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obtains are very different from those that the saddle point method yields. The estimates
obtainable from the saddle point method give (for the usual type of function encountered
in combinatorial enumeration) estimates for the coefficients that vary smoothly with the
index of the coefficient. On the other hand, combinatorial estimates can be used to show

[26] that the b, behave in a “regularly irregular” way, so that, for example,

bru(m+41)/2-1 ~ bm(my1)/2 as m — o0, (3.24)

bmt1yyz ~ Mby(my1)241 as m — o0 . (3.25)

The term b,z" for n = m(m + 1)/2 for example, comes almost entirely from the prod-
uct of z5/k!, 1 < k < m, all other products contributing an asymptotically negligible

amount. There do not seem to be any analytic methods that obtain these results without

essentially redoing the combinatorial estimates. [

11



be used to obtain new information about the distribution of heights, for example. To
study heights, we can consider a model in which at time n > 1 there will be n pebbles
on the nonnegative integers. At time n = 1, the single pebble will be at 0. At time n,
one of the n pebbles will be chosen at random and removed from its position, say from
k, and replaced by two pebbles at k4 1. The question then is, what is the distribution of
the pebbles at time n. By Devroye’s results we know that the position of the rightmost
pebble will on average be asymptotic to clog n. Combined with earlier results of Pittel
(see [30]), this shows that this rightmost pebble is at about clog n most of the time. The
methods of Devroye and Pittel are probabilistic, and so far nobody has developed an
analytic approach to this problem. This is in contrast to the situation where we ask for
the average number of pebbles on a given integer, where simple recurrences show that
the distribution is given explicitly in terms of Stirling numbers, whose asymptotics are

well understood. [ |

There are some problems with rather simple generating functions where analytic
methods fail, not because of the complexity of the function, but rather because of the

basic limitations of known analytic methods. This occurs in a set partition problem

described below.

Example 3.5 Set partitions with distinct block sizes. Let a, be the number of partitions
of a set of n elements into blocks of distinct sizes. Then a,, = b, -n!, where b, = [2"]| f(2),
with

fo=f1(i+2). a9

k=1

The function f(z) is entire and has nonnegative coefficients, so it might appear as an
ideal candidate for an application of the methods for dealing with large singularities, such
as the saddle point technique. However, on circles |z| = (n 4+ 1/2)/e, n € 2T, f(z) does
not vary much, so there are technical problems in applying these analytic methods. The
saddle point method succeeds when the contour of integration can be chosen so that the
integrand is large only in a small range, and its behavior in that small range is given by
an approximation by a scaled Gaussian function. Because of the peculiar distribution

of the roots of f(z), no such contour can be found. More than that, the results one
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where v is any constant, v < 1/4, and K is a fixed constant. Transfer theorems then

yield the asymptotic estimate
H, ~2n7'" as n — oo . (3.21)

When we combine (3.21) with (3.9), we obtain the desired result that the average height
of a binary tree of size n is ~ 2(7n)'/? as n — oo.

For extremely small and large heights, different methods are used. It follows from

[12] that

Bhn = Bu-1n ;B’I—L” < exp(—c(h?/n + n/h?)) (3.22)
for a constant ¢ > 0, which shows that extreme heights are infrequent. (The estimates
in [12] are more precise than (3.22).) Bounds of the above form for small heights are
obtained in [12] by studying the behavior of the b,(z) almost on the boundary between
convergence and divergence. Let xj be the unique positive root of b,(z) = 2. Note that
B(1/4) = 2, and each coefficient of the by(z) is nondecreasing as h — oo. Therefore
Ty > x3 > -+ > 1/4. More effort shows [12] that z) is approximately 1/4 + ah™* for a
certain a > 0. This leads to an upper bound for By, ,. Bounds for trees of large heights

are even easier to obtain, since they only involve upper bounds for the b,(z) — bn_1(2)

inside the disk of convergence |z| < 1/4. [

There are some univariate generating functions which so far have not yielded to

analytic approaches.

Example 3.4 Heights of random binary search trees. Example 3.3 is set in the standard
combinatorial counting model, in which all trees of a given size are counted equally. In
many applications it is desirable to have different weights for different trees. For example,
if random permutations are used to construct binary search trees, then the two trees of
maximal heights will have probability of occurring of 1/n! each, whereas more balanced
trees will have exponentially larger probabilities. The average height in this model turns
out to be ~ clogn as n — oo, where ¢ = 4.311 ... is a certain constant. This was proved
by Devroye [6, 7] using branching processes methods. (See also [30].) It would be nice to

develop the analytic generating function approach to this problem, since it might then



uniformly as h,n — oo with

A o< nf2h < Xy (3.14)

The function B(z) and the number r are defined by transcendental functions that are
easy to compute. The proof of the estimate (3.13) is derived from a precise estimate for
by(z) valid in a region along the half-axis > 1/4, and the saddle point method.

The methods that are used to study the average height are different from those used
for trees of a fixed height. The basic approach of [13] is to let

Hn = Z ht(T) )

|T|=n
where the sum is over the binary trees T' of size n, and ht(T') is the height of T'. Then

the average height is just H,/B,. The generating function for the H, is

H(z) = iﬂnzn = Z(B(z) —bu(2)), (3.15)

h>0
and the analysis of [13] proceeds by investigating the behavior of H(z) near z = 1/4. If

we let

e(z) = (1—42)/%, (3.16)

en(z) = (B(2) —ba(2))/(2B(z)) , (3.17)

then the recurrence (3.12) yields

ent1(z) = (1 —€(2))en(2)(1 —en(2)), eo(z) =1/2. (3.18)

Extensive analysis of this relation yields an approximation to ej(z) of the form

en(z) ~ ;@8 - E;; , (3.19)

valid for |e(z)| sufficiently small, |Arg €(z)| < x/4+6 for a fixed 6 > 0. (The precise error
terms in this approximation are complicated, and are given in [13].) This then leads to
an expansion for H(z) in a sector |z — 1/4] < o, 7/2 — B < |Arg(z — 1/4)| < w/2 4 3 of
the form

H(z) = —2log(l —4z) + K + O(|1 —4z|") , (3.20)

8



Since each nonempty binary tree consists of the root and two binary trees (the left and

right subtrees), we obtain the functional equation

B(z) =1+ 2zB(2)?. (3.6)
This implies that 12
B(z) = 1- (12—242) ’ (3.7)
so that
1 (2n
Bn:n+1(n)’ (3.8)

and the B, are the Catalan numbers. Stirling’s formula then shows that
B, ~ 207327 as n— oo . (3.9)
Let B}, be the number of binary trees of size n and height < A, and let
bp(z) = i By, 2" . (3.10)
n=0

Then
bo(2) =0, bi(z)=1, (3.11)

and an extension of the argument that led to the relation (3.6) yields
bpr(z) = 1+ zbp(2)*, R>0. (3.12)

The by(z) are polynomials in z of degree 2"t — 1 for A > 1. Unfortunately there is no
simple formula for them like Eq. (3.7) for B(z), and one has to work with the recurrence
(3.12) to obtain most of the results about heights of binary trees. Different problems
involve study of the recurrence in different ranges of values of z, and the behavior of the
recurrence varies drastically.

For any fixed z with |z| < 1/4, by(z) — B(z) as h — oo. For |z| > 1/4 the behavior
of by(z) is more complicated, and is a subject of nonlinear dynamics. For any real z
with z > 1/4, by(z) — o0 as h — oo. To study the distribution of the By, as n varies
for h fixed, but large, it is necessary to investigate this range of rapid growth. It can be

shown [14] that for any A; and Ay with 0 < Ay < Ay < 1/2,

exp(2' 1 (8(r) = 17'(r) log 1))
20D (2 5() + 1B ()P

By, = (14+0(27"%) (3.13)
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en(logn)™! for some ¢ > 2/3, then

—1+ 10X — 10A?
— 9l/2/: d+1/1 _ y\n—d\—n/2 —¢
G(n,d,d,...,d)=2"72znX\" (1 = \)"™7) exp ( 201 = ) + O(n ))
3

(3.3)
as n — oo for any ¢ < min(1/4,1/2 —1/(3¢)), where A = d/(n — 1). |

In general, multivariate asymptotics when the dimension grows rapidly is full of

unsolved problems.

Example 3.2 [ncreasing subsequences in random permutations. The distribution of the
length of the longest increasing subsequence of a random permutation of {1,...,n} has
been under study for a long time, and it is known that almost always it is very close

to some 7,, where 7, ~ o2nl/?

as n — o0o. (See [3, 35] for references.) However, more
precise asymptotics of 7, are not known. A new approach, developed in [35], shows
that if f(n,k) is the number of permutations of {1,...,n} which have no increasing

subsequences of length > k., then

22n n[ . .
fn, k) = EEEE) / /_ (Zcose) IT e —e|do, - doy . (3.4)

1<h,j<k
h#jy

This leads to asymptotic estimates for f(n, k) for k& = o(n'/?), which is far beyond
previous bounds. However, so far this integral has not been estimated rigorously for
k ~ en'/? for a fixed ¢ > 0, which is the region of interest. There are serious technical
difficulties, since the region where the integrand gives the main contribution changes,

and so the usual methods have not worked yet. [ |

Even univariate problems still present challenges. Some of the problems arise when
the relevant generating functions do not have explicit forms, but are defined by recur-

sions.

Example 3.3 Heights of binary trees. We let B,, denote the number of binary trees of
size n, so that By = 1 (by convention), By =1, By, =2, B3 =5,.... Let

=Y B,:". (3.5)
n=0



3 Recent successes and failures

Single variable asymptotics are well understood. That is not the case when mul-
tivariate generating functions are required. Both transfer theorems and saddle point
methods can be generalized (see [34]), but their applicability is more limited than in the
univariate case. However, there have been remarkable successes in extending some of
these methods even to cases where the number of variables in the problem grows rapidly.

A good example comes from the work of McKay and Wormald [31, 32].

Example 3.1 Simple labeled graphs of high degree. Let G(n;dy,...,d,) be the num-

ber of labeled simple graphs on n vertices with degree sequence dy,ds,...,d,. Then
G(n;dy, ..., d,) is the coefficient of 21282 ... 2 in
F = (1 + Z]‘Zk) 5 (31)

L,
ATEds
bl

7 1

and so by Cauchy’s theorem
G(n;dy,...,dy) = (278)™" / . / Forh=to o=y o idz, | (3.2)

where each integral is on a circle centered at the origin. The difficulty of this problem
arises from the large number of variables that are used. The general principle of the
saddle point method is to choose an appropriate contour of integration so that a small
region of the space of integration gives the dominant contribution to the integral. This
method, which is well understood for a single variable, can also be extended easily to a
fixed number of variables. When the number of variables increases, though, formidable
difficulties arise, and it was a great achievement for McKay and Wormald to overcome
all the technical problems. Let all the radii be equal to some r > 0. The integrand takes
on its maximum absolute value on the product of these circles at precisely the two points
snn=z=-=z,=rand zy=2z=---=z,=—r. ltdy =dy =---=d, =d, so that
we consider only regular graphs, McKay and Wormald [32] show that for an appropriate
choice of the radius r, these two points are actually saddle points of the integrand, and

succeed through careful analysis in proving that if dn is even, and min(d,n —d — 1) >



of the form

a, ~ (27rb(:00))_1/2f(xo):65” as n — oo, (2.7)

b(z) = x (7; J}((:))) . (2.8)

In general, proving that this estimate holds is rather laborious, as there are many some-

where

times messy details to check. A surprisingly large number of problems can be solved by
using theorems of Hayman [23], which present conditions that guarantee that the saddle
point estimates do apply. For example, the Bell numbers B,,, which have the exponential

generating function

B(z)= > an—' = exp(exp(z) — 1), (2.9)
= n!
satisfy
B, ~n!(2rx} exp(:t;o))_l/2 exp(exp(zo) — 1)zy" as n — oo, (2.10)

where zgexp(zg) = n. The estimate (2.10) can be derived immediately from the results
of [23].

Hayman’s results are all based on the saddle point method. He defines a class of
functions, which are now called Hayman-admissible, and proves that the estimate (2.7)
holds for them. Most important, he shows that there is structure among the Hayman-
admissible functions, so that if f(z) and ¢(z) are admissible, then so are exp(f(z))
and f(z)g(z), for example. The operations on admissible functions that keep them
admissible correspond to frequently used operations on combinatorial structures that
those functions enumerate. Therefore one obtains, almost for free, asymptotics of a
variety of interesting objects, just by applying Hayman’s operations.

The transfer theorem and saddle point methods for determining the asymptotics
of sequences from univariate generating functions suffice for most examples in books
such as [5]. They are sufficiently well understood that they can be incorporated into
automated systems for determining asymptotics, such as that of [16]. (See also [22].)

However, there are many problems where more sophisticated approaches are needed.



In particular,

a, < mIin fla)z™, (2.4)

where the minimum is taken over > 0 for which f(z) converges. In many situations
one does not even need to find the x that minimizes the bound (2.3), as any « in a
substantial range near the minimizing one will give a satisfactory result. The bound
(2.4) is often only a factor of n'/? or so away from the correct one.

The bound (2.3) relied only on the nonnegativity of the coefficients a, and not on
the analyticity of f(z), and it can be generalized to other kinds of generating functions.
It is also possible to prove that the bound (2.4) is close to best possible, at least for
summatory functions of the coefficients [33]. (Real-variable proofs usually cannot obtain
lower bounds for individual coefficients.) For precise information about the a,, however,
one usually has to use analytic methods.

There are two basic classes of methods that apply to single-variable analytic gen-
erating functions. If the dominant singularity is small, so that f(z) in an appropriate
neighborhood of z = x4 behaves like (2 — x)* or (log(z — «))?, then transfer methods
are very effective. For example, the generating function of 2-regular graphs is known [5]

to be
Fz) = (1= 2) V2 exp(—z/2 — 22/4) | 2.5)

so that the dominant singularity is at z = 1 and there are no other singularities on

|z| = 1. Transfer theorems, such as those of [15] immediately show that
iy ~ 7 Yexp(=3/4)n"? as n — . (2.6)

If the dominant singularity is large, so that f(z) blows up rapidly as z approaches
zg along the real axis from the left, then another class of methods, based largely on
the saddle point method, are most productive. The saddle point, z = zg = xo(n), is
that value of @ which where the minimum is achieved in (2.4). (We assume here that
a, > 0 for all n, and that there is a single dominant singularity that is large enough to
guarantee there is only this one saddle point that matters. For precise definitions, see

the references mentioned at the end of Section 1.) Then usually one obtains an estimate



enumerated. In many situations no such generating function is known, and so it is no
surprise that analytic methods do not apply.

This paper will concentrate on situations where an explicit analytic generating func-
tion is known, but there are difficulties in exploiting this feature. We first briefly review
the standard analytic methods. We then illustrate with a series of examples of recent
successes and failures of such techniques.

The purpose of this note is not to present a general introduction to the use of analytic
methods in combinatorial enumeration and analysis of algorithms. That is done in the
author’s recent survey and tutorial [34]. This paper was inspired and is to some extent

based on that work. There are many other sources for basic asymptotic methods, such

as [1,2,4,8,9,10, 11, 19, 20, 21, 24, 25, 27, 28, 29, 30, 39, 40, 41].
2 Standard analytic methods

When a sequence has an explicit single-variable generating function, there is a wealth
of techniques that usually suffice to determine the asymptotics of that sequence with little
effort. The coefficients of generating functions f(z) arising in combinatorics or analysis
of algorithms are usually nonnegative. Hence there is typically a single singularity at

z = ¢ € R on the circle of convergence of

f(z) = i_o%anzn (2.1)

whose influence dominates the behavior of a,. It is referred to as the dominant singu-
larity. 1f it is the only singularity on |z| = zq, everything simplifies. When there are
other singularities, the situation is more complicated but often still tractable.

In almost all cases a pretty good upper bound can be obtained for the coefficients of
an analytic generating function with nonnegative coefficients by a trivial argument. For
any real x > 0 such that the power series (2.1) converges, we have

a, " < iakxk = f(x), (2.2)
k=0
S0

a, < f(z)z™ . (2.3)
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Analytic Methods in Asymptotic Enumeration

A. M. Odlyzko

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Abstract

Analytic methods give powerful tools for obtaining asymptotic estimates in combi-
natorial enumeration. When they can be used, they usually provide extremely precise
results. However, there are also many situations where they do not apply, and one has to
use elementary or probabilistic reasoning. Problems in various classes are presented, and

general principles of what kinds of methods are best for various situations are discussed.

1 Introduction

Analytic methods provide extremely powerful tools for asymptotic enumeration.
Their reach is steadily being extended by new research. However, there are also many
cases where analytic methods have failed to yield useful information, even when it seemed
that they ought to apply. The goal of this paper is to illustrate both successes and fail-
ures of analytic methods, indicate where additional research is needed, and draw some
conclusions about the applicability of such methods to various problems.

The most frequent and obvious reason for failure of analytic methods to yield enu-
meration information is the lack of a useful analytic generating function. Of course, for
any sequence dag,dq,..., we can find another explicit sequence by, by, ..., such that the

generating function
[ = Y anbyer (11)
n=0
is analytic near z = 0. However, what is needed for a function to be useful for asymptotic
enumeration is for it to be in a form that can be used to deduce the analytic behavior

of that function. Usually this requires a generating function (typically ordinary or

exponential one) that reflects the combinatorial structure of the sequence that is being



