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Abstract

We give a short overview of the development of the so-called hybridiz-
able discontinuous Galerkin methods for hyperbolic problems. We de-
scribe the methods, discuss their main features and display numerical
results which illustrate their performance. We do this in the framework
of wave propagation problems. In particular, we show that these methods
are amenable to static condensation, and hence to efficient implementa-
tion, both for time-dependent (with implicit time-marching schemes) as
well as for time-harmonic problems; we also show that they can be used
with explicit time-marching schemes. We discuss an unexpected, recently
uncovered superconvergence property and introduce a new postprocessing
for time-harmonic Maxwell’s equations. We end by providing bibliograph-
ical notes.
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1 Introduction

We give a short overview of the development of the so-called hybridizable dis-
continuous (HDG) methods for hyperbolic problems. The HDG methods are
discontinuous Galerkin methods which were originally devised for numerically
approximating steady-state problems and implicit time-marching schemes for
time-dependent problems. Their distinctive feature is that they are amenable
to static condensation and hence to efficient implementation. They turned out
to be more accurate that other DG methods, as will be shown below.
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The HDG methods were introduced in [14] in the framework of steady-state
diffusion as part of the effort that started at the end of last century to devise
efficient DG methods for second-order elliptic problems. The development of
the HDG methods was then spearheaded by the authors who extended them
to a variety of problems in computational fluid dynamics including convection-
diffusion [33, 34], the incompressible Navier-Stokes equations [36, 40], and the
compressible Euler and Navier-Stokes equations [43, 41]; to partial differential
equations in continuum mechanics, see [32] and the references therein; and to
wave propagation problems in the time-domain [37, 46] as well as to the fre-
quency domain [39, 42].

In this paper, we describe the HDG methods, highlight some of their main
features and provide numerical experiments displaying their performance. In
particular, we show that they can be efficiently implemented, that they can
be used with either implicit or explicit time-marching schemes, and that they
do possess recently uncovered superconvergence properties. We do this for the
acoustic wave equation in Section 2, for the elastic wave equation in Section 3,
and for the time-harmonic Maxwell’s equation in Section 4. In Section 5, we
end with a few bibliographic notes.

2 The Acoustics Wave Equation

In this section we describe HDG methods for the numerical solution of the
acoustic wave equation

ρ
∂2u

∂t2
−∇ · (κ∇u) = f, in Ω× (0, T ]. (1)

By introducing the velocity v = ut and the flux q = −κ∇u, we can write (1) as
the following system of first-order equations:

κ−1 ∂q

∂t
+∇v = 0, in Ω× (0, T ],

ρ
∂v

∂t
+∇ · q = f, in Ω× (0, T ].

(2a)

The exact solution (v, q) satisfies the following initial conditions

v(x, t = 0) = v0(x),
q(x, t = 0) = q0(x),

(2b)

and a Robin boundary condition

−q · n+ αv = g, on ∂Ω× (0, T ]. (2c)

The coefficient α varies on the boundary ∂Ω and represents different types
of boundary conditions. Specifically, the Neumann boundary condition corre-
sponds to α = 0, the Dirichlet boundary condition to 1/α = 0, and the first-
order absorbing boundary condition to α =

√
κρ. We assume that κ(x), ρ(x),

and α(x) are scalar positive functions.
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We begin with the spatial discretization of the wave equation (2) and the
temporal integration of the semi-discrete form using both explicit and implicit
time-stepping methods. We end by presenting numerical experiments to demon-
strate their performance.

2.1 Spatial discretization

Let Th be a collection of disjoint elements that partition Ω. We denote by ∂Th
the set {∂K : K ∈ Th}. For an element K of the collection Th, F = ∂K ∩ ∂Ω
is the boundary face if the d − 1 Lebesgue measure of F is nonzero. For two
elements K+ and K− of the collection Th, F = ∂K+ ∩ ∂K− is the interior face
between K+ and K− if the d − 1 Lebesgue measure of F is nonzero. Let Eo

h

and E∂
h denote the set of interior and boundary faces, respectively. We denote

by Eh the union of Eo
h and E∂

h .
Let Pk(D) denote the set of polynomials of degree at most k on a domain

D. We are going to use the following discontinuous finite element spaces:

Wh = {w ∈ L2(Ω) : w|K ∈ W (K), ∀K ∈ Th},
Vh = {p ∈ (L2(Ω))d : p|K ∈ V (K), ∀K ∈ Th}.

Some appropriate choices for the local space W (K)× V (K) on K include

W (K)× V (K) ≡





Pk(K)× (Pk(K))d,
Pk−1(K)× (Pk(K))d,
Pk(K)×

(
(Pk(K))d + xPk(K)

)
.

These spaces correspond to the equal-order elements, the BDM elements [1],
and the RT elements [44], respectively. In addition, we introduce a traced finite
element space

Mh = {µ ∈ L2(Eh) : µ|F ∈ Pk(F ), ∀F ∈ Eh}.

For functions w and v in (L2(D))d, we denote (w,v)D =
∫
D
w ·v. For functions

w and v in L2(D), we denote (w, v)D =
∫
D
wv if D is a domain in R

d and

〈w, v〉D =
∫
D
wv if D is a domain in R

d−1. We then introduce

(w, v)Th
=

∑

K∈Th

(w, v)K , 〈µ, η〉∂Th
=

∑

K∈Th

〈µ, η〉∂K ,

for w, v defined on Th and µ, η defined on ∂Th.
The HDG methods for the wave equation (2) seek to define (qh, vh, v̂h)(t) ∈

Vh ×Wh ×Mh, for t ∈ [0, T ], as a solution of the following system

(
κ−1 ∂qh

∂t
, r

)
Th

− (vh,∇ · r)Th
+ 〈v̂h, r · n〉∂Th

= 0, (3a)

(
ρ
∂vh
∂t

, w
)
Th

− (qh,∇w)Th
+ 〈q̂h · n, w〉∂Th

= (f, w)Th
, (3b)

−〈q̂h · n, µ〉∂Th\∂Ω
+ 〈−q̂h · n+ αv̂h, µ〉∂Ω = 〈g, µ〉∂Ω , (3c)
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for all (r, w, µ) ∈ Vh ×Wh ×Mh and all t ∈ (0, T ], where the numerical flux is
defined as

q̂h · n = qh · n+ τ(vh − v̂h), on ∂Th. (3d)

If the stabilization function is taken as τ =
√
κρ, we obtain the well known

upwinding flux.
Note that the equations (2a) require v and the normal component of q to be

continuous across the set of interior faces Eo
h × (0, T ). The HDG method takes

into account these transmission conditions by requiring that the corresponding
numerical traces v̂h and the normal component of q̂h be single valued on that
set. The first condition is satisfied by taking v̂h(t) in Mh and the second by
impossing equation (3c) for any t ∈ [0, T ]. For other ways of defining HDG
methods, see [8] and the references therein.

This semidiscretization gives rise to a system of ODEs to be solved by using
some time-marching methods. As we are going to see in the next subsection,
the form presented here is useful when using implicit time-marching methods
because it takes advantage of the fact that the HDG methods are amenable to
static condensation. When using explicit time-marching methods, a better way
of presenting the method is the following: Find (qh, vh) ∈ Vh × Wh such that
for all K ∈ Th,
(
κ−1 ∂qh

∂t
, r

)
K
− (vh,∇ · r)K + 〈v̂h, r · n〉∂K = 0, ∀ r ∈ V (K), (4a)

(
ρ
∂vh
∂t

, w
)
K
− (qh,∇w)K + 〈q̂h · n, w〉∂K =(f, w)K , ∀w ∈ W (K), (4b)

where, for any given face F ∈ ∂K,

v̂h =





τ+v+h + τ−v−h
τ+ + τ−

+
1

τ+ + τ−
(q+

h · n+ + q−
h · n−), if F ∈ Eo

h,

τ

τ + α
vh +

1

τ + α
(Pg + qh · n), if F ∈ ∂Ω,

(4c)

and
q̂h · n = qh · n+ τ(vh − v̂h) on ∂K. (4d)

Here Pg denotes the L2 projection of g onto the space Mh, and

v±h |F = vh|F∈∂K± , and q±
h |F = qh|F∈∂K± ,

where K+ and K− are two elements sharing the face F . Hence, v−h and q−
h

(respectively, v+h and q+
h ) are nothing but the value of vh and qh on the face

F from the element K− (respectively, K+). We can easily show that when the
stabilization function is taken to be a constant on each face lying on ∂Th, the
system (4) is equivalent to the original formulation (3) [37, 46].
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2.2 Temporal discretization

We now show how to obtain a fully discrete scheme by discretizing the above
system of ODEs by several different time-marching methods, two being implicit
and the other two explicit.

BDF methods

We will only discuss the backward-Euler method since higher-order BDF meth-
ods follow a similar way. Using the backward-Euler scheme for the discretization
of the time derivative in (3), we find that the approximate solution (qn

h , v
n
h , v̂

n
h ) ∈

Vh ×Wh ×Mh at time step n satisfies the following equations

( qn
h

κ∆t
, r

)
Th

− (vnh ,∇ · r)Th
+ 〈v̂ n

h , r · n〉∂Th
=

(qn−1
h

κ∆t
, r

)
Th

, (5a)

(
ρ
vnh
∆t

, w
)
Th

− (qn
h ,∇w)Th

+ 〈q̂ n
h · n, w〉∂Th

=
(
fn + ρ

vn−1
h

∆t
, w

)
Th

, (5b)

−〈q̂ n
h · n, µ〉∂Th\∂Ω

+ 〈−q̂ n
h · n+ αv̂ n

h , µ〉∂Ω = 〈gn, µ〉∂Ω , (5c)

for all (r, w, µ) ∈ Vh ×Wh ×Mh, where

q̂ n
h · n = qn

h · n+ τ(vnh − v̂ n
h ), on ∂Th. (5d)

Here (qn
h , v

n
h , v̂

n
h ) represents the numerical approximation to the exact solution

(q(tn), u(tn), v̂(tn)) at time tn. We then find un
h ∈ Wh such that

1

∆t
(un

h, w)Th
= (vnh , w)Th

+
1

∆t
(un−1

h , w)Th
, ∀w ∈ Wh. (6)

The fully discrete system (5) can be efficiently solved by locally eliminating
(qh,uh) to obtain a linear system in terms of the globally coupled degrees of
freedom of v̂h. We refer to [37] for a detailed discussion.

DIRK methods

Next, we apply the DIRK formula represented by the coefficients (aij , bi, ci),

1 ≤ i ≤ q, 1 ≤ j ≤ i, to the semidiscrete system (3). We denote by (qn.i
h , vn,ih , v̂ n,i

h )
the numerical approximation to the exact solution (q(tn,i)|Th

, v(tn,i)|Th
, v(tn,i)|Eh

),
where tn,i = tn−1 + ci∆t, 1 ≤ i ≤ q. Given the approximate solution at time
tn−1, (qn−1

h , vn−1
h , v̂ n−1

h ), we find the intermediate solutions (qn.i
h , vn,ih , v̂ n,i

h ) ∈
Vh ×Wh ×Mh satisfying

( q
n,i
h

κ∆t
,v

)
Th

− (vn,ih ,∇ · v)Th
+

〈
v̂ n,i
h ,v · n

〉
∂Th

=
(pn,i

h

κ
,v

)
Th

, (7a)

( ρvn,ih

aii∆t
, w

)
Th

− (qn,i
h ,∇w)Th

+
〈
q̂

n,i
h · n, w

〉
∂Th

= (fn,i + ρsn,ih , w)Th
, (7b)

−
〈
q̂

n,i
h · n, µ

〉
∂Th\∂Ω

+
〈
−q̂

n,i
h · n+ αv̂ n,i

h , µ
〉
∂Ω

=
〈
gn,i, µ

〉
∂Ω

, (7c)

5



for all (v, w, µ) ∈ Vh ×Wh ×Mh, where

q̂
n,i
h · n = q

n,i
h · n+ τ(vn,ih − v̂ n,i

h ), on ∂Th. (7d)

The terms sn,ih and p
n,i
h on the right-hand side of (7) are given by

sn,ih =
vn−1
h

aii∆t
+

i−1∑

j=1

aij
aii

( vn,jh

ajj∆t
− sn,jh

)
, i = 1, . . . , q,

p
n,i
h =

qn−1
h

aii∆t
+

i−1∑

j=1

aij
aii

( q
n,j
h

ajj∆t
− p

n,j
h

)
, i = 1, . . . , q.

The discrete systems (7) must be solved sequentially from i = 1, 2, . . . , q. Hence,
a q-stage DIRK scheme requires us to solve q discrete systems which are very
similar to the system (5) resulting from the backward-Euler method.

Once the intermediate solutions have been computed, the numerical solution
(qn

h , v
n
h) at time tn is given by

(qn
h , v

n
h) = (qn−1

h , vn−1
h ) + ∆t

q∑

i=1

bi(y
n,i
h , zn,ih ), (8)

where

y
n,i
h =

q
n,i
h − qn−1

h

aii∆t
−

i−1∑

j=1

aij
aii

y
n,j
h , i = 1, . . . , q,

zn,ih =
vn,ih − vn−1

h

aii∆t
−

i−1∑

j=1

aij
aii

zn,jh , i = 1, . . . , q.

Finally, we compute un
h by using the same DIRK scheme to discretize the ODE

∂uh/∂t = vh.

Adams–Bashforth methods

The Adams–Bashforth (AB) methods are linear multistep explicit methods. The
forward-Euler method is a first-order AB method. Here we discuss the forward-
Euler method since higher-order AB methods can be constructed in a similar
way. Given the solution at the previous time step (qn

h , v
n
h , u

n
h), we first compute

the approximate traces as

v̂ n
h =





τ+v+n
h + τ−v−n

h

τ+ + τ−
− 1

τ+ + τ−
(q+n

h · n+ + q−n
h · n−), if F ∈ Eh\∂Ω,

τ

τ + α
vnh +

1

τ + α
(Pgn + αqn

h · n), if F ∈ ∂Ω,

(9)
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and q̂ n
h · n = qn

h · n+ τ(vnh − v̂ n
h ) for all faces F of Eh. We then determine the

numerical solution (qn+1
h , vn+1

h , un+1
h ) ∈ V (K) × W (K) × W (K) at the next

time step by solving

( 1

κ

qn+1
h − qn

h

∆tn
, r

)
K
− (vnh ,∇ · r)K + 〈v̂ n

h , r · n〉∂K = 0,

(
ρ
vn+1
h − vnh
∆tn

, w
)
K
− (qn

h ,∇w)K + 〈q̂ n
h · n, w〉∂K = (fn, w)K ,

(un+1
h − un

h

∆tn
, z
)
K
− (vnh , z)K = 0,

(10)

for all (r, w, z) ∈ V (K)×W (K)×W (K) and for all elements K ∈ Th.
It is clear that we compute the numerical solution at any time step in an

element-by-element fashion. Therefore, explicit HDG methods have the same
computational complexity as other explicit DG methods. Higher-order AB
methods can be used as well, provided that the numerical solutions at the earlier
time steps are available.

2.3 SSP-RK methods

Lastly, we describe the SSP-RK(q, q) scheme [4, 27] to integrate the semidiscrete
system (4) in time. For i = 0, . . . , q − 1, we compute

v̂ n,i−1
h =





τ+v+n,i−1
h + τ−v−n,i−1

h

τ+ + τ−

+ 1
τ++τ− (q+n,i−1

h · n+ + q
−n,i−1
h · n−), if F ∈ Eh\∂Ω,

τ

τ + α
vn,i−1
h +

1

τ + α
(Pgn,i−1 + αqn,i−1

h · n), if F ∈ ∂Ω,

(11)
and q̂

n,i−1
h · n = q

n,i−1
h · n + τ(vn,i−1

h − v̂ n,i−1
h ) for all faces F of Eh; we then

determine (qn,i
h , vn,ih , vn,ih ) ∈ V (K)×W (K)×W (K) as the solution of

( 1

κ

q
n,i
h − q

n,i−1
h

∆t
, r

)
K
−
(
vn,i−1
h ,∇ · r

)
K
+
〈
v̂ n,i−1
h , r · n

〉
∂K

= 0,

(
ρ
vn,ih − vn,i−1

h

∆t
, w

)
K
−
(
q
n,i−1
h ,∇w

)
K
+
〈
q̂

n,i−1
h · n, w

〉
∂K

= (fn,i−1, w)K ,

(vn,ih − vn,i−1
h

∆t
, z
)
K
− (vn,i−1

h , z)K = 0,

(12)
for all (r, w, z) ∈ V (K) × W (K) × W (K) and for all elements K ∈ Th. We
finally set

(qn
h , v

n
h , v

n
h) =

s∑

i=0

αq,i(q
n,i
h , vn,ih , vn,ih ), (13)
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where the coefficients αq,i are precisely those corresponding to the SSPRK
scheme (q, q) [4, 27], namely

α1,0 = 1, αq,i =
1

i
αq−1,i−1, i = 1, . . . , q − 2,

αq,q =
1

q!
, αq,q−1 = 0, αq,0 = 1−

q−1∑

i=1

αq,i.
(14)

The SSP-RK(q, q) scheme has q stages and q orders of accuracy. Each stage of
the SSP-RK(q, q) scheme is exactly the forward-Euler method described earlier.

2.4 Postprocessing

The numerical results we present in the next subsection are going to involve two
elementwise postprocessings defined as follows. The first is a new approximation
to u: On every simplex K ∈ Th, we take un ∗

h ∈ Pk+1(K), such that

(∇un ∗
h ,∇w)K = (qn

h ,∇w)K , ∀w ∈ Pk+1(K),

(un ∗
h , 1)K = (un

h, 1)K .
(15)

The second is a new approximation to ut: On every simplex K ∈ Th, we take
vn ∗
h ∈ Pk+1(K), such that

(∇vn ∗
h ,∇w)K = − (vnh ,∆w)K + 〈v̂ n

h ,∇w · n〉∂K , ∀w ∈ Pk+1(K),

(vn ∗
h , 1)K = (vnh , 1)K .

(16)

As we are going to see, it turns out that both postprocessings u∗
h and v∗h have

better orders of convergence that the original approximations uh and vh, respec-
tively. Note that this local postprocessing can be performed at suitable time
steps, where these more accurate approximations are needed.

2.5 Numerical results

We consider the wave equation on a unit square Ω = (0, 1)×(0, 1) with boundary
condition v = 0 on ∂Ω and initial condition u0 = 0 and v0 = sin(πx) sin(πy).
For ρ = κ = 1 and f = 0, the problem has the following exact solution

u =
1√
2π

sin(πx) sin(πy) sin(
√
2πt), v = sin(πx) sin(πy) cos(

√
2πt).

We use triangular meshes obtained by splitting a regular n × n Cartesian grid
into a total of 2n2 triangles, giving uniform element sizes of h = 1/n.

We present the L2-errors and orders of convergence for the numerical ap-
proximations in Table 1 for the DIRK schemes and Table 2 for the SSP-RK
schemes. We observe that the approximate field variables converge with the op-
timal order k + 1, while the postprocessed displacement and velocity converge
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with order k+2. The HDG methods yield optimal convergence for the approx-
imate gradient, while many other DG methods provide suboptimal convergence
of order k. Furthermore, the postprocessed displacement and velocity converge
one order higher than the original approximations.

These convergence properties were first reported in [37] and later proven (for
the semidiscrete case) in [18]. A priori error estimates for v−v∗h remain an open
problem though.

‖u− uh‖Th
‖v − vh‖Th

‖q − qh‖Th
‖u− u∗

h‖Th
‖v − v∗h‖Thk 1/h error order error order error order error order error order

2 7.29e-3 −− 1.72e-2 −− 3.01e-2 −− 6.16e-3 −− 1.71e-2 −−
4 4.80e-4 3.92 2.16e-3 2.99 2.00e-3 3.91 2.77e-4 4.48 1.99e-3 3.11

2 8 4.47e-5 3.42 1.86e-4 3.54 1.84e-4 3.44 7.02e-6 5.30 1.40e-4 3.83
16 5.24e-6 3.09 1.81e-5 3.36 2.15e-5 3.10 2.54e-7 4.79 8.73e-6 4.00
32 6.36e-7 3.04 2.08e-6 3.12 2.61e-6 3.04 1.44e-8 4.14 5.36e-7 4.03
2 5.80e-4 −− 1.60e-3 −− 2.67e-3 −− 1.97e-4 −− 1.59e-3 −−
4 3.12e-5 4.22 8.22e-5 4.29 1.38e-4 4.27 4.92e-6 5.33 8.05e-5 4.30

3 8 1.78e-6 4.13 5.20e-6 3.98 7.74e-6 4.16 1.37e-7 5.17 3.78e-6 4.41
16 1.06e-7 4.07 3.32e-7 3.97 4.56e-7 4.08 4.05e-9 5.08 1.14e-7 5.05
32 6.46e-9 4.04 2.09e-8 3.99 2.77e-8 4.04 1.24e-10 5.03 1.50e-9 6.24

Table 1: History of convergence results using DIRK(k + 1, k + 2) schemes.

‖u− uh‖Th
‖v − vh‖Th

‖q − qh‖Th
‖u− u∗

h‖Th
‖v − v∗h‖Thk 1/h error order error order error order error order error order

2 4.13e-3 −− 9.84e-3 −− 1.65e-2 −− 2.13e-3 −− 8.64e-3 −−
4 4.01e-4 3.37 1.06e-3 3.22 1.65e-3 3.32 1.02e-4 4.38 5.19e-4 4.06

2 8 4.44e-5 3.17 1.27e-4 3.06 1.83e-4 3.18 4.82e-6 4.40 2.80e-5 4.21
16 5.24e-6 3.08 1.60e-5 2.99 2.15e-5 3.09 2.59e-7 4.22 1.61e-6 4.12
32 6.36e-7 3.04 2.02e-6 2.99 2.61e-6 3.04 1.53e-8 4.08 9.81e-8 4.04
2 5.75e-4 −− 1.62e-3 −− 2.66e-3 −− 1.82e-4 −− 1.33e-3 −−
4 3.12e-5 4.21 8.22e-5 4.30 1.38e-4 4.27 4.63e-6 5.29 3.59e-5 5.21

3 8 1.78e-6 4.13 5.21e-6 3.98 7.74e-6 4.15 1.31e-7 5.15 1.03e-6 5.13
16 1.06e-7 4.07 3.32e-7 3.97 4.56e-7 4.08 3.88e-9 5.07 3.05e-8 5.07
32 6.46e-9 4.04 2.09e-8 3.99 2.77e-8 4.04 1.19e-10 5.03 8.97e-10 5.09

Table 2: History of convergence results using SSP-RK(k + 2, k + 2) schemes.

3 The Elastic Wave Equations

The elastic wave equations are different from the scalar acoustic wave equation
in that they are vectorial and have two different wave speeds, namely, pressure
(primary) wave speed and shear (secondary) wave speed. Although there are
several different formulations of the elastic wave equations, we will focus on
HDG methods for the displacement gradient-velocity-pressure formulation.

Let u represent the displacement field, λ and µ the Lamé moduli, ρ the
density of the elastic isotropic material, and b a time-dependent body force.
Let Ω be an open bounded domain in R

d and T a fixed final time. The motion
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of the elastic isotropic body Ω is governed by:

ρ
∂2u

∂t2
−∇ · [µ∇u+ (µ+ λ)(∇ · u)I] = b, in Ω× (0, T ]. (17)

We introduce the velocity field v = ∂u/∂t, the displacement gradient tensor
H = ∇u, and the hydrostatic pressure p = (µ+λ)(∇·u). We then rewrite (17)
as the first-order system

∂H

∂t
−∇v = 0, in Ω× (0, T ],

ρ
∂v

∂t
−∇ · (µH+ pI) = b, in Ω× (0, T ],

ǫ
∂p

∂t
−∇ · v = 0, in Ω× (0, T ],

(18)

where ǫ = 1/(µ+ λ), and I is the second-order identity tensor. Associated with
this system is the boundary condition

(µH + pI) · n+ αv = g, on ∂Ω× (0, T ],

and initial condition

v = v0, H = H0, p = p0, on Ω× {t = 0}.

For simplicity of exposition, we assume that ǫ > 0, which in essence means that
the elastic solid is either compressible or nearly incompressible. The incom-
pressible limit ǫ = 0 requires the average pressure condition and can be treated
by the augmented Lagrangian method [38, 35].

3.1 Spatial discretization

In addition to the finite element spaces defined in Section 2.2, we introduce the
following new finite element spaces:

Gh = {N ∈ (L2(Th))d×d : N|K ∈ (W (K))d×d, ∀K ∈ Th},
Mh = {µ ∈ (L2(Eh))d : µ|F ∈ (Pk(F ))d, ∀F ∈ Eh}.

We then define volume and boundary inner products associated with Gh as

(N,L)Th
=

∑

K∈Th

(N,L)K , 〈N,L〉∂Th
=

∑

K∈Th

〈N,L〉∂K ,

for N,L ∈ (L2(Th))d×d. Note that (N,L)D denotes the integral of tr(NTL)
over D, where tr is the trace operator.

10



The HDG methods then find an approximation (Hh,vh, ph, v̂h) ∈ Gh×Vh×
Wh ×Mh at time t such that

(
∂Hh

∂t
,N

)

Th

+ (vh,∇ ·N)Th
− 〈v̂h,N · n〉∂Th

= 0, (19a)

(
ρ
∂vh

∂t
,w

)

Th

+ (µHh + phI,∇w)Th

−
〈
(µĤh + p̂hI) · n,w

〉
∂Th

= (b,w)Th
, (19b)

(
ǫ
∂ph
∂t

, q

)

Th

+ (vh,∇q)Th
− 〈v̂h · n, q〉∂Th

= 0, (19c)

〈
(µĤh + p̂hI) · n,µ

〉
∂Th

+ 〈αv̂h,µ〉∂Ω = 〈g,µ〉∂Ω , (19d)

for all (N,w, q,µ) ∈ Gh × Vh ×Wh ×Mh, where

(µĤh + p̂hI) · n = (µHh + phI) · n− S(vh − v̂h). (19e)

Here S is a second-order tensor consisting of stabilization parameters which can
be set to

√
(µ+ λ)ρI.

The semidiscrete form (19) can be equivalently reformulated into finding
(Hh,vh, ph) such that for all K ∈ Th,(

∂Hh

∂t
,N

)

K

+ (vh,∇ ·N)K − 〈v̂h,N · n〉∂K = 0, (20a)

(
ρ
∂vh

∂t
,w

)

K

+ (µHh + phI,∇w)K

−
〈
(µĤh + p̂hI) · n,w

〉
∂K

= (b,w)K , (20b)
(
ǫ
∂ph
∂t

, q

)

K

+ (vh,∇q)K − 〈v̂h · n, q〉∂K = 0, (20c)

where, for any given face F ∈ ∂K,

v̂h =





τ+v+
h + τ−v−

h

τ+ + τ−
− 1

τ++τ− ((µH+
h + p+h I) · n+ + (µH−

h + p−h I) · n−), if F ∈ Eo
h,

τ

τ + α
vh +

1

τ + α
(Pg − (µHh + phI) · n), if F ∈ ∂Ω,

(20d)
and

(µĤh + p̂hI) · n = (µHh + phI) · n− S(vh − v̂h) on ∂K. (20e)

In this formulation, both v̂h and (µĤh+ p̂hI) ·n are explicitly determined from
the numerical solution (Hh,vh, ph).

While the first formulation (19) is useful for implicit time-stepping methods,
the second formulation (20) is convenient for explicit time-stepping methods.
Since the temporal discretization in this case is very similar to that in the scalar
wave equation, it will not be discussed here.
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3.2 Local Postprocessing

As with the acoustic wave equation, we can define two new approximations
which will converge faster than the corresponding original approximations. The
postprocessed displacement field un ∗

h ∈ (Pk+1(K))d satisfies, on every simplex
K ∈ Th,

(∇un ∗
h ,∇w)K = (Hn

h,∇w)K , ∀w ∈ (Pk+1(K))d,

(un ∗
h , 1)K = (un

h, 1)K .
(21)

The postprocessed velocity field vn ∗
h ∈ (Pk+1(K))d is obtained by locally solving

(∇vn ∗
h ,∇w)K = −(vn

h ,∆w)K + 〈v̂n
h ,∇w · n〉∂K ∀w ∈ (Pk+1(K))d,

(vn ∗
h , 1)K = (vn

h , 1)K .
(22)

Since the local postprocessing can be carried out at any particular timestep and
performed at the element level, the postprocesssed displacement and velocity
are very inexpensive to compute. Note that the postprocessing is effective only
if the temporal accuracy is of order k + 2.

3.3 Numerical Results

We consider the elastic wave equations on a unit square Ω = (0, 1)× (0, 1) with
µ = 1 and ρ = 1. The exact solution is given by

u1 = −x2y(2y − 1)(x− 1)2(y − 1) sin(πt),

u2 = xy2(2x− 1)(x− 1)(y − 1)2 sin(πt).

The source term b is determined from the above solution. The Dirichlet bound-
ary data are determined as the restriction of the exact solution on the boundary.
Likewise the initial data is taken as an instantiation of the exact solution at time
t = 0. Our triangular meshes are constructed upon regular n×n Cartesian grids
(h = 1/n). The stabilization parameter is set to τ = 1.

‖u− uh‖Th
‖v − vh‖Th

‖σ − σh‖Th
‖u− u∗

h‖Th
‖v − v∗

h‖Thk 1/h error order error order error order error order error order
4 3.79e-4 −− 1.94e-3 −− 2.08e-3 −− 1.74e-4 −− 1.28e-3 −−
8 1.12e-4 1.76 4.51e-4 2.11 5.07e-4 2.04 2.53e-5 2.78 1.74e-4 2.88

1 16 3.04e-5 1.88 1.06e-4 2.09 1.26e-4 2.01 3.27e-6 2.95 2.18e-5 2.99
32 7.90e-6 1.94 2.60e-5 2.03 3.16e-5 2.00 4.12e-7 2.99 2.96e-6 2.89
64 2.01e-6 1.97 6.45e-6 2.01 7.93e-6 2.00 5.16e-8 3.00 3.99e-7 2.89
4 5.14e-5 −− 2.26e-4 −− 3.27e-4 −− 1.78e-5 −− 2.41e-4 −−
8 8.01e-6 2.68 2.90e-5 2.96 4.21e-5 2.96 1.20e-6 3.89 7.10e-6 5.08

2 16 1.10e-6 2.87 3.67e-6 2.98 5.25e-6 3.00 7.39e-8 4.02 4.53e-7 3.97
32 1.43e-7 2.94 4.60e-7 3.00 6.54e-7 3.01 4.52e-9 4.03 2.70e-8 4.07
64 1.82e-8 2.97 5.75e-8 3.00 8.14e-8 3.00 2.78e-10 4.02 1.68e-9 4.01

Table 3: History of convergence results for a compressible material (λ = 1).
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‖u− uh‖Th
‖v − vh‖Th

‖σ − σh‖Th
‖u− u∗

h‖Th
‖v − v∗

h‖Thk 1/h error order error order error order error order error order
4 3.75e-4 −− 1.94e-3 −− 2.2e-3 −− 1.72e-4 −− 1.26e-3 −−
8 1.12e-4 1.75 4.49e-4 2.11 5.41e-4 2.02 2.57e-5 2.74 1.71e-4 2.89

1 16 3.04e-5 1.88 1.06e-4 2.08 1.33e-4 2.02 3.37e-6 2.93 2.13e-5 3.00
32 7.90e-6 1.94 2.60e-5 2.03 3.33e-5 2.00 4.26e-7 2.98 2.87e-6 2.89
64 2.01e-6 1.97 6.45e-6 2.01 8.33e-6 2.00 5.34e-8 2.99 3.85e-7 2.90
4 5.11e-5 −− 2.24e-4 −− 3.67e-4 −− 1.80e-5 −− 2.40e-4 −−
8 7.98e-6 2.68 2.88e-5 2.96 4.82e-5 2.93 1.22e-6 3.89 6.91e-6 5.12

2 16 1.09e-6 2.87 3.66e-6 2.98 6.12e-6 2.98 7.44e-8 4.03 4.20e-7 4.04
32 1.43e-7 2.94 4.59e-7 2.99 7.89e-7 2.96 4.52e-9 4.04 2.48e-8 4.08
64 1.82e-8 2.97 5.75e-8 3.00 9.95e-8 2.99 2.78e-10 4.02 1.48e-9 4.07

Table 4: History of convergence results for a nearly incompressible material
(λ = 1000).

We present the L2-errors and orders of convergence of the numerical ap-
proximations at the final time T = 0.5 in Table 3 for λ = 1 (compressible case)
and in Table 4 for λ = 1000 (nearly incompressible case). These results are
obtained using the DIRK(2,3) scheme for k = 1 and the DIRK(3,4) scheme for
k = 2, and a fixed ratio h/∆t = 4. We observe that the approximate field vari-
ables converge with the optimal order k + 1 even for the nearly incompressible
case. Furthermore, we observe that both the postprocessed displacement and
velocity converge with order k + 2, which are one order higher than the orig-
inal approximations. Since the local postprocessing is inexpensive, the HDG
methods provide better convergence and accuracy than other DG methods.

These convergence properties were first reported in [37]. For the semidiscrete
case, they can be obtained by an analysis similar to that for the acoustic wave
equation in [18]. Again, a priori error estimates for v − v∗

h remain an open
problem.

4 The Electromagnetic Wave Equations

In this section, we restrict our attention to devising HDG methods for the
Maxwell’s equations in frequency domain. Numerical treatment of the Maxwell’s
equations in time domain follows from the discussion in this section and the
second section.

Let us consider the time-harmonic Maxwell’s equations in a connected and
bounded domain Ω ∈ R

3 with zero charge density and zero conductivity:

∇× E + iµωH = 0, ∇× H − iǫωE = J , in Ω ⊂ R
3, (23)

where E, H, and J are the electric field, magnetic field, and current source,
respectively. In addition, ω is the frequency, ǫ the permittivity, and µ the
permeability of the medium. We assume that the electromagnetic field satisfies
the following impedance condition

−n×H + αn×E × n = g, on ∂Ω, (24)
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for some given scalar function α and vectorial function g.

4.1 Numerical discretization

To define the numerical approximation of the Maxwell’s equations (23), we
introduce the following approximation spaces

Vh := {v ∈ [L2(Th)]3 : v|K ∈ [Ck(K)]3, ∀ K ∈ Th},
M t

h := {η ∈ [L2(Eh)]3 : η|F ∈ [Ck(F )]3, (η · n)|F = 0, ∀ F ∈ Eh}.
(25)

Heret Ck(D) denote the space of complex-valued polynomials of degree at most
k on D. We then define the inner products for our approximation spaces as

(w, v)Th
:=

∑

K∈Th

∫

K

wv, (w,v)Th
:=

3∑

j=1

(wj , vj)Th
,

〈w, v〉∂Th
:=

∑

K∈Th

∫

∂K

wv, 〈w,v〉∂Th
:=

3∑

j=1

〈wj , vj〉∂Th
.

(26)

Here the bar denotes a complex conjugate which is applied only to the second
argument of the inner products.

Note that M t
h consists of vector-valued functions whose normal component

is zero on any face F ∈ Eh. Hence, a member of M t
h can be characterized by

two tangential vectors on the faces: if tF1 and tF2 denote independent tangent
vectors on F , we can write the restriction of η ∈ M t

h on F as

η|F = ηF1 t
F
1 + ηF2 t

F
2 , (27)

where ηF1 ∈ Ck(F ) and ηF2 ∈ Ck(F ) are complex-valued polynomials of degree
at most k on F . Hence, the vector-valued function η ∈ M t

h is characterized by
two scalar functions η1 and η2.

The HDG method seeks (Eh,Hh, Ê
t
h) ∈ Vh × Vh ×M t

h such that

(iωµHh,R)Th
+ (Eh,∇× R)Th

+
〈
Êt

h,R× n
〉
∂Th

= 0, (28a)

(Hh,∇×W )Th
+
〈
Ĥh,W × n

〉
∂Th

− (iǫωEh,W )Th
= (J ,W )Th

, (28b)

−
〈
n× Ĥh,η

〉
∂Th

+
〈
αÊ

t

h,η
〉
∂Ω

= 〈g,η〉∂Ω , (28c)

for all (R,W ,η) ∈ Vh × Vh ×M t
h, where

Ĥh = Hh + τ(Eh − Êt
h)× n. (28d)

Here the stabilization parameter is chosen as τ =
√

ǫω2

µ
. This completes the

HDG method for solving the time-harmonic Maxwell’s equations.
The structure of the HDG method makes itself amenable to an efficient

implementation. Note that the first two equations in (28) can be thought as
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characterizing (Eh,Hh) in terms of Êh. The equation (28c) is then the equation

that determines the actual values of the unknown Êh. In this manner, the only
globally-coupled degrees of freedom are those of Êh. As a result, the HDG
method can provide more accurate solutions at much lower computational cost
than standard frequency-domain DG method.

4.2 Local postprocessing

We propose a new local postprocessing to obtain new approximations of the
electric and magnetic fields, which converges with an additional order in the
Hcurl(Th)-norm. A remarkable feature of this new local postprocessing is that it
is effective even in three dimensions, whereas the local postprocessing introduced
in our previous work [39] is only applicable in two dimensions.

We find the new approximate electric field E∗
h as the element of [Ck+1(K)]3

such that for all K ∈ Th,

(∇× E∗
h,W )K = −(iµωHh,W )K , ∀W ∈ ∇× [Ck+1(K)]3, (29a)

(E∗
h,Y )K = (Eh,Y )K , ∀Y ∈ ∇Ck+2(K). (29b)

Similarly, we find the new approximate magnetic field H∗
h as the element of

[Ck+1(K)]3 such that for all K ∈ Th,

(∇× H∗
h,W )K = (iǫωEh + J ,W )K , ∀W ∈ ∇× [Ck+1(K)]3, (30a)

(H∗
h,Y )K = (Hh,Y )K , ∀Y ∈ ∇Ck+2(K). (30b)

It is obvious that ∇ × E∗
h and ∇ × H∗

h are nothing but the projection of
iµωHh and iǫωEh+J , respectively, onto the space of divergence-free functions
in [Pk+1(K)]3. Therefore, we expect that both E∗

h and H∗
h converge with order

k + 1 in the Hcurl(Th)-norm, whereas Eh and Hh converge with order k in the
Hcurl(Th)-norm.

4.3 Numerical results

We consider the time-harmonic Maxwell’s equations on a unit cube Ω = (0, 1)3

with µ = 1, ǫ = 2, α = 0, and ω = 1. For J = 0 the problem has the exact
solution

Ex = sin(ωy) sin(ωz), Hx = i sin(ωx)(cos(ωy)− cos(ωz)),

Ey = sin(ωx) sin(ωz), Hy = i sin(ωy)(cos(ωz)− cos(ωx)),

Ez = sin(ωy) sin(ωx), Hz = i sin(ωz)(cos(ωx)− cos(ωy)),

The boundary data g is determined from the exact solution. The tetrahedral
meshes are constructed upon regular n × n × n Cartesian grids (h = 1/n) by
splitting each cube into 6 tetrahedral.

We present the L2-errors and orders of convergence of the numerical approxi-
mations in Table 5 and the postprocessed quantities in Table 6. We observe that
the approximate electric and magnetic fields converge with order k + 1 in the
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L2-norm, but only order k in the Hcurl(Th)-norm. Furthermore, we observe that
the postprocessed electric and magnetic fields converge with order k + 1 in the
Hcurl(Th)-norm, which are one order higher than the original approximations.
The theoretical justification of these results is still an open problem.

‖E −Eh‖Th
‖E −Eh‖Hcurl(Th) ‖H −Hh‖Th

‖H −Hh‖Hcurl(Th)
k 1/h error order error order error order error order

2 2.94e-2 −− 9.90e-2 −− 8.41e-3 −− 2.20e-1 −−
4 7.77e-3 1.92 4.46e-2 1.15 2.18e-3 1.95 1.10e-1 1.00

1 6 1.94e-3 2.00 2.14e-2 1.06 5.85e-4 1.90 5.52e-2 1.00
8 4.81e-4 2.01 1.05e-2 1.02 1.54e-4 1.93 2.76e-2 1.00
2 9.49e-4 −− 1.32e-2 −− 6.56e-4 −− 3.28e-2 −−
4 1.33e-4 2.84 3.37e-3 1.97 8.74e-5 2.91 8.15e-3 2.01

2 6 1.90e-5 2.81 8.47e-4 1.99 1.12e-5 2.96 2.03e-3 2.00
8 2.87e-6 2.73 2.12e-4 2.00 1.42e-6 2.98 5.09e-4 2.00
2 8.72e-5 −− 1.40e-3 −− 5.51e-5 −− 1.74e-3 −−
4 5.59e-6 3.96 1.73e-4 3.02 3.51e-6 3.97 2.28e-4 2.93

3 6 3.53e-7 3.99 2.15e-5 3.01 2.23e-7 3.98 2.92e-5 2.97
8 2.22e-8 3.99 2.67e-6 3.00 1.41e-8 3.99 3.69e-6 2.98

Table 5: History of convergence results for the approximate solution.

‖E −E∗
h‖Th

‖E −E∗
h‖Hcurl(Th) ‖H −H∗

h‖Th
‖H −H∗

h‖Hcurl(Th)
k 1/h error order error order error order error order

2 3.19e-2 −− 3.44e-2 −− 1.05e-2 −− 6.26e-2 −−
4 8.42e-3 1.92 9.05e-3 1.93 2.69e-3 1.97 1.67e-2 1.90

1 6 2.10e-3 2.00 2.27e-3 1.99 7.05e-4 1.93 4.21e-3 1.99
8 5.23e-4 2.01 5.68e-4 2.00 1.83e-4 1.95 1.05e-3 2.00
2 9.56e-4 −− 1.58e-3 −− 8.34e-4 −− 2.06e-3 −−
4 1.34e-4 2.84 2.07e-4 2.93 1.08e-4 2.95 2.82e-4 2.87

2 6 1.91e-5 2.81 2.76e-5 2.91 1.38e-5 2.97 3.85e-5 2.87
8 2.88e-6 2.73 3.81e-6 2.86 1.74e-6 2.99 5.46e-6 2.82
2 8.36e-5 −− 1.03e-4 −− 4.88e-5 −− 1.75e-4 −−
4 5.43e-6 3.95 6.71e-6 3.95 3.20e-6 3.93 1.13e-5 3.94

3 6 3.44e-7 3.98 4.26e-7 3.98 2.05e-7 3.97 7.20e-7 3.98
8 2.17e-8 3.99 2.69e-8 3.99 1.29e-8 3.98 4.54e-8 3.99

Table 6: History of convergence results for the postprocessed solution.

5 Bibliographic notes

Time-dependent wave propagation

The devising of HDG methods for the acoustic wave equation was carried out
as an almost immediate consequence of the introduction of HDG methods for
steady-state diffusion. After all, both equations share the same second-order
strongly elliptic operator. However, not all convergence properties which hold
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for HDG methods for steady-state diffusion problems [9, 16, 15, 5, 6, 17, 19] can
be immediately obtained for time-dependent wave equations. In particular, the
wave equation does not have a smoothing effect which could generate supercon-
vergence results, as happens for the heat equation, see [3]. However, in [18], it
was shown how to obtain the superconvergence results we have illustrated in
Section 2; a comparison with other mixed and DG methods can also be found
there. Although therein we only used simplexes and spaces of polynomials of
degree k, similar convergence and superconvergence results do hold for meshes
made of elements of arbitrary shape. This can be obtained by using the so-
called theory of M-decompositions developed in [12, 10, 11]. In a similar way,
HDG methods for the elastic wave equation can be easily obtained once HDG
methods for linear elasticity [45, 32, 20, 26] are obtained.

The first HDG methods for wave propagation were proposed in [37], where
implicit time-marching methods were used, and in [46], where explicit time-
marching methods were used. In both papers, the superconvergence properties
of the semidiscrete method uncovered in [18] were shown to hold for the corre-
sponding implicit and explicit time-marching schemes, respectively.

The HDG methods we have presented here can be also used with PML
absorbing boundary conditions, as shown in [37]. HDG methods which are not
dissipative, and have similar superconvergence properties, have been developed
in [13].

Time-harmonic wave propagation

HDG methods for time-harmonic hyperbolic equations are also strongly related
to the HDG methods for steady-state diffusion problems. The first HDG method
for the Helmholtz equation was introduced in [28]. The same optimal conver-
gence and superconvergence properties of the associated steady-state diffusion
were proven. In [25], a wide family of discontinuous Galerkin methods, which
included the HDG methods, were proven to be stable regardless of the wave
number. The methods used piecewise linear approximations. In [21], an analy-
sis of the HDG methods for the Helmholtz equations was carried which shows
that the method is stable for any wave number, mesh and polynomial degree
and which recovers the orders of convergence and superconvergence obtained
previously in [28]. A method for arbitrarily large wave numbers is proposed in
[42].

The first HDG for the time-harmonic Maxwell’s equations was proposed in
[39] in two-space dimensions. The extension of the method to three-dimensions
was done in [30]. A variation was introduced in [31]. HDG method for the
time-harmonic equations of elastodynamics can be found in [29].

Further reading material

A systematic way of defining HDG methods for Friedrichs’ systems has been
developed in [2]. A general construction of DG methods for these problems
can be found in [22, 23, 24]. An overview of the development of DG (and in
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particular, HDG) methods for fluid dynamics can be found in [7]. An overview
of the HDG methods for steady-state diffusion can be found in [8]. Therein, the
relation between static condensation, hybridization and the devising of HDG
methods is carefully explored.
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