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1. Introduction

Let p be a prime and view residues (mod p) as members of the set { 0 , 1 , . . . , p − 1 }. Let R

be a set of r distinct nonzero residues (mod p). Suppose that the random variable a is drawn

uniformly from (Z / pZ ) ∗ = Z / pZ − { 0 }, and denote the normalized expected size of the

minimal residue in the multiplicative translate aR (mod p) by

M ∗ (R) : =
p
1_ _ E[ min (aR) ] . (1.1)

Our object is to obtain upper and lower bounds for M ∗ (R) which depend only on r =  R .

This problem arises in two contexts. The first concerns the analysis of a simple

randomization scheme to select an element of a set R̃ of distinct integers in [ 0 , p − 1 ] whose size

 R̃ is not specified in advance. Draw a and b independently from the uniform distributions on

(Z / pZ ) ∗ and Z / pZ, respectively. The set aR̃ divides the circle R/ pZ into  R̃ intervals. The

randomization procedure is to select that element x ∈ R̃ such that ax is the leftmost element of

the interval in which b falls, i.e. ax is the largest element in aR̃ (mod p) less than or equal to b,

unless there is no such integer, in which case ax is the largest element in aR̃ (mod p). The

induced distribution on R̃ need not be uniform. How non-uniform can this induced distribution

be? Since translating R̃ by an additive constant does not change the distribution, we may reduce

to the case where R̃ contains 0, so that R̃ : = R < { 0 }, and investigate the probability that the



- 2 -

randomly selected element x ∈ R̃ equals 0. Thus we are interested in bounding the quantity

M(R̃) : = Prob {b = min [aR + b] : a , b ∈ Z / pZ , a ≠ 0 } . (1.2)

This problem easily reduces to bounding quantities of the form (1.1), because one has

M(R̃) = M ∗ ( −R) . (1.3)

To see this, note that for fixed a and variable b, the element b is the smallest nonnegative residue

of aR̃ + b exactly for 0 ≤ b ≤ p − max [aR] = min [ − aR]. Averaging over all a then gives

(1.3).

The second context is the analysis of a particular pseudorandom number generator. Given a

small number of absolutely random bits, called a seed, the pseudorandom number generation

problem is to use these bits in a deterministic manner to produce a much larger number of

‘‘random-looking’’ bits. Here ‘‘random-looking’’ means that the bits appear well-distributed

with respect to certain statistical measures. We call such a set of bits pseudorandom bits with

respect to these measures, cf. Lagarias (1990). This problem can also be reversed: one can

consider a particular deterministic mapping with random input and obtain bounds on the

distribution of its output with respect to various statistical measures.

We consider a problem of this latter sort, concerning the generation procedure which when

given a seed (a ,b), consisting of elements a and b drawn independently from the uniform

distributions on (Z / pZ ) ∗ and Z / pZ, respectively, together with a deterministically constructed

set R, produces the set

aR + b ( mod p)

as a set of  R pseudorandom numbers. Here the seed (a , b) contains about 2 log 2 p random bits,

while the output has about r log p bits, which can give an exponential expansion of the number of

bits if r = p β with β > 0. The elements of aR + b are pseudorandom only in a relatively weak
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sense, but they do possess some nice distribution properties which are useful in applications.

Indeed, it is well-known that if R = {x 1 , x 2 } consists of exactly two distinct elements, then the

random variables ax 1 + b and ax 2 + b are independent and identically distributed if a and b are

chosen independently from Z / pZ. Consequently the elements of aR + b are pairwise

independent when regarded as random variables. This pairwise independence property has been

exploited by Luby (1985) in constructing a simple parallel algorithm for the maximal independent

set problem. See also Alon, Babai and Itai (1986), §6, for a history and applications of this idea

to derandomize parallel algorithms. A related construction of k-wise independent variables is due

to Joffe (1974), see also Zuckerman (1990).

Relevant statistical measures of aR + b in these applications concern the distribution of the

lengths of the r intervals into which aR + b cuts the circle R/ pZ, for a ∈ (Z / pZ ) ∗ , b ∈ Z / pZ.

We consider here the mean square spacing measure

mss [aR + b] : =
i =1
Σ
r

<i
2 ,

where <i are the lengths of these intervals, and the associated statistical measure

S(R) : = E[ mss [aR + b] ] . (1.4)

The quantity S(R) has a simple relation to various quantities M ∗ (R′ ). Since the measure S(R)

is translation-invariant, one has

S(R) = E[ mss [aR] ] . (1.5)

Now set R b : = R + b (mod p). One has the identities

b =0
Σ

p −1
min [R + b] =

i =1
Σ
r

2

(<i − 1 ) <i_ ________ =
2
1_ _ mss (R) −

2
1_ _ p

and
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b =0
Σ

p −1
min [aR + b] =

b =0
Σ

p −1
min [a(R + b) ] ,

since a ≠ 0. These yield

S(R) =
p − 1

1_ ____
a =0
Σ

p −1
mss [aR]

=
p − 1

1_ ____
a =1
Σ

p −1 

î
2

b =0
Σ
p

min [a(R + b) ] + p




= 2
b =0
Σ
p

pM ∗ (R b ) + 2p . (1.6)

Thus S(R) is determined by values of M ∗ (R b ) for various sets R b having a fixed cardinality r.

Consequently upper and lower bounds valid for all M ∗ (R) of fixed cardinality r yield upper and

lower bounds for all S(R). It is possible that S(R) satisfies stronger bounds than those inferred

from M ∗ (R), due to the averaging in (1.6). However if Conjecture 1.3 below is true, then little

improvement is possible.

Now we describe our bounds for M ∗ (R). For reference observe that the expected size of

M ∗ (R), averaged over all sets of cardinality r, is easily calculated to be

E[M ∗ (R) :  R = r] =
r + 1

1_ _____ , (1.7)

because this average is exactly the expected size of the minimal element of a uniformly drawn r-

tuple of { 1 , 2 , . . . , p − 1 }.

There is a simple lower bound for M ∗ (R).

Theorem 1.1. For all sets R (mod p) of cardinality r,

M ∗ (R) ≥
2r
1_ __ −

pr
1_ __ . (1.8)

Proof. For any residue x ∈ { 1 , 2 , . . . , p − 1 } there are exactly r values of a such that

x ∈ aR. Hence min [aR] = x can occur at most r times, and min [aR] = 0 occurs once,
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whence

M ∗ (R) =
p
r_ _






(

j =1
Σ



 r

p −1_ ____




j) + (


 r

p − 1_ ____




+ 1 ) (p − 1 − r


 r

p − 1_ ____



)







≥
p
r_ _

2
r

p − 1_ ____ (
r

p − 1_ ____ + 1 )
_ ________________ ,

which gives (1.8).

This worst-case lower bound (1.8) for M ∗ (R) gives something away, but in view of (1.7) it

can be at most a multiplicative factor of 2, as p → ∞. In fact, it is at most a smaller

multiplicative factor, because in §3 we show that the set J 2r = {±1 , ±2 , . . . , ±r} has

M ∗ (J 2r ) = cr
∗ 


î 2r

p_ __




+ O


î p

r 2
_ __





, (1.9)

for constants cr
∗ satisfying

cr
∗ =

π2

12 log 2_ _______ + O


î r

log r_ ____




as r → ∞. Hence the multiplicative factor is asymptotically at most
π2

24 log 2_ _______ = 1. 6855 . . .

(Note that J 2r has 2r elements.)

The more interesting problem concerns worst-case upper bounds for M ∗ (R). In §2, we

establish the following bound.

Theorem 1.2. For all primes p and for all sets R (mod p) of cardinality r,

M ∗ (R) ≤
r 1/2

100_ ___ . (1.10)
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The proof uses a second-moment method. The constant 100, as well as many of the other

constants in §2, can be improved easily.

In §3 we show by example that the worst-case upper bound cannot be the same order of

magnitude as (1.7). The set I r = { 1 , 2 , . . . , r} has

M ∗ (I r ) = c r r
log r_ ____ + O



î p 2

r 2
_ __





(1.11)

where c r are positive constants bounded away from zero, which satisfy

c r =
24
π2
_ __ + O



î r

log r_ ____




as r → ∞.

Another example is given by taking the set N p of quadratic nonresidues (mod p), so that

r = (p − 1 )/2. Then min [aN p ] equals 1 if a is a quadratic nonresidue and otherwise it equals

the minimal quadratic nonresidue α p , so that

M ∗ [N p ] =
2
1_ _ ( 1 + αp ) . (1.12)

Graham and Ringrose (1990) show that α p is infinitely often greater than

c ∗ ( log p) ( log log log p), for some constant c ∗ > 0, so that

M ∗ (N p ) >>


î log r log log log r

r_ _______________




−1

(1.13)

for such primes p. If the Generalized Riemann Hypothesis is true, then the log log log r factor in

(1.13) can be strengthened to log log r.

What is the true order-of-magnitude of the worst-case bound for M ∗ (R)? For definiteness we

propose:

Conjecture 1.3. For each ε > 0 there is a constant c(ε) such that for all primes p and all sets
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R( mod p),

M ∗ (R) ≤ c(ε) r −1 + ε . (1.14)

This conjecture is likely to be hard to settle affirmatively, in view of the quadratic nonresidue

example N p . Proving (1.14) for R = N p and ε = 1/4 would already improve the current best

bound O(p 1/4 log p) for the least quadratic nonresidue α p , due to Burgess (1963), and the truth

of Conjecture 1.3 would imply Linnik’s conjecture that α p << p ε for all ε > 0. However it

seems likely that improvements of Theorem 1.2 in the direction of (1.14) may be possible for

small r, cf. the discussion at the end of §2.

Questions concerning the distribution of multiplicative dilations aR( mod 1 ) also arise in

studying asymptotic denseness of sets on the torus R/Z, see Berend and Peres (1991). In

particular Alon and Peres (1991) consider a closely related problem, concerning the size of the

maximal gap in sets aR + b as a and b vary. They show that for every set R (mod p) there exists

some a ( mod p) such that the set aR viewed on the circle R/ pZ has small discrepancy, i.e. all

the intervals into which it cuts R/ pZ are of roughly the same length.

2. General Upper Bound

We use a second-moment method to establish the following bound.

Theorem 2.1. Suppose that p is a prime and R = {x 1 , . . . , x r } is a set of integers with

1 ≤ x 1 < x 2 < . . . < x r ≤ p − 1. If a ∈ Z / pZ is drawn with the uniform distribution, then

Prob { min [aR] ≥ ∆} ≤
r∆2

1600p 2
_ ______ (2.1)

holds for any positive ∆.

Proof. We use Fourier analysis on Z / pZ. Let χ t (y) denote the characteristic function of

{ 0 , 1 , . . . , t − 1 }, i.e.
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χ t (y) =





î 0

1

t ≤ y ≤ p − 1 .

0 ≤ y ≤ t − 1 ,

Set e(y) : = exp (
p

2πiy_ ____ ). Then χ t has the Fourier series

χ t (y) =
k =0
Σ

p −1
a k e(ky)

with coefficients

a k =
p
2_ _

y =0
Σ

p −1
χ t (y) e( − ky) ,

and a simple calculation gives

a k =









î

p sin (
p

πk_ __ )

sin (
p

πtk_ ___ )
_ __________ e( −

2
(t − 1 ) k_ ______ )

p
t_ _

1 ≤ k ≤ p − 1 .

k = 0 ,

We want a function whose Fourier coefficients drop off sufficiently rapidly in k and for this

purpose use the convolution f t (y) = χ t ∗ χ t (y) of χ t (y) with itself. Recall that the convolution

of two functions g and h is

g ∗ h(y) =
p
r_ _

u =0
Σ

p −1
g(y − u) h(u)

and that Fourier coefficients of a convolution are the product of the Fourier coefficients of the

factors. Hence

f t (y) =
k =0
Σ

p −1
b k e(ky)

has Fourier coefficients
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b k =











î

p 2 sin2 (
p

πk_ __ )

sin2 (
p

πtk_ ___ )
_ ___________ e( − 2 (t − 1 ) k)

p 2

t 2
_ __

1 ≤ k ≤ p − 1 .

k = 0 ,

(2.3)

The function f t is nonnegative and is supported on the set { 0 , 1 , 2 , . . . , 2t − 2 }. We will

choose t =


 2

∆_ _




which guarantees that f t is supported on { 0 , 1 , . . . , ∆}. Since only the case

∆ ≤ p − 1 is of interest, we suppose that t ≤ (p − 1 )/2.

Now given the set R, we define the random variable

F t (a) : =
x ∈ R
Σ f t (ax) . (2.4)

IF F t (a) ≠ 0 then aR must contain an element in the support of F t , so that

min [aR] ≤ 2t − 2 ≤ ∆ .

Hence

Prob { min [aR] ≥ ∆} ≤ Prob {F t (a) = 0 } . (2.5)

It suffices to establish the upper bound (2.1) for Prob {F t (a) = 0 } and for this we use

Chebyshev’s inequality, which asserts that any random variable F satisfies

Prob { F(a) − m ≥  λ σ} ≤ λ −2 ,

where m = E[F] and σ2 = E[F 2 ] − E[F]2 are its mean and variance, respectively. Applying

this with F = F t and λ = m /σ we obtain
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Prob {F t (a) = 0 } ≤ Prob { F t (a) − E[F t ] ≤ E[F t ] }

≤
E[F t ]2

E[Ft
2 ] − E[F t ]2

_ ______________ . (2.6)

To use this bound we calculate the first two moments of F t .

The first moment E[F t ] is easy to calculate. It is

E[F t ] =
p
1_ _

a =0
Σ

p −1
F t (a)

=
p
1_ _

k =0
Σ

p −1
b k

x ∈ R
Σ



î a =0
Σ

p −1
e(kax)





= rb 0 = r
p 2

t 2
_ __ , (2.7)

using (2.3).

It remains to obtain an upper bound for E[Ft
2 ]. To estimate it, we define

w(h ,k) =  { (x 1 , x 2 ) : x 1 , x 2 ∈ R and hx 1 ≡ kx2 ( mod p) } . (2.8)

Then, since F t (x) is real,

E[Ft
2 ] =

p
1_ _

a =0
Σ

p −1
F t (a)2 =

p
1_ _

a =0
Σ

p −1
F t (a) F t (a)

_ ____

=
p
1_ _

a =0
Σ

p −1 

î x1 , x2 ∈ R

Σ f t (ax 1 ) f t (ax 2 )
______




=
p
1_ _

a =0
Σ

p −1

x1 ,x2 ∈ R
Σ

h,k = 0
Σ

p −1
b h b

_
k e(a(hx 1 − kx2 ) )

=
p
1_ _

h,k =0
Σ

p −1
b h b

_
k



î x1 ,x2 ∈ R

Σ
a =0
Σ

p −1
e(a(bx 1 − kx2 ) )





=
h,k = 0
Σ

p −1
b h b

_
k w(h ,k) .

We simplify this formula by observing that w( 0 , 0 ) = r 2 , and w(h ,k) = 0 if either h = 0 or

k = 0 but not both. Thus we obtain
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E[Ft
2 ] = r 2 b0

2 +
h,k =1
Σ

p −1
b h b

_
k w(h ,k) . (2.9)

To bound this expression, we observe that

0 ≤ w(h ,k) ≤ r

for all (h ,k) ≠ ( 0 , 0 ), which gives


h,k =1
Σ

p −1
b h b

_
k w(h ,k) ≤ r(

k =1
Σ

p −1
 b k  )2 . (2.10)

For the Fourier coefficients of F t we have the trivial bound

 b k  ≤ b 0 =
p 2

t 2
_ __

and also the bounds

 b k  ≤
k 2

4_ __ if 1 ≤ k < p /2 ,

 b k  ≤
(p − k)2

4_ _______ if p /2 < k ≤ p − 1 ,

which follow from (2.3) since  sin (x) ≥
π

2 x_ ___ for  x ≤  π/2. These bounds imply that

k =1
Σ

p −1
 b k  ≤ 20

p
t_ _ , (2.11)

on using the first bound above for the range 0 ≤ k ≤
t
p_ _ and the last two for the remainder.

Combining (2.9)–(2.11) yields the second moment bound

E[Ft
2 ] ≤

p 4

r 2 t 4
_ ____ + 400

p 2

rt 2
_ ___ . (2.12)

Substituting these first and second moment bounds into (2.6) yields
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Prob {F t (a) = 0 } ≤
rt 2

400p 2
_ _____

≤ 1600
r∆2

p 2
_ ___ ,

since t ≥
2
∆_ _.

Theorem 1.2 is an immediate consequence of this result.

Proof of Theorem 1.2. Theorem 2.1 yields

E[ min [aR] ] ≤
∆ = 0
Σ

p −1
Prob { min [aR] ≥ ∆}

≤
∆ = 1
Σ

p −1
min



î
1 ,

r∆2

1600p 2
_ ______





≤ 100pr −1/2 ,

the desired bound.

To get stronger results in the direction of Conjecture 1.3 we must strengthen the bound for

Prob { min [aR] ≥ ∆}. Examination of the proof of Theorem 2.1 suggests that better bounds than

(2.1) are likely to hold, at least for certain ranges of r and ∆. Improvements might come by

showing that the quantities w(h ,k) cannot be too large too often for small values of h and k,

which are those smaller than
∆1 − ε

p_ ____, where the products  b h b k  are large. It is easy to see that

h,k =1
Σ

p −1
w(h ,k) = (p − 1 ) r 2 , (2.13)

so that the quantities w(h ,k) are on average of size
p − 1

r 2
_ _____. Some gain may be possible for r not

too large, perhaps up to r ≤ p β for some β < 1. However for the quadratic nonresidue example

N p one has r =
2

p − 1_ ____ and improvements in bounding (2.9) appear to require cancellation

involving the complex arguments of the Fourier coefficients b k .

In addition, the use of the second moment method itself presumably gives something away,
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because Chebyshev’s inequality is not tight for distributions having smooth tails. Estimates for

higher moments might conceivably yield improved bounds for Prob { min [aR] ≥ ∆}. Such

moment estimates involve various interesting problems concerning the distribution of solutions to

linear Diophantine equations (mod p) with bounds on the variables. In Theorem 2.1 they concern

the ensemble of quantities w(h ,k), and other examples of such problems appear in Alon and

Peres (1991), Lemma 5.1, and in Lagarias and Ha+stad (1986).

3. Constant  R Case: Two Examples

Now we consider M ∗ (R) for  R = r of a fixed size as p → ∞. We estimate M ∗ (R) for the

sets I r = [ 1 , 2 , . . . , r] and J 2r = [±1 , ±2 , . . . , ±r], which give relatively large and relatively

small values of M ∗ (R), respectively.

Theorem 3.1. One has

M ∗ (I r ) =
4
1_ _

^ r

Σ kk ′
1_ ___ (

k
1_ _ +

k ′
1_ __ ) + O(

p
r_ _ ) , (3.1)

as p → ∞, where the sum runs over all intervals (
k
<_ _ ,

k ′
<′_ __ ) in the Farey series ^ r of order r.

Proof. Divide the real interval [ 0 , p] into segments [
k
<_ _ p ,

k ′
<′_ __ p] using the dissection p^ r .

Claim. For those a ∈ (Z / pZ ) ∗ for which
k
<_ _ p ≤ a <

k ′
<′_ __ p, the minimal element in aI r ( mod

p) is ak (mod p).

Proof of claim. Consider the piecewise linear function f (x) = kx − p[
p
kx_ __ ], written f (x) = kx

(mod p), on the interval [
k
<_ _ p ,

k ′
<′_ __ p]. It is 0 at the left endpoint

k
<_ _ p, and it is

k ′
1_ __ p at the right

endpoint
k ′
<′_ __ p since the interval has length

kk ′
p_ ___. If some f (x) = <x (mod p) with 0 < < < r,

< ≠ k were smaller than it anywhere inside the interval, then it must have an intersection point

inside the interval. Any such intersection point satisfies kx = <x + ap for some  a < r, hence
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x = 
k − <

a_ _____  p and 
k − <

a_ _____  ∈ ^ r with
k
<_ _ < 

k − l
a_ ____  <

k ′
<′_ __, a contradiction proving the

claim.

Now define

s(
k
<_ _ ,

k ′
<′_ __ ) : =

k
<__ p ≤ a ≤

k ′
<′_ __ p

Σ min (aI r ) .

By the claim,

s(
k
<_ _ ,

k ′
<′_ __ ) =

k
<__ p ≤ a ≤

k ′
<′_ __ p

Σ ak( mod p) .

This gives

s(
k
<_ _ ,

k ′
<′_ __ ) =

2
1_ _

(kk ′ )2

p 2 k_ _____ + O(
k ′
p_ __ ) . (3.2)

The main term in this expression is the area under the line kx (mod p) in the interval, see

Figure 3.1.

_ _____________

Insert Figure 3.1 about here.
_ _____________

Using this estimate

(p(p − 1 ) M ∗ (I r ) =
^ r

Σ s(
k
<_ _ ,

k ′
<′_ __ )

=
2

p 2
_ __

^ r

Σ kk ′
1_ ___ (

k ′
1_ __ ) + O(p

^ r

Σ k ′
1_ __ ) . (3.3)

Now use the fact that the Farey series is symmetric about 1/2, hence if (
k
<_ _ ,

k ′
<′_ __ ) ∈ ^ r then



î k ′

k ′ − l ′_ _____ ,
k

k − l____




∈ ^ r . Pairing these terms gives
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^ r

Σ kk ′
1_ ___ (

k ′
1_ __ ) =

2
1_ _

^ r

Σ kk ′
1_ ___ (

k
1_ _ +

k ′
1_ __ ) .

Now (3.1) follows by dividing (3.3) by p(p − 1 ). There is a remainder arising from both terms

on the right side of (3.3), and it is bounded using

^ r

Σ k ′
1_ __ ≤

k ′ =2
Σ
r

k ′
1_ __ (

j =1
Σ
k ′

1 ) + 2 = r + 1 , (3.4)

which gives the result.

Now define

D r : =
^ r

Σ kk ′
1_ ___ (

k
1_ _ +

k ′
1_ __ ) .

The sums D r were studied by Hans and Chander (1964) (see also Robertson (1968)), who showed

that

D r = (
6
π2
_ __ + o( 1 ) )

log r
r_ ____ (3.5)

as r → ∞. In particular D r ≥ c 0 log r
r_ ____ for some absolute constant c 0 > 0 for all r. This yields:

Corollary 3.1a. One has

M ∗ (I r ) =
4
1_ _ D r + O(

p
r_ _ ) (3.6)

as p → ∞, where D r =
6
π2
_ __ ( 1 + o( 1 ) ) as r → ∞.

Next we treat J 2r = [±1 , ±2 , . . . , ±2r].

Theorem 3.2. For fixed r and p → ∞,

M(J2r
∗ ) =

2
1_ _

^ r

Σ kk ′
1_ ___ (

k + k ′
1______ ) + O(

p
r_ _ ) , (3.7)

where (
k
<_ _ ,

k ′
<′_ __ ) runs over all intervals of the Farey series ^ r of order r.
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Proof. We proceed similarly to Theorem 3.1.

Claim. For those a ∈ Z / pZ with
k
<_ _ p ≤ a ≤

k ′
<′_ __ p the minimal element in aJ2r

∗ (mod p) is ak

(mod p) for
k
<_ _ p < a ≤ (

k
<_ _ +

k(k + k ′ )

1_ ________ ) p and − ak ′ (mod p) for

(
k
<_ _ +

k(k + k ′ )

1_ ________ ) p ≤ a ≤
k ′
<′_ __ p.

Proof of claim. The proof of Theorem 3.1 showed that in the interval (
k
<_ _ p ,

k ′
<′_ __ p) the function

ak (mod p) lies below all a < (mod p) with < ≠ k for 1 ≤ < ≤ r. A similar argument shows that

the function − ak ′ (mod p) lies below all − a< (mod p) with < ≠ k ′ for 1 ≤ < ≤ r on the interval.

Hence the minimal value for aJ2r
∗ is min (ak, − ak ′ ) on the interval, and determining which is

smaller gives the stated result.

Now set

s ∗ (
k
<_ _ ,

k ′
<′_ __ ) =

k
<__ p ≤ a ≤

k ′
<′_ __ p

Σ min (aJ 2r ) .

Using the claim, we have

s ∗ (
k
<_ _ ,

k ′
<′_ __ ) =

k
<__ p < a ≤

k ′
<′_ __ p

Σ min (ak, − ak ′ ) ( mod p)

=
2

p 2
_ __

kk ′
1_ ___ (

k + k ′
1______ ) + O(

k + k ′
p______ ) , (3.8)

where the main term in this expression is the area of the triangle pictured in Figure 3.2.

_ _____________

Insert Figure 3.2 about here.
_ _____________

Proceeding as in Theorem 3.1, we obtain
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p(p − 1 ) M ∗ (J 2r ) =
2

p 2
_ __

^ r

Σ kk ′
1_ ___ (

k
1_ _ +

k ′
1_ __ ) + O(p

^ r

Σ k + k ′
1______ ) ,

and dividing by p(p − 1 ) yields (3.7).

Now set

E r : =
^ r

Σ kk ′
1_ ___ (

k + k ′
1______ ) .

These sums were estimated asymptotically by Lehner and Newman (1969), Theorem 2, who

showed that

E r =
π2

12 log 2_ _______
r
1_ _ + O(

r 2

log r_ ____ ) . (3.9)

This yields:

Corollary 3.2a. One has

M ∗ (J 2r ) =
2
1_ _ E r + O(

p
r_ _ ) as p → ∞ ,

where E r =
π2

12 log 2_ _______
r
1_ _ + O(

r 2

log r_ ____ ) as r → ∞.
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ABSTRACT

Let R be a set of r distinct nonzero residues modulo a prime p, and suppose that the random
variable a is drawn with the uniform distribution from { 1 , 2 , . . . , p − 1 }. We show for all sets R

that
2r

p − 2_ _____ ≤ E[ min [aR] ] ≤ 100
r 1/2

p_ ___, where in the set aR each integer is identified with its

least positive residue modulo p. We give examples where E[ min [aR] ] ≤
r

0. 8p_ ____ and

E[ min [aR] ] ≥ 0. 4
r

p log r_ ______. We conjecture that E[ min [aR] ] <<
r 1 − ε

p_ _____ holds for a wide

range of r. These results are applicable to the analysis of certain randomization procedures.


