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ABSTRACT

This paper studies coefficients y h,n of sequences of polynomials

y h (x) =
n≥0
Σ y h,n x n

defined by non-linear recurrences. A typical example to which the results of this paper apply is that of the
sequence

B 0 (x) = 1 , B h +1 (x) = 1 + xB h (x)2 for h ≥ 0 ,

which arises in the study of binary trees. For a wide class of similar sequences a general distribution law
for the coefficients y h,n as functions of n with h fixed is established. It follows from this law that in many
interesting cases the distribution is asymptotically Gaussian near the peak. The proof relies on the saddle
point method applied in a region where the polynomials grow doubly exponentially as h → ∞.
Applications of these results include enumerations of binary trees and 2-3 trees. Other structures of interest
in computer science and combinatorics can also be studied by this method or its extensions.
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1. Introduction

In many enumerative problems in computer science and combinatorics one encounters the difficulty that

no closed form formulae exist for the quantities of interest and only recurrences for generating functions are

available. For example, if B h,n is the number of binary trees with n internal nodes and height ≤ h, then the

generating polynomials

B h (z) =
n≥0
Σ B h,n z n

satisfy the recurrence [5]



î B 0 (z) = 1 .

B h (z) = 1 + z(B h −1 (z) )2 for h ≥ 1 ,

In this paper, we introduce a new method for studying coefficients of sequences of polynomials that satisfy

recurrences of similar types.

We study sequences of polynomials y h (z), which we will refer to as PNI-sequences (for positive

nonlinear iteration), with

y h (z) =
n
Σ y h,n z n . (1.1)

They are defined by some initial y 0 (z) ≠ 0 which has non-negative coefficients and a recurrence

y h +1 (z) = P(z ,y h (z) ) , h ≥ 0 , (1.2)
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where P(z ,y) is a polynomial with non-negative coefficients,

P(z ,y) =
0≤k≤d
Σ P k (z) y k with p d (z) ≠ 0 , d > 1 . (1.3)

We define

µ =
h→ ∞
lim d−h deg y h (z) , (1.4)

ρ = inf { x : xε R + , y h (x) → ∞ as h → ∞} . (1.5)

Clearly µ and ρ exist and are finite for every PNI-sequence { y h (z) } that contains non-constant

polynomials. As will be explained below, it is sufficient to consider PNI-sequences which P(z ,y) and

y 0 (z) satisfy the following conditions:

(A) P(z ,y) is not a monomial (i.e., P(z ,y) ≠ bz ay d ).

(B) At least one of the y h , 0 ≤ h ≤ 2 has the property that

 y h (z) = y h ( 1 ) and  z = 1 => z = 1.

We prove two main results.

Theorem 1. Suppose that { y h (z) } is a PNI-sequence that satisfies conditions (A) and (B), and let λ 1 and

λ 2 be any real numbers that satisfy

0 < λ1 < λ2 < µ .

Then for any integers n and h with

λ 1 ≤ nd−h ≤ λ 2

we have, uniformly in n and h,

y h,n =
d h /2 √2π(r 2 β′ ′ (r) + rβ′ (r) )

rp d (r)−1/(d −1 ) exp (d h (β(r) − rβ′ (r) log r) )_ _____________________________________ ( 1 + O(d−h /2 ) ) , (1.6)

where r is the unique solution in (ρ,∞) of

rβ′ (r) = nd−h ,

and β(z) is a function which is defined on (ρ,∞) by
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β(z) = log y 0 (z) +
d −1

1_ ____ log p d (z) +
j =0
Σ
∞

d− j −1 log


î p d (z) y j (z) d

y j +1 (z)_ __________




, (1.7)

and is analytic there.

Theorem 2. Suppose that { y h (z) } satisfies the conditions of Theorem 1. Let Nh
* denote some n for which

y h,n is maximal. If ρ ≥ 1, then

h→ ∞
lim d−hNh

* = 0 .

If ρ < 1, then

Nh
* ∼ β ′ ( 1 ) d h as h → ∞ , (1.8)

and the y h, n are asymptotically Gaussian near the peak; for

 n −Nh
*  = O(d 2h /3 )

we have

y h,Nn
*

y h,n_ _____ = exp ( −
2
1_ _ σ−2 d−h (n −Nh

* )2 ) ( 1 +O(d−2h  n −Nh
*  3 ) ) , (1.9)

where

σ2 = β′ ( 1 ) + β′ ′ ( 1 ) .

In the remainder of this section we first make some remarks about these theorems, and then discuss

their connections to other work. Section 2 proves a series of auxiliary results that are at the heart of our

method, and from which theorems 1 and 2 are easily deduced in Section 3. Section 4 presents some

applications, possible extension, and numerical results.

Both theorems 1 and 2 give information about the coefficients of the polynomials y h (z) in terms of the

function β(z), which is defined by (1.7) in terms of the polynomials y h (z). This is not circular, however,

since the series in (1.7) is extremely rapidly convergent, and is determined to great accuracy by just a few

initial terms. Differentiating the basic recurrence (1.2) yields a recurrence for yh +1′ ′ (z) in terms of y h (z)

and yh′ ′ (z), and therefore the definition (1.7) of β(z) also gives a rapid way to compute the derivatives of
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β(z). As is shown by the examples in Section 4, the approximations (1.6) and (1.9) are very accurate even

for small values of h.

Many of the hypotheses of our theorems can be weakened. It is not essential, for example, that all the

coefficients of P(z ,y) or of the y h (z) be nonnegative. What is really crucial is that the y h (z) should grow

very rapidly as h → ∞ on the positive real axis and should be relatively small elsewhere. (cf. [6,7,14].)

However, the appropriate growth conditions are not always easy to check, and so we have chosen to restrict

our presentation to PNI-sequences, which are easy to characterize, and which are of greatest interest in

computer science and combinatorics.

Condition (A) is not necessary for the success of our method. In fact, Theorem A holds for PNI-

sequences which satisfy condition (B) but not condition (A), except that λ 1 may have to be bounded below

away from 0. However, for PNI-sequences that do not satisfy condition (A), the definition of β(z) can be

simplified. We note that if y h (z) is a PNI-sequence for which condition (A) fails to hold, then

P(z ,y) = bz ay d ,

for some b > 0, a ≥ 0 and so

y h (z) = (bz a ) d −1
dh −1_ _____

y 0 (z) dh

,

and we can reduce to the study of coefficients of high powers of y 0 (z). These, however, can be

investigated much more directly, without developing most of the analytic machinery of paper through use

of the central limit theorem. Much stronger results can also be proved in this situation [12].

Condition (B) is very easy to check, since a polynomial

y(z) =
k =0
Σ
m

a k z e k , 0 ≤ e 0 < e 1 < . . . < em , a 1 , . . . ,a m > 0 ,

has the property that  y(z) = y( 1 ) and  z = 1 imply z = 1 if and only if

gcd (e 1 −e 0 , e 2 −e 0 , . . . ,em −e 0 ) = 1 ,

which holds if and only if y(z) is not of the form
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y(z) = z e0 y *(z d ) (1.10)

for some polynomial y *(z) and some d > 1. The function of condition (B) is to ensure (see Lemma 2.1)

that for large h, the y h (z) are not of the form (1.10), since in that case our theorems are obviously not true.

However, PNI-sequences of polynomials y h (z) for which each y h (z) is of the form

z eh yh
* (z d )

can be studied by our method by looking at the sequences yh
* (z), provided d is chosen to be maximal. We

also note that by the proof of Lemma 2.1, condition (B) is equivalent to only y 2 (z) having the specified

property. Lemma 2.2 shows that condition (B) cannot be weakened.

Theorems 1 and 2 are proved in Section 3, while Section 2 proves a number of auxiliary lemmas. The

proofs rely on an analysis of the behavior of the polynomials y h (z) as h → ∞, for z ∈ C ,  z >  ρ. It is

shown that for z in a narrow strip of the form Re z > ρ + δ,  Im z <  δ for some fixed δ > 0, the

polynomials y h (z) exhibit doubly exponential growth:

y h (z) = g(z) α (z) dh

( 1 +o( 1 ) ) as h → ∞ (1.11)

for certain functions α (z), g(z), and that the y h (z) are considerably smaller away from the real axis. The

precise estimates we obtain enable us to determine the asymptotic behavior of the y h,n by expressing them

as contour integrals and using the saddle point method.

The key to the success of this method is the doubly exponential growth (1.11) of the y h (z). Equation

(1.11) generalizes the results of Aho and Sloane [2] about integer sequences satisfying nonlinear

recurrences of the type

x n +1 = xn
2 + g n

with  g n  <
4

x n_ __ for n ≥ n 0 .

Our results are related to the immense literature on the subject of rational iteration. (See, for example,

[3,4,8].) Most of the papers in that area are concerned with questions of convergence of iteration. In this

paper, on the other hand, we are operating almost exclusively in the region of divergence, and we
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concentrate on the rate and nature of divergence. In other situations, such as those of [5,10,11,13], it is

advantageous to study the iteration either within the convergence region or else right on the boundary

between convergence and divergence. Methods similar to some of those used in those papers could also be

used to obtain more information than is provided by Theorem 2 when ρ ≥ 1.

2. Proofs of Auxiliary Results

As a first step, we prove a technical result which will enable us to show that the polynomials y h (z) are

very small away from the positive real axis.

Lemma 2. If { y h (z) } is a PNI-sequence of polynomials that satisfies Condition (B), then for every h ≥ 2

and every rε R +,

 y h (z) = y h (r) and  z = r => z = r .

Proof. Let { y h (z) } satisfy the hypotheses of the lemma. Since y n (z) has nonnegative coefficients, for

 z = r, z ≠ 0, we have

 y h (z) =  
n
Σ y h,n z n  ≤

n
Σ y h,n r n = y h (r) , (2.1)

and equality can hold if and only if for some γ εC with γ = 1,

y h,n z n = γy h,n r n for all n . (2.2)

Let u = z / r = z / z. Then (2.2) is equivalent to

y h,n u n = γy h,n for all n ,

which is equivalent to  y h (u) = y h ( 1 ). Thus  y h (z) = y h (r) holds for some z ≠ r,  z = r if and only

if  y h (u) = y h ( 1 ) holds for some u ≠ 1,  u = 1.

Suppose now that m ≥ 1 and that for some z with  z = 1 we have  ym (z) = ym ( 1 ). The recurrence

(1.1) implies that


k =0
Σ
d

p k (z) ym −1 (z) k  =
k =0
Σ
d

p k ( 1 ) ym −1 ( 1 ) k . (2.3)
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Since all the coefficients of ym −1 (z) and of the p k (z) are nonnegative,

 p k (z) ≤ p k ( 1 ) , 0 ≤ k ≤ d ,

 ym −1 (z) ≤ ym −1 ( 1 ) ,

and so (2.3) can hold only if  ym −1 (z) = ym −1 ( 1 ). Repetition of this argument shows that if for some

z ≠ 1,  z = 1, we have  y h (z) = y h ( 1 ) for some h ≥ 2, then  ym (z) = ym ( 1 ) for 0 ≤ m ≤ h, and this

contradicts Condition (B) and proves the lemma.

Lemma 2.1 guarantees that for PNI-sequences { y h (z) } that satisfy Condition (B), y h (z) for h ≥ 2

achieves a unique maximum on  z = r at r. This means, in particular, that for large h, y h (z) will not be of

the form

y h (z) = z ah yh
* (z m ) (2.4)

for some polynomials yh
* (u) and some m > 1. The next Lemma shows that Condition (B) is in a sense

best possible for our problem because if it is violated, then the polynomials y h (z) can be written in the form

(2.4), and theorems 1 and 2 clearly cannot hold for such polynomials. The same result would not follow if

we only imposed conditions on y 0 (z) and y 1 (z), as is shown by the PNI-sequence defined by y 0 (z) = 1,

P(z ,y) = zy + z 3 y 2 . In this example  y h ( −1 ) = y h ( 1 ) for h = 0 , 1, but not for h = 2, and this

sequence does satisfy Condition (B).

Lemma 2.2. If { y h (z) } is a PNI-sequence of polynomials, and there is a z ≠ 1,  z = 1, such that

 y 2 (z) = y 2 ( 1 ), then there is an integer r ≥ 2 such that for each h ≥ 0,

y h (z) = z ah yn
* (z r ) , (2.5)

where the yh
* (n) are polynomials.

Proof. Suppose that z ≠ 1,  z = 1, and { y h (z) } satisfy the hypotheses of the lemma. By the arguments

used in the proof of Lemma 2.1, we see that  y 1 (z) = y 1 ( 1 ) and  y 0 (z) = y 0 ( 1 ) as well.
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If y 2 ,n = 0 for n < m and y 2 ,m ≠ 0, then  y 2 (z) = y 2 ( 1 ) implies that


n≥m
Σ y 2 ,n z n −m =

n≥m
Σ y 2 ,n . (2.6)

Since the first term inside the absolute value sign in (2.6) is y 2 ,n > 0, equality can hold if and only if

y 2 ,n z n −m = y 2 ,n for all n .

Therefore either y 2 ,n = 0 for all n > m (i.e., y 2 (x) is a monomial) or else z g = 1 for some integer g ≥ 2,

and if g is chosen to be minimal such that z g = 1, then y 2 ,n = 0 if n ≡ / m (mod g). In the second case, if r

is any prime factor of g, then y 2 ,n = 0 if n ≡ / m (mod r). The same arguments show that each of y h (x),

h = 0 , 1 is either a monomial or else has the property that y h,n = 0 if n ≡ / e h (mod r), where e h is the

smallest integer n such that y h,n ≡ / 0. Therefore each y h (x), 0 ≤ h ≤ 2, which is not a monomial, can be

written in the form

y h (x) = x eh yh
* (x r ) , (2.8)

where yh
* (t) is a polynomial. But any monomial can obviously be written in the form (2.8), so we conclude

that a representation of that form exists for each y h (x), 0 ≤ h ≤ 2.

Write

P(x ,y) =
0≤i , j < r
Σ g i , j (x r ,y r ) x iy j , (2.9)

where the g i , j (u ,v) are polynomials with nonnegative coefficients which are uniquely determined by (2.9).

Then by the basic recurrence (1.2),

y 1 (x) = x e1 y1
* (x r ) =

i , j
Σ g i , j (x r ,y 0 (x) r ) x i +e0 j y0

* (x r ) j ,

so we must have

e 1 ≡ i + e 0 j ( mod r) (2.10)

for each pair (i , j) such that g i , j (u ,v) ≠ 0. Similarly,

y 2 (x) = x e2 y2
* (x r ) =

i , j
Σ g i , j (x r ,y 1 (x) r ) x i +e1 j y1

* (x r ) j ,
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so that we must have

e 2 ≡ i + e 1 j ( mod r) (2.12)

for each pair (i , j) with g i , j (u ,v) ≠ 0.

Suppose first that there are two distinct pairs (i , j) such that g i , j (u ,v) ≠ 0. Call them (i 1 , j 1 ) and

(i 2 , j 2 ). Then by (2.11),

i 1 ≡ e 1 − e 0 j 1 ( mod r) , (2.13)

i 2 ≡ e 1 − e 0 j 2 ( mod r) ,

and if j 1 ≡ j 2 (mod r), then we would have i 1 ≡ i 2 (mod r), which is a contradiction, since

0 ≤ i 1 ,i 2 , j 1 , j 2 ≤ r − 1 and (i 1 , j 1 ) ≠ (i 2 , j 2 ). Hence j 1 ≡ / j 2 (mod r). Then by (2.12) and (2.13)

e 2 ≡ e 1 + (e 1 −e 0 ) j 1 ≡ e 1 + (e 1 −e 0 ) j 2 ( mod r) ,

which implies that e 1 ≡ e 0 (mod r), since j 1 ≡ / j 2 (mod r) and r is prime. But in that case

e 0 ≡ i + e 0 j ( mod r)

for all pairs (i , j) with g i , j (u ,v) ≠ 0, and then an inductive argument using (2.9) shows that

y h (x) = x e0 yn
* (x r )

for all h ≥ 0, and this gives the desired result.

To conclude the proof of the lemma, it only remains to consider the case that there is only one pair (i , j)

with g i , j (u ,v) ≠ 0. But then

y h +1 (x) = g i , j (x r ,y h (x) r ) x iy h (x) j , (2.14)

and since (2.8) holds for 0 ≤ h ≤ 2, (2.14) shows that it holds for all h ≥ 2 with appropriate e h . Thus the

lemma is true in this case as well.

We now derive a series of lemmas giving size estimates for the polynomials y h (z) which will lead to

proofs of theorems 1 and 2.
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Lemma 2.3. Suppose that { y h (z) } is a PNI-sequence of polynomials and define

ρ = inf { x : x ∈  R + , y h (x) → ∞ as h → ∞} .

Then for every δ > 0, there exist positive constants γ, η, ξ such that for z in the region

R(δ) = { z :  Im (z) ≤  η , ρ + δ ≤ Re (z) ≤ δ−1 } (2.15)

we have

 y h (z) ≥  γ exp (ξd h ) . (2.16)

Proof. Choose η 1 > 0 so small that p d (z) has no zeros in the region

R 1 = { z :  Im (z) ≤  η 1 , ρ + δ ≤ Re (z) ≤ δ−1 } ,

and let

a = min





î

z∈ R 1

min


 2

1_ _ p d (z)




,
2
1_ _







.

Then for any large enough K 1 we must have

 P(z ,y) > a y d (2.17)

if z ∈ R 1 and  y ≥ K 1 , as can be seen from the inequality

 P(z ,y) >   p d (z)  y d  1 −
k =0
Σ

d −1


p d (z)

p k (z)_ _____   y k −d  ,

and the fact that the p k (z) are bounded for z ∈ R 1 .

If

 y > a−1/(d −1 ) ,

then

a y d >  y ,

so that if



- 11 -

K 2 = max (K 1 ,a−1/(d −1 ) ) ,

and if

u 0 = y and u n +1 = P(z ,u n ) for n ≥ 0 ,

then for z ∈ R 1 , y ≥ K 2 we have

u k ≥ a d −1
d k −1_ _____

 y d k

. (2.18)

Therefore, if  y is large enough, the u k exhibit doubly exponential growth.

Set

K 3 = max (K 2 , 2a−1 ) ,

and let h 0 be such that

y h0
(ρ + δ) ≥ 2 K 3 .

Since y h0
(z) is continuous and increasing along the positive real axis, we can find η 2 such that

0 < η2 < η1 and if

R 2 = { z :  Im (z) ≤  η 2 , ρ + δ ≤ Re (z) ≤ δ−1 } ,

then

 y h0
(z) ≥ K 3

for z ∈ R 2 . But then the estimate (2.18) applies, and

 y h0 +k (z) ≥ a d −1
d k −1_ _____

K3
d k

≥ 
î K 3 a−1/(d −1 ) 


d k

≥ 2d k

,

so that the estimate (2.16) of the lemma clearly applies for h ≥ h 0 and z ∈ R 2 if we take γ and ξ small

enough.

To complete the proof, it suffices to extend the estimate (2.16) to all h. We note that if η ε( 0 ,η 2 ) is

chosen small enough, then none of the polynomials y 0 (z) , . . . ,y h0 −1 (z) will have a zero in the region

R(δ) ⊆ R 2 defined by (2.15), so that (2.16) will hold for these y h (z) also in that region if we take γ small
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enough.

Lemma 2.4. If { y h (z) } is a PNI-sequence that satisfies Condition (B), then for any δ,η > 0 there is a

constant ω > 0 such that for h ≥ 2, ρ + δ ≤  z ≤  δ−1 , and

z /∈ R(δ,η ) = { z : ρ + δ ≤  z <  δ−1 ,  Im (z) <  η} ,

we have

 y h (z) ≤ y h ( z ) exp ( − ωd h ) . (2.19)

Proof. By Lemma 2.3, if h is large enough, say h ≥ h 0 , and

 y h (z) ≤ y h ( z ) exp ( −c)

for some positive c, e c ≤ y h ( z )
1⁄2 , then

 y h +1 (z) ≤ P( z ,y h ( z ) e−c )

≤ p d ( z ) y h ( z ) de−cd

k =0
Σ
d

p d ( z )

p d −k ( z )_ ________ y h ( z )−ke ck

≤ y h +1 ( z ) e−cd ( 1 + O(e cy h ( z )−1 ) ) (2.20)

≤ y h +1 ( z ) exp ( −cd +2cξ −1 d−h ) ≤ y h +1 ( z ) exp ( −cd( 1 −d−h /2 ) ) .

By Lemma 2.1,

 y h0
(z) ≤ y h0

( z ) e− ε (2.21)

for all z, z /∈ R(δ), ρ + δ ≤  z ≤  δ−1 and some ε > 0, so that (2.20) implies

 y h0 +k (z) ≤ y h0 +k ( z ) exp ( − εd k

j =h0

Π
h0 +k −1

( 1 −d− j /2 ) ) (2.22)

≤ y h0 +k ( z ) exp ( − εd k /2 ) ,

which proves the lemma for h ≥ h 0 . But the estimate (2.19) follows trivially for 2 ≤ h ≤ h 0 − 1 from

Lemma 2.1 if we choose ω small enough.
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Lemma 2.5. If { y h (z) } is a PNI-sequence, then for any δ > 0 there is a ξ > 0 such that for z ∈ R(δ)

(defined as in Lemma 2.3 ) we have

y h (z) = exp (d h β(z) −
d −1

1_ ____ log P d (z) ) ( 1 + O( exp ( − ξd h ) ) ) ,

where β(z) is defined as in Theorem 1 and is analytic in R(δ).

Proof. Since none of the y h (z) has a zero in R(δ), we can define

v h (z) = log y h (z) , (2.23)

where for real z, we take the principal value of the logarithm, and for z ∈ R(δ) −  R, the logarithm is

determined by analytic continuation. The basic recurrence (1.2) can be written

y h +1 (z) = p d (z) y h (z) d


î
1 +

p d (z) y h (z) d

q(z ,y h (z) )_ ___________




, (2.24)

where

q(z ,y) = P(z ,y) − p d (z) y d . (2.25)

Taking logarithms of both sides of (2.24), we obtain

v h +1 (z) = dv h (z) + log p d (z) + log


î
1 +

p d (z) y n (z) d

q(z ,y h (z) )_ ___________




. (2.26)

Since

v 0 (z) = log y 0 (z) ,

iterating (2.26) yields

v h (z) = d h log y 0 (z) +
d −1

d h −1_ _____ log p d (z) +
m =1
Σ
h

d j −1 r h − j (z) , (2.27)

where
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r j (z) = log


î
1 +

p d (z) y j (z) d

q(z ,y j (z) )_ __________




. (2.28)

We now introduce the function

β(z) = log y 0 (z) +
d −1

1_ ____ log p d (z) +
j =0
Σ
∞

d− j −1 r j (z) . (2.29)

By Lemma 2.3, the r j (z) are bounded in R(δ), so the series in (2.29) converges and makes β(z) an analytic

function for z ∈ R(δ). Furthermore, (2.27) shows that

v h (z) = d h β(z) −
d −1

1_ ____ log p d (z) −
j =0
Σ
∞

d− j −1 r h + j (z) , (2.30)

and by Lemma 2.3 the last sum in (2.30) is

O( exp ( − ξd h ) )

for some ξ > 0, which concludes the proof of the lemma.

For further reference, we note that it follows from (2.23), (2.29), and (2.30) that

β(z) =
h→ ∞
lim d−hv h (z) =

h→ ∞
lim d−h log y h (z) . (2.31)

In Lemma 2.5, β(z) was defined for z ∈ R(δ). However, the definition of β(z) does not depend on δ, so we

conclude that β(z) is defined and analytic in the union of all the R(δ) for δ > 0.

Before proceeding to the proofs of the theorems, we prove some auxiliary results about β(z).

Lemma 2.6. Suppose { y n (z) } is a PNI-sequence which satisfies conditions (A) and (B), and let µ ,ρ be

defined by (1.4) and (1.5), respectively. Then

(zβ′ (z) ) ′ > 0 for z ∈ (ρ,∞) , (2.32)

and

z→ ∞
lim zβ′ (z) = µ . (2.33)

If P(z ,y) is not a monomial (i.e., P(z ,y) ≠ bz ay d ), then
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z→ ρ +
lim zβ′ (z) = 0 . (2.34)

Proof. By (2.31), for any z ∈ (ρ,∞), we have

zβ′ (z) =
h→ ∞
lim d−h

y h (z)

zyh′ ′ (z)_ _____ . (2.35)

We first observe that for any entire function f (z) ≠ 0 with nonnegative Taylor series coefficients,

f (z) =
k =0
Σ
∞

f k z k , f k ≥ 0 ,

the quotient

g(z) =
f (z)

z f ′ (z)______

is an increasing function of z for z ∈  R +, since computing the derivative of g(z) yields

zg ′ (z) = z 2

f (z)
f ′ ′ (z)_ _____ + z

f (z)
f ′ (z)_ ____ −



î f (z)

z f ′ (z)______




2

, (2.36)

and the quantity on the right side of (2.36) is the variance of the random variable X such that

Pr (X =k) =
f (z)

f k z k
_ ____ .

Moreover, we see that g ′ (z) = 0 is possible if and only if only one of the f k is ≠ 0.

Next, we prove that if f (z) = f 1 (z) + f 2 (z), where f 1 (z) and f 2 (z) are both nonzero entire functions

with nonnegative Taylor coefficients,

f i (z) =
k =0
Σ
∞

f i ,k z k , i = 1 , 2 ,

then

z


î f (z)

z f ′ (z)______




′ ′
≥

f (z)

f 1 (z)_ ____ . z


î f 1 (z)

z f 1 ′ (z)_ ______




′ ′
(2.37)

for any z ∈  R +. To see this, note that by the preceding paragraph, the quantity on the left side of (2.37) is

the variance of the random variable X such that
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Pr (X =k) =
f (z)

f k z k
_ ____ .

But X is a mixture of the random variables X 1 and X 2 , where

Pr (X i =k) =
f i (k)

f i ,k z k
_ _____ ,

with weights f i (z)/ f (z). (A mixture λY 1 + ( 1 − λ) Y 2 of random variables Y 1 and Y 2 with weights λ and

1 − λ corresponds to choosing Y 1 with probability λ and Y 2 with probability 1 − λ.) Thus to prove (2.37), it

will suffice to show that if Y 1 and Y 2 are any real-valued random variables, and λ ∈ [ 0 , 1 ], then

Var (λY 1 + ( 1 − λ) Y 2 ) ≥ λ Var (Y 1 ) + ( 1 − λ) Var (Y 2 ) . (2.38)

If F i denotes the distribution function of X i , then (2.38) is equivalent to

λ ∫ x 2 dF 1 + ( 1 − λ)∫ x 2 dF 2 − (λ ∫ x dF 1 + ( 1 − λ)∫ x dF 2 )2

≥ λ∫ x 2 dF 1 − λ(∫ x dF 1 )2 + ( 1 − λ)∫ x 2 dF 2 − ( 1 − λ) (∫ x dF 2 )2 ,

which is easily seen to hold. This completes the proof of (2.37).

We now apply (2.37) is with

f 1 (z) = p d (z) y h (z) d , f 2 (z) = y h +1 (z) − f 1 (z) = P(z ,y h (z) ) − p d (z) y h (z) d .

We discover

z


î y h +1 (z)

zyh +1′ ′ (z)_ _______




′ ′
≥

y h +1 (z)

p d (z) y h (z) d
_ ___________ . z .



î p d (z)

zpd′ ′ (z)_ _____ + d
y h (z)

zyh′ ′ (z)_ _____




′ ′

≥ d
y h +1 (z)

p d (z) y h (z) d
_ ___________ . z



î y n (z)

zyh′ ′ (z)_ _____




′ ′
.

If we iterate this inequality, we obtain

z


î y h +1 (z)

zyh +1′ ′ (z)_ _______




′ ′
≥ d h −2 z



î y 2 (z)

zy2′ ′ (z)_ _____




′ ′
.

j =2
Π

h

y j +1 (z)

p d (z) y j (z) d
_ __________ . (2.39)

Now Lemma 2.3 implies that the product
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j =2
Π
∞

y j +1 (z)

p d (z) y j (z) d
_ __________

converges to a number b = b(z) > 0, and since each factor is ≤ 1, we deduce from (2.39) that

d−hz


î y h (z)

zyh′ ′ (z)_ _____




′ ′
≥ d−1 b z



î y 2 (z)

zy2′ ′ (z)_ _____




′ ′
, (2.40)

and the last factor on the right side in (2.40) is > 0 by Condition (B). Since z(zβ′ (z) ) ′ is the limit of the

left side of (2.40) as h → ∞, we obtain the claim (2.32) of the lemma.

To prove (2.33), we note that if f (z) is any polynomial with nonnegative coefficients, then

z f ′ (z) ≤ deg ( f (z) ) . f (z) , z ∈  R + ,

and so

zβ′ (z) ≤
h→ ∞
lim d−h deg y h (z) = µ . (2.41)

To complete the proof of (2.33), note that for h ≥ h 0 ,

deg y h +1 (z) = d deg y h (z) + deg p d (z) ,

and so

deg y h0 +k (z) = d k deg y h0
(z) +

d −1
d k −1_ _____ deg p d (z) . (2.42)

Next, note that for z ∈  R +,

y h +1 ′ (z) ≥ dp d (z) y h (z) d −1 yh′ ′ (z) ,

and so

y h +1 (z)

yh +1′ ′ (z)_ _______ ≥ d
y h (z)

yh′ ′ (z)_ _____ ( 1 − γe− ξdh

)

for some γ, ξ > 0, where this holds uniformly for all h ≥ 1 and all z ∈ (ρ +1 ,∞) by Lemma 2.3 (applied

with any δ < 1 such that R(δ) ≠ φ) and the fact that each of the y h (z) is increasing on  R +. Therefore for

any ε > 0, if we choose h 1 such that
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h =h1

Π
∞

( 1 − γe− ξdh

) > 1 − ε/2 ,

then for any z ∈ (ρ +1 ,∞) and any h ≥ h 1 we will have

zβ′ (z) ≥ d−h

y h (z)

zyh′ ′ (z)_ _____ ( 1 − ε/2 ) . (2.43)

If we now choose h 2 ≥ max (h 0 ,h 1 ) , and z so large that

y n2
(z)

zyh2
′ ′ (z)

_ ______ ≥ ( 1 − ε/10 ) deg y h2
(z) ,

then by (2.43) we will have

zβ′ (z) ≥ ( 1 − ε) d−h2 deg y h2
(z) .

Since by (2.42)

d−h2 deg y h2
(z) =

h→ ∞
lim d−h deg y h (z) = µ ,

this together with (2.41) proves (2.33).

To complete the proof of the lemma, we need to prove (2.34) when P(z ,y) is not a monomial. Define

t h (z) = d−h

y h (z)

yh′ ′ (z)_ _____ , (2.44)

a h (z) =

k
Σ p k (z) y h (z) k

k
Σ pk′ ′ (z) y h (z) k

_ ______________ , (2.45)

b h (z) =

k
Σ p k (z) y h (z) k

k
Σ d

k_ _p k (z) y h (z) k

_ ________________ . (2.46)

Then the recurrence (1.2) gives

t h +1 (z) = d−h −1 a h (z) + b h (z) t h (z) . (2.47)

If E = max{deg p k (z) }, then comparison of terms in the numerators and denominators of (2.45) and

(2.46) shows that for any z ∈  R +,
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0 ≤ a h (z) ≤ Ez−1 ,

0 ≤ b h (z) ≤ 1 .

Hence

t h +1 (z) ≤ t h (z) + O(d−hz−1 ) , (2.48)

and therefore

t h +m (z) ≤ t h (z) + Cd −hz−1 (2.49)

for all m ∈ Z + and some C > 0.

Let us first suppose that ρ ≠ 0. We show that in this case y h (ρ) is bounded as h → ∞. To see this,

note that for every r ∈  R + there is a Y(r) > 0 such that P(z ,y) > 2y for z ≥ r, y ≥ Y(r). Now if y h (ρ) is

unbounded as h → ∞, then by continuity we must have y k (ρ′ ) > Y(ρ/2 ) some large k and for some

ρ′ ∈ (ρ/2 ,ρ), and then y h (ρ′ ) is also unbounded as h → ∞ by the argument above, which contradicts the

definition of ρ.

Since y h (ρ) is bounded and P(x ,y) is not a monomial, we see from (2.46) that there is some B < 1

such that

b n (ρ) ≤ B , h ≥ 0 .

Hence

t h +1 (ρ) ≤ Bt h (ρ) + O(d−h ) . (2.50)

Since the t h (ρ) are bounded as h → ∞, as is shown by (2.49), we find by iterating (2.50) that for some

C 1 > 0

t 2h (ρ) ≤ C 1 (B h + d−h ) , t 2h +1 ≤ C 1 (B h + d−h ) . (2.51)

Hence t h (ρ) → 0 as h → ∞. Given ε > 0, let us choose h 0 so that

Cd −h0 + C 1 (B h0 + d−h0 ) < ε/4 . (2.52)

Then there is a δ > 0 such that
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t 2h0
(z) ≤ ε/2

for ρ ≤ z ≤ ρ + δ. But then (2.49) and (2.52) imply that

t h (z) ≤ ε

for all h ≥ 2h 0 and z ∈ [ρ,ρ + δ], which implies that β′ (z) ≤ ε for z in that interval. Since this holds for

every ε > 0, we must have β′ (z) → 0 as z → ρ.

To complete the proof of the lemma, we need to prove (2.34) when ρ = 0. We first observe that it will

suffice to show that

h→ ∞
lim

z→0+
lim z t h (z) = 0 . (2.53)

To see this, note that if (2.53) holds, then for any ε > 0 we can find h 0 and δ > 0 such that for z ∈ ( 0 ,δ),

z t h0
(z) ≤ ε/4 , Cd −h0 ≤ ε/4 .

But then (2.49) shows that

z t h0 +m (z) ≤ ε , m ∈ Z + , z ∈ ( 0 ,δ) ,

which proves the claim.

Suppose now that ρ = 0 and that y h ( 0 ) = 0 for all large h. If we write

y h (z) = z vn yh
* (z) ,

where yh
* (z) is a polynomial with yh

* ( 0 ) ≠ 0, then

z→0+
lim

y h (z)

zyn′ ′ (z)_ _____ = v h .

But P(x ,y) is not a monomial, so v n +1 ≤ (d −1 ) v h , and therefore

z→0+
lim z t n (z) ≤ ( 1 −d−1 ) h ,

which proves (2.53) in this case. On the other hand, if y h ( 0 ) ≠ 0, then

z→0
lim

y h (z)

zyh′ ′ (z)_ _____ = 0 ,
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and (2.53) again holds. This finally concludes the proof of the lemma.

3. Proofs of the Theorems

We now use the results of Section 2 to prove Theorem 1. Suppose that all the hypotheses of that

theorem are satisfied. We use the Cauchy integral representation

y h,n =
2πi
1_ ___

Γ
∫ y h (z) z−n −1 dz , (3.1)

which is valid for any simple closed curve with the origin in its interior.

Let

λ =
d h

n_ __ , (3.2)

so that λ 1 ≤ λ ≤ λ 2 . We choose for Γ the circle centered at the origin of radius r, where

rβ′ (r) = λ . (3.3)

Since zβ′ (z) is strictly increasing from 0 to µ between z = ρ and z = ∞ by Lemma 2.6, Eq. (3.3) defines r

uniquely and shows that for λ ∈ [λ 1 ,λ 2 ], r ∈ [r 1 ,r 2 ], where ρ < r 1 < r 2 < ∞. The choice of the above

contour is inspired by the fact that r satisfying (3.3) is an approximate saddle point of the integrand in (3.1).

By Lemma 2.5, we find that there is a constant θ0 > 0 such that β(z) is analytic in the region

r 1 ≤  z ≤ r 2 , − θ0 ≤ Arg (z) ≤ θ0 .

In that region we have the expansion

Re β(re iθ ) = β(r) −
2
1_ _ θ2 (r 2 β′ ′ (r) + rβ′ (r) ) + O(θ4 ) , (3.4)

and, by taking θ0 small enough, we can ensure that

Re β(re iθ ) ≤ β(r) −
4
1_ _ θ2 (r 2 β′ ′ (r) + rβ′ (r) ) . (3.5)

If Γ 1 denotes the section of the circle z = re iθ with θ0 ≤ θ ≤ 2π − θ0 , then by lemmas 2.4 and 2.5,
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2πi
1_ ___

Γ 1

∫ y h (z) z−n −1 dz = O(r−n exp (d h (β(r) − w) ) ) ,

where w > 0 depends only on r 1 , r 2 , and θ0 . If Γ 2 denotes the section of this same circle with

− θ0 ≤ θ ≤ θ0 , then Lemma 2.5 implies that

2πi
1_ ___

Γ 2

∫ y h (z) z−n −1 dz =
2πi
1_ ___

Γ 2

∫ p d (z)−1/(d −1 ) exp (d h β(z) ) z−n −1 dz

+ O(r−n exp (d n (β(r) −w ′ ) ) ) , (3.6)

where w ′ > 0 again depends only on r 1 , r 2 , and θ0 . To estimate the integral on the right side of (3.6), we

write

Γ 2 = Γ3 ∪ Γ 4 ,

where

Γ 3 = { re iθ : − θ1 ≤ θ ≤ θ1 , θ1 = hd−h /2 } .

On Γ 4 = Γ2 \Γ 3 , (3.5) yields

Re β(re iθ ) ≤ β(r) − w ′ ′ h 2 d−h

for some w ′ ′ > 0 which depends only on r 1 and r 2 , and so

2πi
1_ ___

Γ 4

∫ p d (z)−1/(d −1 ) exp (d h β(z) ) z−n −1 dz = O(r−n exp (d h β(r) − w ′ ′ h 2 ) ) .

Finally, if

J =
2πi
1_ ___

Γ 3

∫ p d (t)−1/(d −1 ) exp (d h β(z) ) z−n −1 dz ,

then

J =
2π
1_ __

− θ1

∫
θ1

p d (re iθ )−1/(d −1 ) exp (d h β(re iθ ) − n log r − niθ) dθ .

But (3.2), (3.4), and

p d (re iθ )−1/(d −1 ) = p d (r)−1/(d −1 ) ( 1 +O(θ ) )
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imply that

J = ( 2π)−1 A(r ,n)
− θ1

∫
θ1

exp ( −
2
1_ _ d h (r 2 β′ ′ (r) + rβ′ (r) ) θ2 ) . ( 1 +O(θ ) + O(d h θ 3 ) ) dθ

= A(r ,n) d−h /2 ( 2π(r 2 β′ ′ (r) + rβ′ (r) )−1/2 . ( 1 +O(d−h /2 ) ) ,

where

A(r ,n) = p d (r)−1/(d −1 ) exp (d h β(r) −n log r) ,

which together with the previous estimates proves Theorem 1.

From Theorem 1, we see that the largest values of y h,n when n varies correspond to values of n (defined

by (3.3)) which maximize

g(r) = β(r) − rβ′ (r) log r .

Now

g ′ (r) = − (β′ (r) + rβ′ ′ (r) ) log r ,

and since β′ (r) + rβ′ ′ (r) > 0 for r > ρ by Lemma 2.6, g ′ (r) will have a unique maximum at r = 1 if

ρ < 1, and will be < 0 in (ρ,∞) if ρ ≥ 1. To complete the proof of Theorem 2, we need to consider

ρ < 1 and study the distribution of y h,n for r near the peak. Define

n 0 = n 0 (h) = β′ ( 1 ) d h ,

and set

x = (n −n 0 ) d−h /2 .

We will consider

 x ≤ d h /6 .

If r is defined by

rβ′ (r) = nd−h ,

then
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(n −n 0 ) d−h = rβ′ (r) − β′ ( 1 )

= (r −1 ) σ2 + O( (r −1 )2 ) ,

where

σ2 = β′ ( 1 ) + β′ ′ ( 1 ) .

Hence we have

r − 1 = xd−h /2 σ2 + O(x 2 d−h ) .

Expanding the quantities that occur in the statement of Theorem 1 in a similar way, we obtain Theorem 2.

4. Applications and Extensions

The problem that originally led to our investigation was that of estimating B h,n , the number of binary

trees of height ≤ h and having n internal nodes. The recurrence for the generating polynomials is given in

the first paragraph of this paper. It is easy to see that ρ = 0 and µ = 1. Theorems 1 and 2 imply that for

large but fixed h, B h,n is maximized for

n ∼ 2h 0. 628968 . . . , (4.1)

and that its maximum value is asymptotic to

2−h /2 . exp ( 2h . 0. 407354 . . .) . 0. 685517 ... . (4.2)

For h = 9, B 9 ,n is maximized for n = 322, as predicted by (4.1), and the value of B 9 , 322 differs from that

predicted by (4.2) by less than 0.05%, which demonstrates how accurate the asymptotic approximations of

our theorems are. Fig. 1 presents a graph of the function β(r), defined as in Theorem 1. Fig. 2 shows a

graph of the function

f (λ ) = β(r) − rβ′ (r) log r ,

where r is determined by 0 < r < 1, and r is determined by

rβ′ (r) = λ .

This function dominates the behavior of B h, n , so that if h → ∞ and
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n ∼ λ 2h as h → ∞ ,

then

h→ ∞
lim 2−h log B h, n = f (λ ) .

There are many enumerative problems which involve nonlinear iterations of polynomial generating

functions, but which are not covered by our theorems. As an example, enumeration of AVL-trees (also

known as height-balanced binary trees [1,9]) leads [11] to the polynomial sequence defined by

y 0 (z) = z , y 1 (z) = z 2 ,

y h +1 (z) = y h (z) (y h (z) + 2 y h −1 (z) ) for h ≥ 1 .

Since y h +1 (z) depends on y h −1 (z) as well as on y h (z), our results do not apply directly. However, it

should be possible to use the methods of this paper to prove results analogous to theorems 1 and 2 for these

polynomials, as well as for many other sequences satisfying similar recurrences.

It is also possible to use the methods of this paper to study recurrences such as (1.2) where the y h (z) are

entire functions with nonnegative coefficients and where P(z ,y) might also not be a polynomial. However,

in many cases it is simpler to use the results of [6,7,14].

Finally, we mention that it should be possible to use our methods to study multivariate polynomials

satisfying nonlinear recurrences. Such polynomials occur, for example, in studies of 2,3-trees [15], where

one is interested in the coefficients of the polynomials A h (x ,y) defined by A 0 (x ,y) = 1, and

A h +1 (x ,y) = xyAh (x ,y)2 + xy2 A h (x ,y)3 for h ≥ 0 .

By applying our theorems to the sequences A n (x , 1 ) and A h ( 1 ,y), we can obtain more precise information

than is provided by [15], but it might be interesting to obtain estimates for the full distribution of the

coefficients of the A h (x ,y).



FIGURE CAPTIONS

Fig. 1. The function β(r) for binary trees.

Fig. 2. The function f (λ ), which equals the limit of 2−h log B h, n as h , n → ∞ with n ∼ λ 2h .
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