, as follows. Let fi, fo be cuspforms on GL,, (A) and GL,,(A), right invariant by the
standard maximal compacts everywhere, themselves with trivial central characters. We require that f; and
f2 be eigenfunctions for all the spherical Hecke algebras, including the archimedean places. That is, f;
and fo are cuspforms in a strong sense, beyond vanishing of constant terms. The theory of the constant
term [8.3] shows that cuspforms in this strong sense are of rapid decay. Then f = f; ® fo is a function on
GLy,(A) x GL,,(A) = M{. For a test function n on the ray (0,00), define

|det ml\”
| det mo|™

lenmt) = g, s(emmk) = ( )+ atm) - ol

with m = (7781 7722) c M}§, 2 € ZT,nc€ Ny, k€ Ky, with corresponding pseudo-Eisenstein series
g =v: = > o9
’YEPk\Gk

Convergence follows from comparison to similarly-formed genuine Eisenstein series in their range of absolute
convergence, in [3.11.2]. The decomposition of such pseudo-Eisenstein series in terms of the analogous
genuine Eisenstein series reduces to Fourier inversion on R together with the functional equation (and
analytic continuation) of the genuine Eisenstein series.

Without loss of generality, normalize so that f M\ M1 |f|? =1, and f is real-valued. In the self-associate
case, we can assume that either f; = f5 or they are orthogonal.

[3.16.1] Theorem:

%-l—ioo
1
P _ P P P P P P
V= 1 / (W) By - ELpds + ) (W] Res, EFf) - Res,, EL;
1 —ico So

2

The residual part is non-zero only for self-associate P and f* = f, in which case there are at most finitely-
many residues, all in L?2.

[3.16.2] Remark: The argument literally only proves the previous equality pointwise. In fact, a natural
extension of the argument shows that the integral converges as a vector-valued integral, stemming from
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corresponding convergence of Euclidean Fourier inversion, one instance of the latter proven in [14.3], and
already exploited in [1.12] and [2.11-12] to prove Plancherel theorems for fragments of the spectrum. The
current form of the issue is addressed in [3.17].

Proof: Euclidean Fourier-Mellin inversion as in [1.12] expresses i € D(0, 00) as

1 > )
n(y) = %/ Mu(o +it)y7 " dt (for any o € R)
Thus,
det mq|™ det mq )72 |o+it
<:detm;:ﬁ> - fi(my) - fa(ma) = 7/ Mn(o +it) f(m )‘Edetm;;
1 o+100 (det ml)rz s
= o) Mn(s) f(m) 'W ds

As usual, to see how a genuine Eisenstein series arises, let

(detmq)™ s

(det m2)r1 ’ f(m>

©s,f(znmk) = ‘

with z € Zy, n € Ng’, m € M§, and k € K. Moving o to Re(s) > 1 for convergence of the sum, wind up

to P 1 o+1i0o 1 o+i00 P
Vir = 5 Mi(s) Y pralvg)ds = s— Miy(s) - EX ;(g) ds

; 211 .
g—100 'YGPk\Gk o—100

with the genuine Eisenstein series

Eli9) = D eas(v9) (for Re(s) > 1)

YEP\Gy

Expression of \I'f; s in terms of 1 should be replaced by an intrinsic expression in terms of \I/i ¢- The non-
self-associate and self-associate cases are somewhat different from each other, due to the different behavior
of the constant terms of Eisenstein series in those two cases. We treat the non-self-associate case first.

In the non-self-associate case, from [3.14.4], EF: ¢ has no poles in Res > %, and has reasonable vertical
behavior. Meanwhile, being essentially the Fourier transform of a compactly-supported smooth function,
Mmn(s) is in the Paley-Wiener space, so is entire with rapid decay on vertical lines. Thus, we can shift the

vertical integral to the line o = % without picking up any residues:
P 1 3o P
Uy = Mi(s) - Eg ;(g) ds

27i

5 77400

To obtain an intrinsic expression for Mn(s): unwinding the pseudo-Eisenstein series, using an Iwasawa
decomposition, spherical-ness, and trivial central character, and the fact that cPEﬁ 7 18 just @ ¢ in the

non-self-associate case: with 67 (m) = |det m|™ /| det mo|™ the modular function of P,

|detmq|™2\ ——5—— dm
B - [ se() pr
|detmq |2\ — ‘(detml)” 1-s  dm
— o) LACEMN F
/Z+Mk\MAf( )n<|detm2|“) f(m) (det mg)™

¥ (m)
ZTM\My ~ ZT\AL x M\M*

From

the pairing of pseudo-Eisenstein series against Eisenstein series becomes
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[oenwm = )] 1(6(a)) - (@)~ dm da
Z+Gk\GA Z+\AP><Mk\M1

= [ MR [T

yielding an intrinsic expression for Mmn,

S|

dr
r

1 _
M = — / vP . EP
77(3) <f7 f> Z+C\Ca n,f s, f

This computation incidentally demonstrates the absolute convergence of the integral. Unlike GLy and self-
associate cases, the previous computation of the integral of a pseudo-Eisenstein series against an Eisenstein
series already gives an intrinsic expression for the coefficient Mn(s) in the spectral decomposition, with no
immediate reason to use functional equations to symmetrize the integral. With the normalization (f, f) = 1,
the spectral decomposition is

1 %—H'oo 1 %+ioo
P = — Mn(s)-EF, ds = — vP EPN.EP. ds
n.f 270 J1_ine n(s) - Es g 270 J1 e (Wops Esip) - By
where, as usual, the pairing (,) cannot be the L? pairing, because Ef) ¢ Is not in L2, but the implied integral
converges absolutely, as the above unwinding argument demonstrates.
In the self-associate case, the subcase where f and f* are orthogonal is similar to the non-self-associate
case, as follows. First,

dm

\I/P,-EP:/ m)n(6(m)) - cpET ,(m) ——
/Z+Gk\GA e Z+Mk\MAf( y(Om)) - ep B )5P(m)

dm

= [y, 0 () 8om) e m1 ) s

Since f and f% are orthogonal, the second summand in the constant term of the Eisenstein series integrates
to 0 against the unwound pseudo-Eisenstein series. From [3.14.4], the Eisenstein series has no poles in
Re(s) > %, so we can move the contour to that line without picking up any residues. Again from

ZTM\My ~ ZT\AL x M\M"

the pairing of pseudo-Eisenstein series against Eisenstein series with Re(s) = % becomes

=5 > ¢ 1ar
/ W ED = [P [ DS = ) Mag