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ABSTRACT

This paper considers random walks on a finite group G, in which the probability of going from x to yx,
x ,y ∈ G, depends only on y. The main results concern the distribution of the number of steps it takes to
reach a particular element of G if one starts with the uniform distribution on G. These results answer some
random sorting questions. They are attained by applications of group representation theory.



RANDOM SHUFFLES AND GROUP REPRESENTATIONS

1. Introduction

This paper was motivated by the following question raised by some of our colleagues about random

sortings. Suppose we are given a randomly permuted deck of cards, and we keep shuffling it by choosing

two cards at random and interchanging them. What is the expected number of shuffles until the deck is

fully sorted? Does this number change appreciably if instead of interchanging two random cards, we

always interchange the top card with a card drawn at random from the following ones? Our results answer

both of these questions. It turns out that if n denotes the number of cards, then for both variants of the

problem, the expected number of shuffles is close to n!, but that it is larger for the second variant where we

always interchange the top card with a random card. More precisely, in the first problem the expected

number of shuffles is

(1.1) n! + 2 (n −2 ) ! + o( (n −2 ) ! ) as n → ∞ ,

while in the second problem it is

(1.2) n! + (n −1 ) ! + o( (n −1 ) ! ) as n → ∞ .

We consider the shuffling problem as a special instance of random walks on finite groups. Let G be a

finite group with a measure µ which induces the random walk moving from x to yx with probability µ(y)

for all x ,y ∈ G. Assume that the support Ω of µ, Ω = { x ∈ G: µ(x) > 0}, generates G. This entails no

loss of generality, for if Ω generates a proper subgroup H of G, then the random walk is confined to a single

right coset of H in G and we can instead consider the random walk on H. We study T, which is the number

of steps the random walk takes to reach the identity element e of G, if the starting point of the walk is

uniformly distributed on G. (We choose e for convenience; obviously the distribution of T remains the

same if e is replaced by any other element of G). We obtain a formula, involving the irreducible

representations of G, for the generating function of T (Theorem 4.1).

While the formulas of Theorem 4.1 are very general, they are not sufficiently simple to yield results

about the expectation and distribution of T in case of arbitrary walks. However, these formulas simplify
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significantly (Theorem 4.2) when µ is constant on conjugacy classes, i.e. µ(xyx−1 ) = µ(y) for all

x , y ∈ G. The first variant of our shuffling problem corresponds to this case. Here G is the symmetric

group S n and µ( (i j) ) = 1/(2
n), 1 ≤ i < j ≤ n, µ(x) = 0 for all other x ∈ G. Thus µ is constant on the

conjugacy class of transpositions, and Theorem 4.2 applies directly.

In the second variant of the random shuffling problem, G is also S n but now

µ( ( j n) ) =
n −1

1_ ____ , 1 ≤ j ≤ n −1, and µ(x) = 0 for all other x ∈ G, so that µ is not constant on conjugacy

classes. Still, the formulas of Theorem 4.1 can be simplified, using results from the representation theory of

the symmetric group. What makes this possible is the fact that the set of transpositions

( j n) , 1 ≤ j ≤ n −1, is invariant under conjugation by elements of the symmetric group S n −1 on the n −1

letters 1 ,... ,n −1. In general, one can hope that methods similar to ours will work whenever µ is invariant

under conjugation by elements of a large subgroup of S n .

We shall use the formulas of Theorem 4.2 to obtain limit laws for T as n → ∞, when G = S n and µ is

uniformly concentrated on a fixed conjugacy class C, i.e. the p-cycles (p ≥ 2) of C are independent of n.

We show in Theorem 5.3 that in this case

(1.3) E(T) = n! +
 C
n!_ ___ + o



î  C

n!_ ___




as n → ∞ ,

(1.4)
n→ ∞
lim P(T ≥ tn! ) = e− t , t ≥ 0 .

These results extend readily to the case where µ is concentrated on several conjugacy classes, uniformly

over each class. They also extend to random walks on the alternating group A n (Theorem 5.4). Finally,

they can sometimes be extended to cases where µ is not constant on conjugacy classes. For example, we

show that they hold for the second variant of the shuffling problem (Theorem 5.6). The laws (1.3), (1.4) do

not hold universally. In Section 6 we give examples of random walks on abelian groups where the limit

laws for T are quite different from those of (1.3), (1.4).

The theory of group representations enters into our problem as follows. Let T x , x ∈ G, be the number of

steps taken by the walk starting at x to reach e. Let f (x ,z) and f (z) =
 G
1_ ___

x∈ G
Σ f (x ,z) be respectively the
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generating functions of T x and T. The definition of the random walk leads to a convolution equation for

f (x ,z) with respect to the variable x. The theory of group representations allows us to take a "Fourier

transform" of this equation, converting as usual convolution into multiplication. Using the "inverse Fourier

transform", we obtain formulas for f (x ,z) and f (z). Detailed knowledge of the irreducible representations

of S n enables us to deduce the limit law for T x and T from the formulas for f (x ,z) and f (z).

The idea of applying group representations to shuffling problems is mentioned in [8,12], where various

other applications to probability and statistics are given. Closely related to our paper are those of Good

[11], and Diaconis and Shahshahani [9]. Good [11] deals with random walks on finite Abelian groups, in

which case the irreducible representations are 1-dimensional and trivial to compute. In [9] the

representation theory of S n is used to study the rate at which the distribution of the product of k random

transpositions on n letters tends to the uniform distribution as k→ ∞.

Our results can be applied to some of the problems studied by Diaconis and Shashahani [9]. In

particular, as is shown in [8], they lead to a simplification of the proof of the main result of [9]. They also

enable one to study the rate of convergence to the uniform distribution of the random walk generated by

interchanging a random card with the top card [8].

In this paper we show that the machinery of group representations is capable of producing very precise

answers to certain questions concerning random shufflings. Less precise answers to such questions can also

be obtained by more standard probabilistic methods [1,2]. In fact, the probabilistic methods occasionally

apply when our techniques do not. As an example, we have not found a way to use the formulas of

Theorem 4.1 to obtain a limit law for T when G = S n and µ is concentrated uniformly on the transpositions

(κ , κ + 1 ), 1 ≤ κ ≤ n −1, whereas it follows from [1,2] that T becomes exponentially distributed as n→ ∞.

Random walks on groups are examples of Markov chains, the transition probabilities given by

p(x ,y) = µ(yx−1 ), x , y ∈ G. In general, one can consider any finite irreducible chain (we use the term

irreducible to mean that any state may be reached from any other one in a finite number of steps with

positive probability) and study the expected number N of steps required to move from one state to another

averaged over all pairs of states. This problem has been investigated extensively by Aleliunas et al. [3] and

Mazo [15]. Mazo shows that N ≥
2
n_ _, n being the number of states, equality holding if and only if the chain



- 4 -

consists of consecutive points on a circle and one moves deterministically from one point to the next.

Simple examples show that no upper bound for N exists (see Section 7). Upper bounds are known [3,15] in

the case of a random walk on an undirected graph G with n nodes, the walk moving from any node to all

those connected to it with equal probability. In this case

(1.5) n −1 ≤ N = O(n 3 ) ,

the lower bound being attained if and only if G is the complete graph on n nodes. An example is given in

[15] which shows that the best possible exponent is 3.

These results apply directly to random walks on finite groups. In this case E(T) =
n

n −1_ ____ N, where

n =  G. (The presence of the term
n

n −1_ ____ is explained in section 7.) Thus E(T) ≥
2

n −1_ ____, equality

holding if and only if G is cyclic and µ(g) = 1 for some generator g of G. Furthermore, we conclude from

(1.5) that if µ(x) = µ(x−1 ), x ∈ G, and µ constant on its support, then E(T) ≥
n

(n −1 )2
_ _______. In Section 7, we

modify Mazo’s argument to yield E(T) = O(n 2 ) in this case. The exponent 2 is best possible, since for

simple random walk on a cyclic group of order n, E(T) ∼
6

n 2
_ __ (Theorem 6.1).

The plan of this paper is as follows. In Section 2 we give a brief review of general results in the theory

of group representations required in this paper. This is followed in Section 3 with a description of the

irreducible representations and characters of S n . In Section 4 we derive formulas for the generating

functions of T x and T. These are used in Section 5 to derive limit laws for T x and T. In Section 6, we

obtain limit laws for T on certain Abelian groups in order to illustrate how different the behavior can be

then as compared to the random walks considered on S n and A n . Finally, in Section 7, we view random

walks on groups as Markov chains to obtain bounds for E(T) in terms of  G.

Acknowledgment: We would like to thank Larry Shepp, Jim Mazo, and Kenneth Baclawski for some

helpful discussions. In particular, K. Baclawski brought to our attention the asymptotic character formula

for S n derived by Wasserman in his thesis [19].
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2. Representations of Finite Groups

We review those aspects of the representation theory of finite groups needed in this paper. In this

section we present the general theory, and in the next one the more detailed theory of the symmetric group.

Our discussion is brief and we quote standard results without proof. For a comprehensive treatment the

reader is referred to [4,7,17] for the general theory and to [4,14] for the theory of the symmetric group. For

a somewhat slower paced presentation of the theory, see [8].

Let G be a finite group. A representation ρ of G is a homeomorphism from G into the group of

invertible linear maps of a finite dimensional complex vector space V, which will be referred to as a G-

module. The dimension dρ of V is called the degree of ρ. Without loss of generality, we can consider

ρ(x) , x ∈ G, to be dρ × dρ unitary matrices. A representation ρ is said to irreducible if and only if V has

no proper subspace invariant under all ρ(x). The 1-dimensional irreducible representation

ρ(x) = 1 , x ∈ G, is called the identity representation and is denoted by 1. Two representations ρ, ρ′ of G

are said to be equivalent if and only if they are of equal degree and there exists an invertible dρ × dρ

matrix M such that Mρ(x) M−1 = ρ′ (x) , x ∈ G. If ρ, ρ′ are equivalent representations on the G-modules

V , W, then we express this fact by V ∼= W.

The function χ ρ (x) = Tr ρ(x) = trace of ρ(x) is the character of the representation ρ. A character χ ρ

is called irreducible whenever ρ is. If ρ′ (x) = Mρ(x) M−1 , then χρ′ (x) = χρ (x); i.e., equivalent

representations have the same character. If x and y are conjugate elements in G (i.e. y = axa−1 for some

a ∈ G), then χ ρ (y) = Tr[ρ(a) ρ(x) ρ−1 (a) ] = χρ (x). Thus χ ρ is constant on conjugacy classes. We

define χ ρ (C) = χρ (x), x ∈ C, for any conjugacy class C.

Let C be the set of conjugacy classes of G and Ĝ a complete set of inequivalent irreducible

representations of G.

Theorem 2.1. If δst denotes the Kronecker symbol, which equals 1 for s = t and is 0 otherwise, then
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i )  C =   Ĝ ,

(2.1) ii )
 G
1_ ___

C ∈ C
Σ  C χ ρ (C) χ

_
ρ′ (C) = δρ ρ′ , ρ, ρ′ ∈ Ĝ ,

(2.2) iii )
 G
1_ ___

ρ ∈ Ĝ
Σ χ ρ (C) χ

_
ρ (C ′ ) =

 C
δCC′_ ____ , C ,C ′ ∈ C .

Equations ii), iii) are the orthogonality relations for characters. Equation ii) implies that inequivalent

irreducible representations have distinct characters. As a special case of iii), let C = C ′ = { e }. Then

χ ρ (e) = dρ, and iii) becomes

(2.3)
ρ ∈ Ĝ
Σ dρ

2 =  G .

Let A = A (G) be the set of formal sums f =
x∈ G
Σ f (x) x, f (x) any complex valued function on G.

For λ complex and f , g ∈ A(G) define:

λ f =
x∈ G
Σ λ f (x) x , f +g =

x∈ G
Σ [ f (x) +g(x) ] x , f g =

x∈ G
Σ [ f ∗ g] (x) x ,

where [ f ∗ g] (x) =
y∈ G
Σ f (xy−1 ) g(y). f ∗ g is called the convolution of f and g and A (G) the group

algebra of G. Any representation of G extends uniquely to A(G) by letting ρ( f ) =
x∈ G
Σ f (x) ρ(x). We

have

ρ(λ f ) = λ ρ( f ) , ρ( f +g) = ρ( f ) + ρ(g) , ρ( f g) = ρ( f ) ρ(g) .

Let f̂ (ρ) = ρ( f ) , ρ ∈ Ĝ. Then f̂ is a function on Ĝ and is called the Fourier transform of f. We have

(2.4) f * g (ρ) = f̂ (ρ) ĝ(ρ) , ρ ∈ Ĝ ,

so that the Fourier transform converts convolution into multiplication. We recover f from f̂ by the

following result.

Theorem 2.2. (Inversion Formula)

(2.5) f (x) =
 G
1_ ___

ρ ∈ Ĝ
Σ dρ Tr [ f̂ (ρ) ρ(x−1 ) ] , x ∈ G .
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Let f (x) be a class function on G, so that f is constant on conjugacy classes. Let f (C) = f (x) , x ∈ C.

In this case f̂ simplifies to the following.

Theorem 2.3. If Iρ is the identity dρ × dρ matrix and f is constant on conjugacy classes, then

(2.6) f̂ (ρ) =
dρ

1_ __ [
C ∈ C
Σ  C f (C) χ ρ (C) ] . Iρ .

Proof: f̂ (ρ) =
C ∈ C
Σ f (C) ρ(C), where ρ(C) =

x∈ C
Σ ρ(x). We have

(2.7) ρ−1 (y) ρ(C) ρ(y) =
x∈ C
Σ ρ(y−1 xy) = ρ(C) , y ∈ G ,

so that ρ(C) commutes with ρ(y) , y ∈ G. As ρ is irreducible, we conclude from Schur’s lemma that

ρ(C) = λC Iρ, λ C a complex number. Taking traces we obtain

(2.8) Tr ρ(C) =  Cχ ρ (C) = λρ dρ ,

which proves (2.6).

3. Representations of the Symmetric Group

Let G = S n , the symmetric group on n letters, 1 ≤ n < ∞. We describe C and Ĝ by setting up one-

to-one correspondences between each of these sets and the set P n of partitions of n.

The partitions of n are designated by λ = (λ 1 , ... ,λ m ), where λ 1 ≥ λ 2 ≥ .. ≥ λ m is a sequence of

positive integers with n = λ1 + .. + λm. The λ i’s are named the parts of λ, and n = λ the weight of λ.

We also use the notation λ = ( 1a1 2a2 .. n an ) to mean that there are a j parts equalling j.

The partition λ of n gives rise to the conjugacy class C λ consisting of those elements in S n with cyclic

decomposition (κ 1 κ 2 ..κ λ 1
) (κ λ 1 +1 ..κ λ 1 + λ2

) ...(κ λ 1 + ... + λm −1 +1 ...κ n ), where κ 1 ,κ 2 , .. ,κ n is a permutation

of 1 , 2 , .. ,n. (In practice, one only writes down the cycles of length ≥ 2.) The correspondence λ → C λ is

one-to-one from P n onto C. If λ = ( 1a1 2a2 ..n an ), then

(3.1)  C λ  =
1a1 a 1 ! 2a2 a 2 ! .. n an a n !

n!_ ___________________ .

For example, if a 1 = n −2 , a 2 = 1, and all other a i = 0, then C λ is the class of transpositions and
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 C λ  =
2

n(n −1 )_ _______.

To obtain the correspondence P n → Ĝ, we define the Specht modules S λ . We require several

concepts. The Young diagram of λ is the diagram, the first row of which contains λ 1 squares, the second

row λ 2 squares, etc. To illustrate, the diagram of (5,3,1,1) is given in figure 1i). We denote the diagram of

λ by [λ ].

_ ___________________ _ ______________

_ ___________________ 





_ ______________ 





i) _ ___________










ii) _ ______

_ ___ _ ______















_ ___








___

___ 





















Figure 1.

The squares are coordinatized by (i , j), i indicating the row counted from top to bottom, and j the

column counted from left to right. A λ-tableau t is any of the n! arrays of integers obtained by inserting

1 , .. ,n into the n squares of [λ]. Two tableaux t 1 and t 2 are called equivalent if t 2 is obtained from t 1 by

permuting elements in each row of t 1 . The set of tableaux equivalent to a given tableau t is called a λ-

tabloid and is designated by {t}. For any π ∈ S n , let ρλ (π) t be the tableau obtained from t by replacing

each entry i by π(i), 1 ≤ i ≤ n, and let ρλ (π) { t } = {ρλ (π) t }. (The last definition can be checked to be

independent of the representative t.)

Let M λ be the vector space over C spanned by the λ − tabloids, and extend the action of S n to M λ by linearity. M λ is an S n-module and contains the irreducible submodule

S λ defined as follows. For any tableau t, let C t be the subgroup of S n consisting of the column permutations of t. Let sgn π be 1 if π is even and − 1 if π is odd. Then e t =
π ∈ C t
Σ ( sgn π) . ρλ (π) { t } is called a

λ-polytabloid. The linear span of all polytabloids is an irreducible S n-module. It is the Specht module corresponding to λ and is designated by S λ . From now on, when speaking of ρλ , we mean its restriction to

S λ . Then λ → ρλ is the desired 1-1 correspondence from P n onto Ĝ [13]. In the sequel, we shall write d λ , χ λ , etc. for d ρλ , χ ρλ , etc.

As simple illustrations, let λ = (n) , ( 1n ). It follows from the definition that S (n), S ( 1n ) are 1-dimensional spaces spanned respectively by e 1... n , e ( 1... n) tr , and

ρ (n) (π) = 1 , ρ ( 1n ) (π) = sgn π, π ∈ S n .

ρ (n) and ρ ( 1n ) are respectively the identity and alternating representations of S n .
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Let A n be the alternating subgroup of S n . We show how the sets C ,Ĝ for A n can be obtained from the

corresponding sets for S n . For any partition λ, the conjugate partition λ′ is defined to be the one whose

diagram [λ′ ] is the transpose of [λ ]. For example, if λ = ( 5 , 3 , 1 , 1 ), then λ′ = ( 4 , 2 , 2 , 1 , 1 ). (See figure

1ii.) We call a conjugacy class of S n even (odd) if all its members are even (odd) permutations.

Theorem 3.1. i) The even conjugacy classes of S n remain conjugacy classes of A n , except for those whose

cyclic decomposition consists of cycles of distinct odd lengths, in which case the class decomposes into two

classes of equal size. Call the former classes undivided and the latter divided.

ii) if λ ≠ λ′ , then the restrictions of ρλ , ρλ′ to A n are equivalent irreducible representations. If

λ = λ′ , then ρλ decomposes, when restricted to A n , into two inequivalent irreducible representations

ρλ1 , ρλ2 of A n . The above gives a complete set of inequivalent irreducible representations of A n .

iii) χ λ ′ (x) =


î χ λ (x) ,

− χλ (x) ,

x even .

x odd ,

iv) Let λ = λ′ and C an even undivided class. Let χ λ1 , χ λ2 be the characters of ρλ1 , ρλ2 . Then

χ λ1 (C) = χλ2 (C) =
2

χ λ (C)______ .

We remark that χ λ j (C) , j = 1 , 2, can also be computed when C is a divided class [4, p. 208], but we

do not require these values in this paper. The dimensions of the Specht modules may be computed in the

following way.

Definition 1: A tableau t is standard if and only if its entries increase along rows and columns.

Theorem 3.2. The e t’s, t varying over standard λ-tableaux, form a basis for S λ . Thus d λ equals the

number of standard λ-tableaux.

Corollary 1: Let λ = n, 1 ≤ j ≤ n. Then

(3.2)
λ= n,λ 1 = j

Σ dλ
2 ≤ ( j

n)2 (n − j) ! ,

which implies
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(3.3) dλ
2 ≤ (λ 1

n )2 (n − λ1 ) ! .

Proof: Let λ = ( j , λ 2 , ... ,λ m ). Then λ* = (λ 2 , .. ,λ m ) is a partition of n − j with λ 2 ≤ j. The first row of

a standard λ-tableau for which λ = n and λ 1 = j can be chosen in at most ( j
n) ways. Having chosen the

first row, the remaining part of the λ-tableau can be chosen in at most d λ* ways. Hence

(3.4) d λ ≤ ( j
n) d λ* .

By (2.3)

(3.5)
λ= n, λ 1 = j

Σ dλ
2 ≤ ( j

n)2

λ*
Σ dλ*

2 ≤ ( j
n)2 (n − j) ! .

Corollary 2: Let 0 < a < 1 be such that an is an integer. Then

(3.6)
λ= n, λ 1 >an

Σ dλ
2 ≤ n!



î ( 1 −a) an a

4_ _________




n

.

Proof: We have

j =0
Σ
n

( j
n)2 ≤ [

j =0
Σ
n

( j
n) ]2 = 4n .

Hence, by Corollary 1,

(3.7)
λ= n,λ 1 >an

Σ dλ
2 ≤

an < j≤n
Σ ( j

n)2 (n − j) ! ≤ (n −an) ! 4n = n! 4n

n!
(n −an) !_ ________ ≤

(n −an) an

n! 4n
_ ________

We state two methods for computing the irreducible characters of S n .

Definition 2: Let [λ ] contain s squares along its diagonal. Let a i = λ i − i, b i = λi′ − i, 1 ≤ i ≤ s. The a i’s

and b i’s are called the Frobenius coordinates of λ and we write λ =


î b 1 ... b s

a 1 ... a s




For instance, if λ = ( 5 , 3 , 1 , 1 ) then λ = 
î 3 0
4 1

 .

Definition 3: A p-staircase in [λ ] is a collection of p squares S 1 , ... ,S p in [λ ] such that: i) S j and S j +1 ,

1 ≤ j ≤ p −1, are contiguous with S j +1 either to the right or to the top of S j , ii) S 1 is at the bottom end of
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its column and S p is at the right end of its row. The sign of the staircase is +1 if it spans an odd number of

rows and −1 otherwise.

Definition 4: For any [λ] and any element γ ∈ G, let

r λ (γ) =
d λ

χ λ (γ)_ _____ .

Theorem 3.3. (Frobenius [10]) Let γ be a p-cycle, p ≥ 2, and λ =


î b 1 ... b s

a 1 ... a s



. Let x i = a i +

2
1_ _ ,

y i = b i +
2
1_ _ , F(x) =

1 =1
Π

s

x −x i

x +y i_ _____ . Then r λ (γ) is the coefficient of
x
1_ _ in the expansion of

(3.8) −
p.λ . . . .(λ− p +1 )

(x +
2
1_ _ ) . . .(x +p −

2
1_ _ )

_ __________________ .
F(x)

F(x +p)_ _______

in descending powers of x.

Theorem 3.4. (Murnaghan — Nakayama rule [14]). Let γ = (γ*) . (p) be the disjoint product of γ* and

a p-cycle. Then

(3.9) χ λ (γ) =
λ*
Σ ± χ λ* (γ*) ,

the summation extending over all [λ*] obtained by stripping a p-staircase from [λ ] and ± being the sign of

the removed staircase.

Theorems 3.3, 3.4 yield exact formulas for the irreducible characters of S n . (See [13] for some

examples.) Unfortunately, these formulas become progressively more cumbersome as the number of cycles

and their lengths increase. We shall make use in Section 5 of the following asymptotic character formula

derived by Wasserman in his thesis [19].

Theorem 3.5. Let γ be a permutation of 1 , .. ,m with γ2 2-cycles, γ3 3-cycles, etc; thus γ may be considered

an element of S n for n ≥ m. Let λ =


î b 1 ... b s

a 1 ... a s



, α i =

λ

a i +
2
1_ _

_ ______ , β i =
λ

b i +
2
1_ _

_ ______ , 1 ≤ i ≤ s. Then



- 12 -

(3.10) r λ (γ) =
p ≥ 2
Π (

i =1
Σ
s

[α i
p − ( − βi ) p ] ) γp + O



î λ

1___




where the constant in O


î λ

1___




depends only on γ.

Proof: We reproduce the proof of [17]. Consider first the case where γ is a p-cycle. Let F(x) be defined as

in Theorem 3.3. We have for  x sufficiently large

(3.11) log F(x) =
1 =1
Σ
s 





log


î
1 +

x

y i_ __




− log


î
1 −

x

x i_ __









=
n =1
Σ
∞

nx n

s n_ ___ ,

where

s n =
1 =1
Σ
s

[xi
n − ( −y i ) n ] .

Hence for  x sufficiently large

(3.12)
F(x)

F(x +p)_ _______ = exp





î

n =1
Σ
∞

nx n

s n_ ___







î
1 +

x
p_ _





−n

−1











=

k =0
Σ
∞

k!
1_ __





î

n =1
Σ
∞

x n +1

−ps n_ ____



1 −

2x
p(n +1 )_ _______ + ..











k

.

We use (3.12) to obtain the Laurent expansion of g(x) = x


î
x +

2
1_ _





..


î
x +p −

2
1_ _



 F(x)

F(x +p)_ _______ for large

 x. Define the weight of any monomial in the s n’s to be its degree when considered as a polynomial in the

x i’s and y i’s. The coefficient of x−1 in the expansion of g(x) is a polynomial in the s n’s, and the unique

monomial of highest weight appearing in it is −ps p . Since

 s n  ≤
1 =1
Σ
s

(xi
n +yi

n ) ≤ [
i =1
Σ
s

(x i +y i ) ] n ≤ λ n ,

we conclude from Theorem 3.3 that
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(3.13) r λ (γ) =
λ .... (λ− p +1 )

s p +O(λ p −1 )_ _______________ =
λ p

s p_ ____ + O


î λ

1___




=
i =1
Σ
n

[α i
p − ( − βi ) p ] + O



î λ

1___




,

the constant in O


î λ

1___




depending only on p.

Next, let γ = γ*. (p) be the disjoint product of γ* and a p-cycle (p). Suppose (3.10) holds for γ*.

Then one readily checks

(3.14) r λ* (γ*) = r λ (γ*) + O


î λ

1___




,

the constant in O


î λ

1___




depending only on γ* and hence only on γ. By (3.9) we have

(3.15) r λ (γ) =
λ*
Σ ± r λ* (γ*)

d λ

d λ*_ ___ ,

which, for γ* = e, becomes

(3.16) r λ (γ) =
λ*
Σ ±

d λ

d λ *_ ___ .

Any standard λ*-tableau can be extended to a standard λ-tableau by a suitable insertion of

λ− p +1 , .. ,λ in the removed p-staircase. Hence

(3.17)
λ*
Σ d λ* ≤ d λ .

We conclude from (3.14)-(3.17) that

(3.18) r λ (γ) = r λ (γ*)
λ*
Σ ±

d λ

d λ*_ ___ + O


î λ

1___




= r λ (γ*) r λ ( (p) ) + O


î λ

1___




,

and Theorem 3.5 follows by induction.

Since ρλ (
x∈ C
Σ x) =  C r λ I λ (Theorem 2.3), theorems 3.3 and 3.4 may be used to obtain the

eigenvalues of ρλ (
x∈ C
Σ x). We obtain next the eigenvalues of ρλ (

k =1
Σ

n −1

(kn) ).
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Let [λ j ], 1 ≤ j ≤ s, be the set of diagrams derived from [λ ] by removing one square, with

(i 1 ,λ i 1
) , .. , (i s ,λ i s

), i 1 < .. < i s , as the coordinates of the removed squares. Let d j = dim S λ j

.

Theorem 3.6. (Branching Theorem [14]). Let S n −1 be the subgroup of S n which fixes n. Let V 0 = 0 and

V j , 1 ≤ j ≤ s, be the span of the polytabloids e t , t varying over the standard λ-tableaux with n in any of

the i 1 − th ,i 2 − th , ... ,i j − th rows. Then V j / V j −1
∼= S λ j

, 1 ≤ j ≤ s.

We remark that, by Maschke’s Theorem, we may choose for each j an S n −1-module W j such that

V j = V j −1 + W j . Hence we conclude from Theorem 3.6 that S λ = W 1 + .. + W s , where W j
∼= S λ j

. Thus,

S λ splits into a direct sum of S n −1 -invariant subspaces.

Theorem 3.7. The eigenvalues of ρλ (
k =1
Σ

n −1

(kn) ) are λ i j
− i j counted with multiplicity d j , 1 ≤ j ≤ s.

Proof: Let σ =
k =1
Σ

n −1

(kn). Then σx = xσ, x ∈ S n −1 , and so ρλ (σ) ρλ (x) = ρλ (x) ρλ (σ) , x ∈ S n −1 .

For w ∈ S λ , there exists a unique decomposition w =
i =1
Σ
s

w i with w i ∈ W i . Let πi (w) = w i . Then

πi ρλ (x) = ρλ (x) πi , for all x ∈ S n −1 and 1 ≤ i ≤ s, which implies

(3.19) πi ρλ (σ) . ρλ (x) = ρλ (x) . πi ρλ (σ) , x ∈ S n −1 and 1 ≤ i ≤ s .

Now ρλ  W i
, ρλ  W j

, are inequivalent irreducible representations of S n −1 for i ≠ j. Applying both sides of

(3.19) to vectors in W j , we conclude from Schur’s lemma that πi ρλ (σ) W j
= 0 for i ≠ j; i.e. ρλ (σ)

maps each W j into itself, and furthermore

(3.20) ρλ (σ) W j = µj
. identity , µ j ∈ C ,

so that µ j is an eigenvalue of ρλ (σ) with multiplicity d j . Let t be a standard tableau with n in the i j − th

row. Then

(3.21) ρλ (σ) e t = µj e t + Σ α u e u ,

the α u’s are complex numbers and the summation extends over all standard γ-tableaux having n in either of

the i 1 − th , .. ,i j −1 − th rows. We prove that µ j = λ i j
− i j by evaluating the coefficients of { t } on both sides
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of (3.21). The one on the right is µ j . This is so because e t contains {t} with coefficient 1 and each tabloid

contained in one of the e u’s has n appearing in the i j −1 − th row or higher. The left side of (3.21) equals

(3.22)
k =1
Σ

n −1

ρλ ( (kn) ) { t } +
k =1
Σ

n −1

π ∈ C t − { e }
Σ sgn π . ρλ ( (kn) π) { t } = Σ 1

+ Σ 2
.

The {t}-coefficient of Σ1 is λ i j
−1 as ρλ ( (kn) ) { t } = { t } if and only if k is in i j − th row, and this occurs

for λ i j
−1 values of k. Suppose that π ∈ [C t − { e }] and ρλ ( (kn) π) { t } = { t }. If there is an i such that

π(i) ≠ i ,k ,n, then (kn) π(i) = π(i). Thus ρλ [ (kn) π] moves π(i) out of the row in which it occurs in t,

and ρλ ( (kn) π) { t } ≠ { t }. Hence π = (kn). As π ∈ C t , k must be in the same column as n. We conclude

that the {t}-coefficient of Σ2 equals − (i j −1 ), hence the {t}-coefficient of the left side of (3.21) is λ i j
− i j .

4. Generating Functions of T xT x and T

We derive formulas for the generating functions of T x and T. Recall that T x is the random variable

which gives the number of steps for the random walk starting at x to hit the identity e, with T e = 0. Hence

T =
D

 G 
1_ ____

x∈ G
Σ T x

where =
D means that the two random variables have identical distribution function.

Lemma: Let G be a finite group and µ a measure on G whose support Ω generates G. Then [Iρ − zµ̂(ρ) ] is

invertible if: i)  z < 1 and ρ is any representation, or ii) z = 1 and ρ ≠ 1 is any irreducible

representation.

Proof: If the matrix [Iρ − zµ̂(ρ) ] is not invertible then [Iρ − zµ̂(ρ) ] v = 0 for some vector v ≠ 0. Suppose

the latter holds. Let   v  2 =
i =1
Σ
dρ

vi
2 , where v = (v 1 , ... ,v dρ

). As ρ(x) is unitary for all x ∈ G,

(4.1)   v   ≤  z
x∈ Ω
Σ µ(x) ρ (x) v   =  z .   v   ≤    v  .

Thus equality holds in (4.1). For  z < 1 this is impossible, and [Iρ − tµ̂(ρ) ] is invertible in this case. If

z = 1, then   v   =
x∈ Ω
Σ µ(x) ρ (x) v  is equivalent to
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(4.2) ρ(x) v = v , x ∈ Ω .

As Ω generates G, we conclude by repeated use of (4.2) that ρ(x) v = v , x ∈ G. The irreducibility of ρ

then implies that ρ = 1. Hence [Iρ − µ̂(ρ) ] is invertible for ρ ≠ 1.

Theorem 4.1. Let

F(x ,z) = E(z T x ) =
n =0
Σ
∞

P(T x =n) z n ,

f (z) = E(z T ) =
n =0
Σ
∞

P(T =n) z n ,

for x ∈ G and  z < 1 or z = 1. Let ν (x) = µ(x−1 ) , x ∈ G. Then

(4.3) F(x ,z) =
1 + ( 1 − z)

ρ ≠1
Σ dρ Tr[Iρ − z ν̂ (ρ) ]−1

1 + ( 1 − z)
ρ ≠1
Σ dρ Tr[ρ(x) . (Iρ − z ν̂ (ρ) ) ]−1

_ ____________________________________ ,

(4.4) f (z) =
1 + ( 1 − z)

ρ ≠1
Σ dρ Tr[Iρ − z ν̂ (ρ) ]−1

1_ ____________________________ ,

(4.5) E(T x ) =
ρ ≠1
Σ dρ Tr[Iρ − ν̂(ρ) ]−1 −

ρ ≠1
Σ dρ Tr[ρ(x) . (Iρ − ν̂(ρ) ) ]−1 ,

(4.6) E(T) =
ρ ≠1
Σ dρ Tr[Iρ − ν̂(ρ) ]−1 .

Proof: The random walk moves from x to yx with probability µ(y). Hence

(4.7) F(x) =
y∈ G
Σ µ(y) E(z 1 +T yx ) = z(ν* F) (x) , x≠e ,

where we have written F(x) for F(x ,z).

Multiply both sides of (4.7) by ρ(x), ρ ∈ Ĝ, and sum over all x≠e. Since F(e) = 1, we get

(4.8) F̂(ρ) − Iρ = zν* F (ρ) − z(ν* F) (e) Iρ = z ν̂ (ρ) F̂(ρ) − z [
y ∈ G
Σ µ(y) F(y) ] Iρ , ρ ∈ Ĝ

where we have written F̂(ρ) for F̂(ρ,z).

Suppose that  z < 1. Replacing µ by ν in the lemma and using (4.8), we obtain
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(4.9) F̂(ρ) = [ 1 − z
y
Σ µ(y) F(y) ] . [Iρ − z ν̂ (ρ) ]−1 .

Inverting this relation leads to

(4.10) F(x) =
 G

[ 1 − z
y
Σ µ(y) F(y) ]

_ ________________ .
ρ
Σ dρ Tr [ρ(x) . (Iρ − z ν̂ (ρ) ) ]−1 , x ∈ G .

In particular,

(4.11) 1 = F(e) =
 G

[ 1 − z
y
Σ µ(y) F(y) ]

_ ________________ .
ρ
Σ dρ Tr[Iρ − z ν̂ (ρ) ]−1 .

Equations (4.10) and (4.11) give (4.3) for  z < 1. By continuity (4.3) also holds at z = 1. Since

P(T =n) =
 G
1_ ___

x∈ G
Σ P(T x =n) , 0 ≤ n < ∞ ,

we have

(4.12) f (z) =
 G
1_ ___

x
Σ F(x ,z) =

 G
F̂( 1 ,z)_ ______ ,

and (4.4) follows from (4.9) and (4.12).

Since E(T x ) =
dz
dF_ __ (x , 1 ) , E(T) =

dz
d f_ __ ( 1 ), (4.5) and (4.6) follow by differentiating respectively (4.3)

and (4.4).

The above formulas simplify when µ(x) is a class function. Assume that µ is concentrated on the k

conjugacy classes C 1 , .. ,C k , uniformly over each class. By Theorem 2.3, ν̂ (ρ) = sρ Iρ where

sρ =
i =1
Σ
k

µ(C i ) r
_

ρ (C i ), r
_

ρ (C i ) =
dρ

χ
_

ρ (C i )_ ______. Hence we obtain the following result.

Theorem 4.2. Let x ∈ G ,  z < 1 or z = 1. Then
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(4.13) F(x ,z) =
1 + ( 1 − z)

ρ ≠1
Σ 1 − sρ z

dρ
2

_ ______

1 + ( 1 − z)
ρ ≠1
Σ 1 − sρ z

dρ χ
_

ρ (x)_ _______

_ ____________________ ,

(4.14) f (z) =
1 + ( 1 − z)

ρ ≠1
Σ 1 − sρ z

dρ
2

_ ______

1_ ___________________ ,

(4.15) E(T x ) =
ρ ≠1
Σ 1 − sρ

dρ
2

_ _____ −
ρ ≠1
Σ 1 − sρ

dρ χ
_

ρ (x)_ _______ ,

(4.16) E(T) =
ρ ≠1
Σ 1 − sρ

dρ
2

_ _____ .

5. Limit Laws for T xT x and T

Let µ be a measure on S n concentrated uniformly on a conjugacy class C ≠ { e }. We assume in the

sequel that C is fixed. By this we mean that the number of p-cycles in C, p ≥ 2, is independent of n. Thus

elements in C move m letters and fix all others, m being the sum of the lengths of the p-cycles, p ≥ 2, in C.

In this case (3.1) becomes

(5.1)  C =
2a2 a 2 ! .. k a k a k !

n(n −1 ) ..(n −m +1 )_ _________________ ,

with k the length of the longest cycle in C.

We obtain limit laws for T x and T as n → ∞. The subgroup H generated by C is normal. Hence for

n ≥ 5, H = S n or A n depending on whether C is odd or even. We consider these two cases separately. To

derive limit laws we need the estimates for  r λ (C) =  χ λ (C) /d λ given in Theorem 5.2. First, we

obtain the following trivial estimate.

Theorem 5.1. If λ ≠ (n) , ( 1n ), C ≠ { e }, and n ≥ 5, then

(5.2)  r λ (C) ≤
d λ

d λ −1_ _____ .

Proof: χ λ (C) is an integer and the sum of d λ roots of unity. Hence χ λ (C) ≤ d λ −1 unless the

eigenvalues of ρλ (x) , x ∈ C, are either are all +1 or all −1, i.e. ρλ (x) = I λ , x ∈ C, or ρλ (x) = −I λ ,
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x ∈ C. For n ≥ 5 and λ ≠ (n), ( 1n ), ρλ is faithful, and so these possibilities are ruled out as we are

assuming C ≠ { e }.

Theorem 5.2. i) There exists a constant θ1 = θ1 (C) > 0 such that

(5.3)  r λ (C) ≤
λ

max [λ 1 ,λ1′ ] + θ1_ ______________ .

ii) There exists a constant θ2 = θ2 (C) > 0 such that

(5.4)  r λ (C) ≤ 1 −
λ θ2

θ2_ ____ if λ ≠ (n) , ( 1n ) and C ≠ { e } .

Remark: Calderbank, Hanlow, and Wales [6] recently obtained another bound for  r λ (C) , namely that for

λ ≠ (n), ( 1n ), and C ≠ { e },

 r λ (C)  ≤
n −1
n −3_ ____ .

Proof: i) Let C have γp cycles of length p , p ≥ 2. Let λ =


î b 1 ... b s

a 1 ... a s



, α i =

λ

a i +
2
1_ _

_ _______, β i = b i +
2
1_ _,

1 ≤ i ≤ s. By Theorem 3.5, there is a θ1 = θ1 (C) > 0 such that

(5.5)  r λ (C) −
p≥2
Π

i =1
Σ
s

[α i
p − ( − βi ) p ]

γp

 ≤
λ
θ1___ .

Since α i , β i > 0 and
i =1
Σ
s

(α i + βi ) ≤ 1,

(5.6) 
i =1
Σ
s

[α i
p − ( − βi ) p ] ≤  α 1

i =1
Σ
s

α i + β1
i =1
Σ
s

β i ≤ max [α 1 ,β1 ] .

The bound (5.3) follows from (5.5) and (5.6).

ii) If λ 1 , λ1′ ≤ λ− 2θ1 , then (5.3) gives

(5.7)  r λ (C) ≤ 1 −
λ
θ1___ .

If λ 1 > λ− 2θ1 , then by (3.3)



- 20 -

(5.8) d λ ≤
λ 1 !
λ !_ ____ ≤ λ (λ− λ 1 ) ≤ λ 2θ1 .

Hence by (5.2),

(5.9)  r λ (C) ≤
d λ

d λ −1_ _____ ≤ 1 −
λ 2θ1

1_ _____ if λ ≠ (n) , ( 1n ) and C ≠ { e } .

Similarly (5.9) holds if λ1′ > λ− 2θ1 . Thus (5.4) follows from (5.7) and (5.9).

Theorem 5.3. We have

(5.10)

λ ≠(n) , ( 1n )

λ= n
Σ χλ

2 (C)
1 − r λ (C)

 r λ (C)_ _____ = o


î  C

n!_ _




as n → ∞ .

Proof: Let 0 < a < 1. For given n and a, with na ∈ Z, let

(5.11) I 1 = {λ : λ ≠ (n) , ( 1n ) and  r λ (C) ≤ a } , I 2 = {λ : λ ≠ (n) , ( 1n ) and  r λ (C) > a } .

By (2.2),

(5.12)

λ ≠(n) , ( 1n )

λ= n
Σ χλ

2 (C)
1 − r λ (C)

 r λ (C)_ _____ ≤ [
λ ∈ I 1

Σ +
λ ∈ I 2

Σ ] χλ
2 (C)

1 − r λ (C)
 r λ (C)_ _____ ≤

1 −a
a_ __

 C
n!_ _ +

λ ∈ I 2
Σ 1 − r λ (C)

dλ
2

_ _____ .

If λ ∈ I 2 , then by (5.3), max [λ 1 , λ1′ ] >
2
an_ __ for n sufficiently large, say n > N. Hence

(5.13)
λ ∈ I2

Σ 1 − r λ (C)
dλ

2
_ _________ ≤

λ= n,λ 1 >
2
an_ ___

Σ 1 − r λ (C)
dλ

2
_ _________ +

λ= n,λ 1
′ >

2
an_ ___

Σ 1 − r λ (C)
dλ

2
_ _________

= 2

λ= n,λ 1 >
2
an_ ___

Σ 1 − r λ (C)
dλ

2
_ _________ , n > N .

We conclude from Corollary 2 to Theorem 3.2 and Theorem 5.2 ii) that for n > N,



- 21 -

(5.14)

λ ≠(n) , ( 1n )

λ= n
Σ χλ

2 (C)

 C
n!_ _

1 − r λ (C)
 r λ (C)_ _____

_ ______ ≤
1 −a

a_ __ +
θ2

2_ _ n θ2 +m .


î ( 1 − α) α n α

4_ ______




n

,

where α =
n

[
2
an_ __ ]

_ _____.

Letting first n → ∞ and then a → 0 in (5.14), we obtain (5.10).

Theorem 5.4. Let C be odd and φ(x) = 1 if x ∈ C, φ(x) = 0 if x ∈ C. Let x ≠ e. Then

(5.15) E(T x ) = n! + φ(x)
 C
n!_ ___ + ε(n ,x) ,

where
n→ ∞
lim ε(n ,x) C / n! = 0 uniformly in x. For t ≥ 0,

(5.16) lim P[T x ≥ tn! ] = e− t , uni f ormly in x .

(5.17) E(T) = n! +
 C
n!_ ___ + o



î  C

n!_ ___




.

(5.18)
n → ∞
lim P[T ≥ tn! ] = e− t , t ≥ 0 .

Proof: The results are derived from the formulas of Theorem 4.2 and the estimate of Theorem 5.3. In all

ensuing sums, λ varies over all partitions of n distinct from (n). We have

(5.19)Σ
1 − r λ

dλ
2

_ _____ = Σ dλ
2



1 + r λ + rλ

2 +
1 − r λ

rλ
3

_ _____




= Σ dλ
2 + Σ d λ χ λ (C) + Σ χλ

2 (C) + Σ χλ
2 (C)

1 − r λ

r λ_ _____ .

Hence by theorems 2.1 and 5.2,

(5.20) Σ
1 − r λ

dλ
2

_ _____ = n! +
 C
n!_ ___ + o



î  C

n!_ ___




.

Similarly,
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(5.21)Σ
1 − r λ

d λ χ λ (x)_ _______ = Σ



1 + r λ + rλ

2 +
1 − r λ

rλ
3

_ _____




d λ χ λ (x)

= Σ d λ χ λ (x) + Σ χ λ (x) χ λ (C) + Σ χλ
2 (C) r λ (x) + Σ

1 − r λ (C)

χ2 (C) r λ (x) r λ (C)_ ________________ .

Hence, by Theorem 2.1,

(5.22) Σ
1 − r λ

d λ χ λ (x)_ _______ = −2 + φ(x)
 C
n!_ ___ + Σ χλ

2 (C) r λ (x) + Σ
1 − r λ (C)

χ2 (C) r λ (x) r λ (C)_ ________________ .

To prove (5.15), we consider separately x odd and x even. If x is odd, then by Theorem 3.1 iii),

χλ
2 (C) r λ (x) = − χλ′2 (C) r λ′ (x). Hence Σ χλ

2 (C) r λ (x) = −1 and we conclude from (5.22) and Theorem

5.3 that

(5.23) Σ
1 − r λ

d λ χ λ (x)_ _______ = φ(x)
 C
n!_ ___ + o



î  C

n!_ ___




uniformly in x odd. Equations (4.15), (5.20) and (5.23) give (5.15) for x odd. For x even we have

(5.24) E(T x ) = 1 +
 C
1_ ___

c∈ C
Σ E(T cx ) .

We conclude from (5.15) and (5.24) that

(5.25) E(T x ) = n! +
 C
n!_ ___ −

 C 2

 C x _ ____ n! + o


î  C

n!_ ___




uniformly in x even, where C x = { c ∈ C: cx∈ C }. Let c 1 ∈ C x . Then x = c1
−1 c 2 for some c 2 ∈ C.

Since each of the elements of C moves m letters, x moves at most 2m letters. Since c 1 and c 1 x have the

same cyclic decomposition, the sets of elements moved by c 1 and x must overlap. Hence one of the

elements moved by c 1 can be chosen in at most 2m ways, which implies

(5.26)  C x  ≤ 2m 2 n m −1 .

Now (5.25) and (5.26) give (5.15) for x even.

Next we prove (5.16). Rewrite (4.13) as
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E(z T x ) =
1 + Σ

1 − r λ

dλ
2

_ _____ ( 1 − z) +g(e ,z) ( 1 − z)2

1 + Σ
1 − r λ

d λ χ λ (x)_ _______ ( 1 − z) +g(x ,z) ( 1 − z)2

_ _________________________________ ,

(5.27)

g(x ,z) = − Σ
( 1 − r λ z) ( 1 − r λ )

r λ d λ χ λ (x)_ ______________ ,

where x ∈ S n and  z < 1. By Theorems 2.1 and 5.2,

(5.28)  g(x ,z) ≤  Σ
( 1 − r λ )2

dλ
2

_ _______ ≤
θ2

2

n 2θ2

_ ____ n! , x ∈ S n and  z < 1 .

We conclude from (5.27) and (5.28) that

(5.29)
n → ∞
lim E(e− λT x / n! ) =

1 + λ
1_ ____ = ∫

o

∞
e− λt e− tdt , λ ≥ 0 .

Equation (5.16) follows from the Continuity Theorem for Laplace transforms [4]. Equations (5.17) and

(5.18) may be derived in the same way as (5.15) and (5.16). They also follow from the latter by averaging

over x.

Theorem 5.5. Let C be even and ≠ { e }. Let x ∈ A n and x ≠ e. Then

(5.30) E(T x ) =
2
n!_ __ + O



î  C

n!_ ___




uni f ormly in x .

(5.31)
n→ ∞
lim P




T x ≥ t

2
n!_ __





= e t , uniformly in x for t ≥ 0 .

(5.32) E(T) =
2
n!_ __ +

2 C
n!_ ____ + o



î  C

n!_ ___




.

(5.33)
n→ ∞
lim P




T ≥ t

2
n!_ __




, t ≥ 0 .

Theorem 5.4 is derived from the formulas of Theorem 4.2 and Theorem 3.1 which gives the irreducible

characters of A n for undivided classes. This is the case here as the number of 1-cycles → ∞ when n → ∞.

We omit the proof of Theorem 5.5 which is almost identical with that of Theorem 5.4. Observe that the
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result (5.30) is somewhat weaker than its counterpart (5.15) as the sum Σ χλ
2 (C) r λ (x) can not be handled

by the above method.

We also remark that Theorems 5.4 and 5.5 and their proofs go through with some minor modifications

in case the measure µ is concentrated on a finite number of fixed conjugacy classes, uniformly over each

class. Again, we omit the proof.

Finally, we obtain a limit theorem for T in case µ is uniformly distributed on the class of transpositions

( 12 ) ,.. , ( 1n).

Theorem 5.6. As n → ∞,

(5.34) E(T) = n! + (n −1 ) ! + o[ (n −1 ) ! ] ,

(5.35)
n→ ∞
lim P[T ≥ tn! ] = e− t , 0 ≤ t < ∞ .

Proof: By (4.6),

(5.36) E(T) = Σ dλ
2 + Σ d λ Trρλ (ν ) + Σ d λ Tr ρλ

2 (ν ) + Σ d λ Tr {ρλ
3 (ν ) [I λ − ρλ (ν ) ]−1 } .

We have

(5.37) ν =
n −1

1_ ____
j =1
Σ

n −1

( j n) , ν2 =
(n −1 )2

1_ _______ [ (n −1 ) e +
j≠k≠n
Σ ( j kn) ] .

Hence

(5.38) Tr ρλ (ν ) = χλ ( 12 ) , Tr ρλ
2 (ν ) =

n −1

d λ_ ____ + χλ ( 123 ) .

From (5.36), (5.38) and Theorems 2.1, 3.7 we obtain

(5.39) E(T) = n! + (n −1 ) ! + o[ (n −1 ) ! ] + Σ d λ
j =1
Σ
s

1 − (
n −1

λ i j
− i j______ )

d j (
n −1

λ i j
− i j______ )3

_ ___________ ,

where we have used the same notation as in Theorem 3.7.

We estimate the double sum of (5.39) which we refer to as Σ. Let 0 < a < 1 and divide the partitions

λ of n , λ ≠ (n), into A and B, with A consisting of those λ for which 
n −1

λ i j
− i j______  ≤ a for all j, and B of all
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other λ. We have

(5.40) 
λ ∈ A
Σ  ≤

1 −a
a_ ____ Σ d λ

j =1
Σ
s

d j (λ i j
− i j )2 =

1 −a
a_ ____ Σ d λ Tr ρλ

2 (ν ) ≤
1 −a

a_ ____
n −1

n!_ ____ .

Since − (λ1′ −1 ) ≤ λ i j
− i j ≤ λ 1 −1 for all j and

j =1
Σ
s

d j = d λ , we also have

(5.41) 
λ ∈ B
Σ  ≤ n

λ ∈ B
Σ dλ

2 ≤ n[
λ 1 >a(n −1 )

Σ dλ
2 +

λ 1
′ > a(n −1 )

Σ dλ
2 ] = 2n

λ 1 >a(n −1 )
Σ dλ

2 .

Hence by Corollary 2 of Theorem 3.2,

(5.42)
n → ∞
lim
_ __

(n −1 ) !
Σ_ _______ ≤

1 −a
a_ ____ .

Letting a→0, we conclude

(5.43) Σ = o(n −1 ) ! .

Expansion (5.34) follows from (5.39) and (5.42). To prove (5.35) we rewrite (4.4) as

f (z) =
1 +ET( 1 − z) +g(z) ( 1 − z)2

1_ ______________________ ,

(5.44)

g(z) = − Σ d λ
j =1
Σ
s

( 1 −
n −1

λ i j
− i j______ ) ( 1 −

n −1

λ i j
− i j______ z)

d j
. (

n −1

λ i j
− i j______ )

__________________________ ,

and observe that

 g(z) ≤ Σ d λ
j =1
Σ
s

[ 1 −
n −1

λ i j
− i j______ ]2

d j_ _____________ = O(n 2 . n! ) .

The remainder of the proof is identical with that of (5.16).

6. Other Groups

In Section 5 we showed that for certain random walks on G = S n or A n , E(T) ∼  G and

n→ ∞
lim P[T >  G t] = e− t , t ≥ 0. One may inquire to what extent these limit laws carry over to other

infinite classes of groups. We consider the simple random walk on Zn
d . We show that the above limit laws
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break down completely for d = 1 and partially for d ≥ 2.

The group Zn
d is the direct product of d copies of the cyclic group of order n. Its elements are the d-

tuples x = [x 1 , .. ,x d ], each x i an integer from 0 to d −1, and addition of coordinates is performed modulo

n. Thus  Zn
d  = n d . The simple random walk on Zn

d is given by the measure µ(x) =
2d
1_ __ when x is any of

the 2d points [ 0 , .. , 0 ,±1 , 0 , .. , 0 ]. As Zn
d is abelian, all irreducible representations are 1-dimensional. They

are given by ρ(x) = n−1 exp ( 2πij .x), where j = [ j 1 , .. , j d ], j . x = j 1 x 1 + .. + j d x d , each j i an integer

between 0 and n −1. The number sρ defined in section 4 is given by

(6.1) sρ =
d
1_ _

k =1
Σ
d

cos
n

2πj k_ ____ ,

and formulas (4.16) and (4.14) become

(6.2) E(T) =
j≠0 0
Σ

[ 1 −cos
n

2πj 1_ ____ ] + .. + [ 1 −cos
n

2πj d_ ____ ]

d_ ______________________________ ,

(6.3) E(z T ) =





1 + ( 1 − z)
j≠0 0
Σ

[ 1 − z cos
n

2πj 1_ ____ ] + .. + [ 1 − z cos
n

2πj d_ ____ ]

1_ __________________________________





−1

.

Lemma: We have

(6.4)
1≤ j 1 , .. , j d ≤n

Σ j1
2 +.. + jd

2

1_ _______ ∼









î




∫

Id t1
2 +.. + td

2

dt_ _______



n d −2

2
π_ _ log n

6
π2
_ __

, d > 2

, d = 2

, d = 1

where dt = dt 1 .. dt d , and

I d = {(t 1 , ... ,t d ) : 0 ≤ t 1 , ... ,t d ≤ 1}

Proof: For d = 1, (6.4) is a well known identity. Let d = 2. Define

A j = {(t 1 ,t 2 ) : j i ≤ t i ≤ j i +1 , i =1 , 2} for 0 ≤ j 1 , j 2 and j ≠ 0 .

We have
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(6.5)
( j 1 +1 )2 + ( j 2 +1 )2

1_ ________________ ≤ ∫
A j t1

2 + t2
2

dt_ _____ ≤
j1
2 + j2

2

1_ _____ ,

(6.6) {(t 1 ,t 2 ) : t 1 ,t 2 ≥ 0 , 2 ≤ t1
2 + t2

2 ≤ n 2 } ⊆
j 1 , j 2 ≤n
∪ A j ⊆ {(t 1 ,t 2 ) : t 1 ,t 2 ≥0 , 2 ≤ t1

2 + t2
2 ≤ 2 (n +1 )2 } .

A simple integration exercise then gives

(6.7)
1≤ j 1 , j 2 ≤n

Σ j1
2 + j2

2

1_ _____ =
2
π_ _ log n + O( 1 ) .

The case d > 2 is treated likewise and the proof is omitted.

Theorem 6.1. For the simple random walk on Zn
d ,

(6.8) E(T) ∼
6
1_ _ n 2 , d = 1 ,

(6.9) E(T) ∼
π
2_ _ n 2 log n , d = 2 ,

(6.10) E(T) ∼ c(d) n d , d > 2 ,

where

(6.11) c(d) = ∫
Id

1 −
d

cos 2πt 1 + .. +cos 2πt d_ ____________________

dt_ ________________________ > 1 .

Remark: The constant c d for d ≥ 3 also equals the expected number of returns to the origin of the simple

random walk on the infinite d-dimensional lattice Z d , starting at the origin [18]. Is there a simple

explanation for this fact?

Proof: d = 1: We have

(6.12)
1 −cos t

1_ _______ =
t 2

2_ __ +
( 2π −t)2

2_ _______ + g(t) , g(t) continuous on [ 0 , 2π] .

Hence

(6.13) E(T) =
j =1
Σ

n −1

1 −cos
n

2πj_ ___

1___________ =
π2

n 2
_ __

j =1
Σ

n −1

j 2

1_ __ +



 j =1
Σ

n −1

g


î n

2πj_ ___




.
n
1_ _






n .
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As g is continuous,

(6.14)
n→ ∞
lim

j =1
Σ

n −1

g


î n

2πj_ ___




.
n
1_ _ = ∫

0

2π
g(t) dt .

Hence (6.8) follows from the lemma and (6.14).

d = 2: Let 0 < δ <
2
1_ _. Using (6.8), we have

(6.15) E(T) = 8
1≤ j 1 , j 2 ≤ δn

Σ
2 −cos

n

2πj 1_ ____ − cos
n

2πj 2_ ____

1_ _______________________ + O(n 2 ) ,

the constant in O depending only on δ.

For ε > 0, choose 0 < δε < πsuch that

(6.16)



 2 −cos t 1 −cos t 2

2
1_ _ (t1

2 + t2
2 )

_ _______________ − 1






< ε if  t 1  , t 2  <  δε and (t 1 ,t 2 ) ≠ ( 0 , 0 ) .

Let δ in (6.15) be
2π
δε_ __. We conclude from the lemma and (6.15) that

(6.17) 1 − ε ≤
n→ ∞
_ ____
lim

π
2_ _ n 2 log n

E(T)_ __________ ≤
n → ∞
lim
_ ___

π
2_ _ n 2 log n

E(T)_ __________ ≤ 1 + ε .

Letting ε → 0, we get (6.9).

d > 2: Let B j =


î
t = (t 1 , .. ,t d ) :

n

j i_ _ ≤ t i ≤
n

j i +1_ ____ , 1 ≤ i ≤ d




and

(6.18) f n (t) =









î

0

1 −
d

( cos
n

2πj 1_ ____ +.. +cos
n

2πj d_ ____ )
_ _______________________

1_ ____________________________

on B 0 .

on B j , j ≠ 0 ,

We have
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(6.19)
n d

E n (T)_ _____ = ∫
Id

f n (t) dt ,

(6.20)
n→ ∞
lim f n (t) =

1 −
d

cos 2πt 1 + ... +cos 2πt d_ ____________________

1_ _________________________ a. e. on I d .

By the dominated convergence theorem,
n→ ∞
lim

n d

E n (T)_ _____ = c(d).

Let f (t) = 1 −
d

cos 2π t 1 + ... +cos 2π t d_ _____________________. Then ∫
Id

f (t) dt = 1. We conclude from the Schwarz

inequality

1 = ∫
Id

f −1/2 (t) . f 1/2 (t) dt < ∫
Id

f −1 (t) dt .∫
Id

f (t) dt = c(d)

Theorem 6.3. For the simple random walk on Zn
d , we have

i) ( 6. 21 )
n→ ∞
lim P(T ≥ E(T) . x) = e−x , x ≥ 0 , d ≥ 2 .

ii) ( 6. 22 )
n→ ∞
lim P(T ≥ n 2 x) =

π2

2_ __
n =0
Σ
∞

(n +
2
1_ _ )2

e
−2π2 (n +

2
1_ __ )2 x

_ ___________ , x ≥ 0 , d = 1 .

Remark. For d = 1, the density is a theta function. Formulas similar to (6.22) occur also in the analysis of

other random walks [18].

Proof: i) By (4.14) and (4.16),

(6.23) E(e
−

ET
λT_ ___

) =

1 +ET[ 1 −e
−

ET
λ_ ___

] + g(e
−

ET
λ_ ___

) [ 1 −e
−

ET
λ_ ___

]2

1_ ____________________________________ , λ ≥ 0 ,

where

(6.24) g(z) =
ρ =1
Σ ( 1 − sρ ) ( 1 − sρ z)

sρ_ ______________ ,  z ≤ 1 .

We have
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(6.25)  g(z) ≤


 ρ ≠1
max

1 − sρ

1_ _____




.
ρ ≠1
Σ 1 − sρ

1_ _____ ≤
1 −cos

n
2π_ __

d_ __________ . ET .

We conclude from (6.23) and (6.25) that

(6.26)
n→ ∞
lim (e

−
ET
λT_ ___

) =
1 + λ

1_ ____ = ∫
0

∞
e− λx . e−xdx , λ ≥ 0 ,

and (6.21) follows from the Continuity Theorem.

ii) By (6.3),

(6.27) E(e n2
− λT_ ____

) =








1 +2 ( 1 −e
−

n
λ_ __

) .
j =1
Σ

[
2

n −1_ ____ ]

1 −e
−

n2
λ_ __

cos
n

2πj_ ___

1_ ________________ + O( 1 )








−1

.

Expanding in powers of
n
1_ _,

(6.28)

1 −e
−

n2
λ_ __

cos
n

2πj_ ___

1_ ________________ =
2π2 j 2 + λ

n 2
_ ________ + O( 1 ) , 1 ≤ j ≤



 2

n −1_ ____




,

the O( 1 ) term being uniform in j. Hence

(6.29)
j =1
Σ

[
2

n −1_ ____ ]

1 −e
−

n2
λ_ __

cos
n

2πj_ ___

1_ ________________ = n 2

j =1
Σ

[
2

n −1_ ____ ]

2π2 j 2 + λ
1_ ________ + O(n) .

We conclude from (6.27) and (6.29) that

(6.30)
n→ ∞
lim f (e

−
n2
λ_ __

) =





1 +
π2

λ_ __
j =1
Σ
∞

2π2

λ_ ___ + j 2

1_ ________





−1

=
√ 2

λ_ __

tanh√ 2
λ_ __

________ , λ ≥ 0 .

Now tanh

√ 2
λ_ __

√ 2
λ_ __

_ ____ is the Laplace transform of 4
n =0
Σ
∞

e
−2π2 (n +

2
1_ __ )2 x

[16, p. 294, formula 8.51] and (6.22)

follows from (6.30) by the Continuity Theorem.
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7. Bounds for E(T)

In the previous sections we obtained very precise asymptotic results for some special classes of groups.

In this section we consider bounds for E(T) valid for all finite groups G.

The bounds are given as functions of  G. We use results of Mazo on random walks on graphs [15].

Let G be a finite connected graph with nodes 1 , 2 ,.. ,n. The nodes are considered as states of a Markov

chain with transition probabilities p i j . It is assumed that the chain is irreducible, i.e. any node can be

reached from any other one in a finite number of steps with positive probability, and all p ii = 0. Let n i j be

the expected number of steps required to go from i to j, and define

(7.1) N =
n(n −1 )

1_ _______
i =1
Σ
n

j≠i
j =1
Σ
n

n i j .

As a special case, let p i j = 0 if i and j are not connected and p i j =
➳ i

1_ ___ if i and j are connected, ➳ i being

the number of edges leaving node i. We refer to this chain as random routing. The following lower bound

holds for N.

Theorem 7.1. i) N ≥
2
n_ _ , equality holding if and only if G consists of n nodes placed consecutively along

a circle and one moves deterministically from one node to the next. ii) For random routing N ≥ n −1,

equality holding if and only if G is the complete graph on n nodes.

The above results have direct applications to random walks on a finite group G. The assumptions on G

translate to: µ(e) = 0 and Ω generates G. We have
n −1

1_ ____

i≠ j

i =1
Σ

n
n i j = E(T) for all j, where n =  G,

so that E(T) =
 G

 G− 1_ ______ N. Under these assumptions on µ, Theorem 7.1 yields the following result.

Theorem 7.2. i) E(T) ≥  G − 1, equality holding if and only if G is cyclic and µ(g) = 1 for some

generator g of G. ii) If, in addition to the above assumption on µ , Ω−1 = Ω and µ is constant on Ω, then

E(T) ≥ ( G− 1 )/ G, equality holding if and only if Ω = G − { e }.

We remark that all the random walks considered in sections 5 and 6 satisfy the conditions of
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Theorem 7.2 ii). The example p 12 = p 21 = 1 − ε, ε → 0, shows that N can be made arbitrarily large for

n > 2, thus ruling out an upper bound for N. However, in case of random routing, Mazo [14] obtained the

following upper bound.

Theorem 7.3. Let d = diameter of G, ➳ M = max ➳ i , ➳ m = min ➳ i . Then

(7.2) N ≤
➳m

1/2

2➳M
3/2

_ _____ ( 1 +d) n .

In [15] an example is given for which N ≥ cn 3 as n→ ∞, c a positive constant independent of n. Using

(7.2), we prove the following result.

Corollary:

(7.3) N ≤ 6


î ➳ m

➳ M_ ____




3/2

n 2 .

In particular, if all ➳ i’s are equal, then

(7.4) N ≤ 6n 2 .

Observe that, for random walks on finite groups satisfying the conditions of Theorem 7.2 ii), all ➳ i’s

are equal. Hence

(7.5) E(T) ≤ 6 G 2 .

As shown in section 6, for the simple walk on a cyclic group E(T) ∼
6
1_ _  G 2 . Thus the exponent 2 in

(7.5) is best possible.

Proof of Corollary: Let p ,q be two nodes of G which can be linked by d edges but no fewer. We then have

d +1 nodes p = p 0 ,p 1 , .. ,p d = q with p i connected to p i +1 , 0 ≤ i ≤ d −1. Let r be any node of G which

is connected to some p i and let j be the smallest value of i for which this occurs. r is not connected to p k

for k > i +2, otherwise we can replace p j ,p j +1 , .. ,p k by p j p r p k in the above chain to produce one with

fewer than d edges linking p to q. It follows that any node of G is connected to a most 3 p i’s. Hence in

counting the nodes connected to p i , 0 ≤ i ≤ d, any node of G is counted at most 3 times, so that
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(7.6) (d +1 ) ➳ m ≤ 3n .

Inequalities (7.6) and (7.2) give (7.3).
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