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1. Introduction

A wide variety of new results in combinatorial enumeration have been obtained

recently. Many of these results were prompted by new problems in computer science,

while others answered old questions in combinatorics and other fields. The purpose of

this note is to survey a subset of these new results, namely those dealing with tree

enumeration. A selection of tree enumeration results is presented, together with a

discussion of the methods that led to their derivation. No complete proofs are given;

instead, the concentration is on heuristics and on the extent to which these methods can

be generalized. The selection of techniques and results is made from those the author has

worked on, and several other survey papers on related results could also be written

without exhausting the subject.

The main unifying feature of the new methods discussed here is that they rely on

intensive study of nonlinear analytic iterations involving generating functions. This is in

marked contrast to classical tree enumeration, where the generating functions typically

have only algebraic singularities. To oversimplify a little, it can be said that at least

asymptotic enumeration of unlabeled trees of various kinds is very well understood. The

basic method used there was developed by Po ´lya [32] and perfected by Otter [31]. Their

method is presented also in [16], and it is so well understood that a few years ago a paper

was written with the title ‘‘Twenty-step algorithm for determining the asymptotic

number of trees of various species’’ [17]. The word ‘‘algorithm’’ in the title of that



paper should not be interpreted literally; what those authors present is a sequence of

steps, illustrated by examples, which are to be followed in enumerating unlabeled trees.

If S n denotes the number of rooted trees of a particular kind with n vertices, and s n the

number of unrooted trees with n vertices, the generating functions are defined by

S(z) =
n = 1
Σ
∞

S n z n ,

s(z) =
n = 1
Σ
∞

s n z n .

It is usually the case that these power series for S(z) and s(z) converge in some disk

 z  <  ρ, and have algebraic singularities at z = ρ of the kind

S(z) = c 1 − c 2 (ρ −z)1/2 + O(  ρ  −z  ) , (1.1)

s(z) = c 3 + c 4 (ρ −z)3/2 + O(  ρ  −z  2 ) , (1.2)

(where the c i are constants depending on the trees being considered), and no other

singularities on  z  =  ρ. It can then be deduced using the Darboux method [10] that

for some constants b 1 and b 2 ,

S n ∼ b 1 n − 3/2 ρ− n as n → ∞ ,

s n ∼ b 2 n − 5/2 ρ− n as n → ∞ .

The above sketch should not be taken to imply that the Po ´lya method is trivial. Many of

the steps leading to (1.1) and (1.2), which involve obtaining relations involving the

generating functions S(z) and s(z), can be quite complicated. Moreover, very often it is

impossible to determine constants such as the all-important radius of convergence ρ in

closed form, and so although these constants can be calculated efficiently to great

accuracy, we do not know whether they are algebraic or transcendental. However, the



main point of this paragraph is to indicate that at least the basics of the Po ´lya

enumeration theory are fairly well understood.

Beautiful and useful as the Po ´lya theory is, it only applies to a restricted class of tree

enumeration problems, and there is a wide literature (cf. [4,16,26]) on other methods.

Here we will be concerned with some recent developments that involve nonlinear

iteration. As a simple example, we consider the problem of height distribution among

binary trees. Binary trees are rooted trees in which every node has either 0 or 2 sons, and

left and right sons are distinguished. The size of a binary tree is the number of its

internal binary nodes; i.e., the number of nodes with two sons. We let B n denote the

number of binary trees of size n, so that B 0 = B 1 = 1. Since any binary tree T of size

> 0 is obtained by making the roots of two other binary trees be the sons of the root of T,

and since left and right successors are distinguished we obtain the recurrence

B n =
n 1 + n 2 = n − 1

Σ B n 1
B n 2

, n ≥ 1 . (1.3)

Hence, if we define the generating function

B(z) =
n = 0
Σ
∞

B n z n , (1.4)

then (1.3) yields the functional equation

B(z) = 1 + zB(z)2 , (1.5)

valid in the ring of formal power series in z. Equation (1.5) can be solved explicitly; we

find that



B(z) =
2z

1 −√ 1 − 4z_ _________ . (1.6)

We immediately see that B(z) is analytic in the entire complex domain with the

exception of an algebraic singularity (a square root one) at z = 1/4. Hence an

application of the Darboux method [10] easily yields the result

B n ∼ π − 1/2 n − 3/24n as n → ∞ . (1.7)

In this particular case there is no need to use the Darboux method. If we expand

( 1 − 4z)1/2 by the binomial theorem, we find that

B n =
n + 1

1_ ____ ( n
2n) , (1.8)

so that B n is one of the famous Catalan numbers. Furthermore, Eq. (1.8) can be obtained

by more combinatorial methods, without any use of generating functions. The point

behind the presentation above is to exhibit a case where the classical enumerative

techniques apply in a very straightforward way. In the next two sections we will discuss

other problems arising in the enumeration of binary trees by height which appear to

require more sophisticated methods.

2. Enumeration of trees of a given height

In many situations it is important to study heights of trees, and not just the total

number of trees of a given size (cf. [2,21,22]). In this section we present some results on

the enumeration of trees by size when the height is fixed. For a binary trees, we assign

height 0 to the empty tree, height 1 to the tree consisting of just the root and two leaves,

and in general height h to the tree in which the longest path from the root to a leaf has



length h. We let B h ,n denote the number of binary trees of size (number of internal

nodes) n and height ≤ h. We wish to study B h ,n as a function of n for h fixed (and large).

No formula for B h ,n is known that even remotely approaches the formula (1.8) for B n

in simplicity and utility. However, it is possible to show that if 0 < λ < 1, then as

h , n → ∞ in such a way that n2 − h → λ,

f (λ ) = lim 2 − h log B h ,n (2.1)

exists and is a certain easily computable function which will be described below, and a

graph of which is shown in Fig. 1. The key to the proof lies in the existence of relations

among the generating functions of the B h ,n . If we let

B h (z) =
n = 0
Σ
∞

B h ,n z n , (2.2)

which is a polynomial with B h ,n = 0 for n ≥ 2h , then we have B 0 (z) = 1 and

B h + 1 (z) = 1 + zB h (z)2 for h ≥ 0 , (2.3)

since a nonempty tree of height ≤ h + 1 consists of a root with two trees of heights ≤ h as

its descendants. The recurrence (2.3) clearly gives a method of computing all of the B h ,n

rather quickly, at least if h is small. For large h, though, no method was known until

recently for analyzing the behavior of the B h ,n . An extensive study of the analytic

properties of the recurrence (2.3) has given very precise estimates of the B h ,n [15], of

which (2.1) is just a special case.

The results of [15] cover much more than the enumeration of binary trees of a given

height. They give estimates of coefficients y h ,n of sequences y 0 (z), y 1 (z) , ... of

polynomials



y h (z) =
n = 0
Σ
∞

y h ,n z n (2.4)

which are called PNI-sequences (for positive nonlinear iteration). PNI-sequences are

defined by some initial y 0 (z) ≠ 0 which has nonnegative coefficients and a recurrence

y h + 1 (z) = P(z , y h (z) ) , h ≥ 0 , (2.5)

where P(z ,y) is a polynomial with non-negative coefficients,

P(z ,y) =
0≤k≤d
Σ p k (z) y k with p d (z) ≠ 0 , d > 1 . (2.6)

Define

µ =
h→ ∞
lim d − h deg y h (z) ,

ρ = inf { x : x ε  R + , y h (x) → ∞ as h → ∞} .

Clearly µ and ρ exist and are finite for every PNI-sequence { y h (z) } that contains non-

constant polynomials. As is shown in [15], it is sufficient to consider PNI-sequences in

which P(z ,y) and y 0 (z) satisfy the following conditions:

(A) P(z ,y) is not a monomial (i.e., P(z ,y) ≠ bz ay d ).

(B) At least one of the y h , 0 ≤ h ≤ 2 has the property that

 y h (z)  = y h ( 1 ) and  z  = 1 => z = 1.

The main result proved in [15] is the following one.

Theorem 2.1. Suppose that { y h (z) } is a PNI-sequence that satisfies conditions (A) and

(B), and let λ 1 and λ 2 be any real numbers that satisfy

0 < λ1 < λ2 < µ .



Then for any integers n and h with

λ 1 ≤ nd − h ≤ λ 2

we have, uniformly in n and h,

y h ,n =
d n /2√ 2π(r 2 β′ ′ (r) + rβ′ (r) )

rp d (r) − 1/(d − 1 ) exp (d h (β(r) − rβ′ (r) log r) )_ ______________________________________ ( 1 + O(d − h /2 ) ) , (2.7)

where r is the unique solution in (ρ , ∞ ) of

rβ′ (r) = nd − h ,

and β(z) is a function which is defined on (ρ , ∞ ) by

β(z) = log y 0 (z) +
d − 1

1_ ____ log p d (z) +
j = 0
Σ
∞

d − j − 1 log


î p d (z) y j (z) d

y j + 1 (z)_ ___________




, (2.8)

and is analytic there.

Some further results are proved in [15]. In particular, it is shown there that if ρ < 1,

then the y h ,n as functions of n are asymptotically gaussian near the peak.

Theorem 2.1 gives information about the y h ,n , the coefficients of the y h (z), in terms

of the function β(z), which is defined by (2.8) in terms of the y h (z). The circularity here

is only apparent, since the series (2.8) converges very rapidly, and the first few terms

suffice to compute it to great accuracy.

In the case of binary trees, with y h (z) = B h (z), we have ρ = 0, µ = 1, d = 2, and

β(z) = log z +
j = 1
Σ
∞

2 − j log
B h (z) − 1

B h (z)_ ________ .

Theorem 2.1 implies that for fixed h, B h ,n is maximized for



n ∼ 2h 0. 6289 ... as h → ∞ , (2.9)

and its maximum value is asymptotic to

2 − h /2 exp ( 2h 0. 4072 ...) 0. 6855 ... as h → ∞ . (2.10)

For h = 9, B 9 ,n is maximized for n = 322, as predicted by (2.9), and the value of B 9 , 322

differs from that predicted by (2.10) by less than 0.05%.

The proof of Theorem 2.1 presented in [15] depends on a careful study of the analytic

behavior of the polynomials y h (z) as h → ∞ for z ∈ C. It is shown there that on any

circle  z  = r, r > ρ, y h (z) is large only in a very small neighborhood of the real axis,

where

y h (z) = g(z) α (z) d h

( 1 + o( 1 ) ) as h → ∞ , (2.11)

where g(z) and α (z) = exp (β(z) ) are certain analytic functions. (This result

generalizes some earlier work on numerical recurrences by Aho and Sloane [3] and

Reingold [33].) The coefficients y h ,n are studied by means of the Cauchy formula

y h ,n =
2πi
1_ ___

 z = r
∫ y h (z) z − n − 1 dz .

The radius r is chosen to make the value of the integral at z = r (where the maximum

over the circle  z  = r is located) as small as possible, and the theorem is obtained by

an application of the saddle-point method [8]. The details are quite complicated, but the

principal ideas of the method are quite straightforward.

As is discussed in [15], many of the hypotheses of Theorem 2.1 can be weakened

considerably. What is crucial is not the nonnegativity of the various coefficients so much



as the doubly exponential growth (2.11) of the y h (z), which follows from that

nonnegativity. Further, one does not have to restrict attention to polynomials P(z ,y) in

the recurrence (2.5). However, when P(z ,y) is not a polynomial, one can often obtain

asymptotic estimates by using more classical estimates [18,19,29].

3. Average heights of trees

In the preceding section we presented some results on the enumeration of trees of a

given height, so that we held the height fixed and varied the size of the trees. In many

cases what is needed, though, is information about the distribution of heights among trees

of a given size, so that we need to hold the size fixed and vary the height. The first

results of this kind which involved nonlinear analytic iteration were obtained by Re ́ nyi

and Szekeres [34] in a study of rooted nonplanar labeled trees. By means of an extensive

study (which relied heavily on [36]) of the sequence of functions G 0 (z) , G 1 (z) , ... ,

where G 0 (z) = z and

G h + 1 (z) = z exp (G h (z) ) , h ≥ 0 , (3.1)

they showed that the average height of rooted nonplanar labeled trees with a nodes is

asymptotic to ( 2πn)1/2 as n → ∞. Furthermore, Re ́ nyi and Szekeres obtained the

distribution of heights among such trees, and showed that it was the ubiquitous theta

distribution; if H n denotes the height of a random rooted nonplanar labeled tree with n

nodes, then for any x > 0,

n → ∞
lim Pr(H n ( 2n) − 1/2 < x) = 4x − 3 π5/2

k = 1
Σ
∞

k 2 exp ( − π2 k 2 / x 2 ) . (3.2)

The same result was proved later by a different method by Stepanov [35]. (Similar



results for diameters were later obtained in a very interesting paper of Szekeres [37].)

Considerably more general, but very similar, results were obtained later in [13,14].

Those papers are concerned largely with heights in what Meir and Moon [24] call simple

families of trees. These families consists of planar trees with labels attached to nodes.

All labels are taken from a fixed set L = L 0 ∪ L 1 ∪ L 2 ∪ ... , where the L i are disjoint

finite sets, and L r is the set of labels that may be attached to a node of degree r. If we let

y n be the number of trees with a total of exactly n nodes (not just internal nodes), then

the generating function

y(z) =
n = 1
Σ
∞

y n z n (3.3)

satisfies an equation of the form

y(z) = zφ(y(z) ) , (3.4)

where

φ(y) =
r = 0
Σ
∞

 L r  y r . (3.5)

We will assume that the expansion (3.5) converges in some neighborhood of the origin.

Furthermore, if y h ,n is the number of trees in the family of size n and height ≤ h, and

y h (z) =
n = 1
Σ
∞

y h ,n z n , (3.6)

then y 0 (z) = 0 and

y h + 1 (z) = zφ(y h (z) ) , h ≥ 0 . (3.7)

Many of the important families of trees fall into this category. For example, binary trees



have  L r  = 1 for r = 0 and r = 2, and  L r  = 0 for other r. (For binary trees, the

old and the new notation are related by the equation y(z) = zB(z 2 ), since size in the

new notation refers to the total number of nodes.) Furthermore, the results of [14] apply

to many other families of trees, such as the rooted nonplanar labeled trees studied by

Re ́ nyi and Szekeres, which satisfy relations of the type (3.7), with φ(y) having a Taylor

series with nonnegative coefficients which converges in some neighborhood of the origin.

For simple families of trees, the asymptotic behavior of y n can be determined from

the Po ´lya theory. Meir and Moon [24] also succeeded in determining many other

quantities for these trees, such as the average profiles. The distribution of heights is not

amenable to this kind of analysis, and requires new method. In [14] the following result

is proved.

Theorem 3.1. If n → ∞ though values of n such that n ≡ 1 (mod d), where

d = GCD { r :  L r  ≠ 0}, the average height of trees of size n in a simple family

corresponding to y = zφ(y) is asymptotic to λ n 1/2 , where

λ = φ′ (τ ) ( 2π)1/2 (φ(τ ) φ′ ′ (τ ) ) − 1/2 , (3.8)

and τ is the smallest positive root of the equation φ(τ ) = τ φ′ (τ ). (If n ≡ / 1 (mod d),

there are no trees of size n at all.)

It is also shown in [14] that a distribution result like (3.2) holds for simple families of

trees, but with the scaling factor ( 2n) − 1/2 replaced by (ξn) − 1/2 , where ξ = λ2 /π.

The analysis of [14] relies on a careful study of the iteration (3.7) near the principal

singularity. Here we will briefly sketch the analysis in the case d = 1. It is easy to show

(cf. [14,24]) that y(z) is analytic in  z  <  ρ, where ρ = τ/φ(τ ), and has an algebraic



singularity at z = ρ;

y(z) = τ − ( 2φ(τ ) /φ′ ′ (τ ) )1/2 ( 1 − z /ρ)1/2 + O( 1 − z /ρ  ) . (3.9)

This is one step in the application of the Darboux-Po ´lya theory, and it leads to an

asymptotic estimate for y n . To estimate the average height, it suffices to study the sum

H n of the heights of all trees of size n;

H n =
h = 1
Σ
∞

h(y h ,n − y h − 1 ,n ) =
h = 1
Σ
∞

(y n − y h ,n ) . (3.10)

The generating function of H n is

H(z) =
n = 1
Σ
∞

H n z n =
h = 1
Σ
∞

(y(z) − y h (z) ) . (3.11)

Information about H n is obtained from information about the behavior of H(z) near the

singularity z = ρ. Since y n satisfies

y n ∼ cρ− nn − 3/2 as n → ∞

for some constant c > 0, and the average height was expected to be ∼ c ′ n 1/2 , it was

expected that H n ought to be ∼ cc ′ ρ
− 1 n − 1 , so that H(z) was expected to have a

logarithmic singularity at ρ. The proof that this is indeed the case used the expansion

(3.11) and a very careful study of the differences y(z) − y h (z) near z = ρ. If we let

e h (z) = y(z) − y h (z) ,

ε (z) = 1 − zφ′ (y(z) ) ,

then the relations

y(z) = zφ(y(z) )



and

y h + 1 (z) = zφ(y h (z) )

can be used to show that in a suitable region near z = ρ,

e h + 1 (z) = e h (z) ( 1 − ε (z) ) ( 1 − φ′ ′ (τ ) e h (z) /( 2φ′ (τ ) ) + g h (z) ) ,

where

g h (z) = O( e h (z)  2 +  e h (z) (y(z) − τ)  ) ) ,

and from this it can be deduced that near z = ρ,

e h (z) ∼
1 − ( 1 − ε (z) ) h

c ′ ′ ε (z) ( 1 − ε (z) ) h
_ _________________ (3.12)

for an appropriate constant c ′ ′ . The behavior of H(z) near z = ρ can then for deduced

from (3.12) (or, to be exact, from the more precise result proved in [14]), and the estimate

for average heights follows.

4. Enumeration of balanced trees

Several difficult problems arise in the enumeration of trees which have balance

conditions imposed on them. As an example, we consider 2,3-trees [27]. These are

rooted planar trees, each of whose nonleaf nodes has either two or three successors, and

(this is the crucial condition) all of whose root-to-leaf paths have the same length. The

size of a 2,3-tree is the number of its leaves (since that is the quantity of interest in

considering these trees as data structures), with the tree consisting of the root alone being

regarded as having size 1 and height 0. Let a n denote the number of 2,3-trees of size n,

and a h ,n the number of size n and height exactly h. Also let



f (z) =
n = 1
Σ
∞

a n z n , (4.1)

Q h (z) =
n = 1
Σ
∞

a h ,n z n , (4.2)

with Q 0 (z) = z. These generating functions turned out to be crucial in the asymptotic

estimation of the a n [27]. Relatively elementary methods had shown [25] that

c 1 n − 1 φn < a n < c 2 n − 1 φn , (4.3)

where c 1 and c 2 are some positive constants and φ = ( 1 + √ 5 )/2 is the ‘‘golden

ratio,’’ but the question was left open as to whether a n ∼ c 3 n − 1 φn as n → ∞ for some

constant c 3 . It turns out that such a relation does not hold, and the asymptotic behavior

of the a n displays periodic oscillations. (Periodic oscillations occur rather frequently in

combinatorial enumeration, as is shown in [7,11].)

Enumeration of unbalanced 2,3-trees (i.e., those in which the leafs are not all required

to be at the same distance from the root) is easy; such a tree either consists of just the root

or else of a root and either two or three subtrees, each of which is an unbalanced 2,3-tree.

Therefore the enumerator F(z) of unbalanced 2,3-trees satisfies

F(z) = z + F(z)2 + F(z)3 , (4.4)

and this gives an explicit representation of F(z) as an algebraic function. It is easy to

obtain asymptotic estimates for the number of unbalanced 2,3-trees from (4.4).

The enumeration of standard (i.e., balanced) 2,3-trees is considerably more

complicated. Since a tree of height h + 1 (h ≥ 0 ) consists of a root which has either two

or three descendants, all of height h, we obtain



Q h + 1 (z) = Q h (z)2 + Q h (z)3 , h ≥ 0 . (4.5)

This relation, and the results described in Section 2, give very good estimates for the

distribution by size of 2,3-trees of a given height. Another way to obtain relations among

the Q h (z) is to note that each tree of height h + 1 is obtained from a unique tree of height

h by appending either two or three successors to each leaf, and so

Q h + 1 (z) = Q h (z 2 + z 3 ) , h ≥ 0 . (4.6)

The recurrence (4.6) turns out to be more useful than (4.5) in estimating the total number

of 2,3-trees of a given size. Since

f (z) =
h = 0
Σ
∞

Q h (z) , (4.7)

we find that

f (z) = z + f (z 2 + z 3 ) . (4.8)

This relation, like the preceding ones, is valid in the ring of formal power series in z.

The functional equation (4.8) can be used to obtain to the asymptotic enumeration of

2,3-trees. Essentially the same method also yields the following more general result [27].

Theorem 4.2. Let P(z) and Q(z) be nonzero polynomials with real, nonnegative

coefficients. Assume that P( 0 ) = Q( 0 ) = Q ′ ( 0 ) = 0. Write

Q(z) =
k = 0
Σ
K

q k z e k , 2 ≤ e 0 < e 1 < ... < e K , (4.9)

where q k > 0 for 0 ≤ k ≤ K, and assume that K > 0 and

GCD(e 1 − e 0 , e 2 − e 0 , ... , e K − e 0 ) = 1. Let α be the unique positive root of



Q(z) = z, and set β = Q ′ (α ). If

f (z) =
n = 1
Σ
∞

a n z n

is a formal power series in z which satisfies the functional equation

f (z) = P(z) + f (Q(z) ) , (4.10)

then

a n ∼ n − 1 α − nu( log n) as n → ∞ , (4.11)

where u(x) is a nonconstant positive continuous function which is periodic with period

log β. The average value of u(x) is P(α ) ( log β) − 1 .

In the case of 2,3-trees, P(z) = z and Q(z) = z 2 + z 3 , so α = φ− 1 , β = 4 − φ. The

results of [27] do not provide a good expansion of u(x), although they do show that it’s a

very smooth function. Numerically, it appears that in the case of 2,3-trees, u(x)

oscillates between 0.682... and 0.806... .

The proof of Theorem 4.1 relies on a study of the functional equation (4.10). If we

define

Q 0 (z) = z , Q h + 1 (z) = Q(Q h (z) ) for h ≥ 0 , (4.12)

then iteration of the relation (4.10) shows that

f (z) =
h = 0
Σ
∞

P(Q h (z) ) , (4.13)

at least in the ring of formal power series in z. It is easy to show that f (z) is analytic in

 z  <  α, and that (4.13) holds there as a relation among analytic functions.



Furthermore, f (z) has a singularity at z = α, so the radius of convergence of the Taylor

series of f (z) is exactly α. An important part in the analysis in [27] is played by the fact

that the sum on the right side of (4.13) converges in a region larger than the disk

 z  <  α, and so provides an analytic continuation of f (z) outside its circle of

convergence. The sum on the right side of (4.13) converges at z precisely when

Q h (z) → 0 as h → ∞, and when that happens, that sum is analytic at z.

In the results presented in Section 2, the main interest was in the behavior of Q h (z)

for those z for which  Q h (z)  →  ∞ as h → ∞, and it was necessary to obtain delicate

estimates for the rate of divergence. The proof of Theorem 4.1, on the other hand, deals

only with those z for which Q h (z) → 0 as h → ∞. The literature on the general subject

of iteration of rational maps is immense (cf. [1,5,9,12,20,23,36]) and constantly growing,

especially because of the new impetus given to that subject by work in mathematical

physics. Some of that work is closely related to the investigations that were undertaken

in connection with tree enumeration. From the classical results of Fatou [12] and Julia

[20] it can be concluded, for example, that in the case of 2,3-trees, the boundary of the

region for which Q h (z) → 0 as h → ∞ is a nowhere differentiable continuous Jordan

curve, and that  Q h (z)  →  ∞ as h → ∞ for z on the outside of that curve. (A picture

of the curve is shown in Fig. 2.) The proof of Theorem 4.1 does not utilize that fact,

however, but relies on the fact, which does not seem to follow from previously known

results, that Q h (z) → 0 as h → ∞ in the region

{ z :  z  <  α + δ} ∩ { z :  Arg (z − α)  >
2
π_ _ − δ} (4.14)

for some δ > 0. In that region it is shown that



f (z) = c log ( 1 − α− 1 z) + w( log (α − z) ) + O( z − α  ) (4.15)

for c = P(α ) ( log β) − 1 , where w(z) is a function analytic in  Im (z)  <  π/2 + δ and

is periodic with period log β. The derivation of Theorem 4.1 from the expansion (4.15)

is then relatively straightforward.

The method sketched very briefly above can also be adapted to other, more

complicated problems. For example, in the enumeration of AVL -trees (height-balanced

binary trees), one encounters the problem of estimating the coefficients a n of

f (z) =
n = 1
Σ
∞

a n z n ,

where f (z) is given by

f (z) =
h = 0
Σ
∞

Q h (z) ,

and

Q 0 (z) = z , Q 1 (z) = z 2 , (4.16)

Q h + 2 (z) = Q h + 1 (z) (Q h + 1 (z) + 2 Q h (z) ) , h ≥ 0 .

In this case f (z) appears not to satisfy any simple functional equation, but by an intensive

study of the iteration (4.16) it can be shown [28] that f (z) has an expansion of the form

(4.15), and from that it can be concluded that

a n ∼ n − 1 α − nu( log n) as n → ∞ ,

where α = 0. 5219024 ... is a certain constant, which is not known in closed form, but

can be computed rapidly, and u(x) is a continuous function that is periodic with period

log β, β = ( 2 + √ 10 )/3.



5. Final remarks

The preceding sections presented a selection of tree enumeration results. At first

glance they might seem to have very little in common with each other. In some cases

sequences of polynomials are studied in regions where they diverge to infinity, in other

cases they are investigated in regions where they converge to zero. In still other cases

that could be cited, such as the work on probabilities of very large or very small heights

that was done in [38] and is further developed in [30], the corresponding sequences of

generating functions are studied practically right on the boundary between convergence

and divergence. What this seemingly great variety of different approaches conceals is the

basic similarity of the techniques used, all of which depend on very intensive and precise

studies of nonlinear iterations involving generating functions. These studies yield results

about the analytic behavior of the appropriate generating functions that are sufficient to

obtain asymptotic estimates of the coefficients of these functions. Although the

methodology used on the problems presented in this survey is not systematic enough to

permit the writing of a paper with a title like that of [17], it is hoped



that the variety of results and methods that have been discussed will be a convincing

demonstration of the utility of nonlinear iteration methods and will lead to further

research in that field.
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FIGURE CAPTIONS

Fig. 1. The function f (λ ), which equals lim 2 − h log B h ,n as h ,n → ∞ with

n2 − h → λ, where B h ,n is the number of binary trees of height ≤ h and size n.

Fig. 2. Boundary of the region of analyticity of the generating function f (z) for 2,3-

trees (dotted curve) and the disk of converge of the Taylor series of f (z) (solid

circle).
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ABSTRACT

A variety of tree enumeration results have been obtained recently by new techniques.
These new methods were developed to deal with situations that arise in many contexts,
but especially frequently in computer science, where no nice expressions are available for
the generating functions, and only recursive relations are known. A typical example is
the sequence of polynomials

B h + 1 (x) = 1 + xB h (x)2 , h ≥ 0 , B 0 (x) = 1 ,

where B h (x) enumerates binary trees of height ≤ h. The new methods yield estimates
for many of the interesting quantities, such as distribution of heights, even in situations as
complicated as this one. A brief survey of these methods and the results they lead to is
given.


