(September 7, 2014)

Complex numbers

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is

http://www.math.umn.edu/~garrett/m/complex/notes_2014-15/01_complex_numbers.pdf]

- 1. Constructions/existence of \mathbb{C}
- 2. Addition, multiplication, conjugates, norms, metric
- 3. Convergence of sequences and series, topology

1. Constructions/existence of complex numbers

The various constructions of the complex numbers in terms of other, pre-existing objects are not *used* ever again, since really these are just *existence* arguments, adding little to our appreciation of the *properties* of complex numbers.

Both constructions here are *anachronistic*, since they use ideas that came decades later than the basic work in complex analysis. Both constructions depend on existence of the real numbers \mathbb{R} , demonstrated only as late as 1871 by Cantor (in terms of Cauchy sequences) and 1872 by Dedekind (in terms of *cuts*). One construction uses the notion of *quotient ring* of a polynomial ring, which was not available in the early 19th century. ^[1] The other uses *matrix rings*, likewise unavailable in the early 19th century.

The first of these two constructions of \mathbb{C} uses a Kronecker-style construction of an *extension field* of a given field k, as a quotient of the polynomial ring k[X] by an ideal generated by an irreducible polynomial. This construction is significant already for making fields such as $\mathbb{Q}(\sqrt{2})$ without *presuming* the existence of $\sqrt{2}$ in some larger universe, that is, presuming the lack of self-contradiction in existence of $\sqrt{2}$. Indeed, the usual proof that there is no *rational* $\sqrt{2}$ might be interpreted as a proof of its *non-existence*. The late-19th-century idea is to form $\mathbb{Q}(\sqrt{2})$ as a quotient of a polynomial ring

$$\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[X]/\langle X^2 - 2 \rangle$$
 (with $\langle X^2 - 2 \rangle$ the ideal generated by $X^2 - 2$)

observing that the image of X in the quotient is a square root of 2.

The risks of such a presumption loom larger for $\sqrt{-1}$, since, unlike $\sqrt{2}$, it is not a limit of rational numbers (with the usual metric). So, granting a sufficient idea of the real numbers \mathbb{R} , a Kronecker-style algebraic construction of the complex numbers as quotient of a polynomial ring in one variable is

 $\mathbb{C} = \mathbb{R}[X]/\langle X^2 + 1 \rangle$ (with $\langle X^2 + 1 \rangle$ the ideal generated by $X^2 + 1$)

Let *i* be image of X in the quotient. To check that $i^2 = -1$, let $q : \mathbb{R}[X] \to \mathbb{R}[X]/\langle X^2 + 1 \rangle$ be the quotient homomorphism, and compute

$$i^2 = q(X)^2 = q(X^2) = q(X^2 + 1 - 1) = q(X^2 + 1) - q(1) = 0 - 1 = -1$$

A polynomial ring in one variable k[X] over a field k is *Euclidean* in the sense that division-with-remainder produces a remainder with strictly smaller degree than the divisor. Thus, for any $P(X) \in \mathbb{R}[X]$, there is a polynomial $Q(X) \in \mathbb{R}[X]$ and $a, b \in \mathbb{R}$ such that

$$P(X) = Q(X) \cdot (X^2 + 1) + a + bX$$

^[1] In fact, the notion of *polynomial (ring)* itself, or *variable* or *indeterminate* X, although familiar, require effort to make fully rigorous. Such rigor is not normally necessary or helpful, luckily.

Thus, every element of the quotient can be written as a + bi with $a, b \in \mathbb{R}$.

real part of
$$a + bi = \operatorname{Re}(a + bi) = \Re(a + bi) = a$$

imaginary part of $a + bi = \operatorname{Im}(a + bi) = \Im(a + bi) = b$

The ring operations are inherited from the polynomial ring $\mathbb{R}[X]$, so in \mathbb{C} multiplication and addition are associative, multiplication is commutative (as is addition), and multiplication and addition have the distributive property. More precisely, there is no $\sqrt{-1}$ in \mathbb{R} , so the (non-zero) ideal $\langle X^2 + 1 \rangle$ is *prime*, hence *maximal* (being in a principal ideal domain), so the quotient is a *field*.

The other construction is inside the ring $M_2(\mathbb{R})$ of two-by-two real matrices, by

$$a + bi \longleftrightarrow \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
 or $a + bi \longleftrightarrow \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$

2. Addition, multiplication, conjugates, norms, metric

Using the representatives a+bi, the addition inherited from the polynomial ring is identical to *vector* addition on ordered pairs of reals:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$
 (for $a, b, c, d \in \mathbb{R}$)

Multiplication inherits commutativity and associativity and distributivity (with respect to addition) from the polynomial ring. The formula for multiplication

$$(a+bi) \cdot (c+di) = a \cdot c + a \cdot di + bi \cdot c + bi \cdot di = (ac-bd) + (ad+bc)i \qquad (\text{since } i^2 = -1)$$

has a geometric interpretation in terms of *rotation* and *scaling*, as follows. Using polar coordinates

$$a + bi = r \cdot (\cos \alpha + i \sin \alpha)$$
 $c + di = R \cdot (\cos \beta + i \sin \beta)$

the product is

$$(a+bi) \cdot (c+di) = rR\Big((\cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta) + (\cos\alpha \cdot \sin\beta + \sin\alpha \cdot \cos\beta)i\Big)$$
$$= rR \cdot \Big(\cos(\alpha+\beta) + i\sin(\alpha+\beta)\Big)$$

by the addition formulas for sine and cosine. That is, the angles add, and the lengths multiply.

Any \mathbb{R} -linear ring homomorphism $\varphi : \mathbb{C} \to \mathbb{C}$ must send a root of $X^2 + 1 = 0$ to another root: ^[2]

$$\varphi(i)^2 + 1 = \varphi(i^2) + \varphi(1) = \varphi(i^2 + 1) = \varphi(0) = 0$$

Thus, $\varphi(i) = \pm i$. Thus, apart from the identity map $\mathbb{C} \to \mathbb{C}$, there is *at most* one non-trivial (\mathbb{R} -linear) automorphism of \mathbb{C} , the *complex conjugation*, often written as an over-bar:

$$\overline{a+bi} = \overline{a} + \overline{b} \cdot \overline{i} = a + b(-i) = a - bi \qquad (\text{for } a, b \in \mathbb{R})$$

^[2] Such a map sends $0 \to 0$ and $1 \to 1$: $\varphi(0) + \varphi(z) = \varphi(0+z) = \varphi(z)$, so $\varphi(0)$ is still the additive identity, which is *unique*, so is 0; similarly, $\varphi(1) \cdot \varphi(z) = \varphi(1 \cdot z) = \varphi(z)$, and $\varphi(1)$ is still the multiplicative identity in the multiplicative group \mathbb{C}^{\times} of non-zero complex numbers.

To verify that complex conjugation is a ring homomorphism $\mathbb{C} \to \mathbb{C}$, we could check directly, or invoke general results about field extensions. We give an explicit simplified form of a field-theory argument, as follows.

The map $\mathbb{R}[X] \to \mathbb{R}[X]$ given by $f(X) \to f(-X)$ is an \mathbb{R} -linear ring homomorphism,^[3] and stabilizes the ideal generated by $X^2 + 1$. Thus, this automorphism of $\mathbb{R}[X]$ descends to the quotient $\mathbb{C} = \mathbb{R}[X]/\langle X^2 + 1 \rangle$, giving complex conjugation.

Thus, without overtly checking, we have the multiplicativity of complex conjugation:

$$\overline{\left((a+bi)\cdot(c+di)\right)} = \overline{(a+bi)} \cdot \overline{(c+di)}$$

Although it is helpful at the outset to write complex numbers in the form a+bi, in fact there is no compulsion to separately identify the real and imaginary parts. Indeed, for many purposes it much better to use single characters to name complex numbers, as $\alpha = a + bi$.

The real and imaginary parts are expressible via conjugation:

$$\operatorname{Re}(\alpha) = \frac{\alpha + \overline{\alpha}}{2}$$
 $\operatorname{Im}(\alpha) = \frac{\alpha - \overline{\alpha}}{2i}$

The complex $norm^{[4]}$ or absolute value is

$$|a+bi| = \sqrt{(a+bi) \cdot \overline{(a+bi)}} = \sqrt{a^2+b^2}$$

Restricted to $\mathbb{R} \subset \mathbb{C}$, this is the usual absolute value on \mathbb{R} . Just as multiplication of complex numbers has a geometric sense, this norm coincides with the usual distance from (0,0) to $(a,b) \in \mathbb{R}^2$. Thus, there is no ambiguity or inconsistency in declaring

distance from a + bi to c + di in \mathbb{C} = distance from (a, b) to (c, d) in \mathbb{R}^2

$$= \left| (a+bi) - (c+di) \right| = \sqrt{(a-c)^2 + (b-d)^2}$$

The multiplicativity of conjugation and of square root gives multiplicativity for the norm, again without overtly checking:

$$|\alpha \cdot \beta| = |\alpha| \cdot |\beta| \qquad (\text{for } \alpha, \beta \in \mathbb{C})$$

Multiplicative inverses are expressible via norms and conjugates: for $0 \neq \alpha \in \mathbb{C}$,

$$\frac{1}{\alpha} = \frac{\overline{\alpha}}{\overline{\alpha} \cdot \alpha} = \frac{\overline{\alpha}}{|\alpha|^2}$$

^[3] Here we use the characterization of polynomial rings k[X] as free commutative k-algebra on one generator, meaning that, for every commutative ring R containing k (and with $1_k = 1_R$ to avoid pathologies), for every $r_o \in R$ there is exactly one k-linear ring homomorphism $k[X] \to R$ sending $X \to r_o$.

^[4] This is the square root of the Galois norm.

3. Convergence of sequences and series, topology

Since the metric on \mathbb{C} is identical to that on \mathbb{R}^2 , questions about convergence of sequences or series of complex numbers immediately reduces to the same issue on \mathbb{R}^2 . Namely, a sequence $\{\alpha_n : n = 1, 2, 3, ...\}$ of complex numbers *converges to* $\beta \in \mathbb{C}$ if and only if, for every $\varepsilon > 0$, there is N such that, for all $n \ge N$, $|\alpha_n - \beta| < \varepsilon$.

A sequence $\{\alpha_n : n = 1, 2, 3, ...\}$ of complex numbers is a *Cauchy sequence* if, for every $\varepsilon > 0$, there is N such that, for all $m, n \ge N$, $|\alpha_m - \alpha_n| < \varepsilon$. The *completeness* of \mathbb{C} (or of \mathbb{R}^2) is that every Cauchy sequence converges.

The convergence of a sum^[5] $\sum_{n\geq 1} \alpha_n$ is characterized exactly by convergence of the *sequence* of its partial sums $\sum_{n\leq N} \alpha_n$. When this characterization is expanded, it is that, for every $\varepsilon > 0$, there is N such that, for all $m, n \geq N$, $|\sum_{m\leq \ell < n} \alpha_\ell| < \varepsilon$.

A subset U of \mathbb{C} is open if, for every $z \in U$, there is an open ball $B = \{w \in \mathbb{C} : |z - w| < r\}$ of some positive radius r, centered at z, contained in U. The empty set and the whole \mathbb{C} are both open.

A subset of \mathbb{C} is *closed* if its complement is *open*.

A subset of \mathbb{C} is *bounded* if it is contained in some ball of finite radius.

The best definition of *compactness* of a subset K of \mathbb{C} is that every *open cover* of K admits a *finite subcover*, that is, for opens $\{U_{\alpha}\}$ such that $K \subset \bigcup_{\alpha} U_{\alpha}$, then there is a finite collection $U_{\alpha_1}, \ldots, U_{\alpha_n}$ such that $K \subset \bigcup_{i} U_{\alpha_j}$.

The classical equivalent of compactness is that the compact subsets of \mathbb{C} (or \mathbb{R}^n) are exactly the *closed*, *bounded* subsets of \mathbb{C} .

Similarly, in \mathbb{C} (or \mathbb{R}^n), sequential compactness of a set K is that every sequence in K has a convergent (to a point in K) subsequence. In \mathbb{C} (or \mathbb{R}^n) sequential compactness and full compactness are demonstrably equivalent.

^[5] There is a tradition of refering to infinite sums as *series*, to belabor the point that there is potentially a difficulty in adding up infinitely many things. However, in all other English usage *sequence* and *series* are exact synonyms, so the mathematical usage is difficult to endorse whole-heartedly.