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14 g(z) (with g(z) given by (2.2)) produce improved values for the Golay merit factor, which
measures how far |f(2)| is away from (n + 1)1/2 on average as z tuns over |z| = 1. (We note
that cyclic shifts of coefficients of f(z) do not affect the value of R,(f).) A nonexhaustive
search of cyclic shifts of the sequences constructed in Section 2 with n = 138, |S| < 2, found
a sequence with R,(f) = 110.2457, which is better than the Ruprecht et al. sequence of [19],
since the length is less. Thus modifications of our construction yield good values even for

R,(f), although there is no proof that they will work for large lengths. It is also possible to

try other modifications, which might yield even better results.
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4. Final remarks

How large are the R,(f) produced by the above construction for moderate lengths n? For
n = 82, the largest R,(f) that is known is 72.02 [16]. The construction of this section produces
a sequence with R,(f) = 69.90. Surprisingly, this result is achieved with [.S| = 1. As was noted
at the beginning of this section, if | 5| = 0, then R,(f) ~ ¢/2as ¢ — oo (for n = ¢—1, g a prime).
However, if we choose |S| =1, a = —b = 1, then we obtain R,(f) ~ 9¢/10 as ¢ — oo. Choices
of S with |S| > 2 give better R,(f) only for ¢ > 130, and the improvement is slight initially.
(We note also that while R,(f)is the same for all choices of S with |S| = 1, a = —b, the precise
selection of S does make a slight difference for || > 2.) The resulting sequences for p < 180
are not as good (say, when judged by the value of the ratio R,(f)/(n+ 1)) as the sequence
obtained from the 13-term Barker sequence (see the discussion preceding Eq. (1.8)), but they
are better than some other sequences that have been proposed. For example, Ruprecht, Neeser,
and Hufschmid [19] list a sequence with n = 143 and R,(f) = 120.69862. Our construction
with n = ¢ —1 = 138 and || = 2 yields a value of R,(f) = 121.32578, so that R,(f) is higher
even though n is lower. (It should be mentioned, though, that the Ruprecht et al. sequence
was chosen to have a high R,(f), not a high R,(f).)

The construction of Theorem 1 produces a sequence with high R,(f) because the polyno-
mials associated to the Legendre sequences already have the desired behavior at the points
z = exp(2mik/q) for 1 < k < ¢ — 1, and it is only at z = 1 that they need to be modified.
Unfortunately the behavior of these polynomials at other points on the unit circle is not as

well controlled. Montgomery [14] showed that

|m|ax|f(z)| > 217 ¢ loglog ¢ (4.1)
z|=1

for all sufficiently large ¢, and he conjectured that this bound is of the right order of magnitude.
If Montgomery’s conjecture is right, these polynomials will be smaller than random ones,
which reach q1/2(log q)1/2 in size (cf. [16]). However, these polynomials do have small minimal
absolute values. B. Conrey and A. Granville have observed (unpublished) that the polynomial
g(z) of Eq. (2.2) has > p/2 zeros with |z| = 1. Therefore it is not straightforward to modify
those polynomials to obtain large R,(f). The highest value of R,(f) that our construction
obtains for n = 138, | 5| < 2 is 28.764, while the Ruprecht et al. sequence of [19] has R,(f) =
110.57658. However, there are ways of modifying our construction to obtain higher values of

R,(f). For example, it is known (see [16] for references) that cyclic shifts of the coefficients of



where the ay, are real constants, |ax| < 1 for all k, and the Ti are independent random variables
with
Pr(itg=—-m)=1-79%, Pr(m=1-—7)=7%, (3.8)

for some constants v, 0 < v < 1, then

n 1/2
Pr (|IV| >C (Z 7k) (log n)l/Q) <n 10, (3.9)
k=1

Proof. We have, for any A > 0,

Pr(W > 2)e’ < £(eM) . (3.10)
Now the 75 are independent, so
(M) = I (et . (3.11)
k=1
We next note that
g(e/\Tkak) — 6_/\’Yk0~k(1 _ ,m) + eA(l_Wk)akf}/k < 60'/\2% (3_12)

if C' is sufficiently large. Therefore

Pr(W > z) <exp (C'/\2 > - /\x) . (3.13)
k=1

This bound holds for all A > 0, so for z > 0 we select A = z(2C")_ 7;)~! and obtain

Pr(W > z) <exp (_xz (4C'/ zn:%) . ) . (3.14)
k=1

Since the same bound for Pr(W < —z) follows by applying (3.14) to the problem with ay
replaced by —a, we easily obtain the claim of the lemma. [ |

To conclude the proof of Theorem 2, we apply Lemma 1 to the real and imaginary parts of
W)= ER(E)) . 0<j<g-1.
We find that with probability > 1 — n=8,
1) = E(n(¢))| < 10Cq (log g)'? (3.15)
holds for all 5, 0 < 5 < ¢ — 1. Therefore
F(¢)] = ¢'/* + O(¢'*(log ¢)'/?) (3.16)

for all j, which yields Theorem 2.
There is a method of Kolountzakis [8] that often manages to remove factors such as the

(log q)l/2 in the estimate (3.16). However, it does not seem to apply in this case.



3. Proof of Theorem 2

Theorem 2 follows from a modification of the proof of Theorem 1, using methods similar to
those of [15]. Asin the preceding section, we define f(z) by (2.6) and (2.7) with « = 1. However,
this time we will take S to be of size about ¢'/2, and it will contain only nonresidues. The set
S will be chosen at random, with each k, 1 <k < ¢ -1, (g) = —1, selected independently to
be in S with probability

Pr(ke §)=q1%)2. (3.1)

Thus we have

h(z)=1- Qiénk (g) 2 (3.2)

where 7 = 0 or 1 is a random variable with 7 identically 0 if (g) =1, and E(ng) = ¢ 1/?/2

if (&) = -1.

We need to determine the behavior of h(¢/) for 0 < j < g — 1, where ( is defined by (2.1).
We first consider the expected value £(h(¢?)) for a fixed j. For j = 0 we have

SR =142 Y Em)=1+(q- g2 =g/ 41-¢q1/2. (3.3)

EAE) = 1+¢2 S M. (3.4)

g=1 .
Since > (" =0for 1 <j <q—1,thesum in (3.4) is — ((é) q(¢) + 1) /2. Hence
k=0

) = 1= g2 (L) ()2 (35)
and so
E(h(¢7)) = 0(1) . (3.6)
We conclude that £(h((7)) has the desired behavior uniformly for all j, 0 < j < ¢ — 1.

It remains to prove that for some choice of coefficients, h(¢7) will be close to E(h(¢?)) for

all . This will follow from the following result, which is similar to those in [6, 15].

Lemma 1. There exists a constant C' > 0 such that if

W => na, (3.7)
k=1



where b = £1. The precise selection of @ and 5 will be discussed later. We now observe that

all coefficients of f(z) are +1. Further, we have
f(1)=g(1) = a—2b|5]. (2.9)
For1<j;<¢-1,
IF(C)IP = 1g(¢) + R(CHI? = g+ [R(¢T)]* +2 Re (mh(@)) : (2.10)
Since || < ¢*/?/100, we find that for large ¢,
IB(¢))| < ¢"*/10 = |g(¢!))/10 . (2.11)

Therefore we can write, for 1 < j <¢—1,

(2= a7 (1207 Re (9(TIR(C)) + 07 A(E)P) - (2.12)
This implies, by (2.3), that
F@ =0 (1= 207 () Re (sTT@) + 0GP . (23)
and therefore
1 g—1 g—1 )
Z HE? = =2 e GO Y (2) ey 40 ( 2y lh(@)l?) SR
7=1 7=1
Now
g—1 ) q—1 )
D IREIP < Y1) = 445] - (2.15)
7=1 7=0
On the other hand, by (2.8),
g—1 g—1
= I) — 2 ¢ki
(B - £ () -2z £()
(2.16)
- = —29(0)IS
% (§)o0= -2
If we now combine (2.9), (2.14), (2.15), and (2.16), we find that
E|f ) = bls| - a7 + L 0t IS (2.17)
If we select |.S] ~ ¢'/ as ¢ — o0, say, then we obtain
g—1 )
ST =140, (2.18)
7=0

which yields the claim of Theorem 1.



9(z) = qi <E) 2, (2.2)

k=1

where (g) is the Legendre symbol. (Thus (g) is 0 for £ = 0, 1 if k£ is a nonzero quadratic
residue modulo ¢, and —1 if k is a nonresidue modulo ¢.) The g({’) are Gauss suns, and have

an extensive literature. It is known (and easy to derive [1]) that

g(1) =0, g(¢) = <‘é) g(¢) for 1<j<g-1. (2.3)
It is also easy to see (cf. [1]) that

9(¢) = (~1)li=)/%g . (2.4)

It is further known that 12
g<<>={ 1 =t el (2.5)
ig"’? , ¢=3 (mod 4),
but this is much harder to prove, and we will not use it. It is also known that ¢(z) is large for
some z with |z| = 1 [14].

We cannot use the sequence of coeflicients of g(z), because (i) ap = 0 and (ii) g(1) = 0.
The main idea behind the construction below is to modify ¢(z) slightly. We note that if
we take f(z) = 14 g(z), then the coefficient sequence does consist of £1’s, and f(1) = 1,
|£(¢F)] > ¢"/? —1for 1 <k < q—1. Therefore R(f) ~ ¢/2 as ¢ — oo, and this already gives a

merit factor far superior to that of almost all 1 sequences.

We set
f(z) =g(2) + h(2) , (2.6)

where

hz)=a-2) (S) 2F (2.7)

keS
a = +1,and § C {1,...,¢g — 1}, || < ¢'/2/100. It is easy to see, using the results on
maximal values of random trigonometric polynomials, that random choices of S give R(f) ~ n
as n — 00. What we show, however, is that a nonrandom choice produces much better answers
due to the special number theoretic properties of the Legendre sequence. We will select S to

consist entirely of residues or else entirely of nonresidues, so that

(E) =b forall k€S, (2.8)
q



The construction of Theorem 1 produces sequences for which n=1/2| f(exp(2rik/(n+1))| =
14 o(1) as n — oo uniformly in & satisfying 1 < k < n. For k = 0, though, |f(1)| is of order

nl/3. However, we prove the following result.

Theorem 2. If n = q—1 for q a prime, then there exists a sequence ag, ..., a, with a; = £1

for all 3 such that
Y2 flexp(2mik/(n+ 1)) = 1+ O(n~Y4(logn)Y?) as n— oo (1.11)
uniformly in k, 0 < k < n.

If we use only the bound (1.11) for the sequences of Theorem 2, we find that these sequences
have R,(f) > n—c/n*/*(logn)'/? for some constant ¢’ > 0. With more care, one can show that
these sequences have larger R,(f), but the bound for n — R,(f) that one can prove for these
sequences appears to be considerably weaker than that given by Theorem 1 for its sequences.

We note that if

V2 f(e2m R A =1, 0<k<m, (1.12)

which is equivalent to R,(f) = n+ 1, then ag,...,a, is a Barker sequence and also the first
row of a circulant Hadamard matrix, and so is thought not to exist for n > 3 [3, 21]. However,
there is still no proof of this conjecture.

We leave several problems open. For example, can Theorems 1 and 2 be generalized so
that n does not have to be of the form n = ¢ — 1 for ¢ a prime? Also, can one prove analogs of

Theorems 1 and 2 for the aperiodic merit factor R,(f)? Numerical evidence (cf. [16]) suggests

that there do exist £1 sequences ag, ..., a, for n > 10 such that the associated polynomials
f(2) have
|Ir|11n n 2 f(2) > 1/2 . (1.13)
z|=1

A sequence satisfying (1.13) is guaranteed to have R,(f) > n/4. However, since R,(f) is an
average result, we might expect that some of these sequences might have R,(f) ~ n as n — .

That is what seems to happen for the sequences listed in [16].

Acknowledgement. The author thanks Jirg Ruprecht for helpful correspondence.

2. Proof of Theorem 1

Let ¢ be an odd prime, and define

¢ = exp(27i/q), (2.1)



associated to a £1 sequence of 169 terms, and
R.(f(Z*)f(2)) = 153.1014 ... ,  R,(f(z*®)f(2)) = 154.6331 ... (1.8)

However, even this construction does not produce good asymptotic results.
The main result of this note is to show that high periodic Ruprecht merit factors can be

achieved for a dense sequence of values of n.

Theorem 1. There is a constant ¢ > 0 such that if n = ¢ — 1 for ¢ a prime, then there exisls

a sequence ag, ..., a, with a; = £1 for all j such thal
n—en'® <Ry (f)<n+1. (1.9)

The proof of Theorem 1, given in Section 2, shows how to construct these sequences. The
sequences of Theorem 1 do have higher R,(f) than random sequences, but not very high ones.
There is a discussion of this disappointing behavior in Section 4.

The search for £1 sequences with large Ruprecht merit factors is just one part of the
huge subject of extremal and statistical properties of £1 sequences. For results, surveys, and
applications, see [11, 16, 20]. In particular, there are connections to the search for sequences
with large Golay merit factor [5, 12, 16].

For R,(f) to be large, |f(exp(2mik/(n + 1)))| has to be large for most k. Erdés [4] and
Littlewood [9, 10] have raised the question of whether there exist +1 sequences ay, ..., a, such
that the associated polynomials f(z) satisfy

|IZI|11_I} n~ V2 f(z) =140(1) as n— oo . (1.10)
If such sequences existed, then we would have R,(f) ~ n and R,(f) ~ n as n — o0
for their polynomials. The current evidence is that such sequences don’t exist (cf. [16]).
However, to obtain large R,(f) we do not require (1.10) to hold. We even do not require
n=12| f(exp(2mik/(n 4+ 1)) = 14 o(1) as n — oo to hold uniformly for all k, 0 < k < n.
Instead, we prove Theorem 1 by modifying the Legendre sequence a; = (é) It is easy to see
that modifications of that sequence achieve R,(f) ~ n as n = ¢ — 1 — oo, but the difference
R,(f) — n usually turns out to be much larger than n'/? when one uses some of the obvious
methods. By a careful analysis of what happens to R,(f) as the Legendre sequence is changed,

we can obtain the bound of Theorem 1.



defined as B
ra(p) = ([ 1) (15)

(For R,(f) to exist, we require that f(z) be an invertible sequence.) Sequences with large
R,(f) are more desirable than those with large R,( f), since they can be used for transmission
[19], not just for multipath estimation. Unfortunately while we will provide constructions of
sequences with large R,(f), the problem of obtaining large R,(f) remains open.

Since
‘2

zn: ‘f(e‘.)m'k/(n-}—l)) =(n+1)? (1.6)
k=0

and
1 .
/ (27 2dt = n + 1 (1.7)
0

by a familiar calculation, the Cauchy-Schwarz inequality shows that R,(f) <n+ 1, R.(f) <
n + 1 for any sequence ag,...,a,. How close can R,(f) and R,(f) come to n + 17 Ruprecht
[18] lists in Table B.6 the sequences ag,...,a, with the highest values of R,(f) for n < 29,
as well as some sequences with high values of R,(f) for 30 < n < 32. The maximal value of
R,(f) for n = 29 is 26.6583, for example. Ruprecht also gives, in Table B.8, the best sequences
drawn from a restricted class, that of the skew-symmetric a; (i.e., those with even n and
pja—y = (=1)"y 54, ) for n < 44. (The value for n = 44 is incorrect, though. See [16].) The
maximal value of R,(f) for n = 42 is 37.4244. In Tables B.9 and B.10 of [18] Ruprecht lists
sequences with large R,(f), for n < 23 in the general case and n < 44 for the skew-symmetric
case. For example, for n = 44 he gives a skew-symmetric sequence with R,(f) = 39.7753. Most
of the values, especially for large n, are not known to be maximal. Skew-symmetric sequences
with large R,(f) and R,(f) for n < 90 (obtained from a search for other types of extremal
+1 sequences) are given in [16]. The nonexhaustive search for high R,(f) and R,(f) that is
documented in that paper has produced a value of R,(f) = 77.5820 for n = 90, for example.

What can one do for larger lengths n? Random choices of the a; almost always give
small values of R(f) (cf. [16]). This is because random trigonometric polynomials have small
minimal absolute values [7, 17], as was conjectured by Littlewood [9, 10]. Thus the situation
is completely different than it is in coding theory, where random codes are good.

Sometimes one can construct a sequence with a large Ruprecht merit factor from shorter
sequences. For example, if n = 12 and (ao,...,a,) = (1,1,1,1,1,-1,-1,1,1,-1,1,-1,1) is

the 13-term Barker sequence, with associated polynomial f(z), then f(2!%)f(z)is a polynomial
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1. Introduction

In the Ph.D. thesis [18], written under the supervision of Jim Massey, Jiirg Ruprecht has
proposed coding schemes designed for effective multipath estimation. Such schemes might be
useful in indoor wireless systems [19, 21] or other communication settings. These schemes use
invertible sequences, which are sequences ag,...,a,, with a; = £1 for each j, such that the

associated polynomial
f2) =Y ae (L1)
=0

satisfies

(™) £ 0 for all real ¢ . (1.2)

In some situations these schemes use invertible periodic sequences, for which the polynomial
f(2) only has to satisfy
FeF )y Lo 0<k<m. (1.3)

(These invertible periodic sequences possess inverses under periodic convolution, which is re-
quired for Ruprecht’s maximum likelihood estimation methods [18].) For best performance
in estimating multipath interference, it is desirable to find invertible periodic sequences that

maximize

n+1

Rp(f) =
Z ‘f(627rik/(n+1))
k=0

‘_2 . (1.4)

In [18], this figure of merit is referred to as even processing gain Ggm) of a sequence s and
its periodic inverse v, and is defined in a much more complicated form. However, a short
calculation based on the formulas on p. 27 and in Appendix A of [18] shows that it equals
our R,(f). We will call R,(f) the periodic Ruprecht merit factor, to distinguish it from other

merit factors, such as that of Golay [5, 12, 16], as well as the aperiodic Ruprecht merit factor,
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ABSTRACT

J. Ruprecht has proposed coding schemes that allow for multipath estimation. They use
sequences do, . . ., 4, With a; = 1 for each j such that the associated polynomial f(z) = 3" a; 2

has a large

B n+1
Z ‘f(€2m'k/(n+1))
k=0

Most sequences have a small R,(f), and those with maximal R,(f) are hard to find. This

Ry(f)

-

note shows for n of the form n = ¢ — 1, ¢ a prime, one can construct sequences with R,(f) >
n — O(n'/?). Since R,(f) < n+1 for any sequence, this construction is asymptotically close
to optimal. It also produces large values of R,(f) for small n.

It is also shown that for n = ¢ — 1, ¢ a prime, there exist sequences aq,...,a, such that

the associated polynomial f(z) satisfies
|F(e2™ R ) = (14 0(1))n? as n —

uniformly for 0 < k£ < n.



