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Further properties of cohomology

Standing assumptions for the cohomology topic: X a
separated, compact scheme over a field k ; F a quasi-coherent
sheaf on X

Theorem
1 H0(X ,F) = F(X );
2 If X is affine, then Hp(X ,F) = 0 8p > 0;

3 X is projective of dim n, then Hp(X ,F) = 0 8p > n;

4 If i : X ,! Y is a closed embedding, then

Hp(Y , i⇤F) = Hp(X ,F) 8p � 0.

Proof:
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UCX Spec pOspeck)(X)=k* 0x(X)
-rsp,

vanity/b=Rn

Grothendieck's vanishing theorem:X Noetherian top
space of dimn, I sheaf of as.gpson X= H9X,FEp>n.

(2) (X) is an officepercover ofX =O aS

CP(X, F)
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Proof of theorem, continued
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Proof of theorem, continued
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CP(X,) =aF(Vi ...ip) =0
dos..p

for p>n, b cover has only n+1
elements

=>HP(X,F) =0kp
(4) (P(Y,iaF) =iaF(nio-ip)is<...ip
X*Y, [Ui] affire open cover of Y
=*F(i

- (io...ip)) =F(XaVionip)
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The long exact sequence (LES)

Theorem
The cohomology functor turns naturally a short exact sequence

of sheaves on a scheme X:

0 ! F1 ! F2 ! F3 ! 0,

into a long exact sequence (LES)

0 ! H
0(X ,F1) ! H

0(X ,F2) ! H
0(X ,F3)

! . . .

! H
p(X ,F1) ! H

p(X ,F2) ! H
p(X ,F3)

! H
p+1(X ,F1) ! H

p+1(X ,F2) ! H
p+1(X ,F3)

! . . .
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Proof of theorem
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Proof of theorem, continued
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