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1. Simultaneous eigenvectors for finite abelian groups

For a single linear operator T on a complex vector space V , and for a complex number λ, the λ-eigenspace
Vλ of T on V is

Vλ = {v ∈ V : Tv = λ · v}

[1.1] Unitarizability, diagonalizability of finite-order operators Various natural hypotheses assure
that V is a direct sum of T -eigenspaces, that is, that T is diagonalizable, as opposed to having any Jordan
blocks. Here, a natural hypothesis is that T is of finite order, that is, Tn = 1 for some 1 ≤ n ∈ Z. With
this hypothesis, we can construct an complex-hermitian inner product 〈, 〉 on V such that T is unitary in the
sense that

〈Tv, Tw〉 = 〈v, w〉 (for all v, w ∈ V )

Take an arbitrary hermitian inner-product 〈, 〉o, and create a T -invariant one by averaging:

〈v, w〉 =

n∑
`=1

〈T `v, T `w〉o

The averaging process does not disturb positive-definiteness or hermitian-ness. The T -invariance, that is,
unitariness of T , is easy, using Tn = 1,

〈Tv, Tw〉 =

n∑
`=1

〈T `Tv, T `Tw〉o =

n+1∑
`=2

〈T `v, T `w〉o =

n∑
`=2

〈T `v, T `w〉o + 〈Tn+1v, Tn+1w〉o

=

n∑
`=2

〈T `v, T `w〉o + 〈Tv, Tw〉o =

n∑
`=1

〈T `v, T `w〉o = 〈v, w〉

Then the spectral theorem for unitary operators implies that T is diagonalizable, that is, that V is an
orthogonal direct sum of T -eigenspaces:

V =
⊕
λ

Vλ (with an orthogonal direct sum)

[1.2] Commuting operators Another linear operator S commuting with T stabilizes each T -eigenspace
Vλ: for v ∈ Vλ:

T (Sv) = (TS)v = (ST )v = S(Tv) = S(λv) = λ · Sv

since the linearity of S is that S commutes with scalar multiplication.
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[1.3] Finite abelian groups of operators We want to prove that a finite abelian group G of operators
on a finite-dimensional complex vectorspace V is simultaneously diagonalizable. That is, we claim that V is
a direct sum of simultaneous eigenspaces for all operators in G.

In this situation, the notion of eigenvalue must be a little more complicated than individual numbers: for
each g ∈ G, there must be a number λg ∈ C. That is, an eigenvalue is really a map g → λg from G to C. In
this context, for two eigenvalues λ, µ to be distinct means that λg 6= µg for some g ∈ G (not necessarily for
all g ∈ G).

Further, if there is a non-zero eigenvector v for a given collection of eigenvalues g → λg, then g → λg is a
group homomorphism from G to C×:

λgh · v = (gh) · v = g(hv) = g(λh · v) = λh · gv = λhλg · v = λgλh · v

That is, g → λg is a character of G. Let Ĝ denote the collection of all characters of G:

Ĝ = {group homomorphisms χ : G→ C×}

and for a character χ let the χ-eigenspace in V be

Vχ = {v ∈ V : gv = χ(g) · v, for all g ∈ G}

Thus, our claim is that for a finite abelian group G of linear operators on finite-dimensional complex vector
space V ,

V =
⊕
χ∈Ĝ

Vχ

As with a single operator generating a finite group of operators, we can make a hermitian inner product on
V by averaging over G a given, arbitrary hermitian inner product 〈, 〉o: put

〈v, w〉 =
∑
g∈G
〈gv, gw〉 (for v, w ∈ V )

The G-invariance follows by changing variables in the summation: for h ∈ G,

〈hv, hw〉 =
∑
g∈G
〈ghv, ghw〉 =

∑
g∈G
〈gv, gw〉 (replacing g by gh−1)

Thus, all the operators in G are unitary with respect to 〈, 〉.

The proof: suppose we have the direct sum decomposition for vector spaces of dimension < n. Let V be
of dimension n. First, a silly case: if all operators g ∈ G are scalar, then every vector is a simultaneous
eigenvector for all the operators in G, and we are done. So now consider the (serious) case that not all
operators in G are scalar. Let g ∈ G be a non-scalar operator. By the spectral theorem for unitary
operators, V has an orthogonal decomposition into eigenspaces for g, implicitly with different eigenvalues.
Since g is non-scalar, every one of these eigenspaces has dimension < n. By induction, and by the fact that
the operators all commute, each such eigenspace decomposes as an orthogonal direct sum of simultaneous
eigenspaces for G. Thus, the whole space V is an orthogonal direct sum of simultaneous eigenspaces. This
completes the induction.
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2. Cancellation lemma, orthogonality of distinct characters

Let G be a finite group, not necessarily abelian. The cancellation lemma is

[2.0.1] Lemma: For a non-trivial group homomorphism σ : G→ C×,∑
g∈G

σ(g) = 0

Proof: Since σ is not identically 1, there is go ∈ G such that σ(go) 6= 1. Then∑
g∈G

σ(g) =
∑
g∈G

σ(gog) =
∑
g∈G

σ(go)σ(g) = σ(go)
∑
g∈G

σ(g)

by replacing g by gog in the sum, using the fact that left multiplication by go is a bijection of G to itself.
Subtracting,

(1− σ(go)) ·
∑
g∈G

σ(g) = 0

Since σ(go) 6= 1, necessarily the sum is 0. ///

[2.0.2] Corollary: Let σ 6= τ be group homomorphisms G→ C×. Then∑
g∈G

σ(g) τ(g) = 0

Proof: Since G is finite, there is N such that gN = e for every g ∈ G. Thus,

τ(g)N = τ(gN ) = τ(e) = 1

Thus, τ(g) is a root of unity, and |τ(g)| = 1. In particular, τ(g) = τ(g)−1. Then στ = στ−1 is a character
of G, and is not the trivial character. The cancellation lemma gives the vanishing. ///

[2.0.3] Remark: Despite the simplicity of the arguments above, the cancellation and orthogonality devices
are remarkably useful in applications.

3. Representations of finite abelian groups

It is useful to consider a slight shift of viewpoint. Instead of having a finite abelian group G of linear
automorphisms of a fixed complex vector space V , we might fix a finite abelian group G, and consider
various group homomorphisms ρ : G → AutCV for various complex vectorspaces V . The pair ρ, V is a
representation of G.

Although it would be most strictly correct to write the action of g ∈ G on v ∈ V via ρ as ρ(g)(v), context
should be sufficient to allow writing simply g · v or gv.

Similarly, it is common to write Vρ for V to emphasize the role played by ρ, or to use other notational
devices, but, in fact, context should make dependencies clear.

The collection Ĝ of characters G→ C× makes sense for arbitrary groups G, with or without realizing them
as subgroups of linear automorphisms of vector spaces.
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For finite abelian G, the image ρ(G) of G in the group of automorphisms of V is still finite abelian, and, as
a corollary of the result for finite abelian subgroups of AutCV ,

V =
⊕
χ∈Ĝ

Vχ

where
Vχ = {v ∈ V : g · v = χ(g) · v, for all g ∈ G}

4. Fourier expansions on finite abelian groups

Let G be a finite abelian group, and L2(G) the complex vectorspace of complex-valued functions [1] on G,

with inner product [2]

〈f, ϕ〉 =
∑
x∈G

f(x)ϕ(x)

Again, a character χ on a group is a group homomorphism [3]

χ : G −→ C× (group homomorphism)

and Ĝ is the collection of characters χ : G → C×. For f a complex-valued function on G, the Fourier
transform f̂ of f is the function on Ĝ defined by

f̂(χ) = 〈f, χ〉 (for χ ∈ Ĝ)

The Fourier expansion or Fourier series of f is

f ∼ 1

|G|
∑
χ∈Ĝ

f̂(χ)χ

[4.0.1] Theorem: On a finite abelian group, the Fourier expansion of a complex-valued function f represents
f , in the sense that, for every g ∈ G,

f(g) =
1

|G|
∑
χ∈Ĝ

f̂(χ)χ(g)

The elements of Ĝ form an orthogonal basis for L2(G). In particular, the Fourier coefficients are unique.

[1] In general, for a space X with some sort of integral on it, the notation L2(X) means functions f so that∫
X |f |2 <∞. On finite sets integrals become sums, possibly weighted, and this finiteness condition becomes vacuous.

Nevertheless, it is good to use this notation as a reminder of the larger context.

[2] The notation L2(G) is meant to suggest the presence of the inner product on this space of functions. On a general

space X with an integral, the iner product is 〈f1, f2〉 =
∫
X f1f 2.

[3] The term character has different meanings in different contexts. The simplest sense is a group homomorphism

to C×. However, an equally important use is for the trace of a group homomorphism ρ : G → GLn(k) from G to

invertible n-by-n matrices with entries in a field k. In the latter sense,

(character of ρ)(g) = trace
(
ρ(g)

)
For infinite-dimensional representations, further complications appear. Context is always necessary to know which

sense is intended.
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[4.0.2] Remark: What are we not doing? The theorem asserts nothing directly about the collection Ĝ
of characters of G. Its proof uses no information about these characters. Its proof uses nothing about the
structure theorem for finite abelian groups. All that is used is a spectral theorem.

The proof is in the following paragraphs.

[4.1] Translation action on functions The distinguishing feature of functions on a group is that the
group acts on itself by right or left multiplication (or whatever the group operation is called), thereby moving
around the functions on it.

The group operation in G will be written multiplicatively, not additively, to fit better with other notational
conventions.

The group G acts on the vector space L2(G) of functions on itself by translation: for g ∈ G, the translate

Tgf of a function f by g is the function on G defined by [4]

(Tgf)(x) = f(xg) (for function f , and x, g ∈ G)

The maps-on-function Tg are vectorspace endomorphisms of the vectorspace of functions on G:Tg(f1 + f2)(x) = (f1 + f2)(xg) = f1(xg) + f2(xg) = Tgf1(x) + Tgf2(x) (additivity)

Tg(c · f)(x) = (c · f)(gx) = c
(
f(gx)

)
=
(
c · (Tgf)

)
(x) (scalar c)

To reduce clutter, the action of g ∈ G on functions f may be written simply gf or g · f . The associativity
property

(gh)f = g(hf) (for g, h ∈ G, function f)

comes from the associativity of the group operation itself:(
(gh)f

)
(x) = f(x(gh)) = f((xg)h) = (hf)(xg) =

(
g(hf)

)
(x)

The associativity property is equivalent to the assertion that the map g → Tg is a group homomorphism
from G to C-linear automorphisms of L2(G) (and that the identity element of g acts trivially).

Since g → Tg is a group homomorphism, the abelian-ness of G implies that the linear maps Tg, Th commute:
since gh = hg,

Tg ◦ Th = Tgh = Thg = Th ◦ Tg (for all g, h ∈ G)

Since G is finite, there is a positive integer N such that, for all g ∈ G, gN = e ∈ G. Thus,

χ(g)N = χ(gN ) = χ(e) = 1 (for any χ ∈ Ĝ)

[4] For non-abelian groups G, there are two translation actions, namely, left and right
T right
g f(x) = f(xg)

T left
g f(x) = f(g−1x)

The inverse in the left translation is for associativity

T left
gh f = Tg

(
Thf

)
For abelian groups, the two translation actions become essentially the same thing, insofar as either alone gives all

the information that the two together could give. Also, for abelian groups, the inverse in the definition of the left

translation action loses some of its significance, since for abelian groups g → g−1 is a group automorphism.
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That is, the values of χ lie on the unit circle in C×, so |χ(g)| = 1. In particular, χ is unitary in the sense
that

χ(g)−1 = χ(g)

We claim that the linear operators Tg are also unitary, in the sense that

〈Tgf, TgF 〉 = 〈f, F 〉 (for g ∈ G, functions f, F )

To prove this, compute directly:

〈Tgf, TgF 〉 =
∑
h∈G

(Tgf)(h) (TgF )(h) =
∑
h∈G

f(hg)F (hg)

Change variables in the sum, by replacing h by hg−1. Here the fact that G is a group is used: g−1 exists,
and is closed under the group law:∑

h∈G

f(hg)F (hg) =
∑
h∈G

f(h)F (h) = 〈f, F 〉

proving the unitarity.

From above, in the case that V = L2(G),

L2(G) =
⊕
χ∈Ĝ

L2(G)χ

We will show that each L2(G)χ is one-dimensional, spanned by χ itself.

On one hand, every χ ∈ Ĝ is a complex-valued function on G, so is in L2(G). Indeed, χ ∈ L2(G)χ:

(Tgχ)(h) = χ(hg) = χ(h)χ(g) = χ(g)χ(h) (since C× is abelian)

On the other hand, L2(G)χ is exactly scalar multiples C · χ of χ: for f ∈ L2(G)χ,

f(g) = f(e · g) = (Tgf)(e) = χ(g) · f(e) = f(e) · χ(g) (identity e ∈ G)

That is,
f = f(e) · χ (for f ∈ L2(G)χ)

By the orthogonality of Vχ and Vτ for distinct χ, τ , the characters are an orthogonal basis for L2(G). Their
lengths are readily determined, using the earlier-noted unitariness χ = χ−1:

〈χ, χ〉 =
∑
g∈G

χ(g) · χ(g) =
∑
g∈G

χ(g) · χ(g)−1 =
∑
g∈G

1 = |G|

Any f ∈ L2(G) is a linear combination of orthogogonal basis elements ei

f =
∑
i

〈f, ei〉 · ei
〈ei, ei〉

Using the orthogonal basis χ ∈ Ĝ,

f =
∑
χ∈Ĝ

〈f, χ〉 · χ
〈χ, χ〉

=
1

|G|
∑
χ∈Ĝ

〈f, χ〉 · χ
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This is an equality of functions on the finite set G, and f̂(χ) is defined to be 〈f, χ〉, so

f(g) =
1

|G|
∑
χ∈Ĝ

〈f, χ〉 · χ(g) =
1

|G|
∑
χ∈Ĝ

f̂(χ) · χ(g) (for all g ∈ G)

This proves the representability of functions on finite abelian groups by their Fourier series. ///

5. Appendix: spectral theorem for unitary operators

Let V be a finite-dimensional complex vector space with a hermitian inner product 〈, 〉. A linear map
T : V → V is unitary if it preserves the inner product, in the sense that

〈Tv, Tw〉 = 〈v, w〉 (for all v, w ∈ V )

Thus, the adjoint T ∗ of a unitary operator T has the property

〈v, w〉 = 〈Tv, Tw〉 = 〈v, T ∗Tw〉

Subtracting, 〈v, T ∗Tw − w〉 = 0 for all v, so T ∗Tw = w for all w ∈ V . That is, unitary T is invertible, and
T ∗ = T−1. This also shows that T ∗T = TT ∗.

The inverse of a unitary operator is unitary, since

〈T−1v, T−1w〉 = 〈T ∗v, T−1w〉 = 〈v, TT−1w〉 = 〈v, w〉

Eigenvalues λ of a unitary operator T are of absolute value 1, since for a λ-eigenvector v

λλ〈v, v〉 = 〈λv, λv〉 = 〈Tv, Tv〉 = 〈v, v〉

In particular, eigenvalues λ are non-zero, and λ−1 = λ.

Given λ ∈ C, let
λ-eigenspace of T = Vλ = {v ∈ V : Tv = λ · v}

[5.0.1] Theorem: The vectorspace is an orthogonal direct sum

V =
⊕
λ

Vλ (eigenspaces of unitary T )

Proof: We grant ourselves the more elementary fact that, because V is finite-dimensional and C is
algebraically closed, there is at least one one eigenvalue λ and non-zero eigenvector v for T . Thus, the
λ-eigenspace Vλ is not {0}.

Now the unitariness is used, to set up an induction on dimension. We claim that T stabilizes the orthogonal
complement

V ⊥λ = {w ∈ V : 〈w, v〉 = 0 for all v ∈ Vλ}
Indeed, for w in that orthogonal complement and v ∈ Vλ,

〈Tw, v〉 = 〈w, T ∗v〉 = 〈w, T−1v〉 = 〈w, λ−1v〉 = λ〈w, v〉 = 0 (for all v ∈ Vλ)

The restriction of a unitary operator T to a T -stable subspace is obviously still unitary. By induction on the
dimension of the vectorspace, V ⊥λ is an orthogonal direct sum of T -eigenspaces: V ⊥λ =

⊕
µ V
′
µ. Then

V = Vλ ⊕
⊕
µ

V ′µ

is the orthogonal direct sum decomposition of the whole space. ///
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