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Practically all knapsack public key cryptosystems have been broken in the last few years, and so

essentially the only public key cryptosystems that still have some credibility and are widely known are

those whose security depends on the difficulty of factoring integers (the RSA scheme and its variants) and

those whose security depends on the difficulty of computing discrete logarithms in finite fields. Therefore,

the computational complexity of these two problems is of great interest.

At the time of the workshop, one aspect of the then-current state of knowledge on these two

fundamental problems seemed to be highly unsatisfactory. This was the fact that all of the fast algorithms

for discrete logarithms and all but one of the fast algorithims for factoring integers had running time

estimates that depended on the efficiency with which matrices could be inverted. These algorithms require

the solution of a system of linear equations of the form

Ax = y , (1)

where A is a matrix of size m by n, x and y are column vectors of lengths m and n, respectively, and m is

close to n. The interesting ranges of values for n are between 103 and 107 . Ordinary gaussian elimination

requires that about n 3 steps for the solution of (1). Strassen’s algorithm, which might be practical for large

n, takes about n log 2 7 = n 2. 807... steps. The best general purpose algorithm that is known, due to

Coppersmith and Winograd [3], takes about n 2. 495... steps, but is almost certainly impractical. No

algorithm can solve the system (1) in fewer than about n 2 steps (there are that many entries in the matrix,

after all!).

Depending on how fast the system (1) can be solved, various algorithms have different asymptotic

running time estimates. If we let L = L(p) denote any quantity that satisfies

L = exp ( ( 1 + o( 1 ) ) ( log e p log e log e p) )1/2 ) as p → ∞ , (2)

and suppose that the system (1) can be solved in time about n r for various values of r, then Table 1

summarizes the state of knowledge at the time of the workshop about the efficiency of the best factoring

algorithms for factoring integers around p in size. A similar table can be prepared for the running times of
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various discrete logarithm algorithms.

Table 1. Asymptotic Running Times for Factoring Integers.

algorithm r = 3 r = 2. 807... r = 2. 495... r = 2
_ ____________________________________________________________________

Schnorr-Lenstra [9] L L L L

Continued fraction [8] L 1. 13... L 1. 12... L 1. 11... L 1. 11...

Schroeppel linear
sieve [8]

L 1. 22... L 1. 18... L 1. 11... L

Pomerance
quadratic sieve [8]

L 1. 06... L 1. 04... L 1. 02... L

Coppersmith,
Odlyzko, and Schroeppel [2]

L 1. 16... L 1. 13... L 1. 081... L
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The question that was raised at the workshop was whether the estimates for the running times of those

algorithms that are obtained by assuming r > 2 are really appropriate. Even if we cannot solve general

systems of the form (1) in time O(n 2 + ε ) for every ε > 0, we can take advantage of the fact that the

systems that arise in factorization and discrete logarithm algorithms are very sparse. Some methods to take

advantage of that sparseness were presented, and their effectiveness was supported both by large-scale

simulation and heuristic arguments. (See [7] for a brief description.) The conclusion was drawn that at

least in the foreseeable future, these methods are likely to make the system (1) easy to solve. Still, a

question remained about the asymptotic performance.

As a result of that presentation, several methods were developed that can solve sparse systems of the

form (1) in not much more than n 2 steps. The first such methods were developed by D. Coppersmith and

the author, following a suggestion of N. Karmarkar. These methods consist of adaptations of the conjugate

gradient [4] and the Lanczos [5] algorithms to solve linear equations over finite fields. They have been

tested successfully on quite large systems. A brief account of these adaptations is given in [7].

Soon afterwards, D. Wiedemann [10] found a more elegant and probably even faster method, based on

the use of Berlekamp-Massey algorithm and the Cayley-Hamilton theorem. A brief account of it can also

be found in [7].
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Now that the main question, whether systems of the form (1) that arise in factorization and discrete

logarithm algorithms can be solved in time about n 2 , has been answered in the affirmative, we are faced

with a more important and basic question. There are now several algorithms known that can factor an

integer around p in time L(p) (see Table 1 and [6], which presents a new algorithm based on elliptic

curves), as well as several algorithms that can compute discrete logarithms in fields GF(p) for p a prime in

time L(p). (For fields GF( 2n ), discrete logarithms can be computed much faster [1].) Does this mean

that L(p) is the natural lower bound for the computational complexity of factoring and finding discrete

logarithms? It is this author’s guess that this is not the case, and that we are missing some insight that will

let us break below the L(p) barrier.
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