

New analytic algorithms in number theory

A. M. Odlyzko

AT&T Bell Laboratories
Murray Hill, NJ 07974

USA

1. Introduction

Several new number theoretic algorithms are sketched here. They all have the

common feature that they rely on bounded precision computations of analytic functions.

The main one of these algorithms is a new method, due to A. Scho
. .
nhage and the author,

of calculating values of the Riemann zeta function at multiple points. This method

enables one to verify the truth of the Riemann Hypothesis (RH) for the first n zeros in

what is expected to be n 1 + o(1) operations as n → ∞, as opposed to about n 3/2

operations for earlier methods. This technique can also be extended to the evaluation of

other zeta and L-functions.

Methods for the approximate computation of zeta and L-functions have been shown

by J. C. Lagarias and the author to lead to fast algorithms for the exact computation of

certain integer-valued number theoretic functions. It is shown below that these methods

enable one to compute π(x), the number of primes ≤ x, in x 1/2 + o(1) operations as

x → ∞.

Numerical computations of zeros of the zeta function cannot ever prove the RH, but if

there is a counterexample to the RH, such computations might find it. This was

undoubtedly the main motivation for the computations that have been done. The first few

nontrivial zeros were computed by hand by Riemann [Ed, Si], and further computations,

by hand or with the help of electromechanical technology, were carried out in the early

- 2 -

1900’s, culminating with the verification of the RH for the first 1041 zeros (i.e., the 1041

zeros in the upper half-plane Im (s) > 0 that are closest to the real axis Im (s) = 0) by

Titchmarsh and Comrie [25]. After World War II, these computations were extended

using electronic digital computers. The latest result in this direction is the verification of

the RH for the first 1. 5 . 109 zeros [16], a computation that involved about two months

on a modern supercomputer, and used the same basic method for computing the zeta

function that was employed by Titchmarsh and Comrie.

Computations of the zeros of the Riemann zeta function and related functions (such

as Dirichlet L-functions and Epstein zeta functions) are also useful in providing evidence

for and against various other conjectures, such as the Montgomery pair correlation

conjecture [17, 18], and some related conjectures which predict that the zeros of ζ (s)

ought to behave like eigenvalues of random hermitian matrices, (whose distribution is

known relatively well, since they have been studied by physicists who use them to model

energy levels in many-particle systems). For a discussion of these conjectures and the

numerical evidence about them, see [17, 18, 19, 20]. Another, similar, motivation for

computing zeros of zeta and L-functions comes from trying to understand better the

differences between those functions, like the Riemann zeta function and Dirichlet L-

function, that are expected to satisfy the RH, and those, such as the Epstein zeta

functions, which are in most cases expected to violate the RH. See [2, 9] for some result

on these problems. Other applications for approximate values of the zeta function arise

in disproving certain conjectures, see [10, 21].

As will be explained briefly in Section 2, the problem of computing an approximate

value of a zero of ζ (s), for example, and proving that this zero is on the critical line, can

- 3 -

be reduced to the problem of evaluating ζ (s) to a certain accuracy. In Section 3, the

previous methods of computing ζ (s) will be presented. The fastest of them, the

Riemann-Siegel formula, requires on the order of t 1/2 operations to evaluate ζ (1/2 + it)

to within ± t − c , say, for t > 1 , c > 0. In Section 4 new methods for evaluating ζ (s) at

multiple points are presented. The fastest of them, due to A. Scho
. .
nhage and the author

[22], can compute any single value of ζ (1/2 + it) with T ≤ t ≤ T + T 1/2 to within

± T − c in T o(1) operations (on numbers of O(log T) bits), provided a precomputation

involving T 1/2 + o(1) operations is carried out beforehand and T 1/2 + o(1) storage

locations are available. This method leads to an algorithm for numerically verifying the

RH for the first n zeros in what is expected to be n 1 + o(1) operations, as opposed to

about n 3/2 operations using the older methods. These techniques extend to the

computation of other zeta and L-functions.

The computation of zeros to a specified accuracy requires only the computations of

approximate values of the appropriate function. It turns out that such approximate values

can be used to compute exactly various number theoretic functions, such as π(x), the

number of primes ≤ x. The reason for this is related to the ‘‘explicit formulas’’ of

Guinand [8] and Weil [29], which relate arithmetic functions to zeros of the appropriate

zeta and related functions. An even older formula of Landau [15] (see also [7]) says that

for any fixed y > 0, as T → ∞,

0 < Im (ρ) < T
Σ e ρy =





î O(log T)

−
2π
T_ __ log p + O(log T)

if y ≠ log p m ,

if y = log p m ,

where p denotes a prime and m a positive integer, and ρ runs over the zeros of the zeta

- 4 -

function. The formula above can be used to test integers for primality. This idea has

occurred to many people, but unfortunately it does not seem to yield an efficient

algorithm. However, modifications of such ideas can be used to compute relatively

efficiently functions such as π(x), as was shown by J. C. Lagarias and the author [13,

14]. Using the latest algorithm for evaluating the zeta function, it is possible to compute

π(x) in x 1/2 + o(1) steps as x → ∞, which is faster than the best known combinatorial

algorithm [12], which requires around x 2/3 operations. This new algorithm for π(x) and

similar functions is sketched briefly in Section 5.

2. Zeta function and the numerical verification of the RH

The zeta function is defined for Re (s) > 1 by

ζ (s) =
n = 1
Σ
∞

n s

1_ __ , (2.1)

but it can be extended by analytic continuation to an analytic function throughout

C \ {1}, and it has a first order pole at s = 1. If we define, as usual,

ξ (s) = π− s /2 Γ (s /2) ζ (s) , (2.2)

then ξ (s) satisfies the functional equation

ξ (s) = ξ(1 − s) , s ∈ C \ {0 , 1} . (2.3)

Since ξ (s) is real for real s, we have ξ (s
_
) = ξ(s)

_ ___
, and so for t ∈  R,

ξ (1/2 + it) = ξ(1 − (1/2 + it)) = ξ(1/2 − it) = ξ(1/2 + it)
_ _________

, (2.4)

which implies that ξ (1/2 + it) ∈  R. Therefore if we find two values t 1 and t 2 such

that ξ (t 1) < 0 < ξ(t 2) (and the errors in the computed values of ξ (t 1) and ξ (t 2) are

- 5 -

smaller than those values, so we can be certain that the two inequalities are valid), then

we can conclude that there is a value t ′ , t 1 < t ′ < t 2 , such that ζ (1/2 + it ′) = 0. In

this case we know that the zero is right on the critical line, not just in some neighborhood

of it.

All the numerical verifications of the RH have relied on the use of the intermediate

value theorem as sketched above. This theorem gives a lower bound for the number of

zeros of the zeta function that are on the critical line up to some height. To assert that all

of the zeros up to some height are on the critical line, one can use the principle of the

argument to determine the total number of zeros up to that height and if that agrees with

the number of zeros that have been located on the critical line, the verification is

completed. In practice it is not even necessary to use the principle of the argument, since

there is an elegant method of Turing [5, 20, 28], based on a theorem of Littlewood about

the zeta function, which usually enables one to conclude that all the zeros up to some

height are on the critical line based only on computations of ξ (s) on that line.

It should be mentioned that the above strategy for numerically verifying the RH is not

guaranteed to work, even if the RH is true, since there might be multiple zeros on the

critical line. However, such zeros have not been encountered yet and are not expected to

exist. In practice, using the sophisticated strategies for locating points t at which to

evaluate ξ (1/2 + it) that have been developed [16], it takes on average about 1.2

evaluation of ξ (s) to establish that a zero is on the critical line.

The above discussion serves to reduce the problem of numerically verifying the RH

to that of computing ξ (s). The next section discusses that problem.

- 6 -

3. Methods for calculating the zeta function

For purposes of numerically verifying the RH or for computing π(x) by the algorithm

to presented in Section 5, it is sufficient to be able to compute ζ (s) to within ±  s − c for

various constants c > 0. For some purposes (such as those of Section 5) it is necessary

to calculate ζ (s) for Re (s) > 1, but to keep the presentation simple we will deal only

with Re (s) = 1/2 here. (See [22] for more details.) Since Γ (s /2) and π− s /2 are very

easy to compute accurately, computing ξ (1/2 + it) is essentially the same as computing

ζ (1/2 + it).

The simplest method for calculating ζ (s) is to apply the Euler-Maclaurin summation

formula to (2.1). This gives an analytic continuation of ζ (s) to all of C \ {1}, and

enables one to compute ζ (s) anyplace to arbitrary accuracy by adjusting the parameters

in the formula appropriately. However, this method is not very efficient, since to

compute ζ (1/2 + it) to ± t − 1 , say, already takes about t steps. Still, this was the method

that was used by the first few people to publish calculations of the zeros of the zeta

function.

A much more efficient method for computing ζ (1/2 + it) was known to Riemann,

and was used by him to compute the first few zeros. It is one of what Hardy and

Littlewood called approximate functional equation, but it has the nice feature that the

error term is given by an asymptotic expansion. Discovered in Riemann’s unpublished

papers by Siegel, it became known as the Riemann-Siegel formula [5, 23]. It has been

used for all large-scale computations of zeros of the zeta function since the 1930’s. (The

only other method to have been proposed so far, that of Turing [27], was meant to be

- 7 -

used at relatively small heights, where it turned out not to be necessary.)

Let

θ(t) = arg 
 π− it /2 Γ (1/4 + it /2) , (3.1)

Z(t) = exp (iθ(t)) ζ (1/2 + it) , (3.2)

so that

Z(t) =
π − 1/4 − it /2 Γ (1/4 + it /2)

ξ (1/2 + it)_ _______________________ .

Also let

τ = (2π) − 1 t , m = 
 τ1/2 

 , z = 2 (τ1/2 − m) − 1 .

Then the Riemann-Siegel formula [5, 6, 11, 20, 23, 25, 26] says that for any k ≥ 0,

Z(t) = 2
n = 1
Σ
m

n − 1/2 cos (t log (n) − θ(t))

(3.3)

+ (− 1) m + 1 τ − 1/4

j = 0
Σ
k

Φ j (z) (− 1) j τ − j /2 + R k (τ) ,

where

R k (τ) = O(τ − (2k + 3)/4) ,

and the Φ j (z) are certain entire functions. Explicit bounds for the R k (τ) are known

(the best ones being due to Gabcke [6]), and bounds for the error made in computing the

Φ j (x) are also known. Thus the entire difficulty in the computation of Z(t) resides in

the need to evaluate the sum of cosines in (3.3), which takes on the order of t 1/2 steps.

- 8 -

4. New methods for evaluating the zeta function

The Riemann-Siegel formula is still the fastest known method for computing a single

value of ζ (1/2 + it) to medium accuracy (± t − c for some c > 0) for large t. Here we

will show that if values of ζ (1/2 + it) at a large set of closely spaced t’s are desired, one

can obtain much faster algorithms.

In the previous section we showed that the bottleneck in using the Riemann-Siegel

formula is the need to evaluate the sum of about t 1/2 cosines. (In the Euler-Maclaurin

formula, one has to evaluate a similar sum of about t cosines.) Note that

2
n = 1
Σ
m

n − 1/2 cos (t log (n) − θ(t)) = Re e − iθ(t)

n = 1
Σ
m

2n − 1/2 e it log n ,

so that it suffices to find an efficient method to compute the complex-valued function

f (t) =
n = 1
Σ
m

2n − 1/2 e it log n (4.1)

for the values of t that are of interest. We will count the number of elementary arithmetic

operations on numbers of O(log t) digits. (See [22] for more on the model of

computation that’s used.) What makes the methods below work is that there is a lot of

structure in sums of the form (4.1), and if many of them are to be computed, one can

exploit this structure to lower the average cost of an evaluation.

The first observation to make is that if we are interested in computing f (t) (and thus

ζ (1/2 + it)) for T ≤ t ≤ T + T α for some 0 < α ≤ 1, say, then it suffices to compute

f (t) and a few similar sums at an evenly spaced grid of points, t = t 0 , t 1 , . . . , t H ,

where

- 9 -

t j = T + jδ , 0 ≤ j ≤ H = 
 T α + η 

 , δ = T − η ,

for some η ε (0 , 1/10). (Eventually η will go to zero.) The reason for this is that

f (k) (t) =
n = 1
Σ
m

2 i k n − 1/2 (log n) k e it log n , (4.2)

so that

 f (k) (t) ≤ 5 (log m) k m 1/2 .

Therefore if we wish to compute f (t) for some t, T ≤ t ≤ T + T α , to within ± T − c , we

can use the Taylor series expansion around the nearest t j , provided we have precomputed

the values of f (k) (t j) for k ≤ (c + 100) η − 1 , say. Since the derivatives f (k) (t) are of

the same form as f (t), we have reduced the problem to that of computing series of the

form

g(t) =
n = 1
Σ
m

a n e it log n (4.3)

at t = t j = T + jδ for 0 ≤ j ≤ H. We should note that m depends on t,

m = 
 (2π) − 1/2 t 1/2 

 .

The trivial way to compute g(t) at each of the t j takes about mH operations. One

way to obtain a faster method is to use fast matrix multiplication methods. For

simplicity, suppose that we are trying to compute g(δ k) for 0 ≤ k < R 2 , where δ ≤ 1.

Consider the matrix C = (c j h), 0 ≤ j ,h ≤ R − 1, where

c j h =


î 0 ,

a h exp (i j(R − 1) δ log h) ,

for h > βj ,

for h ≤ β j ,
(4.4)

- 10 -

where the β j will be specified later. Also, let D = (d hk), 0 ≤ h ,k ≤ R − 1, be the matrix

with

d hk = exp (i k δ log h) . (4.5)

Then the matrix CD = (b j k) , 0 ≤ j ,k ≤ R − 1, has

b j k =
h = 1
Σ
β j

a h exp (i[j(R − 1) + k] δ log h) . (4.6)

If we select β j = 
 (2π) − 1/2 j 1/2 (R − 1)1/2 

 , then b j k will differ from

g(δ(j(R − 1) + k)) by only a few terms, which can be easily computed. The trivial

method for multiplying C and D takes about R 3 operations, which is not much better than

the ordinary O(R 3 δ1/2) method of evaluating each sum of the form (4.6). However, if

we use fast matrix multiplication methods, of which the latest one allows one to multiply

two n × n matrices in time O(n 2. 479) [24], we obtain a method with running time about

R 2. 479 . Since in practice we would have δ = R − o(1) , R = T 1/2 + o(1) , this would let us

compute all values of ζ (1/2 + it) for 0 ≤ t ≤ T in time T o(1) to within ± T − c after an

initial precomputation that requires ≤ T 1. 24 operations, and would thus be more efficient

than using the Riemann-Siegel formula. (This method could also be modified to work on

shorter intervals, but not as efficiently.) Unfortunately fast matrix multiplication

methods are completely impractical (except possibly for Strassen’s original O(n 2. 807...)

method for multiplying two n × n matrices [1]), so that the above technique is of purely

theoretical significance.

An algorithm that is both theoretically efficient and appears to be practical can be

obtained by a different approach. Suppose that we wish to compute g(t j) , 0 ≤ j ≤ H,

- 11 -

where t j = T + jδ, 0 < δ < 1/10, and H ≤ T 1/2 . Let M = 
 (2π) − 1/2 T 1/2 

 , and

g * (t) =
n = 2
Σ
M

a n e it log n .

Then g(t j) and g * (t j) differ at most by two terms (for T large), and so it suffices to

compute the g * (t j) efficiently. Choose N = 2r so that H < N ≤ 2H, and let

ω = exp (2 π i / N) .

Let

h(k) =
j = 0
Σ

N − 1
g * (t j) ωj k , 0 ≤ k < N .

The inverse Fourier transform gives

g * (t j) =
N
1_ _

k = 0
Σ

N − 1
h(k) ω− j k , 0 ≤ j ≤ H ,

so if we can compute all the h(k) accurately, we will be able to recover the g * (t j) in

O(N log N) operations using the Fast Fourier Transform [1]. (All the numbers that come

up in this procedure are of moderate size, so the required precision does not cause too

much of a problem.)

The h(k) can be rewritten as

h(k) =
n = 2
Σ
M

a n e T log n

j = 0
Σ

N − 1
e i j δ log n ωj k

=
n = 2
Σ
M

1 − ωk e iδ log n

a n e iT log n
_ ______________ =

n = 2
Σ
M

ωk − e − iδ log n

− a n e − i (δ − T) log n
_ _________________ .

(We are assuming here for simplicity that ωk − exp (− iδ log n) is not too small for all

- 12 -

k and n.

Those n for which the above difference is small or even zero for some k have to be

treated separately, cf. [22].) Thus evaluating h(k) for 0 ≤ k ≤ N − 1 is no harder than

evaluating a rational function of the type

h * (z) =
n = 1
Σ
N

z − βn

α n_ ______ (4.7)

at the points z = ωh , 0 ≤ k ≤ N − 1, where the α n and βn can complex numbers with

β n  = 1, the α n are not too large, and ω k − βn  is not too small for all k and n. It is

easy to show functions of the form (4.7) can be evaluated in O(N (log N)2) operations

over some finite fields, by employing Fast Fourier Transforms methods. What is more

surprising is evaluations in O(N (log N)2) operations on numbers of O(log N) bit, can

also be performed. This was shown by A. Scho
. .
nhage, and is presented in [22]. The

basic idea is to use Taylor series expansions of h * (z) around a small set of points. A set

of functions h p ,q (z) is defined, each of which consists of some of the terms in (4.7),

such that the Taylor series of each h p ,q (z) around a certain point converges in a

relatively large region, and such that for each k, h * (ωk) can be written as a sum of a

subset of the h p ,q (ωk). Full details can be found in [22].

5. Analytic algorithms for arithmetic functions

In this section we will sketch the analytic algorithms for certain arithmetic function

that have been developed recently. For simplicity of presentation, we will restrict

ourselves to the problem of computing π(x). Full details and extensions to other

functions can be found in [14].

- 13 -

In spite of extensive interest in computing π(x), until recently no algorithm with

proved running time of O(x 1 − ε) for some ε > 0 was known. (See [12, 13] for

historical references.) In [12] a modification of the Meissel-Lehmer algorithm, which

uses combinatorial sieving, was developed, which runs in time x 2/3 + o(1) and space

x 1/3 + o(1) . This algorithm has been implemented and has been used to compute values

of π(x) for various x up to x = 4 . 1016 . At about the same time, a new analytic

algorithm for computing π(x) was developed [13, 14]. It relies on numerical integration

of analytic transforms involving the zeta function. When one uses the Euler-Maclacurin

formula to compute the zeta function, the resulting algorithm requires time x 2/3 + o(1)

and space x o(1) . With the Riemann-Siegel formula, the running time decreases to

x 3/5 + o(1) and the space requirement stays at x o(1) . With the use of the new algorithm

described in Section 4, time drops to x 1/2 + o(1) , but space required becomes x 1/4 + o(1) .

The analytic algorithm for π(x) is based on an old formula of Riemann, namely that

π(x) +
j = 2
Σ
∞

j
1_ _ π (x 1/ j) =

2 π i
1_ ____

2 − i∞
∫

2 + i∞

s
x s
_ __ log ζ (s) ds (5.1)

for x ≠ p m for any prime p and m ε Z +. (If x = p m , (2m) − 1 must be subtracted from

the left side of (5.1).) One of the things which make the analytic algorithm work is that

π(x) is always an integer, and so it suffices to compute it to within ± 1/3, say. The sum

of the terms on the left side of (5.1) with j ≥ 2 can easily be computed to within ± 1/10

in about x 1/2 steps. (Even fewer are required if one uses the algorithm recursively.)

Thus if we could compute the integral on the right side of (5.1) efficiently to within

± 1/10, say, we would compute π(x) rapidly. Unfortunately the integral in (5.1) is not

even absolutely convergent, and no way has been found to compute it fast.

- 14 -

To overcome the problem of slow convergence of the integral in (5.1), we use a

different formula, namely

p ≤ x
Σ c(p) +

m ≥ 2
p m ≤ x

p ,m
Σ m

1_ __ c(p m) =
2 π i

1_ ____
2 − i∞

∫
2 + i∞

F(s) log ζ (s) ds , (5.2)

where

c(u) =
2 π i

1_ ____
2 − i∞

∫
2 + i∞

F(s) u − s ds , (5.3)

and where this formula holds whenever F(s) is a sufficiently nice function. (F(s)

analytic in Re (s) > 1,  F(s) =  s − 2 as  s → ∞, is sufficient but not necessary, for

example.) We would like to choose F(s) so that (5.2) behaves like (5.1); i.e., c(p) = 1

for p ≤ x and c(p) = 0 for p > x. Unfortunately, the uniqueness theorem for Mellin

transforms says that is impossible unless F(s) = s − 1 x s . We therefore select a

somewhat different F(s), in which the sum on the left side of (5.2) is relatively close to

that on the left side of (5.1). To be precise, we select F(s) so that

(i) F(2 + it) → 0 rapidly as  t → ∞, so that the integral in (5.2) is

approximated well by a finite integral

2 π i
1_ ____

2 − iT
∫

2 + iT

F(s) log ζ (s) ds ; (5.4)

(ii) Individual values of F(s) can be computed rapidly, so that the integral above

can be evaluated by numerical integration;

(iii) c(p) = 1 for primes p ≤ x − y, c(p) = 0 for primes p ≥ x, and 0 ≤ c(p) ≤ 1

- 15 -

for primes p ε (x − y , x);

(iv) Individual values of c(k) can be computed efficiently.

Such F(s) can be found for any y and T with the property that yT ≥ x 1 + o(1) , see [13,

14]. (The requirement that yT ≥ x 1 + o(1) is caused by the uncertaintly principle of

Fourier analysis, which says that a function and its transform cannot both decrease too

rapidly.) The contribution of the sum

m ≥ 2
p m ≤ x

p ,m
Σ m

1_ __ c(p m)

can be evaluated to within ± 1/100 in x 1/2 + o(1) operations. The difference

π(x) −
p ≤ x
Σ c(p) =

x − y < p ≤ x
Σ (1 − c(p))

can be evaluated to within ± 1/100 by finding all the primes in [x − y , x] and computing

their contribution, and this can be done in yx o(1) operations. Finally, the evaluation of

the integral (5.4) can be reduced to evaluating ζ (2 + it) at a grid of points between − T

and T, spaced x − o(1) apart, and by the algorithm of Section 4 this can be done in T x o(1)

operations. Thus the running time of the algorithm is

x 1/2 + o(1) + y x o(1) + T x o(1) ,

and selecting y = T = x 1/2 + o(1) , we obtain the desired running time bound. Full

details are presented in [14].

- 16 -

REFERENCES

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley, 1974.

2. E. Bombieri and D. A. Hejhal, manuscript in preparation.

3. D. Davies, An approximate functional equation for Dirichlet L-functions, Proc.

Royal Soc. Ser. A 284 (1965), 224-236.

4. M. Deuring, Asymptotische Entwicklungen der Dirichletschen L-Reihen, Math.

Annalen 168 (1967), 1-30.

5. H. M. Edwards, Riemann’s Zeta Function, Academic Press, 1974.

6. W. Gabcke, Neue Herleitung und explizite Restabscha
. .
tzung der Riemann-Siegel-

Formel, Ph.D. Dissertation, Go
. .
ttingen 1979.

7. S. M. Gonek, A formula of Landau and mean values of ζ (s), pp. 92-97 in Topics in

Analytic Number Theory, S. W. Graham and J. D. Vaaler, eds., Univ. Texas Press,

1985.

8. A. P. Guinand, A summation formula in the theory of prime numbers, Proc.

London Math. Soc. (2) 50 (1948), 107-119.

9. D. A. Hejhal, Zeros of Epstein zeta functions and supercomputers, Proc. 1986

Intern. Congress Math., to appear.

10. A. E. Ingham, On two conjectures in the theory of numbers, Amer. J. Math. 64

(1942), 313-319.

- 17 -

11. A. Ivic, The Riemann Zeta-function, Wiley, 1985.

12. J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing π(x): the Meissel-

Lehmer method, Math. Comp., 44 (1985), 537-560.

13. J. C. Lagarias and A. M. Odlyzko, New algorithms for computing π(x), pp.

176-193 in Number Theory: New York 1982, D. V. Chudnovsky, G. V.

Chudnovsky, H. Cohn, and M. B. Nathanson, eds., Lecture Notes in Mathematics

#1052, Springer-Verlag, 1984.

14. J. C. Lagarias and A. M. Odlyzko, Computing π(x): An analytic method, J.

Algorithms, to appear.

15. E. Landau, U
. .

ber die Nullstellen der Zetafunktion, Math. Ann. 71 (1911), 548-564.

16. J. van de Lune, H. J. J. te Riele, and D. T. Winter, On the zeros of the Riemann

zeta function in the critical strip. IV., Math. Comp. 46 (1986), 667-681.

17. H. L. Montgomery, The pair correlation of zeros of the zeta function, Proc. Symp.

Pure Math. 24, A.M.S., Providence 1973, 181-193.

18. H. L. Montgomery, Distribution of zeros of the Riemann zeta function, Proc. Int.

Congress Math. Vancouver (1974), 379-381.

19. A. M. Odlyzko, On the distribution of spacings between zeros of the zeta function,

Math. Comp., to appear.

20. A. M. Odlyzko, On the distribution of zeros of the Riemann zeta

function: Conjectures and computations, manuscript in preparation.

- 18 -

21. A. M. Odlyzko and H. J. J. te Riele, Disproof of the Mertens conjecture, J. reine

angew. Math. 357 (1985), 138-160.

22. A. M. Odlyzko and A. Scho
. .
nhage, Fast algorithms for multiple evaluations of the

Riemann zeta function, to be published.

23. C. L. Siegel, U
..

ber Riemanns Nachlass zur analytischen Zahlentheorie, Quellen und

Studien zur Geschichte der Math. Astr. Phys. 2 (1932), 45-80. Reprinted in C. L.

Siegel, Gesammelte Abhandlungen, Spring-Verlag, 1966, Vol. 1, pp. 275-310.

24. V. Strassen, Relative bilinear complexity and matrix multiplication, to be

published.

25. E. C. Titchmarsh, The zeros of the Riemann Zeta-function, Proc. Royal Soc.

London 151 (1935), 234-255 and 157 (1936), 261-263.

26. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ. Press,

1951.

27. A. M. Turing, A method for the calculation of the zeta-function, Proc. London

Math. Soc. ser. 2, 48 (1943), 180-197.

28. A. M. Turing, Some calculations of the Riemann Zeta-function, Proc. London

Math. Soc. (3) 3 (1953), 99-117.

29. A. Weil, Sur les ‘‘formules explicites’’ de la theorie des nombres premiers, Comm.

Sem. Math. Univ. Lund, tome supplementaire (1952), 252-265.

