Math 8254: Algebraic Geometry Sheaf Cohomology, Continued

Sasha Voronov
University of Minnesota

February 22, 2023

Further properties of cohomology

Standing assumptions for the cohomology topic: X a separated, compact scheme over a field $k ; \mathcal{F}$ a quasi-coherent sheaf on $X \quad U \subset X \vec{p} \operatorname{Spec} k \quad p^{-1}\left(O_{\text {spec }}\right)(X)=k \xrightarrow{p^{*}} O_{X}(X)_{H^{p}}$
Theorem
(1) $H^{0}(X, \mathcal{F})=\mathcal{F}(X)$;
(2) If X is affine, then $H^{p}(X, \mathcal{F})=0 \quad \forall p>0$;
(3) X is projective vo r dim n, then $H^{p}(X, \mathcal{F})=0 \quad \forall p>n$; Grothendieck's varnishing theorem: X Noetherien ton space of dims, F sheaf of aligns on $X \Rightarrow H^{P}(X, F)=0$

If $i: X \hookrightarrow Y$ is a closed embedding, then $\forall p>n$.

$$
H^{p}\left(Y, i_{*} \mathcal{F}\right)=H^{p}(X, \mathcal{F}) \quad \forall p \geq 0
$$

Proof: (2) $\{X\}$ is an affine open cover of X $C^{P}(X, F)=0 \quad \forall p>0 \Rightarrow H^{P}(X, f)=$ sale a to

Proof of theorem, continued
(3) X proji, of dem $h, X^{h} \subset \mathbb{P N}$ f tconst homs, poly $\operatorname{dim} V_{p}(f)=\operatorname{dim} X-1$
$\left.V_{f f(f)}\right) X$ (tine for projective X as well as far $b / e \operatorname{din} V_{p}(f)=\max \operatorname{dim} V_{p}(f) \cap$ affine,

$$
\left.\frac{\left.V_{p}(f) n V_{p}(f) \rho_{n} \cdot n V_{f}\right)}{V_{n}(1}=\operatorname{dim} x-1\right)
$$

$$
\begin{aligned}
\operatorname{dim} \frac{(x+1)}{V_{p}\left(f_{0,-}, f_{n}\right)}= & =n-(n+1)<0
\end{aligned}
$$

for sone fo, f, , $f_{n} \in S(X)$
$i=0,7^{n} V_{j i}=X \backslash V_{p}\left(f_{j}\right)$ offsite
*i f_{j} be comes linear after veronese $=\Phi_{1}^{N} P_{\text {Nemeses }}^{M}$

Proof of theorem, continued

$$
C^{P}(X, F)=\underset{i_{0}<\ldots i_{p}}{ } F\left(V_{i_{0} \ldots i_{p}}\right)=0
$$

for $p>n, b<c$ cover heas ally $n+1$

$$
\left.\Rightarrow H^{p}(X, F)=0 \quad \forall p\right\rangle_{n} V_{1}^{V_{0}}
$$

(4) $C^{p}\left(y_{j}^{\prime} i_{\phi} F\right)=i_{i} \oplus i_{i *} F\left(u_{i_{0}-i_{p}}\right)$ $x \rightarrow y,\left\langle u_{i}\right.$ a aftie gen covier of Y

$$
\begin{aligned}
& =O F\left(i^{-1}\left(U_{i_{0} \ldots \delta_{p}}\right)\right)=\oplus F\left(X_{\cap} u_{i_{i_{1}} i_{p}}\right) \\
& v_{i}=X \cap u_{i} \subset X \Rightarrow
\end{aligned}
$$

These identiforationss $1=C^{P}(X, F)$ are compatitle wowth d's \Rightarrow cech cxss are worki-c \Rightarrow so is sathen

The long exact sequence (LES)

Theorem

The cohomology functor turns naturally a short exact sequence of sheaves on a scheme X :

$$
0 \rightarrow \mathcal{F}_{1} \rightarrow \mathcal{F}_{2} \rightarrow \mathcal{F}_{3} \rightarrow 0
$$

into a long exact sequence (LES)

$$
\begin{aligned}
0 & \rightarrow H^{0}\left(X, \mathcal{F}_{1}\right) \rightarrow H^{0}\left(X, \mathcal{F}_{2}\right) \rightarrow H^{0}\left(X, \mathcal{F}_{3}\right) \\
& \rightarrow \ldots \\
& \rightarrow H^{p}\left(X, \mathcal{F}_{1}\right) \rightarrow H^{p}\left(X, \mathcal{F}_{2}\right) \rightarrow H^{p}\left(X, \mathcal{F}_{3}\right) \\
& \rightarrow H^{p+1}\left(X, \mathcal{F}_{1}\right) \rightarrow H^{p+1}\left(X, \mathcal{F}_{2}\right) \rightarrow H^{p+1}\left(X, \mathcal{F}_{3}\right) \\
& \rightarrow \ldots
\end{aligned}
$$

Proof of theorem
pick office ope cover of X

$$
\begin{aligned}
& 0 \rightarrow C^{0}\left(F_{1}\right) \rightarrow C^{0}\left(F_{2}\right) \rightarrow C^{0}\left(F_{3}\right) \rightarrow 0 \\
& \text { a SES of complexes, int. } \\
& 0 \rightarrow C^{P}\left(F_{1}^{1},\right) \rightarrow C^{P^{1}}\left(F_{2}\right) \times C^{P^{d}}\left(F_{3}\right)=0 \\
&)_{a}^{d a t} e^{p+1}\left(F_{2}\right)^{a} \rightarrow e^{p+1}\left(F_{3}\right) \rightarrow 0
\end{aligned}
$$

with exact routs, Exact, b/c
$U_{i_{0}} \ldots i_{p} \quad F_{1}, \forall p \geqslant 0$ are affine, $F_{i} q-\cos$

$$
\begin{aligned}
& 0 \rightarrow F_{1}\left(u_{i_{0} \sim i_{p}}\right) \xrightarrow{u_{v_{0}, i_{p}}} F_{2}\left(u_{\nu_{0} \ldots i_{p}}\right) \rightarrow F_{3}\left(u_{i_{0} i_{p}}\right) \rightarrow 0 \\
& 0 \rightarrow{ }^{1+} M_{1} \longrightarrow M_{2} \longrightarrow M_{3} \rightarrow 0
\end{aligned}
$$

Proof of theorem, continued
Snake Lemmar

$$
0 \rightarrow \text { kerd, } d_{1} \text { ker } d_{2}^{\prime} \rightarrow \text { kerd } d_{3}
$$

$$
\text { - Cober d }{ }_{1} \text { a Cokerd } 2 \text { aCokerd } \text { Co }_{1}
$$

is exact

$$
C^{p^{\prime \prime}}\left(F_{3}\right) / V V_{a} d_{3}
$$

$$
\text { Coker di a Cokerd } d_{1}^{p} \text { a Coher } d_{1}^{p} \rightarrow 0
$$

$$
\frac{\text { Srahe lemp }}{H^{P}}\left(F_{1}\right) \rightarrow H^{P}\left(F_{2}\right) \rightarrow M^{P}\left(F^{2}\right)
$$

$$
\begin{aligned}
& H\left(F_{1}\right) \rightarrow H^{\prime}\left(F_{2}\right) \rightarrow h^{p}\left(F^{3}\right) D \\
& \cdots+P^{p+1}\left(F_{1}\right) \cup H^{p+1}\left(F_{2}\right) \rightarrow H^{p+1}\left(F_{3}\right) \quad=1 / 100
\end{aligned}
$$

