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1. Introduction

A monotonically labelled binary tree is a binary tree with integer labels attached to

the internal nodes in such a way that the labels along any path from the root are

nondecreasing. If there is only one label, we are dealing with ordinary binary trees.

Prodinger and Urbanek [6] introduced a variety of families of monotonically labelled

trees and obtained enumerative results about many of them. This note is concerned

largely with monotonically labelled binary trees that have at most two labels, call them 1

and 2. Several examples of such trees are shown in Fig. 1. Prodinger and Urbanek

showed that the number y 2 , n of monotonically 2-labelled binary trees of size n (i.e.,

with n internal nodes and with k = 2 labels) satisfies

y 2 , n ∼ 4 ( 6π) − 1/2 ( 16/3 ) nn − 3/2 as n → ∞ . (1.1)

This result followed rather easily from the formula

y 2 (z) =
2z

1 − ( − 1 + 2 ( 1 − 4z)1/2 )1/2
_ ________________________ , (1.2)

proved in [6], where y 2 (z) is the generating function of the y 2 , n:

y 2 (z) =
n = 0
Σ
∞

y 2 , n z n . (1.3)

In the case of ordinary binary trees (k = 1 ), it is well-known that the corresponding

generating function y 1 (z) satisfies
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y 1 (z) =
2z

1 − ( 1 − 4z)1/2
_ _____________ , (1.4)

and

y 1 , n =
n + 1

1_ ____ 
î n
2n

 ∼ π − 1/24nn − 3/2 as n → ∞ . (1.5)

Kirschenhofer and Prodinger [5] later studied the average heights of monotonically

2-labelled binary trees. (For some other results about average shapes of such trees, see

[4].) As is true of ordinary binary trees (cf. [2]), there do not appear to be any closed-

form formulas like (1.2) for any generating functions of heights. However, in [2] it was

shown that if h k , n denotes the average height of monotonically labelled binary trees of

sizes n with k labels,

h k , n = yk , n
− 1

T
Σ ht(T) , (1.6)

where the sum is over all the different monotonic k -labellings of all the binary trees of

size n, then

h 1 , n ∼ 2 (πn)1/2 as n → ∞ . (1.7)

The proof relied on a very detailed study of singularities of generating functions. (A

different proof of (1.7), which also used deep analytic methods, has been given in [1].)

Kirschenhofer and Prodinger [5] extended the method of [2] and showed that

h 2 , n ∼ ( 8πn /3 )1/2 as n → ∞ . (1.8)

This note shows that it is possible to obtain the result (1.8) from (1.7) by quite

elementary methods, without having to resort to the analytic machinery of

Kirschenhofer and Prodinger. Furthermore, the new method leads to a simple proof that
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for any fixed k ≥ 1, there is an easily computable constant c k such that

h k , n ∼ c k n 1/2 as n → ∞ .

The proof is not completely elementary in that it relies on the analytic results of [2], but

it is short and easy to motivate.

2. Proof of the k = 2 result

The basic idea behind our proof is very simple. A typical monotonically 2-labelled

binary tree (k = 2 labels will be assumed throughout this section) looks like the tree in

Fig. 2. If m nodes have the label 2, then the n − m nodes with label 1 form (after the

addition of the necessary leaves) a binary tree of size n − m. The m nodes with label 2

then can be regarded as forming an ordered (n − m + 1 ) -rooted forest of binary trees of

total size m, with some of the trees in that forest possibly being empty. Figure 3

illustrates such a decomposition. For each pair of a binary tree of size n − m and an

ordered (n − m + 1 ) -rooted binary forest, there is exactly one monotonically 2-labelled

binary tree that decomposes into this pair. Since it is easy to enumerate both binary

trees and ordered binary forests, this decomposition leads to a quick enumeration of

monotonically 2-labelled binary trees by m, the number of nodes labelled with 2. This

can then be used to give another proof of (1.2). Furthermore, this enumeration shows

that the only significant contribution to the total number of monotonically 2-labelled

binary trees comes from the trees for which m satisfies m ∼ n /3. Now the height of an

ordered N -rooted binary forest of size M, where M ∼ N /2, is very small (Lemma 2), so

the average height of a monotonically 2-labelled binary tree of size n is approximately

that of an ordinary binary tree of size ∼ 2n /3, which satisfies (1.8) by (1.7). The rest of
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this section fills in the details of the above argument.

Lemma 1. The number t r , n of ordered r -rooted binary forests of size n satisfies

t r , n =
2n + r

r_ _____ 
î n
2n + r

 . (2.1)

Proof. This result is old and well-known, although perhaps not in this particular form.

Note that t r , n is the coefficient of z n in y 1 (z) r , and so satisfies (2.1) by [7; p. 153], or

by Lagrange inversion, or by using Cauchy’s formula and shifting the contour of

integration. In addition, this lemma can be deduced from [3; p. 125, Problem 2.7.3(a)].

Lemma 1, Eq. (1.5), and the decomposition described at the beginning of this section

show that the number of monotonically 2-labelled binary trees of size n with m nodes

labelled 2 is exactly

u m = u m (n) =
n + m + 1

1_ _______ 
î n − m
2n − 2m



î m
n + m + 1

 . (2.2)

Hence for m ≤ n − 2,

u m + 1

u m_ _____ = 4
(n + m + 1 ) (n − m − 1 )

(n − m) (m + 1 )_ __________________ , (2.3)

so



î u m + 1

u m_ _____ − 1




(n + m + 1 ) (n − m − 1 ) = 1 + 6n − 4m − (n − 3m) (n − m) ,

and therefore u m < u m + 1 for 0 ≤ m ≤ [n /3 ] − 20, and u m > u m + 1 for

[n /3 ] + 20 ≤ m ≤ n − 20. Let m ∗ = [n /3 ]. Then Eq. (2.3) shows that uniformly for
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0 ≤ h ≤ n 2/3 ,

u m ∗

u m ∗ − h______ =
j = 0
Π

h − 1

(n + m ∗ − j) (n − m ∗ + j)

4 (m ∗ − j) (n − m ∗ + 1 + j)_ ____________________

=
j = 0
Π

h − 1 

î
1 −

n + m ∗ − j

n − 3m ∗ + 3 j___________






î
1 +

n − m ∗ + j

1_ ________




(2.4)

= exp ( − 9h 2 ( 8n) − 1 + o( 1 ) ) as n → ∞ .

An analogous argument shows that (2.4) also holds for − n 2/3 ≤ h ≤ 0. Therefore we

conclude that the probability of a random monotonically 2-labelled binary tree having m

labels equal to 2, with 0 ≤ m ≤ n − 20 and  m − m ∗  ≥ n 2/3 , is O ( exp ( − n 1/3 ) ).

The same bound also applies to the probability of m ≥ n − 20, by a simple estimate of

the expression (2.2) for u m . Since the height of a tree of size n is ≤ n + 1, we conclude

that trees with  m − m ∗  ≥ n 2/3 contribute O (n exp ( − n 1/3 ) ) to the average height.

We now observe that the height of a monotonically 2-labelled binary tree which

decomposes into a binary tree T and an ordered binary forest F is bounded below by the

height of T and above by the sum of the height of T and the height of F. Since the

average height of T is by the preceding discussion asymptotic to the average height of an

ordinary binary tree of size ∼ 2n /3, it only remains to show that the average height of an

(n − m + 1 ) -rooted ordered binary forest of size m is o(n 1/2 ) for m ∼ n /3. That result,

however, follows easily from the following lemma.

Lemma 2. The average height of an ordered r -rooted binary forest of size n, where

1/10 ≤ n / r ≤ 10, is O ( log n).
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Proof. We will actually obtain an estimate for the probability that any one of the r trees

is large. Let

N(r , n , s) =  { r -rooted forests of size n with some tree of size s }  .

Then N(r , n , s) ≤ U(r , n , s), where

U(r , n , s) = ry 1 , s t r − 1 , n − s =
s + 1

r_ ____ 
î s
2s

 2n − 2s + r − 1
r − 1_ ____________ 

î n − s
2n − 2s + r − 1

 .

But for n sufficiently large,

U(r , n , s)
U(r , n , s + 1 )_ ____________ =

(s + 2 ) ( 2n − 2s + r − 3 ) ( 2n − 2s + r − 2 )
2 (n − s) (n − s + r − 1 ) ( 2s + 1 )_ _________________________________

<
( 2n − 2s + r − 3 ) ( 2n − 2s + r − 2 )

4 (n − s) (n − s + r − 1 )_ ___________________________ < 1 ,

so that U(r , n , s) is monotone decreasing in s. We now consider s ≤ c log n for some

c > 0. We have

t r , n

U(r , n , s)_ _________ = O


î
n 

î s
2s



î n − s
2n − 2s + r − 1



î n
2n + r


− 1 




= O


î
n4s

(n + r + 1 ) ...(n + r + s)
n(n − 1 ) ...(n − s + 1 )_ ___________________

j = 0
Π

n − s − 1

2n + r − j
2n + r − 2s − 1 − j_ ______________





= O 
î n4s exp ( − 2ns /( 2n + r) )

= O 
î n exp ( − s /10 ) .

If s ≥ 100 log n, we find that the probability that any tree in the forest has size ≥ s is

O (n − 8 ). Since the height of the forest is bounded above by the size of the largest tree

in it, this proves the lemma.
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3. Extensions to k ≥ 3 labels

The result obtained above can be easily extended to estimate the average height of

monotonically k -labelled binary trees for any fixed k. Any monotonically k -labelled

binary tree of size n and with m labels equal to k can be decomposed uniquely into a

monotonically (k − 1 ) -labelled binary tree of size n − m (with internal nodes being

precisely the nodes of the original tree with labels < k) and an ordered (n − m + 1 ) -

rooted binary forest of size m. Hence

y k ,n =
m = 0
Σ
n

y k − 1 ,n − m t n − m + 1 ,n . (3.1)

Since Prodinger and Urbanek [6] have shown that

y g ,n ∼ p g qg
− nr − 3/2 as n → ∞

for some positive real numbers p g and q g , it is readily seen that the only significant

contribution to the sum in (3.1) comes from the terms with

m ∼
1 − q k − 1

q k − 1_ _______ n as n → ∞ . (3.2)

Therefore the average height of monotonically k -labelled binary trees of size n is

asymptotic to the average height of monotonically (k − 1 ) -labelled binary trees of size

[nq k − 1 /( 1 − q k − 1 ) ]. Induction on k and (1.7) show that this average height is

asymptotic to

c k n 1/2 as n → ∞ ,
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where

ck
2 = 4π

i = 1
Π
k − 1

1 − q i

q i_ _____ . (3.3)

Since q 1 = 1/4 and q k + 1 = q k ( 1 − q k ), as is shown in [6], the c k can be evaluated

fast. It can also be shown that

log c k ∼ −
2
1_ _ k log k as k → ∞ .
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FIGURE CAPTIONS

Fig. 1. Half of the six monotonically labelled binary trees of size three. (The other

three are mirror images of the ones shown.)

Fig. 2. General schematic of a monotonically 2-labelled binary tree.

Fig. 3. Decomposition of a monotonically labelled binary tree with labels 1 and 2 into

a binary tree and an ordered binary forest. ( denotes the empty binary tree.)
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ABSTRACT

Monotonically k -labelled binary trees are binary trees in which the internal nodes are

labelled with integers from {1 , 2 , ... ,k } for some k ≥ 2, and the labels along any path

starting at the root are non-decreasing. A simple proof is given of a result of

Kirschenhofer and Prodinger, namely that the average height of monotonically

2-labelled binary trees of size (number of internal nodes) n is

∼ √ 38πn_ ____ as n → ∞ .

It is also shown how to extend this result to the case of k ≥ 3 labels.


