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ABSTRACT

The work of Ghiglia, Mastin, and Romero on a ‘‘phase-unwrapping’’ algorithm gives

rise to the following operation: for any undirected graph with arbitrary integer values

attached to the vertices, simultaneous updates are performed on these values, with the

value of a vertex being changed by one in the direction of the average of the values of the

adjacent vertices. (When the average equals the value of a vertex, the value of the vertex

is incremented by one, unless all the neighbors have the same value, in which case no

change is made.) Earlier work of Odlyzko and Randall showed that iterating this

operation always leads to a cycle of length one or two, but does not give a bound on how

many iterations might be needed to reach such a cycle. This paper introduces a new

‘‘energy function’’ which does yield a bound for the transient. A novel feature of this

energy is that it contains not only linear and bilinear terms, as is common, but also terms

involving the minimum function.
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1. Introduction

Let G be an undirected graph with vertices labelled 1 , . . . , n, and suppose that for

each i, an integer x i ( 0 ) is assigned at time 0 to vertex i. A series of synchronous

updates is performed on these values with the rule that if x i ( t) is the value of vertex i at

time t, then

x i ( t + 1 ) =





î x i ( t) + 1

x i ( t)

x i ( t) − 1

otherwise ,

if x j ( t) = x i ( t) for all j ∈ J i ,

if S i ( t) < 0 ,

(1.1)

where
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S i ( t) =
j ∈ J i

Σ x j ( t) − d i x i ( t) , (1.2)

J i = { j: vertex j is connected to vertex i } ,

d i =  J i  = degree of vertex i .

This transformation was defined by Ghiglia, Mastin, and Romero [1] for certain graphs

that arose in their work on ‘‘phase unwrapping’’ (determination of the phase of an

analytic function from a set of values of the function at a discrete grid). Since the

maximal value assigned to any of the vertices never increases, and the minimal value

never decreases, it is clear that iterating the transformation leads to a configuration that

repeats periodically. Ghiglia et al. observed that for their graphs, the transformation

always ended up in a cycle of length 1 or 2. Their algorithm was in fact designed on the

assumption that the cycle length is at most 2. Later, Brickell and Purtill (unpublished)

defined the transformation for general graphs and conjectured that the period was always

at most 2. This conjecture was proved in [6], by utilizing an ‘‘energy function’’ derived

from that used in [4]. However, the proof of [6] did not provide an upper bound for the

transient (the number of steps until the transformation enters a cycle), since the energy

function used there was not strictly decreasing.

In this note we obtain an upper bound for the transient (Theorem 2 in Section 2). The

most interesting aspect of this bound is the method used. The first results about periods

of certain kinds of discrete iterations having to be 1 or 2 were obtained in [5] by rather

cumbersome combinatorial methods. Other methods were developed later

[2,3,4,7,8,9,10]. The methods in [4] relied on an ‘‘energy function;’’ i.e., a function

associated to a configuration that could be shown to be bounded, yet was strictly
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decreasing at each iteration not in the cycle. The proof in [6] that the Ghiglia et al.

iteration has period 1 or 2 relied on the use of the following energy function, adopted

from those used in [4]:

E 0 ( t) = −
i , j = 1
Σ
n

a i j x i ( t) x j ( t − 1 ) , (1.3)

where

a i j =





î 0

− d i

1

if i ≠ j and j /∈ J i .

if i = j ,

if i ≠ j but j ∈ J i ,

(1.4)

This energy function had the property that E 0 ( t + 1 ) ≤ E 0 ( t) for all t, but unlike the

energy function of [4], equality sometimes holds for t not in the cycle, so that no upper

bound for the transient could be obtained from it. On the other hand, this energy function

involves only bilinear terms.

The energy function we will use here is quite different, and is given by

E( t) = α E 0 ( t) − 2
i = 1
Σ
n

min (x i ( t) , x i ( t − 1 ) )

− 2
i = 1
Σ
n

j ∈ J i

Σ min (x i ( t) , x j ( t − 1 ) ) (1.5)

+
i = 1
Σ
n

(x i ( t) + x i ( t − 1 ) ) ,

where

α = 2
i

max d i + 4 . (1.6)

The novelty of our method is that we use the minimum function in the definition of (1.5),
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and that the terms with the minima in them appear to be essential. They allow us to show

that E( t + 1 ) ≤ E( t) − 1 for all t not in the cycle (Theorem 1), and this then leads to the

upper bound of Theorem 2 for the length of the transient. (As we mention in Section 3,

this upper bound is probably not best possible.)

It is possible to bypass the use of the minimum function in (1.5). The function E( t)

of (1.5) was derived by studying an encoding (due to the first author and mentioned

briefly in [6]) of the iteration (1.1) into a transformation of a graph with only 0 and 1

values, for which the methods of [4], for example, could be applied. However, the new

graph is very large, and its size actually depends on the initial assignment of

x 1 ( 0 ) , . . . , x n ( 0 ). Thus this encoding does not show what is happening very clearly,

and the bound for the length of the transient it gives is weaker than that of Theorem 2.

2. Main Results

In this section we prove our main results, theorems 1 and 2.

Theorem 1. For the transformation defined by (1.1) and the energy function (1.5), one

has

E( t + 1 ) ≤ E( t) − 1 for any t ≥ 1

unless x i ( t + 1 ) = x i ( t − 1 ) for all i.

Proof. Because of the symmetry a i j = a j i , a quick calculation shows that

∆ E( t) : = E( t + 1 ) − E( t) =
i = 1
Σ
n

∆ i ( t) , (2.1)

where
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∆ i ( t) = − α (x i ( t + 1 ) − x i ( t − 1 ) ) S i ( t)

+ 2 min (x i ( t) , x i ( t − 1 ) ) − 2 min (x i ( t + 1 ) , x i ( t) ) (2.2)

+ 2
j ∈ J i

Σ {min (x j ( t) , x i ( t − 1 ) ) − min (x j ( t) , x i ( t + 1 ) ) }

+ x i ( t + 1 ) − x i ( t − 1 ) ,

with S i ( t) defined by (1.2). What we will now show is that ∆ i ( t) ≤ 0 for all i and t,

and that ∆ i ( t) ≤ − 1 for at least one i if t is not in a cycle.

The first observation is that if

(x i ( t + 1 ) − x i ( t − 1 ) ) S i ( t) ≠ 0 , (2.3)

then

(x i ( t + 1 ) − x i ( t − 1 ) ) S i ( t) ≤ − 1 ,

and so

∆ i ( t) ≤ − 1 ,

because α (given by (1.6)) is large.

The next observation is that if x i ( t + 1 ) = x i ( t − 1 ), then ∆ i ( t) = 0. Hence it

only remains to consider the case when x i ( t + 1 ) ≠ x i ( t − 1 ), but S i ( t) = 0. We

consider two subcases:

Case a). x j ( t) = x i ( t) for all j ∈ J i . In this case x i ( t + 1 ) = x i ( t), and therefore
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∆ i ( t) = 2 min (x i ( t) , x i ( t − 1 ) ) − 2 x i ( t)

+ 2
j ∈ J i

Σ {min (x j ( t) , x i ( t − 1 ) ) − min (x j ( t) , x i ( t) ) }

+ x i ( t) − x i ( t − 1 ) .

If x i ( t) ≥ x i ( t − 1 ), then, since x i ( t + 1 ) = x i ( t) ≠ x i ( t − 1 ), we must have

x i ( t) = x i ( t − 1 ) + 1, so

min (x j ( t) , x i ( t − 1 ) ) − min (x j ( t) , x i ( t) ) ≤ 0

for all j ∈ J i , and therefore

∆ i ( t) ≤ 1 − 2 = − 1 .

If x i ( t) < x i ( t − 1 ), then x i ( t + 1 ) = x i ( t) = x i ( t − 1 ) − 1, so

∆ i ( t) = − 1 .

Case b). x j ( t) ≠ x i ( t) for some j ∈ J i . In this situation

x i ( t + 1 ) = x i ( t) + 1 ,

so, since x i ( t + 1 ) ≠ x i ( t − 1 ), we must have

x i ( t + 1 ) ≥ x i ( t − 1 ) + 1 ,

and therefore for each j ∈ J i ,

min (x j ( t) , x i ( t − 1 ) ) − min (x j ( t) , x i ( t + 1 ) ) ≤ 0 ,

and for at least one j ∈ J i , the difference above must be − 1 or − 2. Hence

2
j ∈ J i

Σ {min (x j ( t) , x i ( t − 1 ) ) − min (x j ( t) , x i ( t + 1 ) ) } ≤ − 2 .

On the other hand,
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2 min (x i ( t) , x i ( t − 1 ) ) − 2 min (x i ( t + 1 ) , x i ( t) )

+ x i ( t + 1 ) − x i ( t − 1 ) = 0 or 1 ,

so that ∆ i ( t) ≤ − 1 in this case also.

We now turn to an investigation of the length of the transient. If we assume that the

initial values satisfy − p ≤ x i ( 0 ) ≤ p for all i, then (1.3) and (1.5) show that

 E( t) = O(nα 2 p 2 ), and so the length of the transient is O(nα 2 p 2 ). One can

improve this bound somewhat.

Theorem 2. If − p ≤ x i ( 0 ) ≤ p for all i, then the iteration enters a cycle after

≤ 10 α p e (2.4)

updates, where e denotes the number of edges in the graph.

Proof. We can clearly assume that the graph is connected, so that e ≥ n − 1. We first

note that for all i

 S i ( t + 1 ) − S i ( t) ≤ 2d i . (2.5)

Therefore, if S i ( t) > 2d i , then S i ( t − 1 ) > 0, and therefore

x i ( t + 1 ) = x i ( t − 1 ) + 2 ,

∆ i ( t) ≤ − 2 α S i ( t) + 2d i ≤ − α S i ( t) . (2.6)

The bound (2.6) applies in the same way when S i ( t) < − 2d i . Furthermore, if

 S i ( t) ≥ 2d i , then  S i ( t + 1 ) ≤   S i ( t). The last observation implies that if

 S i ( t) < 4d i , then  S i ( t + 1 ) < 4d i as well.
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We now proceed to the proof of the theorem. We have

 E( t) ≤  α E 0 ( t) + 4np + 2p
i = 1
Σ
n

d i

= α E 0 ( t) + 4p(n + e) .

Now

E 0 ( t) = −
j = 1
Σ
n

x j ( t − 1 ) S j ( t) ,

so

 E 0 ( t) ≤ 4p
j = 1
Σ
n

d j + p
j ∈ A(t)

Σ  S j ( t) ,

where

A( t) = { j: 1 ≤ j ≤ n ,  S j ( t) ≥ 4d j } .

Hence

 E( t) ≤ 8 α pe + 4p(n + e) + α p
j ∈ A(t)

Σ  S j ( t) .

By our previous observations, however, we have

E( t + 1 ) − E( t) ≤ − α
j ∈ A(t)

Σ  S j ( t) ,

and A( 1 ) ⊇ A( 2 ) ⊇ . . . , so that

 E( 2p) ≤ 8 α pe + 4p(n + e) ,

and the bound (2.4) of the theorem follows.



- 9 -

3. Concluding remarks

The constant 10 in the bound (2.4) of Theorem 2 can easily be improved. However, it

would be much more interesting to improve on the main term α pe.
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