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ABSTRACT

Public key cryptography is an important development of the last two decades. It is exciting
on a purely intellectual level, as it provides capabilities that at first glance might seem impos-
sible. For example, it enables two people to determine who earns more without allowing either
to learn the other’s salary. On a more serious level, public key cryptography solves several
important problems, especially those of key management and digital signatures, that are vital
for information processing. This article explains what public key cryptography is, and what

its benefits and limitations are.
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1. Introduction

Public key cryptography was invented to provide information security for civilian systems
more easily than was possible with traditional methods. Conventional cryptosystems can
provide security but at substantial cost. An extreme example is that of the Vernam cipher,
invented at AT&T in 1917. If Alice and Bob wish to communicate secretly, they agree ahead of
time on a string of bits 1, x5, . ... If Alice wishes to convey to Bob a message that is represented
by bits mq,ma, ..., my, she transmits to him the bits ¢; = mq1 B z1, ¢ = Mo B x9,...,c =
my @ x, where x @ y is the exclusive-or of bits z and y. Bob, who receives ¢y, ..., cg, recovers
the original message mq, ..., m by the operation m; = ¢; ®z;. If the z; are truly random, and
are never used more than once (so that the second message from Alice to Bob, or Bob’s reply
to the first message from Alice, would use bits @41, Tk42,...) then this cipher (the “one-time
pad”) is unbreakable, the only cryptosystem that has been proved to be unbreakable. The
problem with the one-time pad is that it requires huge numbers of the random bits z;, one for
each bit that Alice and Bob might wish to transmit. Moreover, those bits have to be created
and conveyed securely to just Alice and Bob, without allowing anyone else to learn what they
are. This can be done in cases requiring extreme security (the Washington-Moscow hot-line is
reputedly encrypted with the one-time pad), but is not adequate for the civilian marketplace,
where the volume of transmitted information is huge.

There are conventional cryptosystems that do not need large numbers of random key bits.
The best known and most widely used is the U. S. Data Encryption Standard (DES). DES
uses a 56-bit key. Therefore if Alice and Bob wish to communicate using DES, they do not
need to generate beforehand as many random bits z; as they feel they might need to transmit.
Instead, they only need to agree on a 56-bit DES key. When DES was first proposed as a
standard, there were suspicions that it might contain trapdoors that would enable government
agencies to decrypt transmissions easily. These concerns have been allayed by research done

over the last two decades, and the general concensus is that DES is a strong system for its key



size. However, it is felt that a 56-bit key is in general too short. Advances in technology have
made exhaustive key search of the 2°6 possible keys feasible, so that for about $1,000,000 one
can build a parallel machine that would typically require only four hours to find a key. For
many applications this level of security is not adequate, especially since key search machines
are becoming faster and cheaper to build. Exhaustive key attacks can be thwarted by using
ciphers stronger than DES. One such system is triple-DES, which consists of three encryptions
with the basic DES, controlled by two keys, for an effective key size of 112 bits ([Sch, Sim]).

DES, triple-DES, and other similar systems provide levels of security that can be estimated
by skilled cryptographers. The key sizes are moderate, so that the main disadvantage of the
Vernam cipher is avoided. However, there is still the key distribution problem. For Alice and
Bob to communicate using DES, say, they need to have a 56-bit key that nobody else knows.
With n people or computers that might need to communicate, the number of keys that are
necessary is n(n — 1)/2. Since there are already over 20 million users of the Internet, to allow
any two to communicate in secret would require 200 trillion keys, and each user would have
to keep a file of 20 million keys, one for each potential correspondent. This is a major defect
of the conventional cryptosystems, and was the main motivator for the invention of public key
cryptography.

The area where conventional cryptosystems are most deficient is digital signatures. While
key management can often be handled using classical cryptographic methods (as will be ex-
plained in Section 3), there is no effective way to authenticate digital documents, which can
be copied freely, without using public key methods. With the rapid spread of electronic trans-

actions of all sorts, this is a serious problem.

2. Public key cryptosystems

Public key cryptography was invented in the 1970s by W. Diffie, R. Merkle, and M. Hellman
at Stanford. The first practical public key system was the Diflie-Hellman key exchange system,
presented in Sidebar 1. If Alice and Bob wish to communicate in secret, they can use the Diffie-
Hellman technique to establish a secret key through an exchange of public messages. This secret
key can then be used to encrypt the conversation using a conventional cryptosystem such as
DES. If suitable precautions are observed, an eavesdropper who knows the entire exchange of
messages will not be able to recover the key and will thus not be capable of intercepting the

communication. The Diffie-Hellman scheme is perhaps the most commonly used public key



system, and is incorporated in the AT&T Telephone Security Device (along with some special
enhancements).

The most famous public key cryptosystem is the RSA algorithm, invented by R. Rivest,
A. Shamir, and L. Adleman at MIT shortly after the Diffie-Hellman method was announced. It
is described in Sidebar 2. It enables people who have not had a chance to establish a common
secret key to communicate privately. RSA also provides numerous other capabilities. Key
exchange is simple to implement with RSA. If Alice and Bob wish to establish a secret key
for use with DES or other conventional cryptosystems, Alice can simply select a secret key
and send it to Bob encrypted with Bob’s public key. Perhaps most important is the digital
signature capability of RSA, illustrated in Sidebar 3.

There are many other public key cryptosystems. For example, there are digital signature
schemes that are based on discrete logarithms (as in the Diffie-Hellman scheme), and not
on RSA. The proposed U.S. Digital Signature Standard (DSS) is of this type. There are also
various systems with additional capabilities. There exist so-called identity-based cryptosystems
in which users obtain certificates from a central authority that encode their basic identification
information, limits of validity, and so on, and which enable any two participants in the system
to generate a common secret key while simultaneously verifying each other’s identity without
having to access any database of public information. For more detailed information in this

area, see [Pom, Sch, Sim)].

3. Limitations of public key cryptosystems

Public key cryptosystems are already widely used, and are likely to become even more
widespread. However, they do have limitations that prevent them from being used as univer-
sally as their earliest proponents expected. The primary limitation is that of the computational
burden they impose. Almost all the public key cryptosystems that are regarded as secure are
based on number theoretic techniques that involve multiplication of large integers. Intensive
research over the last two decades has increased the sizes of the numbers that are needed to
provide security. For example, Rivest, Shamir, and Adleman published a challenge in 1977
using a version of the RSA system that relied on 129-digit integers. At that time they fully
expected this problem to remain unbroken at least until the end of this century. However, a
large distributed computation involving idle time on hundreds of computers around the world

and improved algorithms succeeded recently in solving this challenge problem. For informa-



tion on the methods used in these and related attacks and guidelines on recommended sizes of
keys, see [Od]. The computational requirements of public key cryptography are not as much
of a barrier to its use as was the case a decade ago, when special hardware appeared neces-
sary. (AT&T even produced a special modular multiplication chip for this purpose.) Today’s
microprocessors are fast enough to carry out the necessary computations. Still, conventional
cryptosystems are usually 10 to 1000 times faster than public key ones. Therefore encryption
of messages is invariably done using conventional cryptosystems. Public key schemes are used
only for the special tasks where their unique capabilities are needed, such as key exchange,
authentication, and digital signatures.

Another reason public key schemes are not used more widely is that many of their ca-
pabilities can be obtained from conventional cryptosystems. For example, the Introduction
explained the key management problem; if there are n users in a system, then n(n — 1)/2
keys are needed to allow any two to communicate, and every user has to store n — 1 keys. If
public key systems are used, then only n keys are needed, as only a single key for each user
has to be stored, and this key does not have to be safeguarded, as it can (and should) be
placed in a publicly accessible database (which has to be secure against unauthorized modi-
fications, though). (An identity-based cryptosystem can sometimes even eliminate the need
for this database.) However, in many situations an almost equally satisfactory solution can
be constructed with conventional cryptosystems. If there is a trusted center in the system,
then each user only needs a single secret key that is shared with the center. If Alice wishes
to communicate with Bob, she can send a message to the center, encrypted with the key she
and the center share, requesting that a key be generated for the Alice-Bob conversation. The
center creates such a key and sends it to Alice (encrypted with the key the center and Alice
share) and to Bob (this time encrypted with the key that Bob and the center share). After-
wards Alice and Bob can communicate using the key that the center provided. They obtain
not only privacy of the communication, but also assurance of each other’s authenticity. The
disadvantage of this approach is that the center has to be reachable at all times, and has to
be trustworthy (since it possesses the means to listen in on all conversations in the system).
Public key cryptography provides ways to solve these problems. However, these drawbacks
of conventional cryptosystems are often perceived as not very significant, or else worth the
advantage of not having to implement more cumbersome public key schemes. For example,

the IS-54 authentication system for North American digital cellular systems (which has since



been adapted for other wireless schemes as well), which was designed by Jim Reeds and Phil
Treventi of AT&T Bell Laboratories, uses a hierarchy of shared secrets and challenge-response
techniques to verify the identity of mobile units without the use of public key cryptosystems.
A public key system would have lowered the need for efficient communication between differ-
ent cellular operators, and would have prevented some denials of service (which might occur
as a result of communication overloads or breakdowns). However, since there are relatively
few cellular operators, and the Reeds-Treventi system requires only occasional communication
between them, the decision made by the industry standards group was not to use public key
cryptography in the immediate future. Public key cryptosystems are under consideration for
other wireless systems.

Another reason why public key cryptosystems are not used more widely involves patent
licensing issues. Most of the basic public key algorithms are patented, and several of the key
ones are controlled by a private company, Public Key Partners. Many corporations, including
AT&T, Apple, Lotus, and Microsoft, have licenses to these patents. However, there are still
many unresolved issues, especially those concerning the proposed U.S. federal Digital Signature
Standard (DSS). The U.S. government has publicly stated that it is committed to a no-fee
access policy to this standard, but no agreement with Public Key Partners (which claims that

DSS infringes on its patents) has been reached as yet.

4. Conclusions

Public key cryptosystems are valuable security tools. They offer essentially the only way
to provide digital signatures, and are often the preferred method for authentication or key
distribution. However, they should not be used for encryption of general traffic, and can often

be dispensed with in networks that have a trusted central authority.
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Sidebar 1: The Diffie-Hellman key exchange method

Suppose that Alice and Bob wish to establish a secret key that only they will possess. To
do this, they agree on a large prime p and an integer g. (These numbers p and g might be
the same for many people. We will say more about their choice below.) Then Alice chooses
a random integer a, 1 < a < p — 2, and Bob chooses a random integer b, 1 < b < p — 2. The

integers a and b are kept secret. Alice computes A,
AEga (modp), 1§A§p_17

and Bob computes B,
B=g" (modp), 1<B<p-1,

where # = y (mod p) means that the remainders obtained by dividing & and y by p are the
same. The computations of A and B can be carried out fast with no intermediate results larger
than p?. Then Alice transmits A to Bob over an open channel, and Bob transmits B to Alice.

Next, Alice computes

X =B (modp), 1<X<p-1,

and Bob computes

y = A° (mod p), 1<Y <p-1.

Since B = ¢® (mod p) and A = ¢g* (mod p), we find that X = ¢** = ¢?* = Y (mod p), and
therefore X =Y. Hence Alice and Bob do obtain the same integer X =Y, which can then be
used to derive a key for a conventional cryptosystem.

An eavesdropper, Eve, who listens to the conversation between Alice and Bob, sees A and
B. However, to derive X from A and B, it appears (although this has never been proved) that
Eve has to compute either @ or b. Computing either of these numbers is an instance of the
discrete logarithm problem, and appears very hard in general. Some precautions have to be
observed (the prime p has to be large, p — 1 has to have at least one large prime factor, the

multiplicative order of ¢ modulo p has to be large, ...). This protocol is widely used.



Sidebar 2: The RSA cryptosystem

The RSA cryptosystem relies for its security on the difficulty of factoring an integer into
primes. If Alice wishes to allow secret messages to be sent to her, she chooses two large primes
p and ¢, and forms n = p - g. She then selects a random integer e, 1 < e < n, such that e has
no integer divisors > 1 in common with p — 1 and ¢ — 1. She then publishes the pair (n,e¢)
as her public key, but keeps p and ¢ secret. To send a message to Alice, Bob transforms it
into blocks of integers, each of < log, n bits. If a particular block is regarded as the binary

representation of an integer m, 0 < m < n, then Bob computes
c=m® (modn), 0<c<n,

using the same consecutive squaring method as in the Diffie-Hellman method, and transmits
¢ to Alice.

To decrypt the transmitted message ¢, Alice uses a procedure similar to the encrypting
one, namely

m=c? (mod n),

where d is her secret decryption exponent. If the factors p and ¢ are known, d can be computed
easily from e, since we need ed =1 (mod p—1) and ed =1 (mod ¢ — 1).
There is no known way to break the RSA system without finding the prime factors p and

q of n.



Sidebar 3: Digital signatures

There are methods for creating digital signatures using conventional cryptosystems, but
they are clumsy. In contrast, public key systems provide a very elegant solution to this problem.
The U.S. Digital Signature Standard, proposed by NIST, is based on discrete logarithms, as
in the Diffie-Hellman system. Here we show a solution based on the RSA cryptosystem, which
is described in Sidebar 2. Suppose that Alice’s public key consists of (n,€). To sign a message

m, when m is an integer in the range 0 < m < n, Alice attaches to it the integer
z=m’ (modn), 0<z<mn,

where d is Alice’s secret decoding exponent. Since Alice knows d, this is something she and

she alone can do. Bob, to verify Alice’s signature of m, computes
y=2z°(modn), 0<y<n.

Since n and e are public, Bob can perform this operation. The property of the RSA cryp-
tosystem discussed in Sidebar 2 guarantees that y = m. This proves to Bob that z was indeed
generated by Alice since there is no known way to generate z from m without knowledge of
the secret integer d.

The digital signature scheme described above can be used to show some of the pitfalls of
using cryptosystems. It is possible for a system to fail even if the basic algorithm is secure.
(This can happen to both public key and conventional cryptosystems.) For example, Alice
should use separate keys (n,e) and (n’,€’) for encryption of information (which is sent to her)
and for digital signatures (which she generates). To see the reason for this, suppose Alice
uses a single key (n,€). Suppose that Eve, the eavesdropper, overhears Bob sending to Alice
the message ¢ = m® (mod n). All that Eve has to do to obtain m is to persuade Alice to

b=y (mod n). Thus Alice’s use of the same modulus

sign ¢, since the signature of ¢ is ¢
and exponent in two different cryptosystems allows Eve to break them with Alice’s unwitting
cooperation. This is a case of protocol failure, and is one of the main vulnerabilities to be

guarded against.



