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A radically different concept for a cryptosystem has been proposed by Bennett, Brassard,
Breidbart, and Wiesner [10]. They call it quantum cryptography and its security is based on
the uncertainty principle of quantum physics. (A very complete list of references on this subject
can be found in the paper of Bennett and Brassard [9].) If such systems become feasible, the

cryptanalytic tools discussed here will be of no use.
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E(mq) *x E(mg) = E(mimy)modn. There are four other privacy homomorphisms mentioned
in [137]. Brickell and Yacobi [27] showed that two of these can be broken with ciphertext only

attacks and the other two can be broken with known plaintext attacks.

Although many of the encryption machines used during World War II were broken during the
war, new techniques for breaking them are still being discovered. The techniques of Andelman and
Reeds [7] for cryptanalyzing rotor machines and the comprehensive book covering cryptanalysis

of WWII era encryption machines by Deavours and Kruh [40] are excellent examples.

Schnorr [142] proposed a algorithm for contructing a string, G,,(z) of length 2n2?" bits from
a random seed, z, of length n2™ bits. He claimed that no statistical test that depended on fewer
than 2°0%) bits could distinguish Gy, (z) from a random bit string. However, Rueppel [139] has
demonstrated a statistical test that depends on only 4n bits that does distinguish (with very high
proability) G,(z) from a random string. Furthermore, Rueppel has shown that the seed, z, can be
computed in time O(n2") using only n2" 4+ O(1) bits of G,(z). Thus, Schnorr’s random number

generator expands the randomness of the seed by at most a constant number of bits.

Matias and Shamir [100] developed a novel idea for encrypting video signals. A randomly
generated curve which passes through all pixels of a video signal is used to tranmit the video
picture. The light values at the pixels are then sent in the clear. Johan Hastad [65] showed that
this method was insecure if the same curve is used to transmit many pictures. Bertilsson, Brickell,
and Ingemarsson [13] showed that it was insecure if many different curves were used to transmit
similar pictures. Together, these results indicate that this scheme is unlikely to be secure without

some major modifications.
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at Eurocrypt 87 as an alternative to DES for use in software. FEAL is a 4 round substitution-
permutation cryptosystem with a 64 bit key. Den Boer [42] soon found an attack on FEAL which
requires only 10,000 chosen plaintexts. This has since been improved by Murphy [110] to an
attack which needs only 20 chosen plaintexts. FEAL has since been modified to become FEAL-N
[111], where N is the number of rounds. The methods that Biham and Shamir [14] developed can
be used to break FEAL-8 with less than 2000 chosen plaintexts, and to break FEAL-N for N < 31

with fewer chosen plaintexts than the number of encryptions needed in an exhaustive key search.
13. Additional Comments
In this section we will mention a few additional results, but without any details.

The need to protect computer files has created a need for very efficient secure cryptosystems.
However, many of the cryptosystems designed and sold to fill this need have been shown to be
insecure. Reeds and Weinberger [136] have shown how to break the UNIX™ crypt command
using a ciphertext only attack. Kochanski [82] studied five security products designed for the IBM
Personal Computer. He found them to be extremely insecure. He broke all of them using only
a PC and without any knowledge about the encryption algorithms that was not provided by the
manufacturer with the purchase of the product. Four of them, he broke with a ciphertext only

attack. A purchaser of these products should be very skeptical about their claims of security.

Rivest, Adleman, and Dertouzos [137] introduced several privacy homomorphisms. Essentially,
a privacy homomorphism is an encryption function in which desired operations on plaintext
messages can be achieved by performing corresponding operations on ciphertext messages. For

example, E(m) = m°®modn, the RSA encryption function, is a privacy homomorphism since
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DES, n = 2%%.) Suppose that Alice has two messages, z, a message that Bob wants to sign, and
y, a message that Alice wants signed but Bob is not willing to sign. Alice prepares about /n
different slight variations of z and of y and computes the hash functions of each of them. With
high probability, she will find variations & and ¢ that hash to the same point. She gives & to Bob

to be signed, but she can now use the signature of  as a signature for 7.

Another version of the birthday attack can be used to break this system even if Alice only has
access to one valid signature and cannot obtain any additional ones. In the Rabin scheme, a text,
My, ..., M,,is signed by picking an Hg at random. Then, H; = Ep(H;—q) fori=1, ..., r.

Finally, the pair (Ho, H,) is signed using RSA.

Suppose that Alice is given the signature for a pair (Hg, G). She then picks My, ..., M,_»
to be anything she likes, and computes H; = FEp (H;—1) for e =1, ..., r — 2. Alice picks
vn X’s and computes Ex(H,_3) for each X. She picks /n Y’s and computes Dy (G) for each
Y. With high probability, she will find a pair (X,Y') such that Ex(H,_2) = Dy(G). Then the

signature for (Hp, G) will be a valid signature for My, ..., M,_, X, Y.

Davies and Price [39] proposed an iterated form of the Rabin scheme in order to avoid this
latter birthday attack. They proposed going through all of the messages twice. Coppersmith [33]
showed that this scheme is still susceptible to a birthday attack. See Jueneman [76] for a survey

of these results.
12. FEAL

FEAL (Fast Data Encipherment Algorithm) was proposed by Shimizu and Miyaguchi [152]
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to the same ciphertext. Using their algorithm, they discovered many collisions in DES. It is not

known how the existence of collisions can be used to aid in the cryptanalysis of DES.k
11.3 Structural properties of DES

The S-boxes introduce nonlinearity into the DES. There are eight S-boxes in the DES, each
of which is a set of four permutations on sixteen elements. In the first public analysis of DES by
Hellman et al. [69], there were several properties noted that were satisfied by all of the S-boxes.
It was obvious that the S-boxes were not chosen at random, but there is no known cryptographic
weakness resulting from these properties. Shamir [147] discovered an additional property of the
S-boxes that at first looked very suspicious. However, Brickell, Moore, and Purtill [26] showed
that this additional property was the result of the design properties noted by Hellman et al. [69]

and Brickell et al. [26].
11.4 Birthday Attacks

There have been some cryptanalytic attacks based on the so called “birthday paradox.” If
ay/n items are drawn with replacement from a set of size n, the probability that 2 of them will be
a match is about 1 — e~%°/2, This means that in a random group of 24 people, the probability
that two will have the same birthday is about 1/2. This is an old and well understood concept

and it has been the essential point of some recent cryptanalytic attacks.

Rabin [131] described a scheme for authenticating data using any block cipher as a hash
function and RSA for a signature of the hashed value. Yuval [165] showed that this system could

be broken with a birthday attack. Let n be the size of the image space of the hash function. (For
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is N/2. However, if m < 63, then f is not a permutation. The expected cycle size for a random
function on N elements is only about N/2. Therefore only m = 64 should be considered secure

for OFB.
11.2 Cycles in DES

Kaliski, Rivest, and Sherman [77] examined DES to see if any of several properties held. As an
example, they wanted to determine whether the 2°¢ permutations £} for k € K formed a subgroup.
That is for any two keys ky and ko, is there another key k3 such that Ey (Eg,(z)) = FEi,(x) for
all messages z. It was quite important to determine if DES had these properties, because if any
one of them held, there would be an attack on DES that would require only /[K| operations. By
examining the results of some cleverly designed experiments on DES, they concluded that it was

extremely unlikely that DES had any of these properties.

Additional cycling experiments have been performed by Moore and Simmons [108],[109]. Soon
after DES was released, four keys were labeled as weak keys. (These keys had the first 28 bits
identical and also the last 28 bits identical.) In addition, several other keys were labeled as semi-
weak keys [75]. Coppersmith [35] and Moore and Simmons found some remarkable properties of
these keys. In particular, they were able to find fixed points or antifixed points, that is messages
such that the encryption of the message is either the message itselfl or the complement of the
message. Unfortunately, it is not apparent how to apply these results to give any information

about other keys.

Quisquater and Delescaille [130] constructed an algorithm for finding collisions in DES. A

collision is a message, m, and a pair of keys, ki, ko, such that both keys encrypt the message
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were used.

Another way to weaken DES is to shorten the number of rounds from the 16 that were
proposed. Andelman and Reeds [7] developed a general technique for cryptanalyzing substitution-
permutation cryptosystems which worked extremely well on networks with only 3 or 4 rounds.
Chaum and Evertse [31] found a known plaintext attack on a 6 round DES that is faster than
exhaustive key search. Davies [37] expoited some non random structures that he found in the
S-boxes of DES that enabled him to break an 8 round DES using 2° known plaintext messages.
Biham and Shamir [14] have recently announced a chosen plaintext attack that can break an 8
round DES with 2'® plaintext-ciphertext pairs in which the plaintexts satisfy certain properties.
Their method extends to a 15 round DES, which can be broken with 252 plaintext-ciphertext
pairs. Howver, for the full 16 round DES, their method requires more plaintext-ciphertext pairs

than the 2°° encryptions needed for an exhaustive key search.

Although there has been no success against the full DES algorithm, there has been crypt-
analytic success in breaking one of the proposed modes of operation of DES [113]. In output
feedback mode (OFB), DES is used to generate a pseudo random sequence, which is then used
as a one-time pad to encrypt the message. It makes use of a function, f ,,, where k is any valid
DES key and 1 < m < 64. fy,,(z) = =z shifted left m bits and concatenated with the leftmost
m bits of Ey(z). (Ex(z) is the DES encryption of z using key k.) To generate a sequence sq, ...
using OFB, a key, k, and an initial 64 bit vector zg are chosen. Then for ¢ > 1, s; = Fx(zi—1)
and z; = fim(2;-1). Davies and Parkin [38] observed that for a fixed key k£ and m = 64, the

function, f, is a permutation. The expected cycle size of a random permutation on N elements
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If Part 1 is successful, then the cryptosystem is insecure under a type of known plaintext
attack. Assume that the cryptanalyst knows the values of zg, ..., z;_;, and that he is also given
the h least significant bits of z;. From this information, he is asked to predict the next bit of z;.

Stern has shown that if part 1 was successful, then out of the (1 — F)n bits of z;, the expected

number of mistakes is only |/6(1 — 3) log .

Now we will consider the case when the cryptanalyst does not know a or m. Stern has shown
that if Part 1 is successful, then the polynomial P(z) = Y F-d \;z* satisfies P(a) = 0 mod m.
Stern suggests that by repeatedly using part 1, we could obtain many such polynomials and
use them to determine m and a. Stern could prove that this method would work based on
an assumption that involves the randommness of the polynomials P. Lacking a proof of this

assumption, it would be interesting to also test this algorithm.
11. DES

The most remarkable news about the cryptanalysis of DES [112] is that there are no substantial
attacks to mention. See Konheim’s book [83] for a complete description of the algorithm. Although
DES has been the US standard for almost ten years, and been the focus of many attempts at
cryptanalysis [17], [49], it remains unbroken. The fastest attacks known at this time require | K|/2

encryptions where |K| = 25° is the total number of possible keys.
11.1 Cryptanalytic attacks on weakened DES

There has been some success in breaking weakened DES-like cryptosystems. Grossman and

Tuckerman [64] showed DES could be made weak by modifying the method in which the S-boxes
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which some block of bits other than the most significant bits are used for the pseudo random
sequence. However, in this case, the algorithm is not quite as efficient, and asymptotically twice

as many bits are needed to break the system.

It would also be interesting to determine whether this attack would be successful when the
modulus m is not so large compared with k. This could probably be established by experimental

evidence, but to our knowledge, there has been no computational experience with this algorithm.
10.3 Truncated linear congruential generators with unknown parameters

In this section, we assume that the cryptanalyst does not know the parameters a, b, and m.
Boyar [16] showed that if only a few bits (O(log log m)) were truncated, then her attack would
still work. Stern [155] has recently discovered an extension of the FHKLS method that will break

the truncated LCG’s when a constant fraction of the bits have been truncated.

Let us first consider his algorithm when m is known. Let v; be the vector (z;41 — @, Zit2 —
Tit1,%i43 — Tit2). In Part 1 of the algorithm, use the algorithm of Hastad, Just, Lagarias, and

Schnorr [66] to find a short integer relation
k
Z Ao, = 0.
=1
Let w; be the vector (s;41 — S, Sit+2 — Si+1, Si+3 — Si+2). LThen, let

k
u = Z/\iwi-
=1

Stern has shown that if & is at least \/6(1 — 3) log m, then for most a, u will be the zero

vector. If u is the zero vector, then Part 1 is successful.
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k

ZwiSi = 0 mod m. (10.3)
=1
The attack consists of two steps. First, find a reduced basis for L, of vectors w’, j = 1, ..., k.
We have
Z wls; = wa 2;2°" + wa ;. (10.4)
=1 =1 =1
It
L m
| > wlyl < o) (10.5)
i=1
for j =1, ..., k, then since we know that each equation in (10.4) is 0 mod m, and we know the
x;, we get k independent equations over the integers for the s;, : =1, ..., k.

If the vectors in the reduced basis satisfy (10.5), then this attack will be successful.

Theorem 10.1 [55]: Let m be squarefree, ¢ > 0, and k be a given integer. There exists
constants ¢ and C(e, k) such that if m > C(e,k) and if (1 — 8)n > n(f + €) + ¢k, then the
reduced basis found by the Lovasz algorithm will satisfy (10.5) for at least 1 - O(m™2) of the

possible coeflicients a.

The constant ¢ = O(k?) and C(e, k) = % for some constant co. Frieze, et al. also
have a similar result for m which are almost squarefree and they have proved Theorem 10.1 for
k = 3 and any m. It is an interesting question to determine if this attack will work for & > 3 and
m an integer that is not almost squarefree, for example m = 2. To prove that the attack will
work in this case appears to need different proof techniques than those used in [55]. The attack

that has been described will also be effective against truncated linear congruential generators in
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insecure by Frieze, Hastad, Kannan, Lagarias, and Shamir ([56],[67], [55]). All of the known
attacks are attacks on linear congruential generators in which some constant fraction of the bits
of each s; are used as the pseudo random sequence. The attacks are all based on lattice basis
reduction. Each of the attacks that we will describe has been proven to break certain truncated
linear congruential generators. However, it has not been determined whether these attacks would

also be effective against most truncated linear congruential generators.

Let s; be a sequence generated by

$; = as;_1 + bmod m. (10.1)
Let n = loggm. For 0 < 8 < 1 such that Bn is an integer, we can write
si = ¢:2°" + (10.2)

so that y; is the lower Gn bits of s; and z; is the high order (1 — 5)n bits of s;.

To evaluate the security of these sequences, we will assume that the cryptanalyst knows

x1, ...,Ti_;, and he wants to predict z;. For the remainder of this section, we will assume that
b =0, for if b # 0, we could examine the sequence #; = x; — z;_1. This sequence is essentially
the truncation of the sequence 3; = s; — s;_1 which is generated by §; = a$;_; mod m. If we

could predict the sequence ;, then we could also predict the sequence z;.

Let L be the lattice spanned by the vector (m, 0, ..., 0) and by the k — 1 vectors
(@', 0, .., 0, =1, 0, .., 0),fori = 2, .., k
where the -1 is in the ¢’th coordinate. All vectors w = (wy, ..., wyy in L satisfy
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Let

¢1(507 ---752'—1)
Oﬁ2($07 ---75i—1)
B; =
qbk(So, veey Si 1 )
The first idea used by both Boyar and Krawczyk is that for all but possibly & values of i,
there exist integers 7v;, j = 1,...,¢ such that v; # 0 and v, B; = E;;%) v;B;. Then v;5; =
E;;%) v;8; mod m. Thus, either s; can be predicted (in the case that v;s; = E;;%) v;85) or a

multiple of m can be computed after the correct value of s; is given. The size of such a multiple

of m will be polynomial in log m and k.

Once we know a multiple of m, we do the following for each ¢. Let /m be the current multiple

of m that is known.

(1) Given s;_q, try to express B; as B; = Z;;% v;B; mod .

(2) If (1) is successful, compute p as p = E;;%J v;8; mod 1 and if p # s;, then replace m by

ng(Th,p — S )

Krawczyk has shown that if p # s;, then M # gcd(7h,p — s; ). He also showed that for a
fixed m, step (1) fails at most &k log /m + 1 times. From these results, it follows that this algorithm

breaks these congruential generators in polynomial time.
10.2 Linear truncated congruential generators with known parameters

In this section, we will consider the security of truncated linear congruential generators in

which the cryptanalyst knows the parameters a,b and m. These generators were shown to be
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generators have recently been shown to be insecure even if the parameters a,b and m are secret.

We will examine these results in sections 10.2 and 10.3.
There have been no attacks proposed for truncated nonlinear congruential generators.
10.1 Congruential generators (nontruncated)

We will evaluate the security of congruential generators relative to a variation of a known
plaintext attack. We will assume that the cryptanalyst knows the functions ¢;, but does not
know the coefficients a; or the modulus m. The cryptanalyst is given sy, ...,s,_;. He tries to
guess s;. After he guesses, he is told the correct value. We will say that such an attack breaks
the cryptosystem if there is a bound that is polynomial in log m and k& on the running time of

the attack and on the number of errors that are made by the cryptanalyst.

The cryptanalysis of congruential generators was started by Boyar[125] when she found how
to break linear congruential generators. (Knuth [79] had an earlier result, but his algorithm
was exponential in log m.) Boyar also showed how to break quadratic and cubic congruential
generators. Lagarias and Reeds [89] then extended Boyar’s result by showing that the same
algorithm would break any congruential generator, where £ = 1 and ¢ is a polynomial depending
only on s;_;. Recently, Krawczyk [85] has proven how to break any congruential generator, in

which the functions ¢; are computable over the integers in time polynomial in log m.

Krawczyk’s algorithm is only a slight modification of Boyar’s and we will present it here
because of its simplicity. The basic idea that Krawczyk introduces is that he does not try to find

the a;’s.
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z € F at random and forming ¢ = m G’ 4+ z. Rao and Nam give two methods of selecting the
set F. Hin [72] showed how to break the Rao-Nam system for one of these methods and Struik
and Tilburg [156] for the other. Both of these attacks used a chosen plaintext attack in which the

cryptanalyst needs | F| different encryptions of a fixed message m.

The Rao-Nam system could be modified slightly by using a pseudo-random function f, and
letting z = f(m) so that there is only 1 encryption for each message m. It is not known if the

above attacks could be modified so that they would also break this system.
10. Congruential Generators

A congruential generator is a method of generating a sequence sg, sy, ... where s; is com-

puted by the recurrence
k
8 = g a;0;(so, ...,Si—;) mod m.
i=1
Research in the last few years has uncovered serious weaknesses in using congruential generators
as secure pseudo random number generators. Methods have been found for cryptanalyzing con-

gruential generators in which the cryptanalyst knows the functions ¢; but not the coefficients o;

and the modulus m. We will examine these results in the section 10.1.

The simplest congruential generator, the linear congruential generator, has the form

$; = as;—1 + bmod m.

A truncated congruential generator generates a sequence zq, 21, ... where z; is the leading
k bits of s; for some sequence s; produced by a congruential generator. Alternately, we could

determine the z; by some window of k of the bits of the s;. Truncated linear congruential
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that dy (m'G, ¢’) < . Then m = m’'S™!.

McEliece suggested that for n = 1024, 1 should be 50. For n = 2", the maximum &k = 2" —rt.

The security of this scheme is based on the NP-completeness of the general decoding problem
for linear codes [12]. The only attacks on the system so far have come from improvements in

algorithms that would decode any error correcting code.

An obvious attack on this system is to pick k£ columns of the matrix G. Let Gy, cg, zx be
restrictions onto these k columns. If zp = 0, then mG; = ck, and m can be found by linear
algebra. A given choice of k columns can be checked in k3 operations (assuming that fast matrix
multiplication is not used) to see if it gives an appropriate m. For n = 1024 and ¢ = 50, the
expected number of operations before a success is about 287, However, Adams and Meijer [1]
showed that for n = 1024,¢ = 37 is the optimum value based on this attack, and for this value

of t, the expected number of operations is about 2841,

Lee and Brickell [91] modified this attack. They found that after picking & columns, it was
more efficient to check if z; had at most two 1’s. Against this attack, forn = 1024 ¢ = 38 is

optimal. For ¢ = 37 or 38, the expected number of operations is about 2734,

To the best of our knowledge, there have been no successful attempts to cryptanalyze this

system which examined possible leakage of the structure of Goppa codes into the public key.

Rao and Nam [135] have proposed using a variant of the McEliece scheme as a single key
cryptosystem. The key consists of a matrix G’ generated in exactly the same manner as in the

McEliece scheme, and a set F' of possible error vectors. A message m is encrypted by picking a

36



This restriction is similar to the need to choose the secret primes in the RSA system carefully, cf.

63], [163].

To date, there are no subexponential algorithms for finding discrete logarithms in elliptic

curves.
9. The McEliece Cryptosystem

In 1978 McEliece [104] introduced a two key cryptosystem based on error correcting codes.
An implementation of this scheme would be two to three orders of magnitude faster than RSA.
It has two major drawbacks. The key is quite large and it increases the bandwidth. For the
parameters suggested by McEliece [104], the key would have 2!? bits, and a ciphertext would be

twice as long as a message.

Let dpy denote the Hamming distance. The following is a description of the McEliece cryp-

tosystem for parameters n, k, .

e Private Key: G’ - a k x n generator matrix for a Goppa code that can correct ¢ errors; P

- an n X n permutation matrix; S - a £ X k nonsingular matrix.

e Public Key: G = SG'P,a k X n matrix.

o Messages: k-dimensional vectors over GF'(2).

¢ Encryption: ¢ = mG + z for z a randomly chosen n-dimensional vector over GF(2) with

Hamming weight at most {.

e Decryption: Let ¢/ = c¢P~!. Using a decoding algorithm for the Goppa code, find m’ such

35



8. Discrete Exponentiation

In the seminal paper of Diffie and Hellman [48] which started two key cryptography, they
suggested using exponentiation modulo a prime as a public key exchange algorithm. Let p be a
prime and « a primitive element mod p. Alice chooses a random integer ¢ and Bob a random
integer b. Alice sends a® mod p to Bob. Bob sends a® mod p to Alice. Then both can compute a®®
mod p. There have been numerous extensions of this basic scheme. The scheme clearly extends
to finite fields [126]. Shmuely [153] and McCurley [102] have studied this idea mod n when n is

composite. Miller [106] and Koblitz [80] have extended this idea to elliptic curves. El Gamal [52]

developed techniques for using discrete exponentiation directly for encryption and signatures.

The security of the discrete exponentiation cryptosystems is based on the difficulty of the
discrete logarithm problem, i.e. given «a, §, find z such that «® = [. There have been
significant advances in algorithms for finding discrete logarithms in finite fields, particularly in
GF(2"), where a striking advance was made by Coppersmith [34]. These results are surveyed in
[116] and [103]. With current algorithms, the complexity of finding discrete logarithms in a prime
field G F(p) for a general prime p is essentially the same as the complexity of factoring an integer
n of about the same size where n is the product of two approximately equal primes [36], [90]. In
particular, the number field sieve can also be extended to compute discrete logs in prime fields,
but so far it is only practical when the prime is a factor of a Cunningham integer [62]. However

finding discrete logarithms in G F(2¥) is considerably easier.

When utilizing finite fields GF(¢q), whether ¢ is prime or ¢ = 2% it is necessary to ensure

that ¢ — 1 has a large prime factor, as otherwise it is easy to find discrete logarithms in GF(q).
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Although asymptotically this is still far better than other algorithms, the point at which this
method would be faster than algorithms such as the quadratic sieve appears to be in the vicinity
of 200 decimal digits. On the other hand, the number field sieve is a very recent invention, and

so it is likely that substantial improvements might occur which would make it practical.

One of the fascinating questions about RSA is whether it is as secure as factoring. There
are several modifications and restrictions of RSA for which this has been proven (Rabin [132],
Williams [162]), but it has never been shown for RSA itself. There are however, no known attacks

on RSA that are faster than factoring the modulus.

Some of the protocols for using RSA have been broken. They are described in “Protocol

Failures in Cryptosystems,” by J. H. Moore [107] in this book.
7.1 Variations on RSA

While the basic RSA cryptosystem has resisted all attacks, that is not true for all variants
of it. Kravitz and Reed [84] have proposed using irreducible binary polynomials in place of the
primes p and ¢. That is, p(2) and ¢(z) are two secret irreducible polynomials over GF(2) of
degrees 1 and s, respectively, the public modulus is the polynomial n(z) = p(z) ¢(z), and the
public encryption exponent e is chosen to be relatively prime to (2" —1) (2° —1). This system can
be broken by factoring n(z), which is usually quite easy to do. However, a further weakness exists
in this system, and was already noted in [84], and more extensively by Delsarte and Piret [41] and
by Gait [57], namely that the decryption exponent is the multiplicative inverse of e modulo one
of (2 —1)(27* - 1),1 < u < t/2, wheret = r+ s is the degree of n(z). Thus the number

of possible decryption exponents grows only linearly with the number of bits in the public key.
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exp ((1+0(1)) ((logn) (log log n))"/?)
as n — oo for the “hard” integers n that are of interest in cryptography. This was explained on
technical grounds as being due to all these algorithms relying in one way or another on the density
of so-called “smooth” integers (integers with only small prime factors). Recently, however, a new
method was suggested by J. Pollard, developed further by H. Lenstra, and implemented by A.
Lenstra and M. Manasse [95]. It is referred to as the number field sieve. It is very practical when

it is applied to factoring so-called Cunningham integers, that is integers n of the form
n=d + 1,
where @ is small and k is large. If we let
M(n,v) = exp((r + o(1))(log n)"/*(log log n)*/%),
then the number field sieve factors Cunningham integers n in time
M(n, 1.526...).

This algorithm is fast not only asymptotically, but also in practice, although it is quite complicated
to implement, and A. Lenstra and Manasse have used it to factor Cunningham integers of about

150 decimal digits.

The number field sieve can also be extended to factor general integers. The best currently

known method of doing this yields a running time estimate of

M (n,2.080...).
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of a 300 mips (million instructions per second) machine running for a year. What was remarkable
about this was that this computation was accomplished in several weeks, employed machines from
around the whole world, and used only spare time on them. This is in contrast to the situation
a few years ago, when it seemed that one needed to have access either to supercomputers or to
special purpose machines like that proposed in [129] to factor large integers. Since every factor of
10 increase in computing power allows one to factor integers slightly over 10 decimal digits longer,
and the Lenstra-Manasse implementation is relatively portable and extendible to networks with
many more machines, one can expect that in the very near future, networks of workstations
around some universities or industrial laboratories could be used in their idle time to factor 130
digit integers in a few weeks or months of elapsed time. In particular, it seems very likely that the
RSA challenge cipher will be broken in the next year or so, since it involves factoring an integer
of 129 digits. Since workstations are becoming more powerful very rapidly (much more rapidly
than supercomputers, say) and computer networks are proliferating very fast, and are going to
be much more easily accessible than special purpose machines like that of [129], one should not

regard even 140 digit moduli as safe from present day algorithms.

While one can make fairly good projections about the development of technology and how
that will affect the security of the RSA cryptosystem, it is much harder to be certain about
theoretical developments. Most of the advances in factoring in the last decade have been due to
new ideas, not faster machines. Then, for a while, theoretical advances slowed down. Most of the
fast factoring algorithms that have been considered until recently have been shown (under various

assumptions) to run in time
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Since there are several very good surveys of integer factoring algorithms (e.g., Lenstra and
Lenstra [92] and Pomerance [128]), we will not go into details, but will only sketch briefly how
effective those algorithms are and what precautions need to be taken in choosing the parameters
of an RSA cryptosystem. We will also briefly mention some recent developments that could have

dramatic impact on this area.

It has long been recognized that the primes p and ¢ which give the public modulus n = pg
have to be carefully chosen, so that, for example, p — 1, p + 1, ¢ — 1, and ¢ + 1 all have
relatively large prime factors. However, it is easy to find primes that satisfy these conditions, as
was shown by Williams and Schmid [163] and Gordon [63]. It has also been shown that using
very small public encryption exponents is insecure. It has recently been shown that precaution
must also be taken in choosing the secret exponent, d. Wiener [160] has proven that if e < n, and

d < n'/*, then d can be easily determined, and thus n can be factored.

Integer factorization has advanced significantly in the last decade. When RSA was invented,
the largest “hard” integer (i.e., an integer that did not have many prime factors that were either
small or of special form that allows them to be split off easily) that had been factored up to
then was under 40 (decimal) digits in length. Right now, hard integers of over 110 digits are
being factored. This progress is due to advances in both amounts of computing power that are
available and theory. As far as hardware is concerned, the most striking development has been
the successful implementation of factoring algorithms on networks of workstations. This work was
pioneered by Caron and Silverman [30], and extended by A. Lenstra and M. Manasse [96]. In their

recent factorization of a 111 digit integer, Lenstra and Manasse used roughly the computing power
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[99] have proposed a system (which is not really a two key system, though) for sending information
simultaneously to several receivers. Each receiver i, 1 < ¢ < n, has a secret key (k;, ¢;) known
only to himself and the sender, and a large prime p is public. To send message m; to receiver
i,for 1 < ¢ < n, the sender finds an (n — 1)-degree polynomial f(z) in GF(p)[2] such that

Jf(k;) = ¢;m; mod p, and broadcasts the coefficents of f(z). Receiver ¢ then obtains

mi = 7 (f(k)) mod p.

As was noted by Hellman [68], this system is very insecure, as the coefficents of the polynomial
f(2) are a linear transformation of the messages (myq, ..., m,), and so a knowledge of n or slightly

more ciphertext-plaintext pairs suffices to break the system.
7. The RSA Cryptosystem

The cryptosystem found by Rivest, Shamir, and Adleman [138] is the best known two-key
cryptosystem. A message is encrypted as f(m) = m® mod n where n is a composite integer
that is usually chosen as the product of only two primes, p and ¢, and e is relatively prime to
(p—1)(¢—1). Both n and e are public, while p and ¢ have to be kept secret. If the cryptanalyst
can factor n, he can decrypt messages just as easily as the intended user. With the exception of
some special situations discussed below, it is not known how to break the RSA system without
factoring n. However, this has not been proved, although there are some interesting results of
Alexi, Chor, Goldreich, and Schnorr [5] that say that recovering even a single bit of information

from an RSA ciphertext is as hard as deciphering the full message.
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The public key will consist of (A4, B,C,D, ki ,kz,p). To encrypt a message (X1, Xz, X3)
where 0 < X; < p-2, one computes (Y7, Y3, Y3) where Y1=X1 4+ X34+ X35 mod p—1, Yo=k X7 +

ks Xy + X5 mod p— 1, F=BX1C*2DXs mod p, and Ys=A" X3 mod p .

The designer, given (Y7, Y3, Y3), can compute ' = [3;Y; + f2Y; mod p and hence can

compute X3, and then X; and Xs.

Even though the cryptanalyst does not know 31 and 3, he can decrypt in much the same man-
ner because he can actually find B%t and B%. To do this he first computes r=(k; — k2)~! mod p—
1. Since p is prime, for all X, X7(-—=*)=X mod p. (C¥ B~% ) =Bhilthi—k)r=pb mod p and

(C1B) = BP2(ki—k2)r = pb2 mod p. Hence the cryptanalyst can also compute F.
6.4 TMKIF Cryptosystem

Tsujii, Matsumoto, Kurosama, Itoh, and Fujioka [157] have devised a public key cryptosystem
in which encryption is the evaluation of some rational functions. They remark that if a certain
polynomial in a small (e.g. 4) number of variables could be factored, then their system is insecure.
Unfortunately, multi-variate polynomials can be factored in polynomial time, as was shown by

Lenstra [94] and others.
6.5 Luccio-Mazzone

In our early discussions of knapsack cryptosystems we noted that in general, their linearity
was a reason to be suspicious of then. A surprisingly large number of cryptosystems that have
been proposed either formally or informally have succumbed to attacks based on this weakness,

for example the Pieprzyk cryptosystem (Section 3.4). As another example, Luccio and Mazzom
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The Cade [28] cryptosystem also uses polynomials over GF(2™), for m = 3r. Let M(z) =

2911 where ¢ = 2™.

Private key: T(z) = agz 4 aj2? —|—(12.’Eq2 S(z) = box + bya? —I—bgmq2 where S and T are chosen

to be invertible. P(z) = SMT(z) mod (27" — z).
e Public key: P(z) = pooz? + proz?™! + p11z?? + 202030‘12+1 + P21$q2+q + p22$2q2-
o Messages: M in GF(2™).
e Encryption: C = P(M).

¢ Decryption: Use the private key to solve for M.

James, Lidl, and Niederreiter [74] have shown that the private variables ay, ..., by can be found
from the public key. Cade [29] has since used similar ideas to develop a much more complicated

cryptosystem.
6.3 Yagisawa

Yagisawa [164] described a cryptosystem which combined exponentiation mod p with arith-
metic mod p — 1. Brickell [22] showed that it could be broken without finding the private
key.

To construct a public key in Yagisawa’s cryptosystem, a designer picks a prime p and integers
k1, k2, A, and B such that 2 < A, B < p-2, 0 < k; < p-2, 0 < ky < p-2, and GCD(ky-ko,
p-1) =1. He then picks integers fy and (3 such that 1 + §2k1=1 mod p — 1 and computes
C=BP1 102k mod p and D=B% 1% mod p.
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6. Additional broken two-key systems

In this section, we will discuss several two-key cryptosystems that were broken soon after their
publication. Several of them relied on composition of polynomials over finite fields. In addition to
the specific attacks on such schemes that are mentioned below, there are now some fairly general
techniques for decomposing polynomials developed by von zur Gathen, Kozen, and Landau [59]

that cast suspicion on all similar schemes.
6.1 Matsumoto-Imai cryptosystem

The Matsumoto-Imai cryptosystem [101] uses polynomials over GF(2™). The private key

consists of secret information about the public encryption polynomial.

Private key: E(X) = a(b+ X%)5.
e Public key: E(X) = ¥ e X"
o Messages: M in GF(2™).
¢ Encryption: C = E(M).

¢ Decryption: Use the private key to solve for M.

Matsumoto and Imai suggested that the Hamming weight of 8 should be small so the public
key is not too long. Delsarte et al. [45] showed that the public polynomial E(X) would have a
special form and this form would actually reveal the private key (or at least something that was

functionally equivalent to the private key).

6.2 Cade Cryptosystem
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For the cubic scheme, again let M = h(m). Pick r = {%} (ie.,r = § + ffor|f] < 1/2.)

Compute 2 = M — 73 mod n, and let # = nearest integer to 21/ that is divisible by 3 (i.e.
x = 23 4 efor ] < 3/2). Then s = r 4 z is a valid signature to m, since
2 = 2+ 3r% + 3rz? + z° mod n

2
r3 4 3<§—|—0> r + 3 <§—|—0) 2 + 2 + 322/3 ¢ + 321/3 &2 + ¢ mod n

M + 36%z + 3627 + 322/3 ¢ + 3173 2 + € mod n

= M 4 6modn forlf] < O(n*?).

Although this specific attack is easily guarded against by disallowing signatures that are close
to 7, the basic attack can be generalized. For example, let r = [%] for an arbitrary rational .
Pick = as above except divisible by v%. If € is small enough, then r 4 z will be a valid signature,

otherwise pick a different u, v and try again.

Okamoto [117] also proposed an encryption scheme based on similar ideas. Again n is an
integer of the form n = p?q. The public key also contains an integer v = a + bpg where

0 < a< %\/ﬁq This system can be broken by using u? mod n to solve for a. We have

u? = a? + 2abpg = 2au — a* mod n.

Solve 0 < a < n'/?and | u> — 2au mod n| < n*? by the methods mentioned earlier.
After Shamir discovered how to break this scheme (his attack is discussed in [118]), Okamoto
[118] modified the cryptosystem. In the new system, u is chosen in a different manner. A message

9

(mq, mgy) for 0 < m; < nl/9 i =1,2is encrypted as ¢ = (myu + my)' mod n. Vallee, Girault, and

Toffin [158, 159] cryptanalyzed this modified scheme for any [ by using lattice basis reduction.
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5. The Okamoto-Shiraishi Signature Scheme

The Okamoto-Shiraishi signature scheme [119] is based on the difficulty of finding approximate
kth roots mod n. This signature scheme is interesting because (as is case with the OSS schemes)
it is possible to generate these signatures much faster than RSA signatures. It has also been used

as an example of a subliminal channel [154].

e Private Key: Factorization of n = p?q.

¢ Public Key: n, a small integer k, and a one-way function h.

o Messages: m in the domain of h.

e Signature: s such that s* — A(m) = & mod n where |§] < n?/3,

This scheme was originally proposed for £k = 2. This version was quickly broken by Brickell
and DeLaurentis [24]. The techniques of this attack also extend to & = 3. Shamir [148] found a
different method to break the & = 2 case. We will present his method and also the [24] method

for &k = 3.

For k = 2, the forger is given M = h(m) and wants to find s such that s> — M = § mod

n for some ¢ satisfying |6 < n2/3. The forger picks r and computes z such that 1 < z < n!/3
and 2rz — M + r? = ymod nfory < O(n*?). Such an = does not exist for all choices
of r (for example r = 2%1). However if the n?/? different valid signatures to M mod n are

randomly distributed over the interval [0,n], then we expect that an z will exist for most choices
of r. If an  exists, it can be found through a variation of the extended Euclidean algorithm (

[119] middle bits methods). Given z, s = r + z is then a valid signature.
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sequence m, m + n, m + 2n, until an integer is found satisfying all the conditions. Assuming
appropriate randomness conditions on this set of integers, a success is expected with O(log n)

trials. Solve x% = —k mod mg and thus 1‘3 + k = mgms.

1
Next we want to find ms < 2vk and x1, y1 such that x% + y12 k = mymy. Let ) = mj E-1/4,

Use continued fractions to find @, b with |a|] < @ such that 1+ g < ﬁ Setting
x4 = xoa + miband y; = a satisfies the requirements.
Using the multiplicative property, the problem of solving #? + ky? = m mod n reduces to

solving z? + ky? = my mod n and this satisfies step (2).

O(loglog k) iterations of steps (2) and (3) will result in a small enough k and m so that a

solution is easily found.
4.3 Other OSS Schemes

After Pollard broke the quadratic and cubic OSS schemes, Ong, Schnorr, and Shamir devel-
oped a scheme using fourth degree polynomials which was essentially a quadratic scheme over
a quadratic number field. This scheme was broken [53] by reducing its cryptanalysis to the

cryptanalysis of the quadratic scheme over the integers.

The success that the cryptanalysts have had with the OSS schemes does not imply that there
are no secure signature schemes of this type. However it is enough evidence to create strong
suspicions about the security of any such schemes. Also, as their complexity increases, their
speed improvement over RSA/Rabin decreases. For these reasons, there has been no further

search for new OSS type signature schemes.
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described a cubic version. This was also broken by Pollard [127], which caused the authors to
publish a quartic version [122]. This version was broken by Estes, Adleman, Kompella, McCurley,
and Miller [53] and independently by Schnorr[127], and there have been no more schemes of this

type proposed. We will give a brief exposition of the Pollard attack on the quadratic version.
4.1 Cryptanalysis of the Quadratic OSS

The quadratic version proposed in [120] uses the polynomial P(zq, #3) = 2% + ka2 where
the private key is an integer u such that & = wu?. To forge a signature to m, it is necessary to

find z, y such that 22 + ky? = m.

Note that the signature scheme is multiplicative; i.e., if 2% + ky? = mq and 22 + ky2 = ma,

then z = x129 — kyiyo and y = z1y2 + x9y; is a solution to 22 + ky? = mimas.
The Pollard algorithm
(1) Do (2) and (3) until m and k are small enough so that z? + ky? = m can be solved with
z,y € {0, 1}, or until m is a square.
(2) Replace m by a number < 2v/k.
(3) Interchange m and k by using z «— Fandy — %

(4) Solve with z,y € {0, 1} and use the transformations of (2) and (3) to work back to the

original equation.

To explain step (2), first find mg such that mg = m mod n, mg = 3 mod 4, mg is prime,

and —k is a quadratic residue mod mg. The integer mg is found by examining the integers in the
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generality, suppose 7(0) = 0 and (1) = 1. Then g’ = . Let ey = by’ mod p* — 1. Then
1o = g,and 1% = ¢ = { 4+ 1. A somewhat similar argument can be used if d is not known.
In both cases, though, one has to find the root of a very high degree trinomial. Rabin [133] and
Ben-Or [11], for example, have shown that a root of a polynomial of degree w over GF(p) can be
found in O(wlog wlog log wlog p) operations, but these algorithms are infeasible here since w is

of the order of p”. No faster method for finding a root of a trinomial is known.
4. The Ong-Schnorr-Shamir signature schemes

Ong, Schnorr, and Shamir [121] proposed a signature scheme based on polynomial equations
modulo n. Their motivation was to develop a scheme that requires little computation for gener-

ation and verification of signatures, an area where the RSA scheme is deficient.

¢ Public Key: polynomial P(z1,...,24) and modulus n.

e Private Key: a method of solving P(z1, ..., ;) = m mod n for z;, ..., z; using only a

small number of multiplications, additions, and divisions mod n.
o Messages: m € Z,.
e Signature: z1, ..., zg7 such that P(z1, ..., z4) = m mod n.

e Verification: Check that P(zy, ..., zg) = m mod n.

This scheme generated a great deal of interest when it was first announced [120] using a
polynomial P of degree 2. In fact the authors offered $100 reward for its cryptanalysis. This

reward was won by Pollard [127], but this did not deter the authors, who within a few months
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be implemented as GF(p)[z]/f(z), 1 is a root of f(z), ¢ is a generator of the multiplicative
group of GF(p"); for @ € GF(p), a, is an integer such that g%« = t 4+ a, 7 is a one to
one map from {0,1,...,p— 1} into GF(p), b; = an(), d is an integer, 0 < d < pt - 2,

and ¢; = b, + d.

Messages : Vectors M = (my,.., m,_1) of nonnegative integers such that Ef:_(} m; = h.
Encryption : E(M) = Ef:_ol m;e; mod pt — 1.

Decryption : Compute r = FE(M) — hd = Ef:_g mib; mod p* — 1. Then ¢° =

Hf:_g g™%. Since we are implementing G F(p") as GF(p)[z]/f(z), ¢" is represented as
a polynomial in z of degree < h. Now 6(t) = Hf;é (t + m(7))™ is represented by a
polynomial of degree h, and 6(z) = g¢" in GF(p)z]/f(z). So 8(z) = wu(z) + f(z)
in GF(p)[z], where u(z) represents ¢”. Thus by factoring u(z) + f(z), the values of

mag, ..., Mp_1 can be obtained.

Chor and Rivest show that if some of the secret information is revealed, then the system
is insecure. In particular, the cryptosystem is insecure if ¢ and d are known in some model of
GF (ph), or if ¢ is known, or if 7 and d are known. They also mention an attack with nothing
known that runs in O(pQ\/E h?log p). However this attack is infeasible for the parameters they

suggest (e.g. p = 197 and h = 24).

If d is known, then it is possible to reduce the cryptanalysis problem to the problem of finding
the root of a very high degree polynomial. Since d is known, the b;’s are also known. It can

be shown that one can assume that the cryptanalyst knows 771(0) and 7~!(1). Without loss of
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e Encryption: ¢(z) = >, mi(z) ki(x)

e Decryption: Let ¢/(z) = ¢(z)a (z) mod ¥(z). ¢'(z) = Y7y my(z) p;(z) mod ¥(z). Since

deg (327my mi(@) pi(@)) deg¥(z), '(z) = iy mi(z) pi(z). Som;(z) = ¢(z) mod ¢;(z).

The Pieprzyk knapsack is similar to the Goodman-McAuley knapsack except that integers
have been replaced by polynomials. It can be broken by a similar GCD attack as well. However,
in this case a much simpler solution is available. As is the case with the Luccio-Mazzone system
described in Section 6.5, this cryptosystem can be broken by simple linear algebra. Note that the
encryption does not involve any modular reductions. In fact, encryption is a linear transformation
of the plaintext, and the matrix giving this transformation can be constructed easily from the
coefficients of the polynomials k;(z). Since decryption is guaranteed to work, this matrix must

have full rank.
3.5. Chor-Rivest knapsack

The Chor-Rivest [32] knapsack cryptosystem is the only knapsack cryptosystem that has been
published that does not use some form of modular multiplication to disguise an easy knapsack.

There is no feasible method known for breaking this system.

The Chor-Rivest Cryptosystem

e Public key: Integers cg,c1,...,cp—1,p, h, Where

p is a prime power, o < p, and finding discrete logarithms in GF(p") is feasible.

e Private key: f(z) is a monic irreducible polynomial over GF(p) of degree h, GF(p*) will
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tosystem can still be broken using lattice basis reduction. Consider the lattice spanned by the

rows v, ..., v, of the matrix
bl b2 e bn €
p0..00
0 .00
00..p0
Let k;; be the integers satisfying b; W™' — k;;p;, = a;;. Then b; W™} 2% — kijp = a; 7%'
J J
Thus, there are n vectors in the lattice of the form W—! %VO — E?:l kijv, = (2z1,...,25)

where 3", x; < 279p. Even if the Lovasz lattice basis reduction algorithm does not produce
these vectors, but instead finds vectors w; = (241, ..., %) that satisfy 327, |z < 277p, the

cryptanalyst can still use these vectors to break the system.
3.4. Pieprzyk knapsack

Pieprzyk [124] designed a knapsack type public key cryptosystem based on polynomials over

GF(2). In the following description, all polynomials are over GF(2).

The Pieprzyk knapsack

e Public key: polynomials k1(z), ..., kn(z) and integer d.

e Private key: polynomials ¥(z), ¢1(z),...,0n(z), p1(z),..,pn(z), a(z) such that for 1 <
i < n,deg ¢i(z) = d + 1, ¢i(z) is irreducible, p;(z) = 1 mod¢i(z), pj(z) =
0 mod¢;(z) if ¢ # j, degW¥W(z) > >, deg¢i(z) + d and ¥(z) is irreducible, and

ki(z) = pi(z)a(z) mod ¥(z).
e Messages: M = (my(z),...,my(z)) where deg m;(z) < d.
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o Private Key: integers h, r satisfying h > = + g¢; primes py, ..., p, such that p; > 2F
for1 < 4 < n;p = [[i; p;; non-negative integers a;; for 1 < ¢,57 < n, such that
doj=1 @ij < 27for1 < i < n,and the matrix A = (a;;) is nonsingular; non-negative
integers a; such that a; = a;; modp; forl < ¢ < n, 1 < j < n; W relatively prime

to p such that b; = Wa; modp,for1 < ¢ < n.

IN

e Messages: m = (mq,...,m,) such that 0 < my 29,

¢ Encryption: ¢ = } ", m;b; modp.

¢ Decryption: Let d = (dy,...,d,) where d; = ¢cW ™! modp;. Then m = d AL

If n is small, this cryptosystem can be broken by the Lenstra [97] or Kannan [78] linear
programming algorithms. There is also a greatest common divisor attack that works for small r,
and enables the cryptanalyst to recover all the secret information. Since pjla; — a;;, we have
p;|bi — a;; W, and so p;la;; by, — ax; b;. Since a;;, a;; < W2, the cryptanalyst can find (y, 2)
such that p;|GCD(p, ybr — zb;) by checking all pairs y,z with 0 < y,z < 27. If for each pair
J, 0 there exist 0 < y,z < 2" such that p;|yby — zb; and p;|ybr — =2b;, then the cryptanalyst
will find all of the p;’s by taking GCD’s. If this is not the case, he can pick a different £ and
continue. (Note that if p;pi|ly1by — z1b; and p;pi|y2br — 22b;, then y120 = yp21, mod p;p;. Since
0 < w1, 22 < pjpi, this implies y122 = y121. Hence if the GCD attack fails to separate p;

L1y ai

and p;, then it must be the case that il = an But this cannot be true for all £ since A is
J

nonsingular.)

Even if n and r are chosen large enough so that the above attacks will not work, the cryp-
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examples presented in [114], this procedure would be very fast.

There is another attack based on the low density algorithm of [88] that can be used if GF(q)

is a prime field, i.e., ¢ is a prime. Let Vf, . VnT be the n column vectors of K. Let v; =
(vi1, vi2, ..., Vin—k). Let r be an integer. Let L be the lattice generated by the row vectors in
the matrix

10..00rviq To12 ... TOLn—k
01..00 rv9 TV22 ... TV 5k

00..107v,1 TUR2 o TUR 5k

Q = 00...01 rz; rzg ... TZ_k
00..00 r¢ O .. 0
00..00 0 rqg .. 0
00..00 O 0 ... rq
The vector y* = (y1, ..., Yn, 0, 0, ..., 0)is a vector in the lattice and has at most ¢

non zero entries. If > ¢, then y* will be the shortest vector in the lattice. (Since K generates
a t-error correcting linear code, there cannot be two vectors, yj and yj3, such that Ky = Ky3
and such that the Hamming weight of each of yJ and yj is < ¢.) Although the lattice basis
reduction algorithm is not guaranteed to find y*, this attack does cast suspicion on the security

of the cryptosystem.
3.3. Goodman-McAuley knapsack

The Goodman-McAuley [61] knapsack cryptosystem uses modular multiplication to disguise

an easy knapsack that is substantially different from those discussed earlier.

The Goodman-McAuley knapsack cryptosystem:

¢ Public Key: integers by, ...,b,, ¢ and p.
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e Public Key: K = MHP and t.
o Messages: n dimensional vectors y over G F(q) with weight < ¢.
¢ Encryption: z = Ky”.

e Decryption: Since z = Ky! = MHPy" M~z = HPy' = H(yP")T. Use the

decoding algorithm for C' to find y PT and thus y.

This cryptosystem is said to be of knapsack type because the encryption can be viewed as

picking ¢ columns from the matrix K and forming a weighted sum of these ¢ column vectors.

We will mention three cryptanalytic attacks on this system. In the first attack, for a ciphertext,
z, we pick a submatrix J of K consisting of (n — k) columns of K. We then compute y’ = J~!z.
If all of the ¢ columns that were added to form z are in J, then y’ will be the encrypted message,
i.e. y' will satisfly Ky’ = z and have at most ¢ non zero entries. The probability of this occurrence
. n—k n . .
is p = < y ) / (t) Thus the expected number of times we must repeat this procedure
before we are successful is % . There are two examples mentioned in [114]. For the first n = 104,

k= 24,1t = 15, and so% = 72. For the second example, n = 30,k = 12,¢t = 9, and

L — 995,
P

Another attack on this cryptosystem is based on a deterministic linear algebra procedure. It
is easy to find some vector w such that K'w = z. Once w is found, we must havew = y + c,
for some codeword c in C'. We can write C' as the direct sum of two subspaces C'; and Cy, with
C; of dimension [k/2], and list all the codewords of Cy and Cy (approximately ¢*/? in each case).

Then, for each ¢y in C, we only need to check whether w — y — ¢ is in C3. In both of the
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e Decryption: The parameters were chosen so that the encryption function is one-to-one on

the message space. The knowledge of the private key allows easy decryption.
This cryptosystem was broken by Adleman and Rivest [4], Goethals and Couvreur [60] and
Kochanski [81]. Adiga and Shankar [2] suggested a modification of this scheme.

The Modified Lu-Lee cryptosystem [2]:

e Public Key: ¢y, ¢o,r, M all positive integers.
o Messages: Positive integers m < M.

e Encryption: Pick m; < M;, my < Mj, and compute E(m) = m + ¢ymq + camg mod 7.

(3.1.2)

¢ Decryption: Same remarks as above apply.

For both of these systems, cryptanalysis by solving (3.1.1) or (3.1.2) by integer linear pro-
gramming is immediate. Kannan’s integer linear programming algorithm [78] runs in O(n”" logr)
in worst case on problems with n variables and integer coeflicients bounded by r. Since n < 4

for (3.1.1) and (3.1.2), Kannan’s algorithm is a viable threat to these systems.
3.2 Niederreiter cryptosystem
Niederreiter [114] proposed a knapsack type cryptosystem using algebraic coding theory.
o Private Key: H, an (n — k) by n parity check matrix of a ¢-error correcting linear (n, k)
code, C', over GF(q) with an efficient decoding algorithm. P, an n X n permutation matrix.
M, a nonsingular (n — k) X (n — k) matrix .
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There are algorithms due to Brickell [19] and to Lagarias and Odlyzko [88] for solving knapsacks
of low density. The Lagarias-Odlyzko [88] algorithm consists of looking for short vectors in the

lattice L generated by the row vectors in the matrix

10...0aq
01...0ay
00..1a,
00..0 s

where s is the sum for the knapsack problem. In [88], the algorithm is analyzed with the Lovasz
basis reduction algorithm [93] being used to find the short vectors in L. The polynomial time
algorithm will solve almost all knapsack problems of density < % (Frieze [54] has obtained a
simpler proof of this result.) In practice, the algorithm is successful on knapsacks of much higher
density, but the densities for which the algorithm succeeds does appear to go to 0 as n increases.
Using more efficient lattice basis reduction algorithms [134], [140], [141] would increase the critical

density below which this attack succeeds.
3. Generalized Knapsack Cryptosystems

In this section, we will examine several cryptosystems that have been proposed that use similar

ideas to those used in the knapsack cryptosystems.
3.1. Lu-Lee Systems The Lu-Lee Cryptosystem [98]:
e Public Key: c¢1,c9,7, My, M all positive integers.
e Messages: integers my, mg such that 0 < my < My,0 < my < Ms.

e Encryption: E(my, my) = cymy + cymy mod 7. (3.1.1)
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absolute value < B, the algorithm is guaranteed to terminate in O(n®(log B)?) bit operations
and produce a vector v such that [v[* < 2" [u|® where u is the shortest nonzero vector in
the lattice. In practice, modifications of the Lovasz algorithm run much faster than this, usually
about O(n(log B)?) steps, and produce vectors that are much closer to the length of the shortest
vector in the lattice. In particular, on all of a small set of test cases which came from knapsack
cryptosystems, an implementation of the Lovasz algorithm by Brickell [21] found vectors that
could be used to break the cryptosystem even though the vectors needed were only about 1/n
times the length of the original basis vectors in the lattice. There are also other lattice basis
reduction algorithms due to Schnorr [141] that produce vectors that are guaranteed to be closer

in length to the shortest vector in the lattice, but these algorithms are slower.
2.2. Multiple Iterated Knapsacks

An [-iterated knapsack cryptosystem is one in which I modular multiplications are used to
disguise an easy knapsack. For an [-iterated knapsack, there are I independent UGSDA. These
UGSDA were studied by Brickell, Lagarias, and Odlyzko [25] and more extensively by Lagarias

[86], [87] and were later used to break the multiple iterated knapsack by Brickell [21].

These UGSDA can be used to break all of the knapsack cryptosystems [8], [20], [47], [50],
[115], [123], [143], [144], [145], [161] that have been proposed that rely on modular multiplications

as a disguising technique. See the surveys by Brickell [23] and Desmedt [44] for more details.
2.3. Low Density Attacks

¥

The density of a knapsack a1, ..., @, in which A = max {ay, ..., a,}is defined to be oz, (4)

12



by 4 and £ and proceed as above. This provides an attack on the single iterated Merkle-Hellman
cryptosystem for certain parameters. In particular, if M < 22*~% and if by > M/2, then using
(2.4) we see that (%’, ]Iz—i’) is an UGSDA to (Z—f, Z—i’) . The knapsack cryptosystem of Henry [70]
can also be broken by using continued fractions.

Finding UGSDA is related to finding short vectors in a lattice. Given a set of n independent

vectors in R", by, ..., b,, alattice L is the set of points

L:{Zzibi:ZiGZ}.

1=1
The vectors by, ..., b, are said to be a basis for L. Consider the lattice L generated by the row
vectors bg, ..., b, of the matrix
AP Pn-1 Pn
0 —-p O 0 0
0 0 0 —p 0
0 0 0 0 —p

where A is a real number between 0 and 1. There is an obvious relationship between short

vectors in this lattice and UGSDA to (%, e pTH) since a vector v. = Y, ¢ b; in L has

length |v]| = \/2?21 (@opi — ¢ip)? + A?¢2. ( A should be chosen small enough so that Ago

is not the largest term in this sum.)

Although the problem of finding the shortest vector in a lattice is not known to be NP-hard,
there is no known polynomial time algorithm for solving it. There are, however, polynomial time
algorithms for finding relatively short vectors in a lattice. The first such algorithm was due to

Lovasz [93] . For a lattice with a basis in which all coefficients in the basis are integers with
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basic tools of constructive diophantine approximation, and will be discussed after we introduce

some defintions.

2.1 Diophantine Approximation

Simultaneous diophantine approximation is the study of approximating a vector of reals

(61, ..., 8,) by a vector of rationals (%1, s pTH) all having the same denominator. An ap-
proximation (p—l, ey p—”) to a vector of rationals (q—l, s q—”) is said to be an unusually good
P P q 9

simultaneous diophantine approximation (UGSDA), if |p‘f1—‘ — pi| < ¢ % for some 6§ > % La-
garias [86] has justified this definition by showing that unusually good simultaneous diophantine

approximations are indeed unusual.

For breaking knapsack type cryptosystems, we are interested in the algorithmic question of

finding unusually good simultaneous diophantine approximations that are known to exist. For

n = 1, continued fractions can be used to find UGSDA. The set of convergents to the continued
fraction expansion of % contains every rational ~* such that r < ¢ and |r % - r| < % Thus

if %1 is an UGSDA to % then %1 will be a convergent.

More surprisingly, continued fractions can also be used to find UGSDA for n = 2. To see

this let (%, %2) be a pair of rationals that have an UGSDA (%, %2). Let ¢; = qp — qp;.

Then |¢;| < q%. Taking these equations mod ¢, we obtain ¢, = ¢;p mod q. Let us assume for

now that GCD(qz, q) = 1. Then & = L mod ¢q. Let 2 = 31 mod g. Then c;z = ¢; mod gq,

2

C2 g2
and there exists a y such that ¢; T — y = %1 and |%1| < |ea|™t. Therefore we can find % as a
convergent in the continued fraction expansion of g Using ¢, we can find p = (]2_1 ¢g mod ¢ and

then p; and py are easily determined. If GCD(g2, q) = d # 1, then one can replace ¢ and ¢
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small 7, the k;/a; are extremely close together; from (2.2) we see that

|biky — biks| < M2 (2.4)

Only a few (3 to 4) of these inequalities uniquely determine the k;’s, and once the k;’s are
found, it is easy to break the system. The system (2.4) is an instance of integer programming with
a small number of variables. Therefore the Lenstra [97] integer linear programming algorithm can
find the k;’s fast. For this attack, it is necessary for the cryptanalyst to know which of the public
weights correspond to the smallest elements in the superincreasing sequence. If the knapsack was
permuted before it was published, he would not know this. Since he only needs to know the 3 or
4 smallest elements, however, he can find them in polynomial time (O(n?) or O(n*)) by trying all

possibilities.

The Shamir attack sketched above was universally accepted as valid when it was announced,
although nobody up to that time had implemented the Lenstra integer programming algorithm.
(In fact, as will be explained later, for the standard version of the Merkle-Hellman system, in
which M has about 2n bits, one can use continued fractions to find the k;.) Furthermore, the
Shamir attack did not seem to generalize to other knapsack systems. These problems were soon
overcome, though, because Adleman [3] found that the Lovasz lattice basis reduction algorithm
[93] could be used instead of the Lenstra integer programming algorithm, and this enabled him to
break the Graham-Shamir knapsack cryptosystem (see [151] for a definition). The introduction of
this new tool, the Lovasz algorithm, was the main key to most of the major breakthroughs that
were achieved in analyzing knapsacks. The Lovasz algorithm and more eflicient ones that were

derived later by Radziszowski and Kreher [134] and by Schnorr [140], [141] are now among the



time. (This key result [97] was proved at the end of 1980 and became widely known right away,
although it was not published until much later.) Shamir and Zippel [151] showed using contin-
ued fractions that if the modulus M was known, a cryptanalyst could break the single iterated
system. Ingemarsson [73] developed a method of successive reduction modulo suitably chosen
integers which seemed to apply to a wide class of knapsacks. However, none of these attacks

could convincingly be shown to apply to the Merkle-Hellman system.

Eier and Lagger [51] and independently Desmedt, Vandewalle, and Govaerts [46] made a key
observation that led eventually to the complete demise of these knapsack systems. ;From (2.1),

there exist integers k1, ..., k, such that

a;U — kM = b; (2.2)

where U = W~ mod M. Therefore

L (2.3)

and so all of the k;/a; are close to U/M. Furthermore, as was apparently realized by the authors
of [51] and [46], the actual values of U and M are not important, since if one finds any pair of
integers v and m with - — % small, one can use u and m to decrypt the knapsack. For an
arbitrary collection of integers a; it is highly unlikely that there would exist k; such that all of

the k;/a; would be close together. This seemed to provide a way to attack the Merkle-Hellman

system.

Shamir [146] completed the cryptanalysis of the single iterated Merkle-Hellman system by

making two more observations. Since the a;’s are superincreasing, a; < M 2'~". Hence, for



One reason to be suspicious about the security of knapsack cryptosystems is that they are
basically linear. Specifically >°7"y @;a; + Y0y via; = >y (@ + y)a;. In fact, if (as we
may assume) not all the a; are even, then by looking at the least significant bit of the ciphertext
s we obtain a bit of information about the plaintext, although this usually does not yield even
a single bit of the plaintext. Although there is no attack on the cryptosystem based just on this
linearity, it should raise questions about its security because linearity in cryptosystems is known
to be dangerous. Another cause for suspicion is due to a result of Brassard [18]. Essentially
it says that if the problem of breaking a cryptosystem is NP-hard, then NP=CoNP. When
the Merkle-Hellman knapsack cryptosystem was proposed, the only attack known was to use an
algorithm which would solve any knapsack problem. If one believes that NP# CoNP, then it
seems likely that there is an attack on the Merkle-Hellman knapsack cryptosystem that runs faster
than algorithms that solve the general knapsack problem. This suspicion does not apply to RSA,

since factoring integers is not believed to be NP-hard.

These suspicions were extended by various authors. Herlestam [71] observed by using simula-
tions that often a single bit of the message could be easily recovered. Shamir [150] showed that
Merkle-Hellman knapsacks in which the modulus M has close to n bits can be broken easily, and
[149] that compact knapsacks (i.e. general knapsacks with few weights ¢; and with coefficients
z; that are allowed to vary over a wider range than just the set {0,1}) ought to be avoided.
Amirazizi, Karnin, and Reyneri [6] also showed that compact knapsacks are insecure, but with an
even more powerful argument than that of [149], since they were able to use the theorem of H.

W. Lenstra [97] that integer programming in a fixed number of variables is solvable in polynomial



ward.

Public key: Positive integers ay, ..., a,.
Private key: A method for transforming a;, ..., a, into an easy knapsack.
Message Space: n-dimensional 0-1 vectors (z1, ..., ).

Encryption: s = Y, x;a;.
Decryption: Solve the knapsack problem with weights a1, ..., a, and sum s.

Merkle and Hellman used a superincreasing sequence as an easy knapsack and disguised it
with one or more modular multiplications. Specifically, an easy knapsack by, ..., b, can be
disguised with a modular multiplication by selecting M > >, b; and W with (W, M) = 1,
and computing

a; = b;W (mod M) . (2.1)

Any solution (z1, ..., z,) to the knapsack problem >~ ; z;a; = sis also a solution to the
knapsack problem Y%, 2;b; = s’ where s’ = sW™! (mod M) and 0 < s < M. Merkle
and Hellman [105] further observed that the disguising operation could be iterated many times.
For instance given the above knapsack a1, ..., a,, a new knapsack ¢1, ..., ¢, could be formed
by choosing a new modulus My > 3", a; and multiplier W3 with (W3, M;) = 1 and defining

¢; = a; Wy mod My. The knapsack ¢y, ..., ¢, is called a double-iterated knapsack.

The designer of the system can further complicate matters by permuting the weights before
publishing them. For clarity of exposition, we will assume that the weights are not permuted, but

we will discuss the permutation when it is relevant.



assessing the security of the knapsack cryptosystems to assume that one can find even the shortest

non-zero vector in a lattice relatively fast.

The remainder of this paper is organized as follows. Sections 2 and 3 discuss the cryptanalysis
of knapsack cryptosystems. Section 4 contains the cryptanalysis of the Ong, Schnorr, and Shamir
signature schemes, and Section 5 that of the Okamoto-Shiraishi scheme. Section 6 briefly mentions
several two-key cryptosystems that have been broken. Sections 7, 8, 9 describe what is known
about the security of RSA, discrete exponentiation, and the McEliece cryptosystem. The next
two sections deal with the cryptanalysis of some single key systems, with Section 10 covering the
remarkable success in breaking congruential generators, and Section 11 discussing the remarkable
lack of success in breaking DES. Section 12 briefly discusses the successful cryptanalysis of FEAL.

Finally Section 13 contains some miscellaneous comments.
2. Knapsack Cryptosystems

Knapsack cryptosystems are based on the knapsack (or more precisely the subset sum) prob-

lem; i.e., given a set of integers (or weights) a1, ..., a, and a specified sum s, find a subset of
{a1, ..., a,} that sums to exactly s, or equivalently find a 0-1 vector (z1, ..., z,) such that
Yoieq xia; = s. We will sometimes refer to the set of weights as a knapsack. Merkle and Hell-

man [105] discovered a way to use the knapsack problem as the basis for a two-key cryptosystem.
Although the knapsack problem is NP-hard [58], there are knapsacks for which the problem is
easy. An example of an easy knapsack which was used in [105] is a superincreasing sequence, that

is a sequence of positive integers by, ..., b, such that b; > >, b;, for 1 <j < n.

The basic technique for using the knapsack problem as a two key cryptosystem is straightfor-



of the lessons of this research.

Before outlining the contents of this paper, we have to explain what we mean by saying that a
cryptographic system is insecure. One can define a fairly precise notion in terms of a polynomial
fraction of instances of the system being decipherable in polynomial time. Such an approach
is unsatisfactory for two reasons, though. One is that in practice one has to build systems of
fairly limited size, and so one cannot assume that asymptotic properties apply. A more serious
one is that for many cryptanalytic attacks, no rigorous proofs of effectiveness exist. Instead
one relies on heuristics and experimental evidence; for example, one shows that a reduced-size
version of a proposed cryptosystem can be broken relatively fast on a small general purpose
computer, and then one argues that since the effort involved in the attack does not increase too
fast with the size of the problem, even the full size cryptosystem is insecure from a determined
attacker. This approach is occasionally used also in other areas of computational complexity
(factoring polynomials or integers, for example), where the best practical algorithms rely on
unproved assumptions. Use of such approaches in cryptography is very easy to justify. Since
cryptosystems often protect very sensitive information and once adapted, are difficult to change,
it is important that they be above suspicion. We will see later, for example, that attacks on
some of the knapsack cryptosystems depend on being able to find very short non-zero vectors in
lattices. In general, it is not known just how difficult a task it is to find such vectors, and the
known polynomial time algorithms are not guaranteed to find such vectors. On the other hand,
these algorithms usually work much better than they are guaranteed to, and moreover, there has

been a lot of progress recently on obtaining improved algorithms. Therefore it seems prudent in



the research community because it appeared to open up a brand new field, and it presented the
exciting promise of using new tools from the rapidly developing field of computational complexity
to develop systems with simple mathematical descriptions. The security of these systems would
depend on the intractability of well known problems, and hopefully would eventually lead to

proofs of unbreakability of such systems.

Ironically, the promise of provable security through reduction to well known mathematical
problems has not only not been fulfilled, but instead, the fact that attacks on the new cryptosys-
tems could be formulated as mathematically attractive problems, and that various tools from
computational complexity, number theory and algebra could be brought to bear on them, has
resulted in the breaking of many systems. The old one-time pad remains the only system that is

known to be unconditionally secure.

The ideal proof of security for a public key cryptosystem would be to show that any attack
that has a nonnegligible probability of breaking the system requires an infeasible amount of
computation. While no public key system has been shown to satisfy this strong definition of
security, the situation is not completely bleak. Many systems have been developed whose security
has been proved to be equivalent to the intractability of a few important problems, such as
factoring integers, that are almost universally regarded as very hard. (Many of the systems
that have been broken were derived from these presumably secure ones by weakening them in
order to obtain greater speed.) Furthermore, the extensive work of the last decade, both in
cryptography itself and in general computational complexity, has given cryptologists a much

better understanding of what makes a system insecure. The aim of this survey is to distill some



1. Introduction

The last decade has seen explosive growth in unclassified research in all aspects of cryptology,
and cryptanalysis has been one of the most active areas. Many cryptosystems which had been
thought to be secure have been broken, and a large collection of mathematical tools useful in
cryptanalysis have been developed. The purpose of this survey is to present some of the recent
attacks in a way that explains and systemizes the cryptanalytic techniques that are used, with

the hope that they will be useful in assessing the security of other cryptosystems.

Most of the discussion in this paper is devoted to public key systems. This reflects the general
developments in cryptography over the last decade. At the beginning of the 1970’s only classical
(single key) cryptography was known, but very little unclassified research was being done on it.
The reasons for this lack of interest were manifold. There did not seem to be much need for
commercial encryption. The vast body of classified work in cryptography discouraged researchers
who naturally like to discover new results. Finally, perhaps the most important factor was that
in spite of the development of the beautiful Shannon theory of secrecy systems, and the use of
some tools from abstract algebra, generally speaking cryptography appeared to consist of a large

bag of tricks, without a coherent mathematical framework.

The situation changed drastically in the 1970’s. First of all, with growth in communications
and proliferation of computers, the need for cryptographic protection became widely recognized.
Second, the invention of public key cryptography by Diflie and Hellman appeared to provide an
answer to the commercial need for security that avoided some of the disadvantages of classical

cryptography, such as the difficulty of key management. Furthermore, this development galvanized
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Abstract

In spite of the progress in computational complexity, it is still true that cryptosystems are
tested by subjecting them to cryptanalytic attacks by experts. Most of the cryptosystems
that have been publicly proposed in the last decade have been broken. This paper outlines a
selection of the attacks that have been used and explains some of the basic tools available to
the cryptanalyst. Attacks on knapsack cryptosystems, congruential generators, and a variety
of two key secrecy and signature schemes are discussed. There is also a brief discussion of the
status of the security of cryptosystems for which there are no known feasible attacks, such as
the RSA, discrete exponentiation, and DES cryptosystems.



