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ABSTRACT

This paper studies coefficients yy, , of sequences of polynomials

Ya(¥) = ¥ ynnX"

n=0

defined by non-linear recurrences. A typical example to which the results of this paper apply is that of the
sequence

Bo(X) =1, Bher(X) =1+ xB,(x)2 forh=0,

which arises in the study of binary trees. For awide class of similar sequences a general distribution law
for the coefficients yy, , as functions of n with h fixed is established. It follows from this law that in many
interesting cases the distribution is asymptotically Gaussian near the peask. The proof relies on the saddle
point method applied in a region where the polynomials grow doubly exponentially as h — oo,
Applications of these results include enumerations of binary trees and 2-3 trees. Other structures of interest
in computer science and combinatorics can a so be studied by this method or its extensions.
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1. Introduction

In many enumerative problemsin computer science and combinatorics one encounters the difficulty that
no closed form formulae exist for the quantities of interest and only recurrences for generating functions are
available. For example, if By, , isthe number of binary trees with n internal nodes and height < h, then the

generating polynomials

Bn(2) = 2 BpnZ"

n=0

satisfy the recurrence [5]

(Bh(2)

. 1+ z(Bh-1(2))% forh=1,
Bo(2)

1.

In this paper, we introduce a new method for studying coefficients of sequences of polynomials that satisfy

recurrences of similar types.

We study sequences of polynomials yy,(z), which we will refer to as PNI-sequences (for positive

nonlinear iteration), with

Yn(2) = 2 YnnZ". (1.1)

They are defined by someinitial yo(z) # 0 which has non-negative coefficients and arecurrence

Yn+1(2) = P(zyn(2)) , h=20, (12)



where P(z,y) isapolynomial with non-negative coefficients,

P(zy) = 3 Pi(2y® with pg(2) 20, d>1. (1.3)
O<ksd
We define
M= hlim d™" deg yh(2) , (1.4)
p =inf {x:xeR* , y,(X) - ©ash - o} . (1.5)

Clearly p and p exist and are finite for every PNI-sequence {y,(z)} that contains non-constant
polynomials. As will be explained below, it is sufficient to consider PNI-sequences which P(z,y) and

Yo(2) satisfy the following conditions:
(A) P(zy)isnotamonomial (i.e., P(z,y) # bz3y%).

(B) At least one  of the y,, 0<hs<2 has  the property that
h(2)0= yu(1) and F0= 1=z = 1

We prove two main results.
Theorem 1. Suppose that {yy(2)} is a PNI-sequence that satisfies conditions (A) and (B), and let A; and
A, be any real numbersthat satisfy
O0< AL <Ay <.
Then for any integers n and h with
A snd" <A,
we have, uniformly in n and h,

-1/(d-1) h —(B
Yon = rpa(r) exp(d™ (B(r)—rP:(r) log r)) (1 +0(d"?)) . (16)

d"2 V2n(rZBi (r) + rpi(r))

where r isthe unique solution in (p,) of
rBr(r) = nd™",

and 3(z) isa function which is defined on (p,) by



B(2) = 109 yo(2) + -+ log pa(2) + 5 d7i~" log E,Mrg, (L7)
d-1 i=0 Dpd(Z)Yj(Z) [l

and is analytic there.
Theorem 2. Suppose that {y,(z)} satisfies the conditions of Theorem 1. Let N;: denote some n for which
Yhnismaximal. If p = 1, then
lim d"Ny = 0.

Ifp < 1,then

Ny OB (1)d" as h - o, (1.8)
and they,, , are asymptotically Gaussian near the peak; for

[h-NpO= O(d2"3)

we have

yh,n

*
Yh,N,

= exp( - % 672d""(n =N} )2)(1+0(d 2" h-N 3)) (19)

where
0% = Br(1)+B (1) .

In the remainder of this section we first make some remarks about these theorems, and then discuss
their connections to other work. Section 2 proves a series of auxiliary results that are at the heart of our
method, and from which theorems 1 and 2 are easily deduced in Section 3. Section 4 presents some

applications, possible extension, and numerical results.

Both theorems 1 and 2 give information about the coefficients of the polynomials yy, (z) in terms of the
function B(z), which is defined by (1.7) in terms of the polynomials y,(z). Thisis not circular, however,
since the seriesin (1.7) is extremely rapidly convergent, and is determined to great accuracy by just a few
initial terms. Differentiating the basic recurrence (1.2) yields a recurrence for y,.1(2) in terms of y,(2)

and yy,(2), and therefore the definition (1.7) of 3(z) also gives a rapid way to compute the derivatives of



B(2). Asisshown by the examplesin Section 4, the approximations (1.6) and (1.9) are very accurate even

for small values of h.

Many of the hypotheses of our theorems can be weakened. It is not essential, for example, that all the
coefficients of P(z,y) or of the y,,(z) be nonnegative. What is really crucia is that the y, (z) should grow
very rapidly ash - o on the positive real axis and should be relatively small elsewhere. (cf. [6,7,14].)
However, the appropriate growth conditions are not always easy to check, and so we have chosen to restrict
our presentation to PNI-sequences, which are easy to characterize, and which are of greatest interest in

computer science and combinatorics.

Condition (A) is not necessary for the success of our method. In fact, Theorem A holds for PNI-
seguences which satisfy condition (B) but not condition (A), except that A ; may have to be bounded below
away from 0. However, for PNI-sequences that do not satisfy condition (A), the definition of 3(z) can be

simplified. We notethat if yy, (z) isaPNI-sequence for which condition (A) fails to hold, then
P(zy) = bz?yY ,

for someb > 0,a = Oand so

V(@) = (02%) T yo ()",

and we can reduce to the study of coefficients of high powers of y,(z). These, however, can be
investigated much more directly, without developing most of the analytic machinery of paper through use

of the central limit theorem. Much stronger results can also be proved in this situation [12].

Condition (B) is very easy to check, since a polynomial
o €
y(z) = > agz*, 0<e <e <..<ey a..am>0,
k=0
has the property that 0/(z)0= y(1) and (¥00= 1imply z = 1if and only if

ng(el_eoy ez—eo,...,em—eo) =1,

which holdsif and only if y(z) is not of the form



y(2) = z%y*(z°) (1.10)

for some polynomial y*(z) and some d > 1. The function of condition (B) is to ensure (see Lemma2.1)
that for large h, the y},(z) are not of the form (1.10), since in that case our theorems are obviously not true.

However, PNI-sequences of polynomialsyy, (z) for which each y,,(z) is of the form
2%yn (2%)
can be studied by our method by looking at the sequences y: (2), provided d is chosen to be maximal. We

also note that by the proof of Lemma 2.1, condition (B) is equivaent to only y,(z) having the specified

property. Lemma 2.2 shows that condition (B) cannot be weakened.

Theorems 1 and 2 are proved in Section 3, while Section 2 proves a number of auxiliary lemmas. The
proofs rely on an analysis of the behavior of the polynomiasy,(z) ash - o, for zOC , ZO> p. Itis
shown that for z in a narrow strip of the form Rez > p + § Om zO< d for some fixed & > O, the

polynomialsyy, (z) exhibit doubly exponential growth:
yn(2) = 9(2)a(2)? (1+0(1)) ash - o (1.11)

for certain functions a (z), g(z), and that the y,,(z) are considerably smaller away from the real axis. The
precise estimates we obtain enable us to determine the asymptotic behavior of the y,, , by expressing them

as contour integrals and using the saddle point method.

The key to the success of this method is the doubly exponential growth (1.11) of the y,,(z). Equation
(1.11) generalizes the results of Aho and Sloane [2] about integer sequences satisfying nonlinear

recurrences of the type
Xn+1 = X% + gn
. Xn
with [g,0< Tfor n = ng.

Our results are related to the immense literature on the subject of rationa iteration. (See, for example,
[3,4,8].) Most of the papers in that area are concerned with questions of convergence of iteration. In this

paper, on the other hand, we are operating almost exclusively in the region of divergence, and we



concentrate on the rate and nature of divergence. In other situations, such as those of [5,10,11,13], it is
advantageous to study the iteration either within the convergence region or else right on the boundary
between convergence and divergence. Methods similar to some of those used in those papers could also be
used to obtain more information than is provided by Theorem 2whenp = 1.
2. Proofsof Auxiliary Results

As afirst step, we prove atechnical result which will enable us to show that the polynomials yy, (z) are
very small away from the positive real axis.
Lemma 2. If {y,(2)} is a PNI-sequence of polynomials that satisfies Condition (B), then for every h = 2

and every rerR™,

Onm(20= yu(r) and FO=r1r = z=71.

Proof. Let {y,(2)} satisfy the hypotheses of the lemma. Since y,(z) has nonnegative coefficients, for

0= r,z # 0, we have

Bn(20= 0¥ YpnZ"'[X 3 Yoa!" = ya(r) , (21)

and equality can hold if and only if for someyeC with yO= 1,
YnnZ" = YWhat"  foradln. (2.2)
Letu = z/r = z/[ZThen (2.2) isequivalent to
Yhnu" = yyp, foradln,

whichis equivalent to Oy, (u)O= yy(1). Thus By, (2)0= yu(r) holdsfor somez # r, (¥0= r if and only

if 7n(u)0= yu(1) holdsfor someu # 1, [UO= 1.
Suppose now that m = 1 and that for some z with (0= 1 we have By, (2)0= yn(1). Therecurrence

(2.1) implies that

d d
05 PV a(@T= T PeDYma () @3)



Since al the coefficients of y,,-1 (z) and of the p, (z) are nonnegative,

(9= pe(1) ., O<ksd,
Bm-1(2LE ym-1(1) ,
and so (2.3) can hold only if O/y,-1(2)0= y.,-1(1). Repetition of this argument shows that if for some
z# 1, 3= 1, wehave Y, (2)0= y,(1) for someh = 2, then O,,(2)0= y,(1) for 0 £ m < h, and this

contradicts Condition (B) and proves the lemma.

Lemma 2.1 guarantees that for PNI-sequences {y,(z)} that satisfy Condition (B), y,(z) for h > 2
achieves a unique maximum on [(¥[)= r atr. Thismeans, in particular, that for large h, y,, (z) will not be of

theform

yn(2) = 2y (27) (2.4)

for some polynomials y:: (u) and some m > 1. The next Lemma shows that Condition (B) is in a sense
best possible for our problem because if it is violated, then the polynomial sy, (z) can be written in the form
(2.4), and theorems 1 and 2 clearly cannot hold for such polynomials. The same result would not follow if
we only imposed conditions on yq(z) and y4 (2), as is shown by the PNI-sequence defined by y,(z) = 1,
P(z,y) = zy+2z%y?. In this example O/ (—-1)0= y,(1) for h = 0,1, but not for h = 2, and this

seguence does satisfy Condition (B).

Lemma 2.2. If {y,(2)} is a PNI-sequence of polynomials, and there is a z # 1, [Z= 1, such that

0/, (2)0= y,(1), thenthereisaninteger r = 2 such that for each h = 0,
Yn(@) = 20y (2) (25)

where the y:: (n) are polynomials.

Proof. Supposethat z # 1, [(Z0= 1, and {y,(2)} satisfy the hypotheses of the lemma. By the arguments

used in the proof of Lemma 2.1, we see that [, (2)0= y1(1) and O/o(2)0= yo(1) aswell.



Ify,, = 0forn < mandy, , # 0, then By, (z)U= y, (1) impliesthat

DZ Y2,n2n_mD: Z y2,n . (2-6)

nzm n=zm

Since thefirst term inside the absolute value signin (2.6) isy, , > 0, equality can hold if and only if
YonZ" ™™ =vy,, foradln.

Therefore eithery, , = Oforaln > m(i.e, y,(x) isamonomial) or elsez? = 1 for someinteger g = 2,
and if g is chosen to be minimal such that z9 = 1, theny, , = 0if n # m(mod g). Inthe second case, if r
is any prime factor of g, theny, , = 0if n ¥ m(mod r). The same arguments show that each of y}, (x),
h = 0,1 is either a monomial or else has the property that y, , = 0 if n # e, (mod r), where e, is the
smallest integer n such that yy, , # 0. Therefore each yy,(x), 0 < h < 2, which is not a monomial, can be

written in the form

yn() = x*yh (X) 2.9)

where y: (t) isapolynomial. But any monomial can obviously be written in the form (2.8), so we conclude

that a representation of that form existsfor eachy,(x),0 < h < 2.

Write

Pxy) = 3 gij(x".y)xy, (2.9)

O<i,j<r

where the g; ; (u,Vv) are polynomials with nonnegative coefficients which are uniquely determined by (2.9).

Then by the basic recurrence (1.2),

Y1) = x®y1 () = T 6 (<yo()N)X "y (x)T
]

S0 we must have

e =i +eyj (modr) (2.10)
for each pair (i,]) suchthat g; ; (u,v) # 0. Similarly,

Y200 = x*y2 (<) = T g (< y1(0")x "y ()T
1]



so that we must have
e, =i +ej (modr) (2.12)
for each pair (i,j) with g; j (u,v) # 0.

Suppose first that there are two distinct pairs (i,]) such that g; ;(u,v) # 0. Cal them (i;,j;) and

(i2,j2). Thenby (2.11),

ip=e; —eyj1 (modr) , (2.13)

i =€ —ej, (modr),

and if j; =j, (mod r), then we would have i; =i, (mod r), which is a contradiction, since
O0<iq,io,j1sj2 <t —Lland(iq,j1) # (i2,j2). Henceji # j, (modr). Then by (2.12) and (2.13)
e, =e; +(e;-€)jyp =€ + (eg-€p)j, (modr),
which impliesthat e; = eg (modr), sincej; # jo, (modr) andr isprime. But in that case
€ =i + epj (mod r)
for al pairs(i,j) with g; j (u,v) # 0, and then an inductive argument using (2.9) shows that
Yn(9) = X*yn ()
for al h = 0, and this gives the desired result.

To conclude the proof of the lemma, it only remains to consider the case that there is only one pair (i, )

withg; ;(u,v) # 0. Butthen

Yhe1(X) = Gij (X" Yh (X)) X'yn(X)! (2.14)

and since (2.8) holdsfor 0 < h < 2, (2.14) shows that it holds for al h = 2 with appropriate e,,. Thus the

lemmaistruein this case aswell.

We now derive a series of lemmas giving size estimates for the polynomials yy, (z) which will lead to

proofs of theorems 1 and 2.
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Lemma 2.3. Suppose that {y,,(z)} is a PNI-sequence of polynomials and define
p =inf {x: xOR"*, yp(X) - o ash - o} .
Then for every & > 0, there exist positive constantsy, n, & such that for zin the region
R(®) = {z:Om(2)(k n,p + d<Re(z) <571} (2.15)
we have

In (2 yexp(gd") . (2.16)

Proof. Choosen, > 0sosmall that pq(z) has no zeros in the region

Ry ={z:0m(2)E n,, p + 5< Re(z) < 871},

and let

0 0

0 01 g 10

a = minmmin 0= pq(2)0, 0.

FR D O D

0 0
Then for any large enough K ; we must have

(P(z,y)O> ayd (2.17)
if zOR, and Y= K, as can be seen from the inequality

pk( ) d
[(P(z,y)O> [py(z)yd 1 - z DTD] yot~a0,
k=0 Pd

and the fact that the py (z) are bounded for zOR; .
If
o> a~l@-1)
then
ayd > o,

so that if
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K, = max(K,a Y@=y

and if
Up =y and U,+; = P(z,u,) for n=0,

then for zOR, ,)(> K, wehave

u>a . (2.18)

Therefore, if Oys large enough, the uy exhibit doubly exponential growth.

Set
Ks; = max(K,,2a™1),
and let hy be such that
Yh, (P+0) 2 2Kj3 .

Since yy, (2) is continuous and increasing along the positive real axis, we can find n, such that

0 < ny, < nqandif
R, = {z:0Om(2)(k n,, p+d< Re(z) <51},
then
O, ()= K3

for zOR,. But then the estimate (2.18) applies, and
d“-1

V(D 2 7T KY 2 Ggavend 520,

so that the estimate (2.16) of the lemma clearly applies for h = hy and zOR, if we take y and & small

enough.

To complete the proof, it suffices to extend the estimate (2.16) to al h. We note that if ne(0,ny is

chosen small enough, then none of the polynomials yq(2),...,yn,-1(2) will have a zero in the region

R(8) O R, defined by (2.15), so that (2.16) will hold for these yy, (z) also in that region if we take y small
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enough.

Lemma 2.4. If {y,(2)} is a PNI-sequence that satisfies Condition (B), then for any d,n > O thereis a

constant w > Osuchthatforh = 2,p + d< Mk &7, and
ZDR(®,N) ={z:p + &< &%, Om(z)0< n},
we have

Yn(2)E= yn (D) exp(-od") . (2.19)

Proof. By Lemma 2.3, if hislarge enough, say h = hg, and

n(2) yn(Cz) exp(-c)

for some positive ¢, € <y, ((x)”, then

Wh+1 (20 P(EOyn () e™®)

d
< pa(ya() e 3 Py ) e
< Ynea ()€ (1 + O(ey () ™) (220)

< yh+1(&D eXp(—Cd +2CE_1d—h) < yh+1(|1|:) exp(_cd(l_d—hIZ)) .

By LemmaZ2.1,
3/n, (D yn, (D ™" (221)

foral z, zZDR(3),p + &< Hk & !andsomee > 0, sothat (2.20) implies

ho+k-1 _
Wiy +k (DO Yo,k (D) exp(—ed” A (1-d77%)) (2.22)

—1lo

< Vi, (30 exp(-ed¥/2) |

which proves the lemma for h = hy. But the estimate (2.19) follows trivially for 2 < h < hy — 1 from

Lemma 2.1 if we choose w small enough.
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Lemma 2.5. If {y,(2)} is a PNI-sequence, then for any & > 0 thereis a § > 0 such that for zOR(d)

(defined asin Lemma 2.3 ) we have

yn(2) = exp(d"B(2) -

L 10g Py(2))(1 + O(e(-Ed")) |

where 3(z) isdefined asin Theorem 1 and is analytic in R(d).

Proof. Since none of they;, (z) hasazero in R(d), we can define

Vh(2) = log yn(2) ,

(2.23)

where for rea z, we take the principal value of the logarithm, and for zOR(8) — R, the logarithm is

determined by analytic continuation. The basic recurrence (1.2) can be written

d(zyn(2)) U

O
Yh+1(2) = pa(2yn(2)?0L + 0,
0 Pa(2)Yn (2 o

where

a(zy) = P(zy) - pa(2)y° .

Taking logarithms of both sides of (2.24), we obtain

O : O
Vh+1(2) = dvp(2) + log pq(2z) + |OQEIl + %—E

Since
Vo(2) = log yo(2) ,
iterating (2.26) yields

dh-1

— dh
V(@) = dlog yo(2) + G

h )
log pa(2) + 3 d7'rn(2)

m=1

where

(2.24)

(2.25)

(2.26)

(2.27)



-14-

O a(zy;(2)) O
ri(z) =logl + . (2.28)
J 0 pa@y@%Q
We now introduce the function
1 2 lis
B(z) = logye(2) + -1 log pg(2) + 3 d77tri(2) . (229)
i=0

By Lemma 2.3, ther;(z) are bounded in R(d), so the seriesin (2.29) converges and makes [3(z) an analytic

function for zOR(d). Furthermore, (2.27) shows that

va(2) = d"B(2) -

1 < -
g=1 09 Pa(2) - 3 d” g (2) (2.30)
j=0

and by Lemma 2.3 thelast sumin (2.30) is
O(exp(-&d"))

for some > 0, which concludes the proof of the lemma.

For further reference, we note that it follows from (2.23), (2.29), and (2.30) that
B(2) = |im d™"h(2) = lim d™" log yn(2) (2.31)
In Lemma 2.5, B(z) was defined for zOR(d). However, the definition of 3(z) does not depend on &, so we
conclude that 3(z) is defined and analytic in the union of all the R(d) for & > O.
Before proceeding to the proofs of the theorems, we prove some auxiliary results about B(z).
Lemma 2.6. Suppose {y,(2)} is a PNI-sequence which satisfies conditions (A) and (B), and let p,p be
defined by (1.4) and (1.5), respectively. Then
(zBr(2))r > 0 for zO(p,) , (2.32)
and

lim zBr(2) = u. (2.33)

Z—

If P(z,y) isnot amonomial (i.e., P(z,y) # bz%y"), then
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lim zB:/(z) = 0. (2.34)
zZop+

Proof. By (2.31), for any z[I(p, ), we have

(2

ZBr(z) = lim d™ M 2~ | 2.35

Br(@ = lim d™" —o (2.35)
We first observe that for any entire function f(z) # 0 with nonnegative Taylor series coefficients,

f(z) = 3 f2*, =20,

k=0
the quotient
zf1(2)
isan increasing function of zfor zOR ™, since computing the derivative of g(z) yields
rn T D I D2
mi(z) =2 0@ @ zh(@) g (2.36)

f(2) fa gf@ g’

and the quantity on the right side of (2.36) is the variance of the random variable X such that

kak

Pr(X=k) = — .
Moreover, we seethat gr (z) = Oispossibleif and only if only one of thef, is# 0.

Next, we prove that if f(z) = f,(z) + f,(2), wheref,(z) and f,(z) are both nonzero entire functions
with nonnegative Taylor coefficients,

fi(z) = 3 fi.2%, =12,
k=0

then

O nf Ozfr () O
Zszr(z) S fl(Z)_ zf11(2)

5T@ o T ‘5h@ g (2.37)

for any zOR™. To see this, note that by the preceding paragraph, the quantity on the left side of (2.37) is

the variance of the random variable X such that
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kak
PrX=k) = o

But X isamixture of the random variables X; and X,, where

fika

AR

Pr(X; =k) =

with weightsf; (2)/f(z). (A mixtureAY,; + (1-A)Y, of random variables Y, and Y, with weights A and
1- A corresponds to choosing Y4 with probability A and Y, with probability 1—A.) Thusto prove (2.37), it

will sufficeto show that if Y, and Y, are any real-valued random variables, and A1 0, 1], then
Var(AYy + (1=-A)Y,) = A Var(Yy) + (1-2A) Var(Y,) . (2.38)

If F; denotes the distribution function of X;, then (2.38) is equivaent to

A x2 dFy + (1-N)] x2 dF, = (A\[ x dFy + (1-1)] x dF,)?

2 M x2dFy = M[ xdF1)? + (1-N)] x? dF, = (1-N)([ x dF,)? ,
which iseasily seen to hold. This completes the proof of (2.37).

We now apply (2.37) iswith
f1(2) = Pa(DYn(2D?, f2(2) = Yn+1(2) - f1(2) = P(zyn(2) - Pa(@Yn (2D .

We discover

Ozyh1 (20 pa(2)yn(2)° Ozpy(2) 2vh(2) O
rAR! > -z +d
OYn+1(2) O Yh+1(2) P4(2) yn(2) O

Pa(2yn(2  Ozyi( U

>d z .
Yh+1(2) oYn(2) g

If weiterate thisinequality, we obtain

Oz(2) 0 1 pa(2)y;(2)°
O——0 - 1

Baha@d
oY2(2) g =2 Yi+1(2) '

0 = dh—ZZ

2.39
OYn+1(2) g (2%9)

Now Lemma 2.3 implies that the product
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= pa(2)y;(2)*
j|:|2 Yj+1(z)

convergesto anumber b = b(z) > 0, and since each factor is< 1, we deduce from (2.39) that

Ozyl, (z) O Oz, (z) O
a2 @0 g1y n22@ (2.40)
0Yn(2) 0Y2(2)

and the last factor on the right side in (2.40) is > 0 by Condition (B). Since z(zf3/(z)) is the limit of the

left side of (2.40) ash — o, we obtain the claim (2.32) of the lemma.
To prove (2.33), we note that if f(z) is any polynomial with nonnegative coefficients, then
zfr(2) < deg(f(2)) - f(2) , zOR",
and so
B:(2) < lim d™" deg yn(2) = K. (241)
To complete the proof of (2.33), note that for h = hg,

deg Ynh+1(2) = d deg yn(2) + deg pq(2) ,

and so
dog Y (2) = 0¥ deg yi, (2) + S dog pa(a) (242)
Next, note that for zOR*,
Yn+1(2) 2 dpa(2)Yn(2 M Vh(2)
and so
Yher(2) | YR(2) (1 - ye &

Yn+1(2)  yn(2)

for somey, & > 0, where this holds uniformly for al h = 1 and all zO(p +1,%) by Lemma2.3 (applied
with any & < 1 such that R(8) # ¢) and the fact that each of the y,, () isincreasing on tR*. Therefore for

any € > 0, if wechoose h; such that
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(1-ye ) > 1 - ¢/2,

s

h=h,

then for any z[O(p +1,0) and any h = h; we will have

2h(2)

zBi(z) = d" D

(1-¢/2) . (2.43)

If we now choose h, = max (hg,h;) , and zso large that

!

2yn, (2)

@ > (1-¢€/10) deg yh,(2) ,

then by (2.43) we will have
ZB1(2) 2 (1-€)d ™™ deg yy,(2) -
Since by (2.42)
d™™ deg yp, (2) = lim d™" deg yn(2) = 1,
this together with (2.41) proves (2.33).

To complete the proof of the lemma, we need to prove (2.34) when P(z,y) isnot amonomia. Define

_ 4-n (2
l:h(z) d m ’ (244)
> P (2"
= ) 2.45
(2 ENCINE) (249
> GP@n@"
b = 2.46
" ENCINE (249
Then the recurrence (1.2) gives
the1(2) = A" 2a(2) + by(2)th(2) - (2.47)

If E = max{deg p«(z)}, then comparison of terms in the numerators and denominators of (2.45) and

(2.46) showsthat for any zOR*,
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0<ap(z) sEz?Y,

O0<by(z) 1.
Hence
th+1(2) < th(2) + O(d™"Z7Y) | (2.48)
and therefore
them(2) S th(2) + Cd™"z7t (2.49)

for al mOZ* and someC > 0.

Let us first suppose that p # 0. We show that in this case y,(p) isbounded ash — . To see this,
note that for every r JrR* thereisaY(r) > Osuchthat P(z,y) > 2yforz>r,y = Y(r). Now if y,(p) is
unbounded as h — oo, then by continuity we must have y,(pr) > Y(p/2) some large k and for some
prO(p/2,p), and then yy, (pr) is aso unbounded ash — oo by the argument above, which contradicts the

definition of p.

Since y, (p) is bounded and P(x,y) is hot a monomial, we see from (2.46) that thereissome B < 1

such that
b,(p) B, h=0.
Hence
th+1(p) < Bta(p) + O(d™") . (2.50)

Since the t,(p) are bounded as h — oo, as is shown by (2.49), we find by iterating (2.50) that for some

C,>0
tan(p) < C1(B" +d7™"), tphip < Cy(B" +d7"). (2.51)
Hencet,(p) —» Oash - o. Givene > 0, let us choose hy so that
cd™™ +c,(B™ +d ™) <ea. (2.52)

Then thereisad > 0 such that
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ton, (2) < €/2
forp <z < p + & Butthen (2.49) and (2.52) imply that
th(Z) <€

for al h = 2hy and zO[p,p + &], which implies that 3:(z) < € for zin that interval. Since this holds for

every € > 0, wemust havef3r(z) - Oasz - p.

To complete the proof of the lemma, we need to prove (2.34) when p = 0. Wefirst observe that it will

suffice to show that

lim lim zt,(2) = 0. (2.53)

hoo z-0"

To seethis, note that if (2.53) holds, then for any € > Owecanfindhy and d > 0 such that for z[(1(0,0),
2ty (2) < el4, Cd™ < el
But then (2.49) shows that
Zth.m(z) <€, mOz*, z0O(0,9),
which proves the claim.

Suppose now that p = O and that y,(0) = Ofor al large h. If wewrite

Ya(2) = 2"Vn (2) ,
wherey;, (2) isapolynomia withyy (0) # 0, then

202 _
220 yo(@

But P(x,y) isnot amonomial, sov,,1 < (d-1) vy, and therefore

lim zt,(z) < (1-d™ )",
z-0

which proves (2.53) in this case. On the other hand, if y,,(0) # O, then

n(2) _

z-0 Yn(2)
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and (2.53) again holds. Thisfinally concludes the proof of the lemma.

3. Proofsof the Theorems

We now use the results of Section 2 to prove Theorem 1. Suppose that all the hypotheses of that

theorem are satisfied. We use the Cauchy integral representation

1 .
Yn = 5[ yn(@)Z"dz, (3.1)
r

which isvalid for any simple closed curve with the origin in itsinterior.

Let
n
A= , 3.2
v (3.2)
sothatA; < A < A,. Wechoosefor I' the circle centered at the origin of radius r, where
rBr(r) = A. (3.3)

Since zB1(z) is strictly increasing from O to 4 betweenz = pand z = o by Lemma 2.6, Eq. (3.3) definesr
uniquely and shows that for AO[A{,A5], rO[rq,r,], wherep <r; < r, < co. The choice of the above

contour isinspired by the fact that r satisfying (3.3) is an approximate saddle point of theintegrand in (3.1).
By Lemma 2.5, we find that there isa constant 8, > 0 such that 3(z) isanalytic in the region
r{ <k ry,, — 6y <Arg(z) <96y .
In that region we have the expansion
Re p(re'®) = B(r) - % 82(r?Brr(r) + rpe(r)) + O(8%) , (34)
and, by taking 6, small enough, we can ensure that

Re B(re'®) < B(r) - % 02(r2Bui (1) + rBi(r)) . (3.5)

If I ; denotes the section of thecirclez = re'® with8, < 8 <21 - &,, then by lenmas 2.4 and 2.5,
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= [ @2 ez = O (@ (B(r) - w)))

where w > 0 depends only on rq, r,, and B,. If ', denotes the section of this same circle with

- By £ 0 < 6y, then Lemma 2.5 implies that
1 - .
2m [ yn(@z " taz = 2_1 Pq(2) V@D exp(d"B(z))z " tdz
r, r,

+ O(r™" exp(d"(B(r)-wr))) , (36)

wherewr > 0 again dependsonly onr, r,, and 8,. To estimate the integral on the right side of (3.6), we

write

I

M dr 4,

where

g ={re®: -0,

IN

9<6,, 6, = hd "} .
Onrlr, = MNy\IN3, (3.5) yields
Re B(re'®) < B(r) — wirh?d™"

for somewrr > O which dependsonly onr, andr,, and so

2m l Pa(2) "D exp(d"B(2)) 2" "1dz = O(r " exp(d"B(r) - wirh?)) .

Finally, if

J= o [ Pa(t) 47 exp(a"p(z) 2 "tz

then

8,
J= 2_111 [ pa(re’®) V@ Yexp(d"B(re'®) -~ nlogr - ni6)ds .
Zo,

But (3.2), (3.4), and

Pa(re’®) @Y = py(r)~¥4" Y (1+0(®0))
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imply that

6,
J=(@mA(rN) [ ep(- %d“(rzﬁu(r) + rBi(r))0?) - (1+0O(B0) + O(d"®CF))dBO
-9,

= A(r,n)d™M2(2m(r2Bri (r) + rPr(r))"¥2 - (1+0(d""2)) ,

where
A(r,n) = pg(r) Y Vexp(d"B(r)-nlogr) ,
which together with the previous estimates proves Theorem 1.

From Theorem 1, we see that the largest values of yy, , when n varies correspond to values of n (defined

by (3.3)) which maximize
g(r) = B(r) — rPr(r) logr .
Now
gr(r) = = (Br(r) + rPri(r)) logr,

and since 3r(r) + rBri(r) > Oforr > pby Lemma2.6, gr(r) will have aunique maximumat r = 1 if
p <1, and will be < 0in (p,») if p =1. To complete the proof of Theorem 2, we need to consider

p < 1and study thedistribution of yy, , for r near the peak. Define

no = ng(h) = pr(1)d",

and set
x = (n-ng)d~ "2 .
We will consider
xx d"e .
If r isdefined by
rpr(r) = nd™",

then
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(n=ng)d™" = rPr(r) = Br(1)

= (r-1)o? + O((r-1)?) ,
where
02 = Bi(1) + Brr(1) .
Hence we have
r—1=xd"g? + Oo(x2d™") .

Expanding the quantities that occur in the statement of Theorem 1 in asimilar way, we obtain Theorem 2.

4. Applicationsand Extensions

The problem that originally led to our investigation was that of estimating By, ,,, the number of binary
trees of height < h and having n internal nodes. The recurrence for the generating polynomials is given in
the first paragraph of this paper. Itiseasytoseethat p = Oand p = 1. Theorems1 and 2 imply that for

large but fixed h, By, ,, is maximized for
n 02" 0.628968 ..., (4.1)
and that its maximum value is asymptotic to
272 . exp(2" - 0.407354...) - 0.685517... . (4.2)

Forh = 9, Bg, ismaximized for n = 322, as predicted by (4.1), and the value of Bg 3,, differs from that
predicted by (4.2) by less than 0.05%, which demonstrates how accurate the asymptotic approximations of
our theorems are. Fig. 1 presents a graph of the function 3(r), defined as in Theorem 1. Fig. 2 shows a

graph of the function
f(A) = B(r)-rP:(r) log r,
wherer isdetermined by 0 < r < 1, and r is determined by
rpr(r) = A

This function dominates the behavior of By, ,, sothatif h - oo and
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nOAN2" as h & o,
then

lim 27" log B,, , = f(A) .

h- o

There are many enumerative problems which involve nonlinear iterations of polynomial generating
functions, but which are not covered by our theorems. As an example, enumeration of AVL-trees (also

known as height-balanced binary trees[1,9]) leads [11] to the polynomial sequence defined by

Yo(2) =2, y1(2) = 2%,

Yh(2)(Yh(2) + 2yp-1(2)) for h=>1.

Yh+1(z)

Since yp+1(2) depends on yy,_1(2) as well as on y,(2), our results do not apply directly. However, it
should be possible to use the methods of this paper to prove results analogous to theorems 1 and 2 for these

polynomials, as well as for many other sequences satisfying similar recurrences.

It isalso possible to use the methods of this paper to study recurrences such as (1.2) where the y,, (z) are
entire functions with nonnegative coefficients and where P(z,y) might also not be a polynomial. However,

in many casesit is simpler to use the results of [6,7,14].

Finally, we mention that it should be possible to use our methods to study multivariate polynomials
satisfying nonlinear recurrences. Such polynomials occur, for example, in studies of 2,3-trees [15], where

oneisinterested in the coefficients of the polynomials Ay, (X,y) defined by Ag(x,y) = 1, and

Ans1(X.y) = xyAR(X,y)? + xy?An(x,y)® forh=0.

By applying our theorems to the sequences A, (x,1) and Ay (1,y), we can obtain more precise information
than is provided by [15], but it might be interesting to obtain estimates for the full distribution of the

coefficients of the Ay, (X,Y).



FIGURE CAPTIONS

Fig. 1.  Thefunction 3(r) for binary trees.

Fig.2.  Thefunction f(\), which equalsthelimitof 27" log By, ,ash, n - cowithn OA 2"
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