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Abstract

We provide a short overview of our recent work on the devising of hybridiz-
able discontinuous Galerkin (HDG) methods for the Stokes equations of
incompressible flow. First, we motivate and display the general form of the
methods and show that they provide a well defined approximate solution for
arbitrary polyhedral elements. We then discuss three different but equiv-
alent formulations of the methods. Next, we describe a systematic way of
constructing superconvergent HDG methods by using, as building blocks,
the local spaces of superconvergent HDG methods for the Laplacian opera-
tor. This can be done, so far, for simplexes, parallelepipeds and prisms. Fi-
nally, we show how, by means of an elementwise computation, we can obtain
divergence-free velocity approximations converging faster than the original
velocity approximation when working with simplicial elements. We end by
briefly discussing other versions of the methods, how to obtain HDG meth-
ods with H(div)-conforming velocity spaces, and how to extend the methods
to other related systems. Several open problems are described.
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1. Introduction

In this paper, we give a short overview of our recent work on the devis-
ing of hybridizable discontinuous Galerkin (HDG) methods for the velocity
gradient-velocity-pressure formulation of the Stokes equations, namely,

L−∇u = 0 on Ω, (1a)

−∇ · (νL) +∇p = f on Ω, (1b)

∇ · u = 0 on Ω, (1c)

u = g on ∂Ω, (1d)∫

Ω

p = 0, (1e)

where
∫
∂Ω

g · n = 0. Here Ω ⊂ R
n (n = 2, 3) is a bounded polygonal domain

if n = 2, and a Lipschitz polyhedral domain if n = 3. We assume that ν is a
constant and that f is smooth.

The paper is organized as follows. In Section 2, we begin by describing
the characterization of the exact solution the HDG methods are obtained
from. In Section 3, we use this characterization to define the methods and
display very simple conditions that, for elements of arbitrary shape, ensure
the existence and uniqueness of their solution. Next, in Section 4, we provide
three different ways to presenting the methods according to which unknowns
are considered independent and which ones dependent. Then, in Section
5, a fairly general construction of superconvergent methods in terms of su-
perconvergent methods for the Laplace operator is presented. These are
methods for which, roughly speaking, an elementwise post-processing of the
velocity can be obtained which converges faster than the original approxi-
mation. Finally, in Section 6, restricting ourselves to simplicial elements, we
show how the above-mentioned postprocessing can be defined which results
in a globally divergence-free approximate velocity converging faster that the
original approximation. We end in Section 7 by briefly considering other
versions of the methods, by discussing a new way of obtaining method using
H(div)-conforming velocity spaces, and by commenting on how to extend
the methods to other related systems.

2. The main idea for devising HDG methods

In this Section, we introduce a characterization of the exact solution
whose discrete version gives rise to the HDG methods. Given any mesh
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Th, which, for simplicity we take to be conforming, of the domain Ω, the
characterization we seek states, roughly speaking, that the exact solution
solves local Stokes problems which are suitably matched across inter-element
boundaries. To find it, we begin with a simple observation.

2.1. A simple observation

Note that the exact solution satisfies the partial differential equations

L−∇u = 0 on K,

−∇ · (νL) +∇p = f on K,

∇ · u = 0 on K,

on each of the elements K of the mesh Th. Moreover, it satisfies the trans-
mission conditions

[[−νLn+ pn]] = 0 on F ,

[[u⊗ n]] = 0 on F ,

for all the faces F of each of the elements K ∈ Th. Here, [[·]] on F denotes
the jump across the inter-element boundary F , that is

[[−νLn+ pn]] := −νL−n− + p−n− − νL+n+ + p+n+,

[[u⊗ n]] := u− ⊗ n− + u+ ⊗ n+,

where ζ± is the trace on the face F of the generic function ζ from either of its
sides. Finally, it satisfies Dirichlet boundary and global average conditions

u = g on ∂Ω,

∫

Ω

p = 0.

Conversely, any function (L,u, p) satisfying the above equations on each
of the elements K ∈ Th, the transmission conditions on all the faces F of
K ∈ Th and the Dirichlet and global average conditions is nothing but the
exact solution of the original problem.

2.2. Local and global problems

We are going now to use this simple result to obtain the characterization
we seek. We proceed as follows. For an arbitrary function û defined on the
set of all faces F of the elements K of Th, Eh, and any function p defined on
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Ω and constant on each element K of Th, we define the auxiliary function
(L̃, ũ, p̃) as the solution of the local problem

L̃−∇ũ = 0 on K, (2a)

−∇ · (νL̃) +∇p̃ = f on K, (2b)

∇ · ũ =
1

|K|

∫

∂K

û · n on K, (2c)

ũ = û on ∂K, (2d)

1

K

∫

K

p̃ = p. (2e)

Note that the divergence-free condition has to be modified for this problem
to be solvable for arbitrary functions û. If we want to keep the equation
∇ · ũ = 0, the function û would have to satisfy the compatibility condition∫
∂K

û · n̂ = 0.
By the result in the previous subsection, the function (û, p) for which

(L̃, ũ, p̃) is nothing but the exact solution of the original problem, (L,u, p),
must be the solution of the global problem consisting in the transmission
condition

[[−νL̃n+ p̃n]] = 0 on Eh \ ∂Ω, (3a)

the divergence-free condition

∫

∂K

û · n = 0 for K ∈ Th, (3b)

and the Dirichlet and global average conditions

û = g on ∂Ω, (3c)∫

Ω

p = 0. (3d)

Note that the second transmission condition, namely [[ũ ⊗ n]] = 0 is auto-
matically satisfied since on Eh \ ∂Ω because ũ = û therein by the boundary
condition of the local problems, (2d).
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2.3. Characterization of the exact solution

Thus, we have that the exact solution can be characterized as the sum

(L,u, p) = (Lû,uû, pû) + (Lf ,uf , pf ) + (0,0, p),

where we denote by (Lû,uû, pû) the solution (L̃, ũ, p̃) of the local problem

(2) with f := 0 and p := 0, and by (Lf ,uf , pf ) the solution (L̃, ũ, p̃) of the

local problem (2) with û := 0 and p := 0. Note that the solution (L̃, ũ, p̃) of
the local problem (2) with û := 0 and f := 0 is (0,0, p).

Moreover, the function (û, p) is the solution of the global problem (3)
which, given the last identity, we can rewrite as follows:

− [[−νLûn+ pû n]]− [[pn]] = [[−νLfn+ pf n]] on Eh,∫

∂K

û · n = 0 for K ∈ Th,

û = g on ∂Ω,∫

Ω

p = 0.

This characterization of the exact solution is convenient for devising nu-
merical methods because any discrete version of it will consist of local prob-
lems written in terms of approximations to (û, p), (ûh, ph), and a single global
problem for (ûh, ph) only. This allows for a very efficient implementation of
the method.

3. Definition of the HDG methods

In this Section, we introduce HDG methods by discretizing the local
problems (2) by discontinuous Galerkin methods, and by enforcing the global
problem (3) in a weak manner.

3.1. The approximating spaces

The HDG methods seek an approximation (Lh,uh, ph) to the exact so-
lution (L|Ω,u|Ω, p|Ω) in the finite dimensional space Gh × V h ×Qh given by

Gh = {G ∈ L2(Th) : G|K ∈ G(K) ∀ K ∈ Th}, (4a)

V h = {v ∈ L2(Th) : v|K ∈ V (K) ∀ K ∈ Th}, (4b)

Qh = {q ∈ L2(Th) : q|K ∈ Q(K) ∀ K ∈ Th}, (4c)
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where the local spaces G(K), V (K), Q(K) are general finite dimensional
spaces.

The HDG methods also seek an approximation (ûh, ph) to the exact
solution (u|Eh

, p) in the space Mh ×Q0
h where

Q0
h = {q ∈ L2(Th) : q|K is a constant ∀ K ∈ Th}, (5a)

Mh = {µ ∈ L2(Eh) : µ|F ∈ M (F ) ∀ F ∈ Eh}, (5b)

where the local space M (F ) is a general finite dimensional space.

3.2. The local and the global problems

Writing (ζ, η)K for the integral over the element K of ζη, and 〈ζ, η〉∂K for
the corresponding integral over ∂K, it is not difficult to see that the exact
solution of the local problem (2) satisfies the equations

(L̃,G)K + (ũ,∇ ·G)K − 〈û,Gn〉∂K = 0,

ν (L̃,∇v)K − (p̃,∇ · v)K − 〈νL̃n− p̃n,v〉∂K = (f ,v)K ,

−(ũ,∇q)K + 〈û · n, q〉∂K =
1

|K|
〈û · n, 1〉∂K(1, q)K

= 〈û · n, q〉∂K ,

(p̃, 1)K = (p, 1)K ,

for all (G,v, q) ∈ G(K)× V (K)×Q(K).
For this reason, for any given arbitrary function (ûh, ph) in the space

Mh ×Q0
h, we define (Lh,uh, ph) as the solution of the discrete local problem

(Lh,G)K + (uh,∇ ·G)K − 〈ûh,Gn〉∂K = 0, (6a)

ν (Lh,∇v)K − (ph,∇ · v)K − 〈νL̂hn− p̂hn,v〉∂K = (f ,v)K , (6b)

−(uh,∇q)K + 〈ûh · n, q − q〉∂K = 0, (6c)

(ph, 1)K = (ph, 1)K , (6d)

for all (G,v, q) ∈ G(K)× V (K)×Q(K), where

−νL̂hn+ p̂hn := −νLhn+ phn+ S(uh − ûh) on ∂K. (6e)

The following result gives sufficient conditions to the solution of this local
problem to be well defined.
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Theorem 1 ([1]). The solution of the local problem (6) exists and is unique

under the following sufficient conditions:

(i) The stabilization function S is uniformly positive definite.

(ii) The space ∇V (K) is included in the space G(K) for all K ∈ Th.

(iii) The space ∇Q(K) is included in the space V (K) for all K ∈ Th.

The matrix-valued function S has a crucial role ensuring the existence and
uniqueness of the solution of the local problem. Indeed, thanks to the prop-
erty of positive definiteness (i), the existence and uniqueness is ensured under
the simple inclusion properties of the local spaces (ii) and (iii), independent
of the shape of the elements K ∈ Th.

The definition of the global problem defining (ûh, ph) is more straightfor-
ward. Indeed, setting

〈·, ·〉∂Th :=
∑

K∈Th

〈·, ·〉∂K , and 〈·, ·〉∂Th\∂Ω :=
∑

K∈Th

〈·, ·〉∂K\∂Ω,

where ∂Th := {∂K : K ∈ Th}, we have that the exact solution of the global
problem satisfies

〈−νL̃n+ p̃n,µ〉∂Th\∂Ω = 0,

〈û · n, q〉∂Th = 0,

〈û,µ〉∂Ω = 〈g,µ〉∂Ω,

(p, 1)Ω = 0,

for any (µ, q) in Mh ×Q0
h.

As a consequence, it is very reasonable to take (ûh, ph) as the element in
the space Mh ×Q0

h satisfying the equations

〈−νL̂hn+ p̂h n,µ〉∂Th\∂Ω = 0, (7a)

〈ûh · n, q〉∂Th = 0, (7b)

〈ûh,µ〉∂Ω = 〈g,µ〉∂Ω, (7c)

(ph, 1)Ω = 0, (7d)

for all (µ, q) in Mh ×Q0
h.

The following result gives sufficient conditions for the global problem to
be well posed.
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Theorem 2 ([1]). Suppose that the three conditions guaranteeing the exis-

tence and uniqueness of the solution of the local problems (6) of Theorem 6

hold. Then the solution of the global problem (7) exists and is unique.

A remarkable feature of this result is that it holds regardless of the choice
of the local spaces M(F ). This is a direct consequence of the positive defi-
niteness of the stabilization function S.

We have thus completed the definition of the HDG methods and have
shown simple, sufficient conditions for their solution to exist and be unique.
To end this Section, we give a characterization of the approximation they
provide.

3.3. Characterization of the approximate solution

Mimicking what was done for the exact solution, we can write that

(Lh,uh, ph) = (Lû
h ,u

û
h , p

û
h ) + (Lf

h ,u
f
h , p

f ) + (0,0, ph),

with the obvious notation, where the function (ûh, ph) is the solution of the
global problem (3) which, we rewrite as follows:

−〈−νL̂û
hn− p̂ û

h n,µ〉∂Th\∂Ω + 〈ph,µ〉∂Th = 〈−νL̂f
hn+ p̂fh n,µ〉∂Th\∂Ω,

〈ûh · n, q〉∂Th = 0,

〈ûh,µ〉∂Ω = 〈g,µ〉∂Ω,

(ph, 1)Ω = 0,

for all (µ, q) in Mh ×Q0
h.

This implies that, as claimed, the HDG methods can be easily imple-
mented. Indeed, we see that the only globally coupled degrees of freedom
are those of the approximation of the velocity on Eh, ûh, and those of the
local average of the pressure ph. This global problem can be solved by using,
for example, the augmented Lagrangian method, see [1]. Once this global
problem is solved, the approximate solution (Lh,uh, ph) can be easily ob-
tained in an element-by-element fashion by using the very first identity of
this Subsection.

4. The three formulations of the HDG methods

In this Section, we present three quite different ways of formulating the
HDG methods just devised since we believe it is important to recognize that
they are all equivalent; they differ by the choice of the unknowns explicitly
considered to be dependent on the others.
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4.1. The formulation for (ûh, ph)

This formulation is nothing but a slight rewriting of the formulation used
to define the methods and is convenient for their implementation. As we have
seen, it consists in eliminating (Lh,uh, ph) from the equations by expressing
it elementwise in terms of (ûh, ph) and then solving for the later unknown. It
is contained in the following result. Therein, we use the following notation:

Mh(g) := {µ ∈ Mh : 〈µ,λ〉∂Ω = 〈g,λ〉∂Ω ∀λ ∈ Mh}.

Theorem 3 ([1]). We have that

(Lh,uh, ph) = (Lû
h ,u

û
h , p

û
h ) + (Lf

h ,u
f
h , p

f ) + (0,0, ph),

where each of the terms of the right-hand side is the corresponding solution

of the local problem (6), and where the function (ûh, ph) is the element in

Mh(g)×Q0
h satisfying

ah(ûh,µ) + bh(µ, ph) =(f ,uµ
h )Th ∀µ ∈ Mh(0),

−bh(ûh, q) =0 ∀q ∈ Q0
h,

(ph, 1)Ω =0,

where

ah(λ,µ) := ν (Lλ
h ,L

µ
h )Th + 〈S(uλ

h − λ), (uµ
h − µ)〉∂Th

bh(λ, q) := −〈q,λ · n〉∂Th ,

for all λ, µ in Mh and q in Q0
h.

Moreover, assume that the stabilization function S is symmetric and that

the three conditions guaranteeing the existence and uniqueness of the solution

of the local problems (6) of Theorem 6 hold. Then the bilinear form ah(·, ·)
is symmetric and positive definite in Mh(0)×Mh(0).

This result allows us to realize that the saddle-point structure of the
global problem for the HDG method reflects well the structure of the orig-
inal problem. Indeed, and roughly speaking, the bilinear form ah(ûh, ·) is a
discrete version of −ν∆u, bh(·, ph) of ∇p, and bh(ûh, ·) of −∇ · u. Thus, it
is not a surprise that the form ah(·, ·) is symmetric and positive definite on
Mh(0)×Mh(0) since the operator −ν∆ is strongly elliptic and self-adjoint
on H1

0(Ω)×H1
0(Ω).
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This result also allows us to realize that there is a minimization problem
for the approximate velocity which is a discrete version of the corresponding
minimization problem for the continuous case. Indeed, we can see that ûh is
the only minimum on the space {µ ∈ Mh(g) : bh(λ, q) = 0 ∀ q ∈ Qh}, of
the quadratic functional Jh(λ) :=

1
2
ah(λ,λ) − (f ,uλ

h)Th . This is a discrete
version of the fact that u is the only minimum on the space {v ∈ H1(Ω) :
v = g on ∂Ω, ∇ · v = 0} of the functional J(v) := 1

2
(∇v,∇v)Ω − (f ,v)Ω.

4.2. The formulation for (uh, ûh, ph)
This formulation consists in eliminating Lh from the equations by ex-

pressing it in terms of (uh, ûh). To do that, we define matrix-valued function
Lv,µ
h ∈ Gh by using the first equation of the compact formulation, that is, by

(Lv,µ
h ,G)Th = −(v,∇ ·G)Th + 〈v̂,Gn〉∂Th ∀ G ∈ Gh.

We have the following result.

Theorem 4. We have that

Lh = Luh,ûh

h ,

where the function (uh, ûh, ph) is the element in Mh×Mh(g)×Qh satisfying

ah(uh, ûh;v,µ) + bh(v,µ; ph) =(f ,v)Th ∀(v,µ) ∈ Vh ×Mh(0),

−bh(uh, ûh; q) =0 ∀q ∈ Qh,

(ph, 1)Ω =0,

where

ah(w,λ;v,µ) := ν (Lw,λ
h ,Lv,µ

h )Th + 〈S(w − λ), (v − µ)〉∂Th
bh(w,λ; q) := (∇q,w)Th − 〈q,λ · n〉∂Th ,

for all v, w in V h, λ, µ in Mh and q in Qh.

Moreover, assume that the stabilization function S is symmetric and that

the three conditions guaranteeing the existence and uniqueness of the solution

of the local problems (6) of Theorem 6 hold. Then the bilinear form ah(·; ·)
is symmetric and positive definite in (V h ×Mh(0))× (V h ×Mh(0)).

The proof of this result is similar to that of the first formulation but much
easier. For this reason, we omit it.

Note the remarkable similarity of this result with that of the previous
formulation. In particular, note that (uh, ûh) is the only element of the
space {(v,µ) ∈ V h ×M (g) : bh(v,µ; q) = 0 ∀q ∈ Qh} that minimizes the
functional Jh(v,µ) :=

1
2
ah(v,µ;v,µ)− (f ,v)Th .
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4.3. The formulation for (Lh, ph,uh, ûh)

It is not difficult to see that the HDG methods seeks an approximation
(Lh,uh, ph, ûh) in the space Gh × V h ×Mh ×Qh satisfying the equations

(Lh,G)Th + (uh,∇ ·G)Th − 〈ûh,Gn〉∂Th = 0, (8a)

ν (Lh,∇v)Th − (ph,∇ · v)Th − 〈νL̂hn− p̂hn,v〉∂Th = (f ,v)Th , (8b)

−(uh,∇q)K + 〈ûh · n, q〉∂Th = 0, (8c)

〈−νL̂hn+ p̂h n,µ〉∂Th\∂Ω = 0, (8d)

〈ûh,µ〉∂Ω = 〈g,µ〉∂Ω, (8e)

(ph, 1)Ω = 0, (8f)

for all (G,v,µ, q) ∈ Gh × V h ×Mh ×Qh, where

−νL̂hn+ p̂hn := −νLhn+ phn+ S(uh − ûh) on ∂Th. (8g)

This way of expressing the methods is particularly well suited to the projection-
error analyzes carried out in [2, 3, 4]. Here, in order to emphasize its strong
relation to the two previous formulations, we rewrite it slightly in the follow-
ing result.

Theorem 5. We have that the function (Lh,uh, ûh, ph) is the element in
Gh ×Mh ×Mh(g)×Qh satisfying

Ah(Lh,G)− Ch(G;uh, ûh) =0 ∀G ∈ Gh,

ν Ch(Lh;vh,µ) + Bh(v,µ; ph) + Sh(uh, ûh;v,µ) =(f ,v)Th ∀(v,µ) ∈ Vh ×Mh(0),

−Bh(uh, ûh; q) =0 ∀q ∈ Qh,

(ph, 1)Ω =0,

where

Ah(F,G) := (F,G)Th ,

Bh(w,λ; q) := (∇q,w)Th − 〈q,λ · n〉∂Th ,

Ch(G;vh,µ)) := (v,∇ ·G)Th − 〈µ,Gn〉∂Th ,

Sh(w,λ;v,µ) := 〈S(w − λ), (v − µ)〉∂Th ,

for all F, G in Gh, v, w in V h, λ, µ in Mh and q in Qh.
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5. Accuracy of the HDG methods

In this Section, we explore the issue of the accuracy of the HDG meth-
ods just introduced. As we just saw, very simple inclusion conditions on the
local spaces G(K), V (K), Q(K), and a positivity condition on the stabi-
lization function S are enough to guarantee the existence and uniqueness of
the approximate solution, regardless of the choice of the local spaces M(F )
and of the geometry of the elements K. However, the order of convergence
of the approximations provided by the method have a more complicated re-
lationship with the local spaces, stabilization function and geometry of the
elements.

We discuss two main cases. In the first, we take the local spaces to
be polynomials of a given degree defined on general polyhedral elements.
Optimal orders of convergence are obtained for the velocity but suboptimal
orders (by 1/2) are obtained for the velocity gradient and the pressure. In
the second case, following [3], the local spaces, the stabilization function and
the shape of the elements are taken in such a way that optimal convergence
for all the variables is achieved. Moreover, a superconvergence property is
also obtained for the velocity.

For simplicity, we assume the triangulation Th to be conforming.

5.1. HDG methods on general meshes

We begin by considering the case in which the generic element K ∈ Th

is a regular-shaped polygon (in 2D) or a polyhedral (in 3D). We define the
stabilization operator as

S = τ Id.

Finally, we complete the definition of the method by taking the local spaces
as:

G(K) = Pk(K), V (K) = Pk(K), Q(K) = Pk(K), M (F ) = Pk(F ).

Here Pm(D) denotes the space of polynomials of degree m defined on D,
Pm(D) denotes the space of d-component vector-valued functions whose com-
ponents belong to Pm(D), and Pm(K) is the set of d× d matrix-valued func-
tions whose entries belong to Pm(D). We denote this method by HDGk.

For this method, and the stabilization function and its inverse are bounded
above uniformly, the orders of convergence for the velocity are optimal but
those for the pressure and the velocity gradient are suboptimal by 1/2, see
Table 1. Since a proof of this result has not appeared before, we provide it
in the Appendix.
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Table 1: Provable order of convergence for HDGk on general polyhedral elements (k ≥ 0)

‖L− Lh‖L2(Ω) ‖p− ph‖L2(Ω) ‖u− uh‖L2(Ω)

k + 1/2 k + 1/2 k + 1

5.2. Superconvergent HDG methods

We now discuss HDG methods for which the convergence properties can
be proven to be better. These methods are called superconvergent.

Roughly speaking, what makes an HDG method ”superconvergent” are
two properties. First, the elementwise average of the approximate velocity
uh converges to the elementwise average of the exact velocity u with a order,
say ℓ+1, which is strictly higher than that of the convergence of uh converges
to u. Second, the approximate velocity gradient Lh converges to the exact
velocity gradient L with an order equal or higher than ℓ. We can then find
a new approximation to the velocity u∗

h converging with order ℓ+ 1, that is,
faster than the original approximation.

To define this new approximation, we follow [5, 6, 7], and define u∗
h on

the element K ∈ Th as the element of finite dimensional space V ∗(K) such
that

(∇u∗
h,∇v)K = (Lh,∇v)K ∀v ∈ V ∗(K), (9a)

(u∗
h,v)K = (uh,v)K ∀ ∈ P0(K). (9b)

By making sure that V ∗
h(K) includes Pℓ(K) for all elements K ∈ Th, we can

make ‖u∗
h − u‖L2(Ω) converge to zero with order ℓ+ 1; see [3].

Next, we describe the systematic way of constructing superconvergent
HDG methods for the Stokes flow in terms superconvergent HDG methods
for the model diffusion problem,

q = ∇u, −∇ · q = f on Ω, u = g on ∂Ω,

obtained in [3]. These methods [8] seek approximations (qh, uh, ûh) of the
exact solution (q|Ω, u|Ω, u|Eh

) whose local spaces are V D(K), WD(K) and
MD(F ), and whose stabilization function is τD. We associate to each of these
methods a superconvergent HDG method constructed as follows.

Denote by Gi(K) the space of all the i-th rows of functions in G(K), and
by V i(K) and M i(F ) the space of the i-th component of functions in V (K)
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and M (F ), respectively, for i = 1, . . . , d. Then, we take the local spaces as

Gi(K) := V D(K), V i(K) := WD(K), M i(F ) := MD(F ), (10a)

for i = 1, . . . , d, and the stabilization function as

S := τD Id. (10b)

The choice of the space for the pressure Q(K) has to be done in such a way
that

d∑

j=1

∂jW
D(K) ⊂ Q(K) ⊂ ∩d

j=1{vj : v ∈ V D(K) : vi = 0 for i 6= j}. (10c)

5.3. Examples of superconvergent HDG methods

In Table 2, taken from [3], we display the orders of convergence for mixed
methods and HDG methods using different elements K. We only show the
space Q(K). The the other spaces are given in [8] and a better version of the
spaces TNT[k] can be found in [9]. All the methods achieve optimal orders
for Lh, ph and superconvergence takes place, as claimed. Note that for the
mixed methods, τD = 0, whereas for the HDG methods, τD ≥ 0 is uniformly
bounded from above.

6. Divergence-free velocities by postprocessing

In this Section, we consider theHDGk method in Table 2, and consider an
alternative to the postprocessing in the previous Section. It was introduced in
[2] and, in three-space dimensions, is defined as follows. On the tetrahedron
K ∈ Th, u

∗
h is defined as the element of Pk+1(K) such that

〈(u∗h − ûh) · n, µ〉F = 0 ∀ µ ∈ Pk(F ), (11a)

〈(n×∇)(u∗h · n)− n× ( {{Lt
h}}n), (n×∇)µ〉F = 0 ∀ µ ∈ Pk+1(F )⊥, (11b)

for all faces F of K, and such that

(u∗h − uh,∇w)K = 0 ∀ w ∈ Pk(K), (11c)

(∇× u
∗
h −wh, (∇× v) BK)K = 0 ∀ v ∈ Sk(K). (11d)

Here

Pk+1(F )⊥ := {µ ∈ Pk+1(F ) : 〈µ, µ̃〉F = 0, ∀µ̃ ∈ Pk(F )},
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Table 2: Order of convergence for superconvergent HDG methods (k ≥ 1)

method
for diffusion

Q(K) ‖L− Lh‖L2(Ω) ‖p− ph‖L2(Ω) ‖u− u⋆
h‖L2(Ω)

K simplex and M(F ) = P k(F )

BDFMk+1 Pk(K) k + 1 k + 1 k + 2
RTk Pk(K) k + 1 k + 1 k + 2

HDGk Pk(K) k + 1 k + 1 k + 2
BDMk

k≥2
Pk(K) k + 1 k + 1 k + 2

K square or cube and M(F ) = P k(F )

BDFM[k+1] Pk(K) k + 1 k + 1 k + 2

HDG
P
[k] Pk(K) k + 1 k + 1 k + 2

BDM[k]
k≥2

Pk(K) k + 1 k + 1 k + 2

K square or cube and M(F ) = Qk(F )

RT[k] Qk(K) k + 1 k + 1 k + 2
TNT[k] Qk(K) k + 1 k + 1 k + 2

HDG
Q

[k] Qk(K) k + 1 k + 1 k + 2

K prism and M(F ) defined in [3]

BDFM<k+1> Pk(K) k + 1 k + 1 k + 2
RT<k> Pk|k(K) k + 1 k + 1 k + 2

HDG<k> Pk(K) k + 1 k + 1 k + 2

the operator n×∇ is the tangential gradient and the function {{Lt
h}} is the

single-valued function on Eh equal to ((Lt
h)

+ + (Lt
h)

−)/2 on the set Eh \ ∂Ω
and equal to Lt

h on ∂Ω. Moreover,

wh := (L32h − L23h,L13h − L31h,L21h − L12h)

is the approximation to the vorticity and BK is the so-called symmetric bubble

matrix introduced in [10], namely,

BK :=
3∑

ℓ=0

λℓ−3λℓ−2λℓ−1∇λℓ ⊗∇λℓ,

where λi are the barycentric coordinates associated with the tetrahedron
K, the subindices being counted modulo 4. Finally, Sk(K) :=

∑k

ℓ=1 Sℓ(K)
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where Sℓ is the space of vector-valued homogeneous polynomials v of degree
ℓ such that v · x = 0, see [11, 12].

This elementwise post-processing has many properties we gather in the
following result.

Theorem 6 ([2]). We have that

(i) u
∗
h is well defined.

(ii) u
∗
h in H(div).

(iii) ∇ · u∗
h = 0 on Ω.

(iv) ‖u− u
∗
h‖L2(Ω) ≤ C hk+2, for k ≥ 1 and smooth solutions.

The development of similar postprocessings for the other superconvergent
methods remains an open problem.

7. Concluding remarks

7.1. Methods based on other formulations of the Stokes system

Although we have used a velocity gradient-velocity-pressure expression
of the Stokes system, we could have used others. The main cases are to
use the symmetric gradient of the velocity or the vorticity instead of the
velocity gradient. Numerical experiments carried out in [13] show that the
formulation using the velocity gradient is superior to that of the symmetric
gradient which in turn is better than that of the vorticity; see also [14].

Indeed, since these three formulations have a global system of the same
unknowns (they all solve for ûh and ph), size and structure, the only difference
among them is how the local problems are defined. Assuming that the local
problems do not represent the main computational cost of the method (note
that they can be solved in parallel), and that the global problems of the three
formulation can be solved with about the cost, the fact that the velocity
gradient involves more unknowns than the other two formulations does not
really play a significant role. The above-mentioned superiority of the velocity
gradient formulation is thus a direct consequence of the fact that it is the
only one that provides a superconvergence property of the velocity.

On the other hand, the use of the velocity gradient formulation does not
allow in a natural way the imposition of the normal stress as a boundary con-
dition. This problem has been partially addressed in [15], but although the
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optimal convergence of all the variables was retained, the superconvergence
of the velocity was lost. How to devise superconvergent HDG methods for
this boundary condition remains an open problem.

7.2. Methods based on other characterizations

Although we have used as data for defining the local problems on each
given element the velocity on its boundary and the average of the pressure in
the element, this is certainly not the only possibility. For example, we could
have imposed the normal component of −ν L + p Id on the boundary of the
element and the average of the velocity and the pressure on the element. The
global problem would have then to be defined differently, by using suitably
defined transmission conditions, but its unknowns would then be the data
of the local problems. One wonders then if the resulting HDG method is
necessarily different from the one we presented. The answer is no: The same

HDG can be obtained with these two different characterizations of the exact
solution. For example, an HDG method based on the vorticty formulation
was studied in [16] which could be obtained with four different characteri-
zations of the exact solution. Each of these give rise to a different way of
characterizing the approximate solution (or,as we have seen, of implementing

it), but the approximate solution, just as the exact one, remains the same.
The issue of determining the most convenient way of implementing theHDG
methods remains open.

7.3. Methods with H(div)-conforming spaces for the velocity

In [4], a new approach for devising numerical methods using H(div)-
conforming spaces for the velocity was uncovered. The new method is ob-
tained starting from the HDGk in Table 2 with the following stabilization
function

S := ν τnn⊗ n+ ν τt (Id− n⊗ n),

where n is the normal to the faces on ∂Th, and by simply letting τn go to
infinity. That this limiting process should lead to a reasonable numerical
scheme was suggested by numerical experiments [1] and later by theoretical
analysis [2] done on the HDGk method pointing to the fact that the conver-
gence properties of the method were independent of how big was τn. In [4], it
was proven that, when τn goes to infinity, the quantity τn (uh − ûh) ·n does
not blow up but converges to a new unknown δh. This forces the velocity uh

to lie in H(div) in the limit, and, more importantly, is strongly linked with
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the fact that the limiting method retains all the convergence properties of
the original method HDGk, including the superconvergence property of the
velocity.

Let us emphasize that HDG methods using H(div)-conforming spaces
for the velocity can be obtained by using the simple approach discussed in
the first two Section of this paper. However, the transformation of the term
τn (uh − ûh) · n into a new unknown δh, which plays a crucial role ensuring
the superconvergence property of the method, is almost impossible to fathom
without using this simple approach. The extension of the approach proposed
in [4] for theHDGk method to the the other superconvergentHDGmethods
in Table 2 constitutes the subject of ongoing research.

7.4. Methods for related systems

The extension of the HDG methods to isotropic linear elasticity equa-
tions, namely,

L−∇u = 0, on Ω, (12a)

−∇ · (µL) +∇p = 0, on Ω, (12b)

ǫp+∇ · u = 0, on Ω, (12c)

u = g, on ∂Ω, (12d)

where ǫ = (1 − 2ν)(1 + ν)/E, E is the Young’s modulus and ν ∈ (0, 1/2]
the Poisson’s ratio, is straightforward; see [17]. Note that the advantage of
this formulation is that it holds for both compressible (ν ∈ (0, 1/2)) and
incompressible (ν = 1/2) materials where this system of equations is nothing
but the Stokes system. An extension to large deformation elasticity using a
similar formulation has also been done in [17]. Note that the HDG methods
for linear and large deformation elasticity proposed in [18, 19] use a different
form of the equations than the one in [17].

Let us end by pointing out that the extension of the HDG methods to
the Oseen and the incompressible Navier-Stokes equations does not present
any major difficulty, see [20] and [21], respectively.

Acknowledgments. The first author would like to acknowledge the
partial support of the National Science Foundation (Grant DMS-1115331)
and of the University of Minnesota Supercomputing Institute.
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Appendix A. An analysis for HDG methods on general meshes

In this section, we present an analysis for HDGk methods on conforming
meshes Th whose elements K are any regular-shaped polygon (in 2D) or
polyhedral (in 3D); see Subsection 5.1. As in [3], our analysis is based on
estimating the projection of the errors. In contrast, we do not use projections
tailored to the numerical traces, as this seems to be impossible to do when
the generic element K is an arbitrary polygon or polyhedral. Instead, we use
simple, standard L2 projections, as was done for the original analysis of DG
methods for diffusion problems on general meshes [22].

Thus, we use the L2-projections into the spaces Gh, V h, Qh and Mh,
which we denote by ΠG,ΠV ,ΠQ,ΠM , respectively, and define the projection
of the errors as:

EL := ΠGL− Lh, ep := ΠQp− ph, eu := ΠVu− uh,

νEL̂ n− ep̂ n := ΠM(νLn− pn)− (νL̂hn− p̂hn), eû:= ΠMu− ûh.

Note that we have, by standard approximation theory, the following results:

‖u− ΠY u‖K ≤ Chs‖u‖s,K (A.1a)

‖u− ΠY u‖∂K ≤ Chs− 1

2‖u‖s,K , (A.1b)

for all u ∈ Hs(K), 1 ≤ s ≤ k + 1. Here Y = G,V , Q. Finally,
We are now ready to carry out our a priori error analysis. We proceed in

several steps.
Step 1: The error equations. We begin by obtaining the equations

satisfied by the projection of the errors.

Lemma 1.

(EL,G)Th + (eu,∇ ·G)Th − 〈eû , Gn〉∂Th = 0, (A.2a)

(νEL,∇v)Th − (ep,∇ · v)Th − 〈νEL̂ n− ep̂ n , v〉∂Th = 0, (A.2b)

−(eu,∇q)Th + 〈eû , qn〉∂Th = 0, (A.2c)

〈eû,µ〉∂Ω = 0, (A.2d)

〈νEL̂n− ep̂ n , µ〉∂Th\∂Ω = 0, (A.2e)

(ep, 1)Ω = 0, (A.2f)

for all (G,v, q,µ) ∈ Gh × V h × Ph ×Mh.
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proof. Note that the exact solution also solves the system (8). Then, using
the definition of the L2-projections, we immediately obtain that

(ΠGL,G)Th + (ΠVu,∇ ·G)Th − 〈ΠMu , Gn〉∂Th = 0,

(νΠGL,∇v)Th − (ΠQp,∇ · v)Th − 〈ΠM(νLn− pn) , v〉∂Th = (f ,v)Th ,

−(ΠVu,∇q)Th + 〈ΠMu , qn〉∂Th = 0,

〈ΠMu,µ〉∂Ω = 〈g,µ〉∂Ω,

〈ΠM(νLn− pn) , µ〉∂Th\∂Ω = 0,

(ΠQp, 1)Ω = 0,

for all (G,v, q,µ) ∈ Gh × V h × Ph ×Mh. If we now subtract the equations
(8) from the above ones, we obtain the error equations (A.2). �

Step 2: Estimate of L − Lh. Next we apply an energy argument to
obtain an error estimate for L−Lh. To this end, we first present the following
identity.

Lemma 2. We have:

ν‖EL‖
2
0 + 〈τ(eu − eû), eu − eû〉∂Th =〈τΠVu−ΠMu, eu − eû〉∂Th

− 〈ν(ΠGLn−ΠMLn, eu − eû〉∂Th
+ 〈ΠQpn−ΠMpn, eu − eû〉∂Th .

proof. Taking (G,v, q,µ) := (EL, eu, ep, eû) in the error equations (A.2a) -
(A.2e) and adding these equations we obtain, after some algebraic manipu-
lation, that

ν‖EL‖
2
0 + 〈νELn− epn− (νEL̂ n− ep̂ n), eu − eû〉∂Th = 0.

By the definition of the projection of the errors, we have:

νELn−epn− (νEL̂n− ep̂ n) =

ν(ΠGL− Lh)n− (ΠQp− ph)n−ΠM(νLn− pn) + (νL̂hn− p̂hn)

=− τ(uh − ûh) + ν(ΠGLn−ΠMLn)− (ΠQpn−ΠMpn)

= τ(eu − eû)− τ(ΠVu−ΠMu) + ν(ΠGLn−ΠMLn)

− (ΠQpn−ΠMpn),

by the definition of the numerical trace (8g). The identity we want to prove
now easily follows. �

20



We can now deduce the following estimate for EL.

Theorem 7. We have:

‖EL‖0 + ‖τ
1

2 (eu − eû)‖∂Th ≤ Chs− 1

2 (τ
1

2‖u‖s + τ−
1

2‖L‖s + τ−
1

2‖p‖s),

for all 1 ≤ s ≤ k + 1.

Note that Theorem 7 states that, when the solution is very smooth, the
error ‖L− Lh‖0 is of order O(hk+ 1

2 max{τ
1

2 , τ−
1

2}). This shows that the best
choice of τ is when it is of order one. Let us now prove this result.

proof. Applying the Cauchy-Schwartz inequality in the right-hand side of
the energy identity of Lemma 2, we get

ν‖EL‖
2
0 + ‖τ

1

2 (eu − eû)‖
2
∂Th

≤ ‖τ
1

2 (eu − eû)‖∂Th Θh,

where

Θh := τ
1

2‖ΠVu−ΠMu‖∂Th + ντ−
1

2‖ΠGLn−ΠMLn‖∂Th

+ τ−
1

2‖ΠQpn−ΠMpn‖∂Th .

Next, we apply standard inverse inequalities and the approximation property
of the projections (A.1) to obtain the estimate

‖ΠVu−ΠMu‖∂Th ≤ 2‖u−ΠVu‖∂Th ≤ Chs− 1

2‖u‖s.

Since the other two terms defining Θ can be bounded in a similar manner,
the estimate follows. This completes the proof. �

Step 3: Estimate of p − ph. In order to obtain an estimate for the
pressure, we use the standard inf-sup argument.

Theorem 8. We have

‖ep‖0 ≤ C(‖EL‖0 + τ
1

2h
1

2‖τ
1

2 (eu − eû)‖∂Th) + Chs(τ‖u‖s + ‖L‖s + ‖p‖s),

for all 1 ≤ s ≤ k + 1.

An estimate of p− ph can be now by triangle inequality:

‖p− ph‖0 ≤ C(‖EL‖0 + τ
1

2h
1

2‖τ
1

2 (eu − eû)‖∂Th) +Chs(τ‖u‖s + ‖L‖s + ‖p‖s),

for all 1 ≤ s ≤ k + 1. Let us prove this result.
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proof. It is well known [23] that for any function q ∈ L2(Ω) such that
(q, 1)Ω = 0 we have

‖q‖0 ≤ κ sup
w∈H1(Ω)\{0}

(q,∇ ·w)

‖w‖1
,

for some constant κ independent of q. By the last error equation, (A.2f), we
can take q := ep and get

‖ep‖0 ≤ C sup
w∈H1(Ω)\{0}

(ep,∇ ·w)

‖w‖1
.

Next, we work on the numerator of the right-hand side. We have

(ep,∇ ·w)Ω = (ep,∇ ·ΠVw)Th + 〈ep, (w −ΠVw)n〉∂Th . (A.3)

Taking v := ΠVw in the error equation (A.2b), and inserting this equation
into above identity, we get

(ep,∇ ·w)Ω = (νEL,∇ΠVw)Th − 〈νEL̂ n− ep̂ n,ΠVw〉∂Th
+ 〈epn,w −ΠVw〉∂Th

= (νEL,∇w)Th − 〈νEL̂n− ep̂ n,ΠVw〉∂Th
− 〈νELn− epn,w −ΠVw〉∂Th ,

after integrating by parts the first term of the right-hand side and using the
definition of the L2-projection ΠV .

Now, by the error equation (A.2e), we know that νEL̂ n−ep̂ n is continu-
ous across the interior faces, so 〈νEL̂ n−ep̂ n,w〉∂Th = 〈νEL̂ n−ep̂ n,w〉∂Ω =
0. Inserting this to the above expression, we obtain,

(ep,∇ ·w)Ω = (νEL,∇w)Th + 〈νEL̂n− ep̂ n− (νELn− epn),w −ΠVw〉∂Th ,

= (νEL,∇w)Th − 〈τ(eu − eû),w −ΠVw〉∂Th
+ 〈τ(ΠVu−ΠMu),w −ΠVw〉∂Th
− 〈ν(ΠGLn−ΠMLn),w −ΠVw〉∂Th
+ 〈ΠQpn−ΠMpn,w −ΠVw〉∂Th .

proceeding as in the proof of Lemma 2.
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Applying the Cauchy-Schwartz inequality to the terms on the right-hand
side, and proceeding as in the proof in Theorem 7, we obtain:

(ep,∇ ·w)Ω ≤ ‖w‖1(‖EL‖0 + τ
1

2h
1

2‖τ
1

2 (eu − eû)‖∂Th)

+ C‖w‖1h
s(τ‖u‖s + ‖L‖s + ‖p‖s),

for all 1 ≤ s ≤ k + 1. This completes the proof. �

Step 4: Estimate of u− uh. To obtain the result, we obtain an inter-
mediate result written in terms of the so-called dual problem we introduce
next. Let (Z,σ, η) be the solution of

Z−∇σ = 0 on Ω, (A.4a)

∇ · (νZ)−∇η = eu on Ω, (A.4b)

−∇ · σ = 0 on Ω, (A.4c)

σ = 0 on ∂Ω. (A.4d)

We assume that, for some real number s, we have the regularity property

‖Z‖1 + ‖σ‖2 + ‖η‖1 ≤ Creg‖eu‖0. (A.5)

In the two-dimensional case, the above estimate follows from the results in
[24] when the domain is convex. In the three-dimensional case, the above
estimate follows from the results in [25] for any convex polyhedron.

We begin by introducing an identity obtained by a classic duality argu-
ment.

Lemma 3. Let (Z,σ, η) be the solution of (A.4). Then we have

‖eu‖
2
0 = 〈eu − eû, ν(Z− ΠGZ)n〉∂Th − 〈eu − eû, (η − ΠQη)n〉∂Th

− 〈νELn− epn− (νEL̂n− ep̂ n),σ −ΠVσ〉∂Th .

proof. By the dual problem (A.4), we have

‖eu‖
2
0 =(eu,∇ · (νZ))Ω − (eu,∇η)Ω + (νEL,Z−∇σ)Ω + (ep,∇ · σ)Ω.

Integrating by parts, using the L2 projections and integrating by parts again,
we get, after rearranging terms, that

‖eu‖
2
0 =(eu,∇ · (νΠGZ))Th + (EL, νΠGZ)Th + 〈eu, ν(Z− ΠGZ)n〉∂Th
−(νEL,∇ΠVσ)Th + (ep,∇ ·ΠVσ)Th − 〈νELn− epn,σ −ΠVσ〉∂Th
−(eu,∇ΠQη)Th − 〈eu, (η − ΠQη)n〉∂Th
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Taking (G,v, q) := (ΠGZ,ΠVσ,ΠQη) in the error equations (A.2a)-(A.2c),
inserting these equations into the above equation and simplifying, we obtain

‖eu‖
2
0 =〈eû, νΠGZn〉∂Th + 〈eu, ν(Z− ΠGZ)n〉∂Th
−〈νEL̂n− ep̂ n,ΠVσn〉∂Th − 〈νELn− epn, (σ −ΠVσ)n〉∂Th
−〈eû,ΠQηn〉∂Th − 〈eu, (η − ΠQη)n〉∂Th .

Noting that the solution (Z,σ, η) is continuous across the interior faces, and
using the error equation about the Dirichlet boundary condition (A.2d) and
that of the transmission condition (A.2e), we have

〈eû,Zn〉∂Th = 〈eû, ηn〉∂Th = 〈νEL̂ n− ep̂ n,σ〉∂Th = 0.

The identity we want to prove now follows after using this identity and re-
arranging terms. �

We are now ready to get the estimate for eu.

Theorem 9. If the regularity inequality (A.5) holds, we have

‖eu‖ ≤ C(τ−
1

2h
1

2 + τ
1

2h
3

2 )‖τ
1

2 (eu − eû)‖∂Th + Chs+1(τ‖u‖s + ‖L‖s + ‖p‖s),

for all 1 ≤ s ≤ k + 1.

proof. From the proof of Lemma 2, we have

νELn− epn− (νEL̂n− ep̂ n) = τ(eu − eû)− τ(ΠVu−ΠMu)

+ ν(ΠGLn−ΠMLn)− (ΠQpn−ΠMpn).

Applying the above identity in Lemma 3, we obtain

‖eu‖
2
0 = 〈eu − eû, ν(Z− ΠGZ)n〉∂Th − 〈eu − eû, (η − ΠQη)n〉∂Th
− 〈τ(eu − eû),σ −ΠVσ〉∂Th + 〈τ(ΠVu−ΠMu),σ −ΠVσ〉∂Th
− 〈ν(ΠGLn−ΠMLn),σ −ΠVσ〉∂Th + 〈ΠQpn−ΠMpn,σ −ΠVσ〉∂Th .

If we now apply the Cauchy-Schwartz inequality on each term of the right-
hand side, we get

‖eu‖
2
0 ≤ C‖τ

1

2 (eu − eû)‖∂Th

{
τ−

1

2‖(Z− ΠGZ)n‖∂Th + τ−
1

2‖η − ΠQη‖∂Th

+ τ
1

2‖σ −ΠVσ‖∂Th

}

+ C‖σ −ΠVσ‖∂Th

{
τ‖ΠVu−ΠMu‖∂Th + ‖ΠGLn−ΠMLn‖∂Th

+ ‖ΠQpn−ΠMpn‖∂Th

}
.
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By standard inverse inequalities and the approximation properties of the
projections (A.1), we obtain

‖eu‖
2
0 ≤ C‖τ

1

2 (eu − eû)‖∂Th(τ
− 1

2h
1

2‖Z‖1 + τ−
1

2h
1

2‖η‖1 + τ
1

2h
3

2‖σ‖2)

+ Ch
3

2‖σ‖2(τh
s− 1

2‖u‖s + hs− 1

2‖L‖s + hs− 1

2‖p‖s),

and the estimate follows after using the regularity inequality (A.5). �

Step 4: Conclusion. From Theorems 7, 8, 9, we can see that if we take
τ and 1/τ of order one, the estimates of the errors are

‖L− Lh‖0 ≤ Chs− 1

2 (‖u‖s + ‖L‖s + ‖p‖s),

‖p− ph‖0 ≤ Chs− 1

2 (‖u‖s + ‖L‖s + ‖p‖s),

‖u− uh‖0 ≤ Chs(‖u‖s + ‖L‖s + ‖p‖s),

for all 1 ≤ s ≤ k + 1. This shows that for general mesh, we can obtain
optimal orders of convergence for the approximation to the velocity u, and
suboptimal orders, by 1/2, for the approximations to velocity gradient L and
to the pressure p.
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