Math 8254: Algebraic Geometry Locally Free Sheaves and Vector Bundles; Differentials

Sasha Voronov

University of Minnesota

February 6, 2023

<ロト <四ト <注入 <注下 <注下 <

(Fiber) bundles in all sorts of geometry and topology have a local triviality property:

E -> X fiter fulle with fiter F if over an open cover {Ui]ofX If F & a V. space; then fiber Bundle becomes a V. fille Quasi-coherent sheaves are like vector bundles (the fiber over a closed point P is a vector space M/PM over the residue field k_p), but are not locally trivial: think of ... the shystraper sheaf

Definition: X a ringed space, \mathcal{F} a sheaf of \mathcal{O}_X -modules. \mathcal{F} is

- free if it's isom-c to $\bigoplus_{i \in \Gamma} O_X : \mathcal{F} \cong \bigoplus_{i \in \Gamma} O_X$
- locally free or a vector bundle) if I open cover { u;] of X, st,
 F[u; is free on U;
 rank (if X is connected): rank F = II
 invertible or a line bundle) if F is loc, free of rank [

Remark: On a scheme X locally free sheaves are automatically quasi-coherent: $\mathcal{F}(\mathbf{u}_{i} \cong \bigoplus_{i \in I} \mathcal{O}_{u_{i}} = \bigoplus_{i \in I} \mathcal{R}_{i}$ Speck = Uc Example $\mathcal{O}_{\mathcal{P}}(d)$ on \mathbb{P}^n but not k_p $\mathcal{O}_{\mathcal{P}^n}(d) \cong \mathcal{O}_{\mathcal{U}_i}$ invertice $\mathcal{P}E(p)$ k_p skycroper is not loc. free

The Picard group

I like bolk (invertible sheaf) L' & L -> O X rouged morphism of sheaves $\mathcal{H}_{OX}(\mathcal{L}, \mathcal{D}_{X}) \otimes \mathcal{L} \longrightarrow \mathcal{O}_{X}$ $\varphi \otimes s \leftarrow P \varphi(s)$ $\mathcal{L} |_{\mathcal{U}} = \mathcal{R}_{\mathcal{O}} \left(\mathcal{O}_{\mathcal{U}}, \mathcal{O}_{\mathcal{U}} \right) = \mathcal{O}_{\mathcal{U}}$ ⇒ I'lu @ I lu ~ Ou som-m ⇒ I' @I → Ox som-m; I':= I' Pic X = ¿ grotup of oso classes of invertible sheaves or X]

Constructions of locally free sheaves on a scheme

Foll

o direct sum

Motto Constructions of Comm. Alg. preserving free modules will work in AG as constructions of locally free sheaves. Here X is a scheme and the sheaves are locally free. free

• tensor product $F \otimes L$ 'M $\otimes N$ • dual F' M'• pullback $f : Y \to X$, f = F = boully assolicted $pullback f : Y \to X$, f = F = boully assolicted Society = Speck (of Society Assolicted) Thus the twisting sheaf $O_X(d)$ on a projective variety (closed) subscheme of \mathbb{P}^n) is locally free: $i: X \subseteq P^n$ (closed subsch)

MON