- 91 -

[33] R. Needham and M. Schroeder, Using encryption for authentication in large
networks of computers, Comm. ACM 21 (1978), 993-999.

[34] A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic signif-
icance, Advances in Cryptology: Proceedings of Eurocrypt 84, T. Beth, N. Cot,
[. Ingemarsson, eds., Lecture Notes in Computer Science 209, Springer-Verlag,

NY (1985), 224-314.

[35] E. Okamoto, Key distribution systems based on identification information, Ad-
vances in Cryptology: Proceedings of Crypto 87, C. Pomerance, ed., Lecture
Notes in Computer Science 293, Springer-Verlag, NY (1988), 194-202.

[36] E. Okamoto and K. Tanaka, Key distribution system based on identification
information, IEEE J. Selected Areas Commun. SAC-T7 (1989), 481-485.

[37] J. M. Pollard, Factoring with cubic integers (parts I and II), unpublished
manuscripts, August 1988 and December 1988.

[38] C. P. Schnorr, Efficient identification and signatures for smart cards, Advances
in Cryptology: Proceedings of Crypto 89, G. Brassard, ed., Lecture Notes in
Computer Science 435, Springer-Verlag, NY (1990), 239-251.

[39] B. Taylor and D. Goldberg, Secure networking in the Sun environment, Proc.
USENIX Assoc. Summer Conference, Atlanta 1986, 28-37.

[40] Shigeo Tsujii and Toshiya Itoh, An ID-based cryptosystem based on the dis-
crete logarithm problem, IEEE Journal on Selected Areas in Communications 8

(1989), 467-473.

[21]

[24]

[27]

28]

31]

- 90 -

D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algo-
rithms, 2nd ed., Addison-Wesley 1981.

N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987), 203-209.

K. Koyama and K. Ohta, Identity-based conference key distribution systems,
Advances in Cryptology: Proceedings of Crypto ‘87, C. Pomerance, ed., Lecture
Notes in Computer Science, 293, Springer-Verlag, NY (1988), 175-194.

B. A. LaMacchia and A. M. Odlyzko, Solving large sparse linear systems over
finite fields, Advances in Cryptology: Proceedings of Crypto 90, A. Menezes, S.
Vanstone, eds., to be published.

A. K. Lenstra, H. W. Lenstra, Jr., M. 5. Manasse, and J. M. Pollard, The number
field sieve, Proc. 29nd A CM Symp. Theory of Computing (1990), 564-572.

A. K. Lenstra and M. S. Manasse, Factoring by electronic mail, Advances in

Cryptology: Proceedings of Furocrypt '89, J.-J. Quisquater, ed., to be published.

A. K. Lenstra and M. S. Manasse, Factoring with two large primes, Advances in

Cryptology: Proceedings of Eurocrypt ‘90, 1. Damgard, ed., to be published.

K. S. McCurley, The discrete logarithm problem, in Cryptography and Compu-
tational Number Theory, C. Pomerance, ed., Proc. Symp. Appl. Math., Amer.
Math. Soc., 1990, to appear.

A. Menezes, S. Vanstone, T. Okamoto, Reducing elliptic curve logarithms to

logarithms in a finite field, to be published.

S. Micali and A. Shamir, An improvement of the Fiat-Shamir identification and
signature scheme, Advances in Cryptology: Proceedings of Crypto '88, S. Gold-
wasser, ed., Lecture Notes in Computer Science 403, Springer-Verlag, NY (1989),
244-247.

V. Miller, Use of elliptic curves in cryptography, Advances in Cryptology: Pro-
ceedings of Crypto 85, H. C. Williams, ed., Lecture Notes in Computer Science
218, Springer-Verlag, NY (1986), 417-426.

P. L. Montgomery, Modular multiplication without trial division, Math. Comp.
44 (1985), 519-521.

[9]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[20]

- 19 -

E. F. Brickell and K. S. McCurley, An interactive identification scheme based
on discrete logarithms and factoring, Advances in Cryptology: Proceedings of

Furocrypt "90, 1. Damgard, ed., to be published.

D. Coppersmith, Fast evaluation of discrete logarithms in fields of characteristic

two, IEEE Transactions on Information Theory 30 (1984), 587-594.
D. Coppersmith, Modifications to the number field sieve, to be published.

D. Coppersmith, A. Odlyzko, and R. Schroeppel, Discrete logarithms in GF(p),
Algorithmica 1 (1986), 1-15.

D. Denning, and G. Sacco, Timestamps in Key Distribution Protocols, Commu-

nications of the ACM 24 (1981) 533-536.

W. Diffie and M. Hellman, New Directions in Cryptography, IEEFE Transactions
on Information Theory 22 (1976), 472-492.

T. ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Transactions on Information Theory 31 (1985), 469-472.

T. ElGamal, A subexponential-time algorithm for computing discrete logarithms

over GF(p*), IEEE Transactions on Information Theory 31 (1985), 473-481.

A. Fiat and A. Shamir, How to prove yourself: practical solution to identification
and signature problems, Advances in Cryptology: Proceedings of Crypto 86, A.
M. Odlyzko, ed., Lecture Notes in Computer Science 263, Springer-Verlag, NY
(1987), 186-199.

D. M. Gordon, Discrete logarithms in GF'(p) using the number field sieve, to be
published.

L. C. Guillou and J.-J. Quisquater, A practical zero-knowledge protocol fitted
to security microprocessor minimizing both transmission and memory, Advances
in Cryptology: Proceedings of Furocrypt ‘87, D. Chaum, ed., Lecture Notes in
Computer Science 304, Springer-Verlag, NY (1988), 127-141.

C. G. Gunther, Diffie-Hellman and ElGamal protocols with one single authentica-
tion key, Advances in Cryptology: Proceedings of Furocrypt ‘89, J.-J. Quisquater,
ed., to appear.

- 18 -

10. Acknowledgements

The authors wish to thank N. Fernandez, K. McCurley, and M. Merritt for providing

helpful information and stimulating this work.

References

[1] L. M. Adleman, Factoring numbers using singular integers, to be published.

[2] P. Barrett, Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor, Advances in Cryptology: Pro-
ceedings of Crypto '86, A. M. Odlyzko, ed., Lecture Notes in Computer Science
263, Springer-Verlag, NY (1987), 311-323.

[3] F. Bauspiess and H.-J. Knobloch, How to keep authenticity alive in a computer
network, Advances in Cryptology: Proceedings of Eurocrypt ’89, J.-J. Quisquater,
ed., to appear.

[4] T. Beth, Efficient zero-knowledge identification scheme for smart cards, Advances
in Cryptology: Proceedings of Eurocrypt '88, C. G. Gunther, ed., Lecture Notes
in Computer Science 330, Springer-Verlag, NY (1988), 77-84.

[5] 1. F. Blake, R. Fuji-Hara, R. C. Mullin, and S. A. Vanstone, Computing log-
arithms in fields of characteristic two, SIAM J. Alg. Disc. Methods 5 (1984),
276-285.

[6] J. Bos and M. Coster, Addition chain heuristics, Advances in Cryptology; Pro-
ceedings of Crypto ‘89, G. Brassard, ed., Lecture Notes in Computer Science
435, Springer-Verlag, NY (1990), 400-407.

[7] J. Brandt, I. Damgard, P. Landrock, and T. Pedersen, Zero-knowledge authen-
tication scheme with secrete key exchange, Advances in Cryptology: Proceed-

ings of Crypto 88, S. Goldwasser, ed., Lecture Notes in Computer Science 403,
Springer-Verlag (1989), 583-588.

[8] E. F. Brickell, A survey of hardware implementations of RSA (Abstract), Ad-
vances in Cryptology; Proceedings of Crypto '89, G. Brassard, ed., Lecture Notes
in Computer Science 435, Springer-Verlag, NY (1990), 368-370.

17 -
Lenstra, and Pomerance, and it yields a running time estimate of
L.(1/3,3%%) = L,(1/3,2.080...). (8.4)

Recently H. Lenstra and Adleman [1] have proposed two independent techniques

which lower the running time estimate to
L(1/3,4-37%3) = L,(1/3,1.922...). (8.5)

Even more recently, Coppersmith [11] has proposed a modification that achieves a

running time of
L,(1/3,2Y3 .37 (46 4+ 13V13)Y/®) = L,(1/3,1.901...). (8.6)

Although asymptotically this is still far better than other algorithms, the point at
which this method would be faster than algorithms such as the quadratic sieve appears
to be in the vicinity of 200 decimal digits. On the other hand, the number field sieve
is a very recent invention, and so it is likely that substantial improvements might
occur which would make it practical.

The number field sieve can be extended to computing discrete logarithms, as is

shown in [18].
9. Conclusions and recommendations

The basic conclusion to be drawn from this paper is that computing discrete logs
in prime fields GF(p) with the Gaussian integer method is not much harder than
factoring composite integers n with n ~ p with the multiple polynomial quadratic
sieve. Right now roughly 110 decimal digit integers are being factored in several
months of elapsed time using idle time on hundreds of workstations all over the
world. Since workstations are becoming dramatically faster and more numerous, and
much more widely connected to networks, it seems prudent to allow for at least a
100-fold increase in the available computing power over the next few years, which
would allow factoring of integers in the 130-140 decimal digit range. Furthermore,
since many discrete log cryptographic schemes have the feature that they use a fixed
prime which cannot easily be changed, one has to allow for attacks that consume not
just a couple of months, but even a couple of years of computing time. Therefore
even H12-bit primes appear to offer only marginal security, even against the Gaussian

integer scheme.

- 16 -

to some bound, and it is only important to find some smooth numbers. Thus an
algorithm utilizing some combination of trial division, the Pollard p-method, the
elliptic curve method, and an early abort strategy (well known in integer factorization)
ought to be many times faster. Furthermore, it is possible to optimize various choices
that were made rather arbitrarily in our implementation. Since even with all of the
inefficiencies in our program, the running time was expected to be (and was) quite

moderate, the optimization task was not undertaken.

8. The Number Field Sieve

The number field sieve is a new factoring algorithm with a much lower asymptotic
running time estimate than previous algorithms. It was first proposed by Pollard
[37] for factoring integers near perfect cubes, with the basic idea derived from the
early work of ElGamal [16]. A similar idea was proposed independently by Elkies
(electronic mail communication of Feb. 13, 1989) a short time later. The Pollard
approach was then extended by A. Lenstra, H. Lenstra, and M. Manasse [25] to

factor so-called Cunningham integers, that is integers n of the form
n=d"+1 (8.1)
where a is small and k is large. If we let
L (v,r) = exp((r + o(1))(log n)"(log log n)' "), (8.2)
then the number field sieve factors Cunningham integers n in time
L,(1/3,2(2/3)*?) = L,(1/3,1.526...). (8.3)

(This estimate is based on several assumptions that seem reasonable but have not
been proven.) This algorithm is fast not only asymptotically, but also in practice,
although it is quite complicated to implement. A. Lenstra and M. Manasse have

= 2512 1 1 in about the same amount of time that the

recently used it to factor Fy
quadratic sieve requires to factor integers of about 110 decimal digits. (Fy has 155
decimal digits, and one prime factor of 7 decimal digits was already known. However,
this did not help, since the number field sieve for Cunningham integers cannot take
advantage of such auxiliary information. Thus it is a debatable point whether A.
Lenstra and M. Manasse factored a 155 or a 148 decimal digit integer.)

The number field sieve can also be extended to factor general integers. At first,

the only technique that could be shown to work in general was due to Buhler, H.

- 15 -

ry = 435600073, (7.8)
rs = 124325687, (7.9)
ry = 832003. (7.10)

Except for the r;, all the other primes appearing in the factorizations of x and y were
already in the factor base, so it was only necessary to find the logs of the r;.
If we let r denote one of the r;, its logarithm was computed by searching for pairs

of relatively small integers ¢ and d such that
¢V —dT =0 mod r. (7.11)

Candidate values of (¢, d) were obtained by finding two pairs (¢1,d;) and (cq, dy) that

were quite small and satisfied Equation 7.11, and then considering linear combinations

(e,;d) = aler,dr) + B(ca, da)

for small integers o and 3. The pairs (¢, dq) and (¢, d2) were obtained from the con-
tinued fraction of o/r, where 0 = T'/V mod r. For example, for r = ry, (—6254,1691)
and (3683,2244) were used. Each pair (¢,d) was tested to see whether ¢ + ds split
into quadratic integers of small norm. Since the norm of ¢ + ds is ¢ + 2d* and so is
small, this happened a large fraction of the time. When it did happen, (¢V —dT")/r
was tested to see whether it factored into small primes. When this succeeded, the
search was over, and the log of r could be obtained from the database. For example,
for r =rq, (e, d) = (—15355,78668) was a good pair, and gave the relation
V(14 95)(3—95)(154 235)(545 + 215)
59 - 2699 - 64781 - 186581 - 253787 - 256079

mod p. (7.12)

m =

Since the logs of all the factors on the right side of Equation 7.12 were in the factor
base, this expression gave the log of ry.

The entire computation took several hours on a DEC VAX 8550 minicomputer.
However, with appropriately written programs it should be possible to carry out
similar computations in several minutes. The main reason for the long time that was
required was that testing whether an integer was smooth was done using a general
purpose factoring package that was available on the VAX. This package does some
trial division, and then applies the multiple-polynomial quadratic sieve. It is only
moderately efficient, and is meant to obtain complete factorizations. In our approach

to computing individual logs, it is only important to check for smoothness with respect

- 14 -

in [24], one can shift the load onto the sieving part by methods such as obtaining
many excess equations or not using techniques that produce dense equations. These
methods do decrease the efficiency of the sieving algorithm, but they make the linear
algebra easier. In any case, the systems that are likely to arise in the near future

appear to be tractable using known techniques.

7. Computing Individual Discrete Logarithms

The challenge, provided by M. Shannon of Sun Microsystems, was to find m such
that:
3" = zmod p (7.1)

where
z = 3088993657925229173047110405354521151032325819440498983565 (7.2)

Since z is a square of a primitive root modulo p, there are two solutions for m in the

range 0 < m < p — 2. These two solutions are
m = 871373321106180104114279941663066214856051438571369779697 (7.3)

and m + %. Since the main computation obtained discrete logarithms of small
primes to base ¢ = 1 + s, the log of z to base ¢ was computed, and the value of m in
Equation 7.3 was found by simple base conversion.

To obtain the log of z to the base g, a modification of the strategy outlined in [12]
was employed. To express z in terms of what [12] called “medium-sized primes,” the

numbers z - g% (reduced modulo p) for k = 0,1,... were each expressed as
mod p (7.4)

with = and y close to /p. (For each k, several (x,y) pairs were tried.) The values
of z and y were then factored, and for those z which split into primes < 10'°, the
corresponding values of y were factored, until a value of y was found such that all of

its prime factors were < 10'°. This occurred for & = 73, and the factorizations were:

xr = —19-41-127-9257 - 62473 - 653693 - rq, (7.5)
y = 2-89-785737 -1y 13- 1y, (7.6)

where

ry o= 20261929, (7.7)

_ 13-
left with a system of 164,841 equations in 94,398 unknowns.

6. Linear Algebra

The problem of solving a large system of linear equations over a finite field has
always loomed as a potential bottleneck in factoring integers and computing discrete
logarithms. In fact, the major goal of this project was to explore the extent to which
large systems could be solved efficiently. That was also the motivation for working
with a much larger factor base than was necessary to break the Sun cryptosystem,
and for obtaining many more equations than were needed.

The various algorithms that are available for solving large sparse linear systems
over finite fields are surveyed in [24]. Here we will only mention briefly how they
performed on our problem. The system of 288,017 equations in 96,321 unknowns
was reduced by the structured Gaussian elimination method to a smaller system of
7,262 equations in 6,006 unknowns. This operation took a couple of hours on the SGI
computer. The resulting smaller system was then solved modulo 2 in 1.9 hours using
a conjugate gradient program, and modulo % in about 44 hours using the Lanczos
algorithm. (There was no real need to solve the system modulo 2, since variables are
0 or 1 depending on whether the corresponding prime is a quadratic residue modulo
p or not. This exercise was undertaken in order to estimate the efficiency of the linear
algebra algorithms in different settings.) With more careful programming, that time
could be decreased substantially.

One disadvantage of the Gaussian integer scheme that we implemented is that it
produces relatively dense equations. Even without using the large prime variation, it
gives equations with density comparable to that of the single large prime variation of
the quadratic sieve. The linear sieve does not have this disadvantage.

The general conclusion that can be derived from the results of [24] is that linear
algebra is likely to be a significant but not an insurmountable problem in computing
discrete logarithms modulo large primes. The major difficulty is that, while signifi-
cant computing resources may be applied to sieving, such power is not available for
solving the linear algebra. Sieving may be performed efficiently in a distributed en-
vironment, and, as A. Lenstra and M. Manasse have demonstrated, huge amounts of
computing power may be obtained from distributed systems of workstations. Solving
large systems of linear equations, though, appears to require either a single fast pro-
cessor or else a closely coupled set of processors. One cannot hope to devote nearly

as much computing power to this portion of the algorithm. However, as is explained

- 12 -

The sieving program was written in C and utilized the portable multiprecision
arithmetic package distributed by A. Lenstra and M. Manasse with their multiple
polynomial quadratic sieve program. The sieve was run on a Silicon Graphics 4D-220
computer. It has 4 R3000 MIPS Computers, Inc., 25 MHz processors, each rated at
about 18 mips, or 18 times the speed of a DEC VAX 11/780 computer (and about
1.3 times the speed of a DECstation 3100). This machine has 128 Mbytes of main
memory. Since our program occupied about 20 Mbytes of memory, all four processors
could sieve simultaneously over different ¢; intervals.

It took our implementation approximately one hour of CPU time (running on a
single processor) to successfully sieve 1000 possible ¢; values, for a total running time
of about 100 hours. Factoring the equations derived from fully-smooth (¢1,¢;) pairs
took another 104 minutes, on average, per 1000 possible ¢; values. Neither of these
running times is particularly impressive; performance could probably be improved
significantly without too much effort. However, it should be noted that even our
implementation was able to collect the necessary equations using only a few days
worth of CPU time.

Aside from improving the efficiency of the algorithm, one could achieve about an
order of magnitude improvement by working with a smaller factor base and using
the single and double large prime variations. The reason we did not do this is that
we wished to extrapolate our result to estimate the security of much larger systems.
The efficiency of sieving is very easy to estimate, as one can run experiments on small
ranges and also use the data from the large factoring experiments. On the other hand,
this kind of extrapolation is harder to do in the case of solving linear equations, and
so we decided to generate a very large system that we could experiment with.

In order to gain more information concerning the performance of the Gaussian
integer scheme, experiments were also performed on a 224-bit prime g using essentially
the same algorithm. This prime was chosen to be similar to the one used in the Sun
system in that % is a prime and ¢ = T? + 2V? for particular integers 7,V <
/4. The factor base was the same as that used in the case of the 192-bit prime.
Sieving occurred over a substantially larger range; all values of ¢; in the interval
[—3 x 10°,9 x 10°] were considered. Our sieve size (the range of possible ¢y values)
was kept at 3 x 10°. Sieving took under 1200 hours of CPU time, and produced
about 1.1 x 10° candidate fully-smooth (¢;, cy) pairs. After removing those pairs for
which ¢; and ¢; were not relatively prime, factoring both sides of the corresponding

a1V — T = V(ey + ¢z5) equations, and “squeezing” the resulting system, we were

- 11 -

On average, for each value of ¢; we found 17.27 values of ¢; in the interval [1,300000]
such that (c;,cz) was fully-smooth. Overall, we found about 1.6 x 10° fully-smooth
(c1,¢2) pairs (out of 2.7 x 10 checked values), or about one fully-smooth pair per
1.65 x 10* possible pairs.

For each fully-smooth pair (¢, ¢z), the corresponding equation:
aV — T =V(ey + ¢zs) mod p’

was factored (if possible) over the extended (complex) factor base. It was likely that
1V —cT" was smooth with respect to the small real primes; it was not always the case,
however, that the right-hand side of the equation could be factored over the small
complex primes. Only one-third of the fully-smooth (¢1,¢;) pairs of integers actually
yielded equations which could be completely factored over the complex factor base.
Once factored, the equations were sorted, and duplicate appearances of equations
were removed. We found two causes of duplicate equations. The first cause was two
distinct (¢1,¢z) pairs of integers which happened to have the same residue ¢;V —
¢2T mod p. The second (and much more frequent) cause was two pairs (¢, ¢2) and

(¢, cy) with ¢f = k- ¢1, ¢ = k- ¢z, where k is a small integer. In this case,
AV =T =V(c, +cys) = k(aV —cT)=kV(c + c2s)

and the factors of k cancel, leaving the same equation generated directly from the
(c1,¢2) pair. (Future implementations should probably only consider (¢, ¢2) pairs
where ¢; and ¢, are relatively prime.) When all the duplicate equations were removed,
we were left with a system of 288,017 distinct equations in 119,775 unknowns.
Before this system of equations was reduced using structured Gaussian elimination
(see Section 6), it was first “squeezed” to eliminate dependent variables. Consider a
real prime g € () which may be factored into complex primes (a+bs) and (a — bs). All
three of these variables could appear as unknowns in any of the 288,017 equations.
Since it is sufficient to compute the discrete logarithm for any two of the three, we
may reduce the density of the system by rewriting all appearances of one of the three
variables in terms of the other two. For each triple of related primes g;, (a; + b;s), (a; —
b;s), the prime which appeared the fewest number of times in the system of equations
was rewritten in terms of the other two. In most cases we replaced (a; — b;s) with
¢;(a; + b;s)™'; in the remaining instances (a; + b;s) was replaced with ¢;(a; — b;s)7".
This process reduced the number of unknown variables appearing in the system to

96,321.

- 10 -
T = 22760185083691921160273336139.

These specific values of 7" and V' were chosen from several candidate pairs (75, V;),
T;,V; < /P because they satisfy the desirable property 7% + 2V?* = p.

For each fixed value of ¢;, the sieve initialized an integer array C of size 3 x 10°,
representing the possible values of ¢,. For each prime power ¢", value d = ¢; VT ~! mod
q" was computed. The contents of the array were incremented by [1000-1n ¢| at every
location ¢; = d mod ¢". (The factor of 1000 and the floor function |-| are used so
that we may maintain three decimal digits of accuracy yet perform integer, instead
of floating point, calculations.) When the loop over prime powers ¢" had finished,
C'lesg) contained the (approximate) real logarithm of the smooth part of the residue
aV —cT.

After all of the small primes had been sieved for a fixed value of ¢;, any ¢y for
which C[e;] (i.e., the sum of the logarithms of its small prime factors) was close to

the actual (real) logarithm of the residue ¢;V — ¢;T" was considered “interesting.” If
11000 - In(c1V — ;1) | — Cleg] < 18420, (5.1)

then the (c¢1,cy) pair was considered partially-smooth and assumed to have at most
one “moderate-size” prime factor. (The magic number 18420 is 1000 - In 10®. We
considered any prime between 814,279 (the largest “small prime” in ()) and 10® to be

of moderate size.) If
11000 - In(e;V — eT)] — Cles] < 10000, (5.2)

the (¢1,¢2) pair was considered fully-smooth and assumed to have no prime factors
outside of the factor base. (We need to use a large bound here as a result of an
implementation decision concerning how real logarithms of ¢,V — ¢;T" residues are
calculated.) Although these assumptions were heuristic, they narrowed down the list
of candidate (¢1, ¢3) pairs so that time was not wasted on factoring ¢,V — ¢, 1" residues
with multiple large prime factors.

Even though we had collected both partially- and fully-smooth pairs of (¢q,¢2)
values, we ended up using only the fully-smooth pairs to generate equations. We
found enough fully-smooth pairs in the search space to generate the needed equations;
it was not necessary to resort to a “large prime variation” and allow equations with
one or two large prime factors [27]. (The large prime variation would have increased

the density of the set of equations which have to be solved, which was undesirable.)

_ 9.

= V(er + c28) mod p'.

If e;V — ;T is smooth with respect to the real primes in @), and (¢; + ¢28) is smooth
with respect to the complex primes in (), we may write a related equation in loga-
rithms to base g. When we map complex numbers a + bs to a + bS and the base
g=¢e+ fs toe+ f5, the logarithms are preserved.

We again use a sieve to find pairs of integers (¢1, ¢z) whose residues ¢,V — ¢, 7" are
smooth over the small real primes in). For a fixed value of ¢;, we allocate an array

C corresponding to possible values of ¢;. For each real prime power ¢", compute
d=c¢ VT mod ¢".

Every value ¢; = d mod ¢" will yield a residue ¢;V — ¢, 1" with a factor of ¢". If we
increment the contents of Clcy] by the logarithm of ¢, we may inspect C after all
primes have been sieved for ¢y values likely to yield ()-smooth residues ¢; V' — ¢, T
Notice that the Gaussian integer method avoids both of the major problems as-
sociated with the linear sieve. Our factor base is not unreasonably large, since it
consists of only the small real and complex primes, plus the integer V. Also, while it
is true that we need to calculate the value of d = ¢; VT ~! mod ¢" for every value of ¢;
and ¢", we can precompute the values of V7'~! mod ¢". Then on every sieve we only
need multiply the stored value by ¢; modulo ¢". In addition, for our specific p, we
were able to avoid performing any multiprecision arithmetic when calculating values

of d by appropriately choosing () and the range of possible ¢, values.
5. Sieving

Once our implementation of the Gaussian integer method was working, we began
searching for (¢, ¢y) pairs of integers whose residues were smooth. All values of ¢;
in the interval [1,95000] were considered. We chose to look at only positive values
of ¢; for simplicity; negative values of ¢; are acceptable as far as the algorithm is
concerned. Our sieve size (the set of considered ¢, values for each value of ¢;) was
3 x 10°. Again, only positive c, values were considered. These choices were definitely
not optimal.

Since -1 is a quadratic nonresidue modulo p, while -2 is a residue, we chose r = —2.
(This simplified the algorithm, since (v/—2) has class number 1.) By factoring =2 +2
modulo p, we obtained a value of S such that S? = —2 mod p. We computed the

convergents to the continued fraction of S/p, and selected V' and T as follows:

V= 48454067936694480117959482723,

-8 -

of the “smooth part” of the residue. If after all the ¢* have been sieved the value
stored at Cles] is close to the real logarithm of the residue, then that ¢, value yields
a)-smooth residue. The (¢1, ¢) pair may then be used to derive an equation similar
to Equation 4.1 above.

The linear sieve suffers from two main problem. First, the factor base () is large,
since it contains all the H + ¢; in addition to the small primes ¢;, and thus we must
collect many equations so that the resulting system can be solved. In fact, as pointed
out in [24], we would really like to have many more equations than unknowns in
order to simplify the task of solving the system. The second problem concerns the
computation of d in Equation 4.3. In a test implementation of the linear sieve, we
found that the time it took to invert (H + ¢;) and calculate d for each prime ¢"
was greater than the time it took to step through the entire array C'! (Notice also
that since d depends on ¢; and ¢", it is impossible to precompute d values.) These
two problems make the linear sieve undesirable for large values of p. However, these
deficiencies are not very serious, at least for p < 10%°, and the linear sieve would have
been only slightly less efficient than the method that we did implement for attacking
the Sun system. In general, the linear sieve has the advantage that it produces sparser
equations than the scheme that we actually used.

The second method of equation generation mentioned in [12] is the residue list
sieve. We did not even consider implementing it, since it has huge space requirements
and is slow.

The third method of equation generation, and the one which was ultimately used,
is the method of Gaussian integers [12], which was inspired by the work of ElGamal
[16]. The idea here is to map the field GF(p) to a subset of Z*. Let r be a small
negative integer which is also a quadratic residue modulo p, let S be an integer such
that S? = r mod p, and let s represent the imaginary number /r. Choose two integers
T,V < \/p such that 7% = rV? mod p. Let the factor base @) consist of small complex
primes x 4+ ys in Z[s], small real primes ¢ (some of which will factor into two complex
primes), and the integer V. Now, let p’ = T + Vs, and choose g = e + fs to be a
complex prime which generates (Z[s|/p")*. This g is the new base for logarithms.

In order to generate logarithm equations, we search for pairs of integers (cq, ¢2)
such that their residue ¢;V — ;T is smooth with respect to the real primes ¢ in the

factor base (). Notice that we may write

aV—al = V(ia+eas)—c(lT+Vs)

7 -

The basic idea behind the precomputation is to obtain a number of equations in the
logarithms of elements of (), and solve the resulting system modulo the prime factors
of p — 1. There are many techniques for obtaining the equations. We will discuss
three of them: the linear sieve, the residue list sieve, and Gaussian integers. They
were all shown in [12] to have the asymptotic running time given by Equation 1.2.

The first equation generating method is the linear sieve. Let H = |\/p] +1,J =
H? — p. Let) be the factor base, consisting of the “small primes,” -1, and the set of

integers around H. We will search for pairs of integers (¢, ¢2) such that in
(H+ce1)(H+ce2)=J+ (e14+ e2)H 4 e1ea mod p

the right-hand side is smooth with respect to the factor base (i.e., all of the factors
of J + (¢1 + ¢2)H + ¢1¢y are in the factor base). For any pair of integers (¢1,¢y) for
which J + (¢1 + ¢2) H + ¢1¢5 is smooth with respect to (), we may write

(H+e)(H+) = qilqi2 . .qpr mod p, (4.1)

where each of the ¢, € @) (the terms (H 4 ¢;) and (H + ¢;) are also assumed to be
in Q). Now, taking logs on both sides, we obtain:

log,(H + ¢1) +log,(H + ¢2) = EhZ log, gr, mod (p — 1), (4.2)

which is an equation in the logs of elements of the factor base. Thus, by finding a
system of such equations, we can solve the system modulo the factors of p — 1 and
obtain the logarithms of all the elements in the factor base Q).

We use a linear sieve to search for (e1,¢z) pairs for which (H + ¢1)(H + ¢2) is
smooth with respect to the small primes in). Fix ¢;, and let ' be an array whose
indexes are ¢, values we wish to consider. For each prime power ¢" with ¢ € Q and

h sufficiently small, compute

d=(J+caH)(H+ cl)_1 mod qh. (4.3)
Notice that
(H+c1)(H+d)=0mod qh (4.4)
and that
(H + c1)(H + ¢2) = 0 mod ¢" Yey = dmod ¢". (4.5)

Then we may step through the array C of possible ¢y values and add logg to all

locations Cez] for which ¢, satisfies Equation 4.5. The array stores the real logarithm

-6 -

The Diffie-Hellman scheme is only one of many that can be used for authentica-
tion. In recent years, some very fast public key schemes have been developed. The
Fiat-Shamir one [17] is perhaps the most widely known, but there are many other
schemes [4, 7, 9, 19, 30, 38]. They are more than an order of magnitude faster than
RSA and Diffie-Hellman methods (for the same size modulus), and so can be imple-
mented in software without excessive computational requirements. However, while
those systems are very suitable for smart card applications, for example, they are not
always appropriate for use in computer networks, when one might have to cope with
active attackers who might control the communication channel.

The fast signature schemes mentioned above belong to the class of identity-based
systems, in which there is no need to maintain a database of authentication informa-
tion for all users. In those systems there is a trusted key authentication center (KAC)
which provides each user A with a secret key K 4 that is derived from A’s basic iden-
tification information (login name, or machine routing number in a network). Using
the secure key K 4 and the universally known public key of the KAC, user A can then
produce a signature that can only come from A, and which will not enable anyone
to generate signatures later. This simplifies the security problems, since it is not
necessary to worry about monitoring a large secure authenticated file of information
about users.

There are several identity-based cryptosystems that serve not only to authorize
users, but also to generate session keys [3, 20, 23, 35, 36, 40]. They could be used very
effectively in settings like that of the Sun NFS. Unfortunately, their running times
are all comparable to those of the RSA and Diffie-Hellman systems. It is desirable
to find a scheme of this kind that would be as fast as some of the signature schemes

that are known, since that would alleviate the problem of having to use large moduli.

4. Discrete Logarithms in Prime Fields

This section describes the algorithm used to compute discrete logarithms modulo p,
where p is the prime used in the Sun NFS cryptosystem. A more detailed description
is contained in [12].

All of the fast algorithms known for computing discrete logarithms are forms of the
index-calculus algorithm [34]. In the index-calculus algorithm, an initial processing
stage computes the discrete logarithms of a set () of elements in the field. Once this
table of logarithms has been computed, any other logarithm may be found relatively

quickly utilizing the information in the table.

-

we mention in Section 9, primes of 512 or fewer bits should definitely be avoided (even
though it is not now feasible to compute discrete logarithms modulo a prime of 512
bits). The basic difficulty with this approach is of course the added computational
burden. The time to execute the Diffie-Hellman scheme in software is proportional
to D3, where D is the number of bits of p, so that going from 200 to 800 bits raises
the complexity by a factor of 64.

There are several ways to deal with the problems of using a larger modulus. One
is simply to use faster machines. Speeds of even small workstations are increasing
very rapidly. Another, complementary approach, is to use faster algorithms. At the
level of basic arithmetic, there are methods such as that of P. Montgomery [32] or
methods using precomputed tables [2] that offer substantial speedups in modular
multiplication over standard algorithms. One can also use addition chain methods
[21] to carry out modular exponentiation with fewer modular multiplications than the
usual method. (See [6] for some recent work on this.) The survey paper [8] discusses
these and related methods.

Another approach is to use variants of the system that require fewer modular
multiplications. One way to do this is to use secret keys m that are relatively short
(say m of 150 bits). Another, somewhat similar, way to do this is to use the idea
of Schnorr [38], and choose ¢ to be not a primitive element, but a generator of a
multiplicative subgroup modulo p that is of order 2!%° or so.

An easy way to improve the security of the scheme is to have a different prime
for each user. With the presently known algorithms, the precomputation phase of
the discrete logarithm algorithm when applied to a 100 decimal digit prime might
take a year on a 100-mips computer. If that prime is used by everyone on a network,
individual secret keys could then be obtained in minutes. However, if every user
had a different prime, obtaining any such key would require a year, which might be
regarded as sufficiently secure.

Instead of using discrete exponentiation modulo a prime, one could possibly gain
some speed by using addition on elliptic curves [22, 31]. Operations on elliptic curves
are rather complicated, but no subexponential algorithms are known for the analog of
the discrete logarithm problem on general elliptic curves, and so one could use much
smaller primes. However, recently Menezes, Vanstone, and Okamoto [29] have shown
that on some elliptic curves discrete logarithms can be computed in subexponential
time, so one has to be on guard against further breakthroughs that might destroy the

attractiveness of elliptic curve cryptosystems.

2. The Sun NFS Cryptosystem

The Sun security option [39] in their NFS is built into the basic Sun Remote Pro-
cedure Call (RPC) and provides authentication of both users and machines using a
combination of the Needham-Schroeder [33] protocol which uses DES, and a public
key cryptosystem that is a modification of the Diffie-Hellman key exchange system
[14]. It has long been known that the Sun system is not very secure. There are
problems with the Needham-Schroeder protocol [13], which make it possible to defeat
the timestamp system. Furthermore, the “yellow pages” that contain the public au-
thentication information are not authenticated, so one can attack the security of the
system by installing a bogus file. However, so far it appears that nobody has pointed
out that the public key subsystem that is used by Sun is very weak. This fact makes
it possible to impersonate any user with very little effort and leaving few traces.

In the Sun system, there is a prime p and an integer ¢ that are the same for all
users on all machines around the world that use this software. Each user or machine
has a secret key m, and ¢ mod p is public. Authentication involves proving that one
possesses the key m. For details see [39].

Both the paper [39] and the comments in the software refer to p as a 128-bit prime.
Actually, though,

p = 5213619424271520371687014113170182341777563603680354416779 (2.1)

and p has 192 bits. Both p and % are primes. The integer ¢ = 3, and the com-
ments in the software refer to g as being a primitive root modulo p. However, g is
a quadratic residue modulo p. (This has no effect on the security of the system.)
Curiously enough, 2 is a primitive root modulo p. Probably the confusion is due to
the fact that originally the system was built with a 128-bit prime for which 2 was not
primitive. When the length of the prime was increased, the verification of primitivity
was apparently forgotten.

To break the Sun system and impersonate a user with public key z, it is only
necessary to find one of the two values of m, 0 < m < p — 2, such that

g™ = x mod p. (2.2)

This paper shows that this can be done very fast.
3. Alternative Methods

The basic idea of using a modification of the Diffie-Hellman scheme is not necessarily

bad. What this paper shows is that the prime p has to be much larger for security. As

part of their Network File System (NFS), and this system has been incorporated into
UNIX®System V Release 4.0. The Sun scheme uses discrete exponentiation mod-
ulo a prime of 192 bits. This paper shows that it is quite easy to compute discrete
logs modulo that prime, which makes it possible to break the NFS security in a very
clean way. In a few days on a moderately fast machine it is possible to prepare a
database of less than a megabyte that will then enable the cryptanalyst to obtain
any particular user’s secret key in a matter of at most a few minutes. While the
preparation of the database does require extensive and sophisticated programming,
once it is accomplished, the breaking of individual logs can be performed with hardly
any programming effort at all by using a symbolic manipulation system such as Mac-
syma, Maple, or Mathematica. (If such a system is used, though, the time to break
an individual key might be on the order of hours instead of minutes.) While the NFS
security feature was already known to be weak, our results show that it can be broken
in a very simple way.

The attack on the Sun cryptosystem provides the first experimental evidence
concerning the difficulty of computing discrete logarithms in GF(p). In order to
better estimate the running time required to calculate discrete logs in larger prime
field, most of the basic computations were also performed modulo a particular prime
of 224 bits. These computations are mentioned briefly in Section 5.

The general conclusion to be drawn from the results reported here is that comput-
ing discrete logarithms modulo a prime is only a little harder than factoring integers
of that same size. In particular, with about the same amount of effort that is used
now to factor 110 decimal digit integers, one should be able to compute discrete
logarithms modulo primes of about 100 digits.

Section 2 below presents the Sun NFS cryptosystem, and discusses some of its
deficiencies. We mention in Section 3 some of the methods that could be used to
strengthen it. The discrete log algorithm that was used is outlined in Section 4.
Sections 5 through 7 describe various parts of the implementation. Section 8 sketches
a new algorithm that was invented recently and is not currently practical, but might
become so with additional improvements. Finally, Section 9 presents a summary of

the results and some recommendations.

®UNIX is a registered trademark of AT&T.

_9.

where ¢ is the largest prime dividing p — 1. Therefore, it is advisable to choose p
such that p — 1 is divisible by at least one large prime ¢, say ¢ > 10°°. Further,
since solutions x to Equation 1.1 (for p, g, and y given) are determined only modulo
the multiplicative order of ¢ modulo p, it is advisable to choose ¢ with its order
divisible by a large prime. If these precautions are observed, then the best published
algorithms [12] for computing discrete logarithms modulo a prime p have running
time

exp((1+ o(1))(log p)* (log log p)7) s p — oc. (1.2)

(Section 8 discusses a very recent discovery, the number field sieve, that is expected
to be much faster asymptotically, but is not practical at this time.) The estimate
given by Equation 1.2 is of roughly the same form as that of most of the fast practical
algorithms for factoring composite integers of about the same size as p. An important
feature of the estimate above is that it applies to a precomputation phase that has
to be carried out once for each prime p. Once that phase is completed, individual
discrete logarithms modulo that prime are much easier to compute.

Equation 1.2 is only an asymptotic estimate and does not say how large a prime
p one could handle in practice in a reasonable amount of time. Currently large
hard integers (hard here means that they are not of a special form and do not have
small prime factors) with 100 to 110 decimal digits are factored in the equivalent of
under a year on a 100 mips (million instructions per second) computer [26]. (The
actual computation is spread over hundreds of workstations, and uses only their idle
time.) The general feeling among experts in factoring integers and computing discrete
logarithms was that the two problems were of roughly equal difficulty in practice as
well as in theory. However, no computations of discrete logarithms in large prime fields
have been reported before. Discrete logs have been computed in the field GF/(2'%7)
by Coppersmith [10] and by Blake, Fuji-Hara, Mullin, and Vanstone [5]. This showed
that the scheme implemented first in software by MITRE and then on a prototype
chip by Hewlett-Packard was insecure. However, since in fields of characteristic two
the discrete log problem is much easier than it is in prime fields (especially when one
uses the Coppersmith algorithm [10, 28, 34]), it was not clear what impact this result
had for the security of prime fields.

The complexity of computing discrete logs in prime fields is of substantial prac-
tical interest, since it provides an estimate of the size of the prime that has to be

used. Sun Microcomputers, Inc., has implemented a secure identification feature as

Computation of Discrete Logarithms in Prime

Fields

B. A. LaMacchia *
A. M. Odlyzko

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The presumed difficulty of computing discrete logarithms in finite fields is the
basis of several popular public key cryptosystems. The secure identification option of
the Sun Network File System, for example, uses discrete logarithms in a field GF(p)
with p a prime of 192 bits. This paper describes an implementation of a discrete
logarithm algorithm which shows that primes of under 200 bits, such as that in the

Sun system, are very insecure. Some enhancements to this system are suggested.

1. Introduction

If pis a prime and ¢g and z integers, then computation of y such that
y=g"modp, 0<y<p-—1 (1.1)

is referred to as discrete exponentiation. Using the successive squaring method, it is
very fast (polynomial in the number of bits of |p| 4+ |g| + |2|). On the other hand, the
inverse problem, namely, given p, ¢, and y, to compute some x such that Equation 1.1
holds, which is referred to as the discrete logarithm problem, appears to be quite hard
in general. Many of the most widely used public key cryptosystems are based on the
assumption that discrete logarithms are indeed hard to compute, at least for carefully
chosen primes.

The current state of knowledge about discrete logarithms is surveyed in [28, 34].

There are algorithms that compute discrete logarithms in GF(p) in time roughly q%,

*Present address: MIT, Cambridge, MA 02139

