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Table 1: Fraction of random subset sum problems solved by a particular reduc-
tion algorithm applied to bases L and L', respectively

n o] L] L]
50 | 50 ] 0.05 | 1.00
50 | 60 | 0.55 | 1.00

50 | 75| 1.00 | -

66 | 76| — |0.25
66 | 84| — 10.80
66 | 92| — 10.95
66 | 100 1.00

66 | 104 | 0.30 | 1.00
66 | 108 | 0.55 | 1.00
66 | 112 | 0.60 | 1.00
66 | 116 | 1.00 | —

known algorithms for lattice basis reduction, applying them to lattice L’ instead of
lattice L also yields dramatic improvements, although the results are not as good as
they would be in the presence of a lattice oracle. For example, Table 1 presents the
comparison obtained in one particular set of experiments. The lattices used were not
exactly L and L', and the reduction algorithm used a combination of ideas from several
sources. More extensive data sets and details of the computations are presented in
[12]. For each entry in Table 1, n denotes the number of items, and b the number of
bits (chosen at random) for each item. For each (n,b) combination, 20 problems were
attempted, where in each case ¢; = 1 for exactly n/2 of the items. The entries for
the L and L' column indicate what fraction of the 20 problems were solved in each
case. It would be of interest to obtain similar comparisons for implementations of

other algorithms, such as that of [10].
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bound by reducing a polynomial number of bases with different by, 13 vectors. How-
ever, for small dimensions it might be possible to improve the bound, even though
any such advantage will disappear as n grows.

In cases where the subset sum problem (Equation 1) to be solved is known to have
> e; small (as occurs in some knapsack cryptosystems, such as the Chor-Rivest one
[4], which has still not been broken), it is possible to again improve on the results of

[11] by our approach. For example, if we know that

Z e; = fn,
=1
we can replace the vector by in the basis of L by

i’i-}—l:(/B?ﬁ?"'?/B?N‘S)?

3), and our analysis

l

and then the lattice L will contain a vector of length /ng(1 —
shows that in this case it then becomes possible to solve most problems with even
smaller weights a;. However, it appears that there are choices for parameters in the
Chor-Rivest knapsack that would resist even this attack.
When we consider the L., or sup-norm,

(22, - 20) oo = max fal,
then we find that the vector & has norm 1/2. Since there are at most 2" non-zero
vectors in L’ of norm < 1/2, we can solve almost all subset sum problems of any
density < 1 if we have a lattice oracle for the sup-norm. Formally, we may make the
following proposition:
Proposition. Let A be a positive integer, and let ay, ..., a, be random integers with
0 <a <Aforl <i<mn. Lete= (e1,...,e,) € {0,1}" be arbitrary, and let
s =y ea;. If the density d < 1, then the subset sum problem defined by a4, ..., a,

and s may “almost always” be solved in polynomial time, given the existence of a
sup-norm lattice oracle.

The general sup-norm shortest vector problem is known to be NP-complete [6]; the
complexity of the square-norm shortest vector problem is an open problem. That
a sup-norm lattice oracle yields a better density bound than a square-norm lattice
oracle suggests that the shortest vector problem for the sup-norm might be harder
than for the square-norm.

Sections 3 and 4 presented theoretical results that assume the availability of an

efficient method for finding the shortest non-zero vector in a lattice. When one uses



Van with a < %. We show that this is not possible, and that the asymptotic bound of
0.9408... cannot be improved in this way. The following proposition shows that any
n-sphere of radius y/an with a < i can cover only an exponentially small fraction of
the vertices of the n-cube. Thus, no polynomial collection of such spheres can satisfy

our requirements.

Proposition. Any sphere of radius \/an,a < i, in R™ contains at most (2 — )"
points of {0,1}", for some 6 = 6(a) > 0.

Proof. Suppose that the n-sphere is centered at the point ¢ = (¢1,...,¢,). We are
interested in the number of points e € {0,1}" for which |c — e||* < an. Using the
upper bound technique of [14], we show that N, the number of points in {0, 1}" inside
the sphere, is bounded by

n

N S e H(e_C? + e—(ci—1)2)' (20)
=1
If the point e = (ey,...,€,) is inside the sphere, then |[c —e||? = 3%, (¢; — €;)* < an,

and after expanding the right side, Equation 20 contains a term of the form

exp (om — zn:(ci — ei)Z) >1,

=1
for each such point e, which proves Equation 20 since all terms in the expansion are
nonnegative.
Since the terms in the product in Equation 20 are independent, we know that the

value of N is bounded by

n
_e2 (ei—1)? o
eanl(;ré%}rgl_[l (6 c; +e (ci—1) ) S eom(ze 1/4)71.
1=

(It is easy to show that the maximum value of f(z) = e™** +¢~(*=1) is 2¢~1/4.) Thus,

N < enae2n€(—1/4)n — 2n€n(a—1/4)

=(2—-6(a))", for é(a)=2(1— ea_1/4)

For all o < i, 6(a) > 0, which proves the proposition. B
Asn — oo, any n-sphere with radius \/am, o < 1, will contain at most (2 — 6(«))"
points in {0, 1}". Thus, any polynomial-sized collection of spheres cannot contain all

the points in {0,1}". Thus we cannot hope to asymptotically improve the 0.9408 . ..



In [14] it is shown that for n sufficiently large, the second summand in Equation 19
above is smaller than the first summand by a factor that is exponential in n. In any
case, the second summand equals 2. By the method of [11, 14], the first summand

is bounded, for every u > 0, by

9(log; €)8(u)n

?

where
§(u) =tu+1Inb(e™™), forf(z)=1+2 i P
k=1
Numerically, we may calculate the minimum value of é(u), and obtain
6(u) > 6(ug) = 0.7367..., for ug = 1.8132...
Thus, for large n, we have

{2 1]l < 2| < 297, for ¢ = 1.0628 ...,

ZCOTL

1

P§n(4n\/ﬁ—|—1)

Thus, any subset sum problem with density d < 1/¢; = 0.9408... may be solved in

polynomial time, given the existence of a lattice oracle. B

4. Discussion

The analysis above shows that it is possible to improve the density bound from
0.6463... t0 0.9408 ... by modifying one vector in the lattice basis. We now consider
the possibilities of improving on this bound.

Solving subset sum problems with basis reduction is closely connected to lattice
covering problems. In particular, we want to cover the vertices of the n-cube (rep-
resenting the possible e solution vectors) with a polynomial number of n-spheres of
radius \/an. Lagarias and Odlyzko showed that it was possible to cover the n-cube
with two n-spheres of radius \/%7n The two spheres (centered at (0,0,...,0) and
(1,1,...,1)) correspond to the two basis reduction problems which must be solved
for any given subset sum problem. Our analysis above uses one n-sphere of radius
1

5V/n centered at (

11 1

513,-+-»3) to cover all the points.

One way to improve the bound presented above would be to show that it is possible

to cover the vertices of the n-cube with a polynomial number of n-spheres of radius



Therefore, Equation 6 can be replaced by:

Zx a; = zy(t — 2s), (13)

since (3_j—; bj) —2b} ., = (0,0,...,0, N(t — 2s)).

We now establish a bound on the size of |y|. From above,

ly(t —2s)| =2

n
E x;a;
=1

< nay/n, where o = max a;. (14)
1<i<n

If |t — 25| > La, then |y||t — 25| > |y|a, and

ly| < 2ny/nm, (15)

by Equation 14. If |t — 2s| < %oz, then we can solve two problems: one where « is
assumed to be part of the subset which sums to s, and one where « is assumed to
be part of the subset which sums to ¢t — s. In the first case, the new problem has

s'=s—a,t' =t —a, and
|t'—23’|=|t—a—25+2a|=|t—25+a|2%a. (16)
For the second case, the new problem has s’ = s,t' =¢ — «, and
[t —25'| = |t — 25 —a|] > %a. (17)

Thus we may always assume |t —2s| > %oz and that the bound in Equation 15 holds.

We may now calculate the bound on probability P that there exists a vector X
which satisfies Equation 12. We now let x = (21,...,2,) be any vector such that
2 x € 72". We obtain the following bound, similar to Equation 10:

P <Pr (22:; ax; = zy(t — 2s ) HX x| < \/ﬁ}‘ <4n\/ﬁ+ 1) ) (18)

As in Section 2, Pr(3_1 agx; = 3y(t—2s)) < 1/A. To estimate the number of vectors
x with ||x|| < y/n, we again use the technique in [11, 14], but in a more complicated

way. The number of x with ||x|| < /n/2 is bounded above by

HW = (w1,...,wy) w; € Z forall i, ||wl| < %\/ﬁ}‘
+ {w= (. w) w €z foralli,flw = (3,5, )] < 2}



Theorem. Let A be a positive integer, and let aq,...,a, be random integers with
0 <a; <Aforl <i¢<n. Lete= (er1,...,e,) € {0,1}" be arbitrary, and let
s =y ea;. If the density d < 0.9408 ..., then the subset sum problem defined by
ai,...,a, and s may “almost always” be solved in polynomial time with a single call
to a lattice oracle.

Proof. We need to make only minor changes to the proof presented in Section 2. As

above, A is a fixed positive integer and a4, ..., a, are random integers with 0 < a; < A
for 1 <7 < n. Let e = (e1,...,¢e,) € {0,1}" be fixed, let s = 37, €;a;, and let
t =37, a;. Vectors by,..., by are defined as in Section 2. Vector by is replaced,

however, by
r /11 1
bn+1 —(5,5,...,5,]\[8).

Let L' be the lattice spanned by the vectors by, ..., by, b} ;.
In Section 2, we knew that the vector € = (e1,...,€,,0) was in the lattice L.

Notice that the new lattice L' does not contain & but instead contains the vector é’:

& =(e},...,e,,0), whereel=¢e — 1.

Since €; € {0,1} for 1 <4 < n, we know that €} € {—1,1} for 1 <i < n. Notice that

é&'||? < Ln independent of the number of ¢;’s which are equal to 1.
2 p q
Again, we are interested in the number of vectors X which satisfy conditions similar

to Equation 4:
1% < 11€']l;
xel, (12)
x ¢{0,¢&' —é'}.

Setting N > % n implies that z,y; = 0 for any X which satisfies Equation 12.
Suppose that X = 37, y;b; + yb],, satisfies Equation 12, then we can express z; in

terms of y; and y in the following way

xz:yz‘l’%!h fOI’lS‘iSTL,

0=z,41=N" {Zaiyi + ys}.
=1

This implies that

E a;ly; = —Ys.
=1



||| = |le]|.) First we estimate the probability P by
P <Pr@xy st x| < llell, ly] < ny/Sn.x ¢ {0,e, e}, 3 wia; = ys),
=1
< Pr (Y ases = s 0 <l < el o] < /3, x ¢ (0,0, e}
=1
sl < llel} {191 < /3]

We have to estimate three factors in the right side of Equation 10. For the first

(10)

factor of Equation 10 we may rewrite Y1 | a;x; = ys as:
n
Z a;z; =0, where z; = x; — ye;.
i=1

Since x is non-zero and ||x|| < ||e||, we have z = (z1,...,2,) # 0, and so we may
assume without loss of generality (by increasing the bound for the probability by a
factor of at most n) that z; # 0. If 2’ is defined as —(3°7, a;2;/#1), then

Pr (Z a;z; = 0) = Pr(a; = Z/)7
=1

A
=2 Pr(ay = 2" = j) Pr(2" = j),
7=1
A
=Y Pr(a; = 2")Pr(' =j), (a; and j are independent),
7=1

—

I
7>
o | =
w
=
N\
I
o

IN
S

Now we consider the second factor of Equation 10. From [11] (which borrowed

the technique from [14]) we know that

3 Il < llellH < [{x Il < /3n

It is clear that the last factor of Equation 10 can be estimated by 2n\/%n + 1.
This proves Equation 9.

< 2" where ¢g = 1.54724 ... (11)

3. A new, improved bound on the density

The main result of this note is an improvement in the maximum density of subset

sum problems which can “almost always” be solved:



Solving this problem is equivalent to solving the given problem, 37 (1 —¢;) < %n,
and s’ =t —s > t/n. (To be fully rigorous, we actually apply the basic method to
two problems, at least one of which is covered by the condition 7" | €; < %n, and our
analysis below applies to this case.)

Choose N > y/n. It is clear that X satisfies Equation 4 only if z,4+1 = 0. (Oth-
erwise, |X]| > |zn41] = N > /n > ||€||, which contradicts Equation 4.) Let y be
defined by

Yys = Z Zid;, (6)
=1
and deduce that

< [Ix]

< ty/1n. (7)

lyls =

n
E Z;a;
=1

n
> i
=1

Hence, using Equation 3 above,

ly| < ny/in. (8)

Note that since —y is the coefficient of b,;; in the expansion of X in terms of the
basis vectors, y € Z.
We will show that the probability P — that a lattice L contains a short vector

which satisfies Equation 4 — is:

P = Pr(3 x which satisfies Equation 4)
2607’L

<n <2n\/%n + 1) 1 for ¢g = 1.54724 . .. (9)

This implies that, if A = 2" with ¢ > ¢, lim P = 0. If the density of a subset sum
problem is less than 0.6463 ..., then

n
— < 06463 -—— max a; > 2”/0-6463...
log, max a; 1<i<n

1<:<n

= A > 2",

Thus, all subset sum problems with density < 0.6463 ... could be solved in polynomial
time, given the existence of a lattice oracle.
We will now prove Equation 9. Let x = (z1,...,2,) denote an element of Z".

(Note that if X = (z1,...,2,,0), then ||X|| = ||x| and as a special case we have



section derives the 0.6463... bound using simpler techniques due to Frieze [7]. Our
presentation differs from that of [7] in a few technical details.

Let A be a positive integer and let ay, ..., a, be random integers with 0 < a; < A
for 1 <i<n. Let e = (e1,...,€,) € {0,1}", e # (0,0,...,0) depending only on n,
be fixed and let

n n
s = g €ia;, t= E a;.

We may assume that s > ¢/n, since if s < ¢/n any a; > t/n cannot be in the subset,
and may be removed from consideration. Similarly, s < (1 — (1/n))t, otherwise any

a; < (1 —(1/n))t may be removed from consideration. Thus,

1 —1
t<s< g (3)
n n

We recall the Lagarias-Odlyzko attack on low-density subset sum problems. Define

the vectors by, ..., by as follows:

bl == (1,07...707N6l1)7
bz = (0,1,...,0,NCL2),

b, =(0,0,...,1,Na,),
bus1 = (0,0,...,0,Ns),

where N is a positive integer which will be chosen later. Let L be the lattice spanned

by the vectors by, ..., by (ie. L= {3 zbi: 2, €72 for 1 <i<n+1}).

K3

Notice that the solution vector &€ = (ey,...,€,,0) is in L. Following the proof in
[7] we are interested in vectors X = (1,22, ..., Z,+1) Which satisfy:
X[ < 1]l
xelr, (4)

% ¢ {0,8,—&).

We may assume that

B [ =

n, (5)

k13
Y e <
=1

(i.e. the subset contains at most one-half of the a;’s). If Y7, e; > %n, we may replace s

by t—s, by by by, =(0,...,0,N(t—s)),and éby & = (1—¢y,1—e3,...,1—¢,,0).



Finding short vectors in lattices may be very hard in general. On the other hand,
published algorithms, such as the L? one, perform much better in practice than is
guaranteed by their worst case bounds, especially when they are modified [11, 12, 17],
and new algorithms are being invented [18, 19, 20]. Thus it is possible that on average,
the problem of finding short vectors in lattices is easy, even if it is hard in the worst
case. Therefore it seems worthwhile to separate the issues of efficiency of lattice basis
reduction algorithms from the question of how well the subset sum problem can be
reduced to that of finding a short vector in a lattice. (Note that Paz and Schnorr
[16] have shown that the general problem of finding the shortest non-zero vector in a
lattice is reducible to that of solving some subset sum problem, but with some loss
of efficiency.)

Consider a lattice oracle that, given a basis for a lattice, with high probability
yields in polynomial time the shortest non-zero vector in that lattice. We do not
know how to construct such an oracle, but it might be possible to do so, and in
any case in relatively low dimensions, known polynomial time algorithms act like
such an oracle. The analysis of [11] showed that availability of such an oracle would
let the Lagarias-Odlyzko algorithm solve almost all subset sum problems of density
< 0.6463..., but not higher than that. (Similar analyses are not available for the
Brickell algorithm [1], although it seems to require even lower densities. See also [8].)

In this note we analyze a simple modification of the part of the Lagarias-Odlyzko
algorithm that reduces the subset sum problem to a short vector in a lattice problem.
We show that with this modification, a single call to a lattice oracle would lead to
polynomial time solutions of almost all problems of density < 0.9408.... Empirical
tests show that this modification also leads to dramatic improvement in the perfor-
mance of practical algorithms. We present some results on this in Section 4. More
data and fuller comparisons will be given in [12].

In Section 2 we derive the Lagarias-Odlyzko bound using the approach in [T7].
We show in Section 3 that this bound may be increased to 0.9408... using a simple
modification of the Lagarias-Odlyzko attack. Finally, Section 4 discusses possible

improvements on the new bound and practical results.

2. Previous results

In [11], Lagarias and Odlyzko show that if the density is bounded by 0.6463..., the
lattice oracle is guaranteed to find the solution vector with high probability. This



1. Introduction

The knapsack or subset sum problem is to find, given positive integers a1, ..., a, (the
weights) and s, some subset of the a; that sum to s, or equivalently to find variables

€1,...,€n, with €; € {0,1}, such that

Eeiai = S. (1)
=1

This problem is known to be NP-complete [9] (in its feasibility recognition form),
and so is thought to be very hard in general. This has led to the invention of several
public-key cryptosystems based on the knapsack problem. Almost all of these have
been broken by now, however. (See [2, 3, 5, 15] for surveys of this field.) Most of the
attacks exploited specific constructions of the relevant cryptosystems. In addition,
two algorithms have been proposed, one by Brickell [1] and the other by Lagarias
and Odlyzko [11] which show that almost all low-density subset sum problems can be

solved in polynomial time. The density of a set of weights ay,...,a, is defined by
d= 1# (2)
o o

The interesting case is d < 1, since for d > 1 there will in general be many subsets
of weights with the same sum, and so such sets of weights could not be used for
transmitting information. The Brickell and Lagarias-Odlyzko algorithms solve almost
all subset sum problems with d sufficiently small.

Both the Brickell and Lagarias-Odlyzko algorithms reduce the subset sum prob-
lem to that of finding a short vector in a lattice. The exact complexity of finding
short vectors in lattices is not known, and expert opinion appears to be divided as to
whether this problem is polynomial or not. At the moment, the best known polyno-
mial time method in this area is the L? lattice basis reduction algorithm of Lenstra,
Lenstra, and Lovasz [13], which is only guaranteed to find a non-zero vector in an
n-dimensional lattice that is at most an exponential times the length of the short-
est non-zero vector in that lattice. If one uses that algorithm, the Lagarias-Odlyzko
method can be shown rigorously to solve almost all subset sum problems of density
< ¢/n for large n and for a fixed constant ¢, as is done in [11]. (See [7] for a simplified
analysis of the algorithm.) Using more recent algorithms of Schnorr [19], one can
improve the cutoff bound to ¢/n for arbitrarily small constants ¢/ > 0, but at the

cost of increasing the degree of the polynomial that bounds the running time.
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ABSTRACT

The general subset sum problem is NP-complete. However, there are two algo-
rithms, one due to Brickell and the other to Lagarias and Odlyzko, which in poly-
nomial time solve almost all subset sum problems of sufficiently low density. Both
methods rely on basis reduction algorithms to find short non-zero vectors in special
lattices. The Lagarias-Odlyzko algorithm would solve almost all subset sum prob-
lems of density < 0.6463... in polynomial time if it could invoke a polynomial-time
algorithm for finding the shortest non-zero vector in a lattice. This note shows that
a simple modification of that algorithm would solve almost all problems of density
< 0.9408... if it could find shortest non-zero vectors in lattices. This modification
also yields dramatic improvements in practice when it is combined with known lattice

basis reduction algorithms.
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