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ABSTRACT

This paper considers random walks on afinite group G, in which the probability of going from x to yx,
x,y O G, depends only on y. The main results concern the distribution of the number of steps it takes to
reach a particular element of G if one starts with the uniform distribution on G. These results answer some
random sorting questions. They are attained by applications of group representation theory.



RANDOM SHUFFLES AND GROUP REPRESENTATIONS

1. Introduction

This paper was motivated by the following question raised by some of our colleagues about random
sortings. Suppose we are given a randomly permuted deck of cards, and we keep shuffling it by choosing
two cards at random and interchanging them. What is the expected number of shuffles until the deck is
fully sorted? Does this number change appreciably if instead of interchanging two random cards, we
always interchange the top card with a card drawn at random from the following ones? Our results answer
both of these questions. It turns out that if n denotes the number of cards, then for both variants of the
problem, the expected number of shufflesis closeto n!, but that it is larger for the second variant where we
always interchange the top card with a random card. More precisaly, in the first problem the expected

number of shufflesis

(1.1 n' +2(n-2)! + o((n-2)!) a n - o,

while in the second problemiit is

(1.2) n' + (n-1)! + o((n-1)!) a n - .

We consider the shuffling problem as a special instance of random walks on finite groups. Let G be a
finite group with a measure p which induces the random walk moving from x to yx with probability p(y)
for dl x,y O G. Assume that the support Q of p, Q = {xOG: u(x) > 0}, generates G. This entails no
loss of generality, for if Q generates a proper subgroup H of G, then the random walk is confined to asingle
right coset of H in G and we can instead consider the random walk on H. We study T, which is the number
of steps the random walk takes to reach the identity element e of G, if the starting point of the walk is
uniformly distributed on G. (We choose e for convenience; obvioudly the distribution of T remains the
same if e is replaced by any other element of G). We aobtain a formula, involving the irreducible

representations of G, for the generating function of T (Theorem 4.1).

While the formulas of Theorem 4.1 are very general, they are not sufficiently simple to yield results

about the expectation and distribution of T in case of arbitrary walks. However, these formulas simplify



significantly (Theorem4.2) when u is constant on conjugacy classes, i.e. u(xyx 1) = u(y) for all

X, y O G. The first variant of our shuffling problem corresponds to this case. Here G is the symmetric
group S, and p((ij)) = 1/(2), 1<i<j<n u(x) =0foral other XOG. Thus p is constant on the

conjugacy class of transpositions, and Theorem 4.2 applies directly.

In the second variant of the random shuffling problem, G is aso S, but now

u((jn)) = % l1<j<n-1andu(x) = Oforal other xOG, so that u is not constant on conjugacy

classes. Still, the formulas of Theorem 4.1 can be simplified, using results from the representation theory of
the symmetric group. What makes this possible is the fact that the set of transpositions
(jn), 1 < j £ n-1,isinvariant under conjugation by elements of the symmetric group S,,_; onthen—-1
letters 1,...,n—1. In general, one can hope that methods similar to ours will work whenever | is invariant

under conjugation by elements of alarge subgroup of S,,.

We shall use the formulas of Theorem 4.2 to obtain limit lawsfor Tash - o, when G = S, and 1 is
uniformly concentrated on a fixed conjugacy class C, i.e. the p-cycles (p = 2) of C are independent of n.

We show in Theorem 5.3 that in this case

DnlD

n! !
1.3 E(T) =nl+ —_—_ +0 as n - ,
(13 (M) oo *
(L.4) lim P(T>tn!) = e, t>0.

n- o

These results extend readily to the case where 1 is concentrated on several conjugacy classes, uniformly
over each class. They aso extend to random walks on the aternating group A, (Theorem 5.4). Finally,
they can sometimes be extended to cases where | is not constant on conjugacy classes. For example, we
show that they hold for the second variant of the shuffling problem (Theorem 5.6). The laws (1.3), (1.4) do
not hold universally. In Section 6 we give examples of random walks on abelian groups where the limit

lawsfor T are quite different from those of (1.3), (1.4).

The theory of group representations enters into our problem as follows. Let T,, xOG, be the number of

i > f(x,2z) berespectively the

steps taken by the walk starting at x toreache. Let f(x,z) andf(z) = TCR
xO0G



generating functions of T, and T. The definition of the random walk leads to a convolution equation for
f(x,z) with respect to the variable x. The theory of group representations allows us to take a "Fourier
transform™ of this eguation, converting as usual convolution into multiplication. Using the "inverse Fourier
transform”, we obtain formulas for f(x,z) and f(z). Detailed knowledge of the irreducible representations

of S, enables usto deduce the limit law for T, and T from the formulasfor f(x,z) and f (z).

The idea of applying group representations to shuffling problems is mentioned in [8,12], where various
other applications to probability and statistics are given. Closely related to our paper are those of Good
[11], and Diaconis and Shahshahani [9]. Good [11] deals with random walks on finite Abelian groups, in
which case the irreducible representations are 1-dimensional and trivial to compute. In [9] the
representation theory of S, is used to study the rate at which the distribution of the product of k random

transpositions on n letters tends to the uniform distribution ask — oo.

Our results can be applied to some of the problems studied by Diaconis and Shashahani [9]. In
particular, as is shown in [8], they lead to a simplification of the proof of the main result of [9]. They also
enable one to study the rate of convergence to the uniform distribution of the random walk generated by

interchanging a random card with the top card [8].

In this paper we show that the machinery of group representations is capable of producing very precise
answers to certain questions concerning random shufflings. Less precise answers to such questions can also
be obtained by more standard probabilistic methods [1,2]. In fact, the probabilistic methods occasionally
apply when our techniques do not. As an example, we have not found a way to use the formulas of
Theorem 4.1 to obtain alimit law for Twhen G = S,, and u is concentrated uniformly on the transpositions

(k, k+1),1 < kK £ n—1, whereasit follows from [1,2] that T becomes exponentially distributed asn - .

Random walks on groups are examples of Markov chains, the transition probabilities given by
p(x,y) = u(yx 1), x, yOG. In general, one can consider any finite irreducible chain (we use the term
irreducible to mean that any state may be reached from any other one in a finite number of steps with
positive probability) and study the expected number N of steps required to move from one state to another

averaged over al pairs of states. This problem has been investigated extensively by Aleliunas et a. [3] and

Mazo [15]. Mazo showsthat N > % n being the number of states, equality holding if and only if the chain



consists of consecutive points on a circle and one moves deterministically from one point to the next.
Simple examples show that no upper bound for N exists (see Section 7). Upper bounds are known [3,15] in
the case of arandom walk on an undirected graph G with n nodes, the walk moving from any node to all

those connected to it with equal probability. In this case
(1.5) n-1<N = 0(n%) ,

the lower bound being attained if and only if G is the complete graph on n nodes. An example is given in

[15] which shows that the best possible exponent is 3.

n-1

These results apply directly to random walks on finite groups. In this case E(T) = N, where

n = [GO (The presence of the term n-1 is explained in section7.) Thus E(T) = n;l, equality

holding if and only if Giscyclicand u(g) = 1 for some generator g of G. Furthermore, we conclude from

(1.5) that if u(x) = p(x~1), xOG, and p constant on its support, then E(T) =

_1\2
%. In Section 7, we

modify Mazo's argument to yield E(T) = O(n?) in this case. The exponent 2 is best possible, since for

2
simple random walk on a cyclic group of order n, E(T) O % (Theorem 6.1).

The plan of this paper is as follows. In Section 2 we give a brief review of general results in the theory
of group representations required in this paper. This is followed in Section 3 with a description of the
irreducible representations and characters of S,,. In Section4 we derive formulas for the generating
functions of T, and T. These are used in Section 5 to derive limit laws for T, and T. In Section 6, we
obtain limit laws for T on certain Abelian groups in order to illustrate how different the behavior can be
then as compared to the random walks considered on S, and A,,. Finally, in Section 7, we view random

walks on groups as Markov chains to obtain bounds for E(T) in terms of (G

Acknowledgment: We would like to thank Larry Shepp, Jim Mazo, and Kenneth Baclawski for some
helpful discussions. In particular, K. Baclawski brought to our attention the asymptotic character formula

for S,, derived by Wasserman in histhesis[19].



2. Representations of Finite Groups

We review those aspects of the representation theory of finite groups needed in this paper. In this
section we present the general theory, and in the next one the more detailed theory of the symmetric group.
Our discussion is brief and we quote standard results without proof. For a comprehensive treatment the
reader is referred to [4,7,17] for the general theory and to [4,14] for the theory of the symmetric group. For

a somewhat slower paced presentation of the theory, see[8].

Let G be a finite group. A representation p of G is a homeomorphism from G into the group of
invertible linear maps of a finite dimensional complex vector space V, which will be referred to as a G-
module. The dimension d,, of V is caled the degree of p. Without loss of generdlity, we can consider
p(x), xOG, to bed, x d, unitary matrices. A representation p is said to irreducible if and only if V has
no proper subspace invariant under all p(x). The 1-dimensional irreducible representation
p(x) = 1, xOG, is caled the identity representation and is denoted by 1. Two representations p, p' of G
are said to be equivalent if and only if they are of equal degree and there exists an invertible d, x d,
matrix M such that Mp(x)M™1 = pr(x), xOG. If p, p' are equivalent representations on the G-modules

V, W, then we express thisfact by V £ W.

The function X, (X) = Tr p(x) = trace of p(x) is the character of the representation p. A character X,
is called irreducible whenever p is. If p'(x) = Mp(X)M™%, then Xp(X) = Xp(X); i.e, equivaent
representations have the same character. If x and y are conjugate elementsin G (i.e. y = axa™* for some
allG), then x,(y) = Trip(a)p(x)p~t(a)] = Xp(X). Thus X, is constant on conjugacy classes. We

define X, (C) = X, (x), xOC, for any conjugacy class C.

Let C be the set of conjugacy classes of G and G a complete set of inequivalent irreducible

representations of G.

Theorem 2.1. If &4 denotes the Kronecker symbol, which equals 1 for s = t and is O otherwise, then



iy Co= G0,
1 A
(21) i) =0 2 X p(C)Xp (C) =8y P, P OG,
coC
2.2) i) =S Xo(C) Xo(Cr) = O cenc
' G0 % P P o '

Equations ii), iii) are the orthogonality relations for characters. Equation ii) implies that inequivalent
irreducible representations have distinct characters. As a specia case of iii), let C = C' = {e}. Then

Xp(€) = d,, andiii) becomes

(23) S di = [GO.
p0G

Let A = A (G) be the set of formal sumsf = 5 f(x)x, f(x) any complex valued function on G.
xdG

For A complex and f, gOA(G) define:

A= 2 MO)x, f+g= 3 [f(X)+g()]x, fg = 3 [fOI()x,

x0G xO0G xOG

where [ f[0](x) = > f(xy 1) g(y). fg is caled the convolution of f and g and A (G) the group
yOG

algebra of G. Any representation of G extends uniquely to A(G) by letting p(f) = 3 f(x)p(x). We
xO0G

have

P(Af) = Ap(f), p(f+g) = p(f)+p(9), p(fg) = p(f)p(9) .
Letf(p) =p(f),p O G. Then fisafunction on G and is caled the Fourier transform of f. We have
(24) f*g(p) = f(ME(P), POG,

so that the Fourier transform converts convolution into multiplication. We recover f from f by the

following result.

Theorem 2.2. (Inversion Formula)

2.5) f(x) = %D d, Tr [f(p)p(x V)], xOG.
pOG



Let f(x) be aclass function on G, so that f is constant on conjugacy classes. Let f(C) = f(x), x O C.

Inthis casefsimplifi%to the following.

Theorem2.3. If 1, istheidentityd, x d, matrix and f is constant on conjugacy classes, then

(26) f(p) = o= [ 5 [COH(OXp(CN] - 1y -
P coC

Proof: f(p) = > f(C) p(C),wherep(C) = > p(x). Wehave
coC xOC

(2.7) P r(Y)P(C)p(y) = 3 ply™'xy) = p(C), yOG,

xdcC

so that p(C) commutes with p(y), y O G. As p is irreducible, we conclude from Schur’'s lemma that

P(C) = Acl,, Ac acomplex number. Taking traces we obtain
(2.8) Tr p(C) = [C¥ ,(C) = Apd,

which proves (2.6).

3. Representations of the Symmetric Group

Let G = S,, the symmetric group on n letters, 1 £ n < o, We describe C and G by setting up one-

to-one correspondences between each of these sets and the set P, of partitions of n.

The partitions of n are designated by A = (Aq,....,An), where Ay =2 A, = .. = A, iS a sequence of
positive integerswithn = A; + .. + A,. TheA;’sare named the partsof A, and n = [ACthe weight of A.

Weaso usethenotation A = (1% 2% ..n™") to mean that there are a; parts equalling j.

The partition A of n gives rise to the conjugacy class C, consisting of those elementsin S, with cyclic
decomposition (K1Kz..Ky ) (Ky, +1--Kx,4,) - (Ka, 4. +r,_ +1--Kpn), Where Kq,K,,..,K,, IS a permutation
of 1,2,..,n. (In practice, one only writes down the cycles of length = 2.) The correspondence A - C, is

one-to-onefrom P, onto C. If A = (1*2%..n%*), then

n!

(31) EAD: .
1*a;12%a,!..n*a,!

For example, if a; = n-2, a, = 1, and al other a; = 0, then C, is the class of transpositions and



n(n-1)

[, 0=
A 2

To obtain the correspondence P,, - é, we define the Specht modules S). We require severa
concepts. The Young diagram of A is the diagram, the first row of which contains A ; sgquares, the second
row A, squares, etc. To illustrate, the diagram of (5,3,1,1) isgivenin figure 1i). We denote the diagram of

A by [A].

=
I:I‘I:I Oogod
EDD Oogod
| [
[ (-
Imi.
ImIg.

=
OopOogmood
EDEDJDDDD
Oogod
Imi.
O

O
([

Figure 1.

The squares are coordinatized by (i, ), i indicating the row counted from top to bottom, and j the
column counted from left to right. A A-tableau t is any of the n! arrays of integers obtained by inserting
1,..,ninto the n squares of [A]. Two tableaux t, and t, are called equivalent if t, is obtained from t; by
permuting elements in each row of t;. The set of tableaux equivalent to a given tableau t is called a A-
tabloid and is designated by {t}. For any 1 O S, let p, (1)t be the tableau obtained from t by replacing
eachentry i by 1(i), 1 <i < n, and let p, () {t} = {p, (1) t}. (The last definition can be checked to be

independent of the representativet.)

A
L et M be the VeCTOI’ ace over G anned by the A — tabloids, and extend the action of S, to M A by linearity. M* isan Sp-module and contains the irreducible submodule
S y y

S defined as follows. For any tableau', let C, be the subgroup of S, consisting of the column permutations of t. Let sgn Ttbe 1if Ttis even and —1if misodd. Thene, = z (sgn m) - ppr(m){t}iscaleda
niCy

A-polytabloid. The linear span of al polytabloids is an irreducible S,-module. 1t is the Specht module corresponding to A and is designated by s*. From now on, when speaking of p), we mean its restriction to

SM. ThenA — p isthe desired 1-1 correspondence from P, onto G [13]. In the sequel, we shall write dy,, X, etc. fordpy, Xpy . €tC.
Assimpleillustrations, let A = (n), (1"). It follows from the definition that S(", S(ln) are 1-dimensional spaces spanned respectively by 1. n, €(1..n)"", and

Py (M =1, pun(m =sgnm, mOS, .

Py and p ;7 are respectively the identity and alternating representations of S;,.



Let A,, be the alternating subgroup of S,,. We show how the sets C,é for A,, can be obtained from the
corresponding sets for S,,. For any partition A, the conjugate partition A" is defined to be the one whose
diagram [A'] isthe transpose of [A]. For example, if A = (5,3,1,1), then A" = (4,2,2,1,1). (Seefigure

1lii.) Wecall aconjugacy class of S, even (odd) if all its members are even (odd) permutations.

Theorem 3.1. i) The even conjugacy classes of S, remain conjugacy classes of A,,, except for those whose
cyclic decomposition consists of cycles of distinct odd lengths, in which case the class decomposes into two

classes of equal size. Call the former classes undivided and the latter divided.

ii) if A £ A", then the restrictions of p,, p) to A, are eguivalent irreducible representations. |f
A = A\, then p, decomposes, when restricted to A,,, into two inequivalent irreducible representations

Pa1s Paz Of A,. The above gives a complete set of inequivalent irreducible representations of A,,.

XA (x), xodd,
iii) Xa(X) = O
0 Xa(x), x even .

iv) LetA = A" and C an even undivided class. Let X1, X2 bethe charactersof py1, py2. Then

XA (C) _

X21(C) = X»2(C) = 5

We remark that x,;(C), j = 1,2, can aso be computed when C is a divided class [4, p. 208], but we
do not require these values in this paper. The dimensions of the Specht modules may be computed in the

following way.
Definition 1: A tableau t is standard if and only if its entries increase a ong rows and columns.

Theorem 3.2. The e,'s, t varying over standard A-tableaux, form a basis for S*. Thus d, equals the

number of standard A-tableaux.

Corollary 1: Let A0= n,1< j < n. Then

(32) > & <(n-i,

BE nA, =

which implies



-10-

(3.3) a2 < (Anl)z(n—xl)! .

Proof: Let A = (j, Ap,.eciAp). ThenA* = (A,,..,Ay) isapartition of n—j withA, < j. Thefirst row of
astandard A-tableau for which A0= nand A; = j can be chosen in at most (?) ways. Having chosen the

first row, the remaining part of the A-tableau can be chosen in at most d,« ways. Hence

(3.4) dy < (?)dm .

By (2.3)

(35) > &< T &< (Mn-it .
RAE n, A, =] ] A* J

Corollary 2: Let 0 < a < 1besuchthat anisaninteger. Then

0 4 i}
(3.6) S & sng——0 .
AZ n, A;>an D(l_a) n"n

Proof: We have

Hence, by Corollary 1,

(n—an)! _ n!4"

(37) S s 3 (VAn-ils (n-an)dt =t TR <

AEZE nA,>an an<j<n J

We state two methods for computing the irreducible characters of S,,.

Definition 2: Let [A] contain ssquaresalong itsdiagonal. Leta; = Aj—i,b; = Aj—-i,1<i < s Thea;'s

%1...3%
l--- SD

and b;’ s are called the Frobenius coordinates of A and we write A

; N — - # 10
For instance, if A = (5,3,1,1) thenA = B o0

Definition 3: A p-staircase in [A] is a collection of p squares Sy ,...,S, in [A] such that: i) S; and Sj, 4,

1< j < p-1, arecontiguous with S;, ; either to the right or to the top of §j, ii) S, is at the bottom end of



-11-

its column and S;, is at the right end of itsrow. The sign of the staircase is + 1 if it spans an odd number of

rows and — 1 otherwise.

Definition 4:  For any [A] and any elementy [0 G, let

XA (Y)

ray) = ax

0
Theorem 3.3. (Frobenius [10]) Let y be a p-cycle, p= 2, and A = %i"'gsg Let x;, = a; + %
b

1 S Xty . . 1. .
y; = b + 7,F(x) =1 = Thenr, (Y) |sthecoeff|C|entofYlntheexpansonof

1=1 X7X

1 1
_(X+7)...(X+p—7) CE(x+p)
p.AO....(REF p+1) F(x)

(3.8)
in descending powers of x.

Theorem 3.4. (Murnaghan — Nakayama rule [14]). Lety = (y*) - (p) be the disoint product of y* and

ap-cycle. Then

(3.9) Xay) = 2 = X (Y*)

A*

the summation extending over all [A*] obtained by stripping a p-staircase from [A] and + being the sign of

the removed staircase.

Theorems 3.3, 3.4 yield exact formulas for the irreducible characters of S,. (See [13] for some
examples.) Unfortunately, these formulas become progressively more cumbersome as the number of cycles
and their lengths increase. We shall make use in Section 5 of the following asymptotic character formula

derived by Wasserman in histhesis[19].

Theorem 3.5. Let y be a permutation of 1,..,mwith y, 2-cycles, y; 3-cycles, etc; thus y may be considered

2 .
o= < <
, Bi A0 ,1<i<s Then

[l
anelementof S, forn > m. LetA = é?l"'b Oo; =
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(3.10) ry) = (Z [aP = (=B)PD" + O
D22 i=1 DMDE

041 0
where the constant in O Dimdepends onlyony.
030G
Proof: We reproduce the proof of [17]. Consider first the case where yisap-cycle. Let F(x) be defined as

in Theorem 3.3. We have for x(ufficiently large

s O O © S,
(3.11) log F(x) = > Hog 1 + Iogm- r=
1=1 0O 0 X n=1 NX
0
where
S
=2 X =(=y)"l .
1=1
Hence for Ck[sufficiently large
D _
o o, pd"
(312) 1+ —0 -141=
TF(x) ) Che e X0
]
D
0 u)
e 102 -ps, O n+1 (0
) s UL
k=0 K [h=1 X 2X m
0 0
_ 3 100 15 F(x+p)
We use (3.12) to obtain the Laurent expansion of g(x) = XX + —[O.[X+p—- =0 for large
0 200 2g F&)

(X1 Define the weight of any monomial in the s,,’s to be its degree when considered as a polynomial in the
x;’sand y;’s. The coefficient of x™* in the expansion of g(x) is a polynomia in the s,’s, and the unique
monomial of highest weight appearing initis—ps,. Since

Bl S 0y SIS (6+y)]" < A

1=1 i=1

we conclude from Theorem 3.3 that



313 s, +O(RCP1) S, OD 10_ o . OD 1 0
. r = = = —(—=R.
G Nl = go@sprn - o7 0. 2, tar (=Bl SAOg

4 0O
the constant in O Diudependi ng only on p.
03g

Next, let y = y*. (p) be the digoint product of y* and a p-cycle (p). Suppose (3.10) holds for y*.

Then one readily checks

O

&3 = k 1
(314) N () = 1) + Ol

O
OoOood

0,0
the constant in O D%Ddependi ng only on y* and hence only ony. By (3.9) we have
o°-0

d)\*
(3.15) nly) = 2 + r)\*(V*)d— \
A A

which, for y* = e, becomes

dy*

(3.16) () = 2 = 5
A* A

Any standard A*-tableau can be extended to a standard A-tableau by a suitable insertion of

A= p+1,..,[A0intheremoved p-staircase. Hence

(3.17) S dye < dy
)\*

We conclude from (3.14)-(3.17) that

dy« 041 0 0410
—— *+ O0==0=r\(y*) ra((p)) + O0O==0,

_ A
(3.18) ra(y) = ra(y*) AZ * I 0205

and Theorem 3.5 follows by induction.

Since p)\( > x) = [CO\ I, (Theorem 2.3), theorems3.3 and 3.4 may be used to obtain the
xac

n-1
eigenvaluesof p, ( > x). We obtain next the eigenvaluesof p) (> (kn)).
xdC k=1
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Let [A], 1<j<s be the set of diagrams derived from [A] by removing one square, with

(i1,Ai,),-(is,Aj ), 11 < .. < g, asthecoordinates of the removed squares. Letd; = dim sV,

Theorem 3.6. (Branching Theorem [14]). Let S,_; be the subgroup of S, which fixesn. Let V, = 0 and
Vj, 1< j < s, bethe span of the polytabloids e, t varying over the standard A-tableaux with nin any of

thei, —th,ip —th,...,i;~throws. ThenV;/V;_; 9s" 1< j<s

We remark that, by Maschke's Theorem, we may choose for each j an S,_;-module W; such that
V; = V;_1®W,. Hence we conclude from Theorem 3.6 that S = W, ®..®W,, where w; & SV, Thus,

S splitsinto adirect sum of S, _; -invariant subspaces.

n-1
Theorem3.7. The eigenvaluesof p, ( 3 (kn)) areA; —i; counted with multiplicityd;, 1 < j < s.
k=1
n-1
Proof: Let 0 = > (kn). Then ox = xa, x 0 Sy, and s0 P (0)pr(X) = pa(X)Pr(0), x O Sy-y.
k=1

S
For w 0 S, there exists a unique decomposition w = > w; withw; O W;. Let m(w) = w;. Then
i=1

TipA(X) = pp(X) T, foralx O S,_;and1 < i < s, whichimplies

(319 T PA(0) - Pa(X) = Pa(X) ~ T pa(0) ., xDO S padlsis<s.

Now py Ly, PaLly, are inequivalent irreducible representations of S,_; for i # j. Applying both sides of
(3.19) to vectors in W, we conclude from Schur’s lemma that 1, p, (o)L, = O fori # j; i.e. py(0)

maps each W; into itself, and furthermore
(320) PA(O)w, =y - identity, ;O C,

so that | is an eigenvalue of p, (o) with multiplicity d;. Lett be a standard tableau with n in the i; —th

row. Then
(3-21) pA(O)et = p—j e + Z ayey ,

the a’s are complex numbers and the summation extends over all standard y-tableaux having n in either of

thei, —th,..,ij_; —throws. We provethat 1; = A; —i; by evaluating the coefficients of {t} on both sides
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of (3.21). Theoneon theright is;. Thisis so because e; contains {t} with coefficient 1 and each tabloid

contained in one of the e,’s has n appearing inthei;_; —th row or higher. Theleft side of (3.21) equals

n-1 n-1
(3.22) kzl pa(tk){tr + 5 5 sonm - pp(kmm{ty} = 3 +3 .

k=1 m0C,-{e}
The {t}-coefficient of Z; isA; =1 asp,((kn)){t} = {t} if and only if kisini; —th row, and this occurs
for Aj -1 values of k. Suppose that Tt [ [C; —{e}] and p, ((kn) m){t} = {t}. If thereisani such that
(i) # i,k,n, then (kn)1t(i) = 1(i). Thus p, [(kn)1T] moves 1t(i) out of the row in which it occursin t,
and p, ((kn)m){t} # {t}. Hencem = (kn). Astt O C;, kmust be in the same column asn. We conclude

that the {t} -coefficient of =, equals —(i; — 1), hence the {t} -coefficient of the left side of (3.21) is A; —ij.

4. Generating Functionsof Ty and T

We derive formulas for the generating functions of T, and T. Recall that T, is the random variable

which gives the number of steps for the random walk starting at x to hit the identity e, with T, = 0. Hence
1
TD —_ T
- 0OG DXBZG X
where P means that the two random variables have identical distribution function.

Lemma: Let G be afinite group and p a measure on G whose support Q generatesG. Then [l -zn(p)] is
invertible if: i) [Z0< 1 and p is any representation, or ii) z=1 and p #1 is any irreducible

representation.

Proof: If the matrix [Ip—zﬁ(p)] is not invertible then [Ip—zﬁ(p)]v = 0for some vector v # 0. Suppose

dp
the latter holds. Let OV[? = 3 vZ, wherev = (Vy,.,vg,). Asp(x)isunitary foral x O G,
i=1

(4.2 OvO < EOY pu(x)p (x)vO = G0O- 0OvO < vO .
xQ

Thus equality holdsin (4.1). For (z[< 1 thisisimpossible, and [, ~t[i(p)] isinvertible in this case. If

z= 1thenOvO = 3 p(x)p (x)vlsequivalent to
x[@
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(4.2) p(x)v = v, x0OQ

As Q generates G, we conclude by repeated use of (4.2) that p(x)v = v, x O G. The irreducibility of p

thenimpliesthat p = 1. Hence[l, - [i(p)] isinvertiblefor p # 1.
Theorem4.1. Let
F(x,2) = E(z") = 3 P(T,=n)z",
n=0
f(z) = E(Z") = 3 P(T=n)z",
n=0

forx 0 Gand 1< lorz = 1. Letv(x) = p(x"1), x O G. Then

1+(1-2) 3 dy Trip(x) - (I,~29(p))] ™"

(4.3) F(x,2) = pt _
1+(1-2) 3 d, Tr[l,-z0(p)] *
pzl
B 1
(4.4) f(z) = ——
1+(1-2) 3> d, Tr[l,—zv(p)]
p#l
(4.5) E(T) = ¥ dp Trll,=9(p)1™t = ¥ dp Tr{p(x) - (I,=V(p))] ",
p#l p#l
(4.6) E(T) = ¥ d, Tr{l,=9(p)] " .
p#l

Proof: The random walk moves from x to yx with probability p(y). Hence

(4.7) F(x) = 3 UWYE@ET™) = 2(v*F)(x), xze,
yOG

where we have written F(x) for F(x,2).
Multiply both sides of (4.7) by p(x), p O é, and sum over all x2e. SinceF(e) = 1, we get

48 F(p)-l, = 2v*F (p)-2(v*F)(e)l, = Z0(P)F(P)-2[ ¥ HY)F(WIlp, pOG
yoG

where we have written Ie(p) for Ie(p,z).

Supposethat [#1< 1. Replacing W by v in the lemmaand using (4.8), we obtain
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(4.9) F(p) = [1-23 M(Y)FW] - [1,-29(p)] * .
y

Inverting thisrelation leads to

[1-z 2 u(y)F(y)]

(4.10) F(x) = 4 -3 dp Tr[p(x) - (I,=20(p))]™', xOG.
GO % e e

In particular,

[1-z 3 u(y)F(Y)]
(4.12) 1=F(e) = Y -3 dp Trl,-z0(p)] 7t .
p

GO

Equations (4.10) and (4.11) give (4.3) for [(Z0< 1. By continuity (4.3) alsoholdsat z = 1. Since
P(T=n) = = 5 P(Tx=n), 0<n<w,
EGDXDG

we have

(4.12) f(2) = %Dz F(x.2) = F(Eéé) ,

and (4.4) follows from (4.9) and (4.12).
! _ dF _ df , - .
SinceE(Ty) = E(X’l)' E(T) = E(l)’ (4.5) and (4.6) follow by differentiating respectively (4.3)
and (4.4).

The above formulas simplify when p(x) is a class function. Assume that p is concentrated on the k

conjugacy classes Cj,..,Cy, uniformly over each class. By Theorem2.3, V(p) = Splp where

k C
s, = ¥ H(CHTH(C)Ty(Cy) = Xe{&)

5 . Hence we obtain the following result.
i=1 P

Theorem4.2. Letx O G, [ZO< 1orz = 1. Then
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1+(1-2) ¥ M
7l 1-s,2
(4.13) F(x,2) = 3
1+(1-2) S —P°
El l-s,2
(4.14) t(2) = 1 .
1+(1-2) o
El 1-s,2
dj dpXp (X)
(4.15) E(T,) = Py PAPV
" p§1 1-s, p%l 1-sp
ds
(4.16) E(T) = _° .
p%l 1_80

5. Limit Lawsfor Tyand T

Let p be a measure on S,, concentrated uniformly on a conjugacy class C # {e}. We assume in the
sequel that Cisfixed. By this we mean that the number of p-cyclesin C, p = 2, isindependent of n. Thus
elementsin C move m letters and fix all others, m being the sum of the lengths of the p-cycles, p = 2, in C.

In this case (3.1) becomes

n(n-1)..(n—-m+1)

(5.1) [CO= - -
2% a,!. k™ a!

with k the length of the longest cyclein C.

We obtain limit laws for T, and T asn — . The subgroup H generated by C is normal. Hence for
n=>5H =S, or A, depending on whether C is odd or even. We consider these two cases separately. To
derive limit laws we need the estimates for (7, (C)O= ¥ A(C)D’dx given in Theorem 5.2. First, we

obtain the following trivial estimate.

Theorem5.1. If A # (n), (1"), C # {e},andn = 5, then

dx

(5.2) [t (C)C<
d

Proof: X, (C) is an integer and the sum of d, roots of unity. Hence X , (C)(k d, -1 unless the

eigenvalues of p, (x), x O C, are either areal +1 oral —1,i.e. py(x) =1, x O C,or py(X) = —ly,
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xOC. Forn=5and A # (n), (1"), p, is faithful, and so these possibilities are ruled out as we are

assuming C # {e}.

Theorem5.2. i) Thereexistsa constant 8, = 8,(C) > 0 such that

max[A1,A1]+06;

(5.3) [t (C)k L

ii) There existsa constant 6, = 6,(C) > 0 such that

622 if A#(n), (1") and C # {e} .

(5.4) 1, (C) < 1‘@9—

Remark: Calderbank, Hanlow, and Wales [6] recently obtained another bound for Or , (C) [Inamely that for

A £ (n), (1"),and C # {e},

Or, (C) [k ”:i .
a; + L
- _yyad o T2 _ 1
Proof: i) Let C havey, cyclesof lengthp, p> 2. Let A = %M---bsg a; = —g Bi = b; + -
1<i < s ByTheorem 3.5, thereisa®,; = 6,(C) > 0 such that
S yp el
(55) Tr(C) = M 3 [aP~(-B)°] O =
p=2 i=1
S
Sincea;, B; > 0and 3 (a; +B;) < 1,
i=1
S S S
(5.6) 0% [aP=(=Bi)PIE oy 3 ai+PBy 3 Bi < max[ay,By] .
i=1 i=1 i=1

The bound (5.3) follows from (5.5) and (5.6).
i) IfAy, A7 < AEF 204, then(5.3) gives
5.7 T (O 1- 1

If A, > AEF 264, thenby (3.3)
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(5.8) dy < %Df < O™ D) < @
1.
Henceby (5.2),
dy-1 1 .
(5.9) F, (C) [k <1- if A% (n), (1") and C # {e} .

A IIIDZE1

Similarly (5.9) holdsif A} > [AlF 20,. Thus(5.4) followsfrom (5.7) and (5.9).

Theorem 5.3. We have

A (C)0 OO

(5.10) X2 (C) A =00 - & N - o .
A#(n), (1)

Proof: Let0 < a < 1. Forgivennanda, withna O Z, let
(5.12) 14 = {A: A#(n),(1") and I (C)k a}, I, = {A: A#(n), (1") and [, (C)O> a} .
By (2.2),

[F ) (C)O 3 !

, 2 (S0 2 a n
X (C) 1_DA(§\§%— L2 2O g e S177 o’

If A O I,, thenby (5.3), max [Aq, Ai] > %fornwfficientlylarge,sayn > N. Hence

(5.13) > —d§ < > ___di + > d%
’ DI, 1-0, (C)d™ a 1-00(C)O - L-0(C)O
A= n,)\1>T AES n,)\1>T
2 > —d§ >N
= , N .
1-0n,(C)O
e} n,)\l>% 2 (C)

We conclude from Corollary 2 to Theorem 3.2 and Theorem 5.2 ii) that for n > N,

2

ADI

1_



2

AF n

A#(n),(1%)
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[Fy (C)O

1-[) (C)O m
(5(3;240(:) A (C) a 2 02 _

n! l1-a 0,
[CO
2

wherea = —— .
n

Letting firstn —» candthena - 0in(5.14), we obtain (5.10).

Theorem5.4. Let Cheoddand @(x) = 1ifx O C,@(x) = 0ifx O C. Letx # e. Then

(5.15) E(Ty) = n! + (p(x)%m+ g(n,x) ,

where lim g(n,x)CCON! = Ouniformlyinx. Fort = 0,

N - o

(5.16) limP[T, =2 tn!] = e, uniformly in x .
| I:Inl D
(5.17) E(T) =n! + _' + o Eg
(5.18) lim P[T>tn!] = e, t=0.
n- o

[] -_
n(1-a)®n®

Proof: The results are derived from the formulas of Theorem 4.2 and the estimate of Theorem 5.3. In all

ensuing sums, A varies over all partitions of n distinct from (n). We have

d? 0 rs
(5.19 = T +ry,+rd+
1-[’;\ D 1 }\D
Hence by theorems 2.1 and 5.2,
(5.20) . SN Rl
. =n —— +0 .
1-r, co DECE%

Similarly,

OO
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d X d rs O
521p PR s 2 B (0
1_r)\ 0 0

DY

X2 (C)ra(x)r)(C)

= ZdXa(¥) + ZXa(¥)XA(C) + ZXF(C)ra(x) + Z 1=, (C)

Hence, by Theorem 2.1,

X2(C)ra ()1 (C)
1_r)\(C)

(5.22) 5 dAl)f_Ar(AX) = —24q(x) %f 5 X2(C)ry(x) + =

To prove (5.15), we consider separately x odd and x even. If x is odd, then by Theorem 3.1iii),
X3(C)ry(x) = =x% (C)ry (X). HenceZ X3 (C)r, (x) = —1 and we conclude from (5.22) and Theorem

5.3 that

daxa(x) n! Upt O

.2 > = — +
(623 1-r, o) co OE’T[%

uniformly in x odd. Equations (4.15), (5.20) and (5.23) give (5.15) for x odd. For x even we have

_ 1
(5.24) E(Ty) =1+ Tmcmzc E(Ty) -

We conclude from (5.15) and (5.24) that

rc,0 Op O
(5.25) E(T) =nt + 2 - 2 s ol
o0 T3 oy

uniformly in x even, where C, = {cC: cxOC}. Let ¢; O C,. Then x = c¢;*c, for some ¢, O C.
Since each of the elements of C moves m letters, x moves at most 2m letters. Since ¢, and ¢4 x have the
same cyclic decomposition, the sets of elements moved by c; and x must overlap. Hence one of the

elements moved by ¢, can be chosen in at most 2m ways, which implies
(5.26) [C,[x 2m?n™"1 .

Now (5.25) and (5.26) give (5.15) for x even.

Next we prove (5.16). Rewrite (4.13) as
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1+% w (1-2)+g(x,2)(1-2)?
E(z") = . ,
1+3 - (1-2)+g(e.2)(1-2)?
1-r1,
(5.27)
gx2) = - 3 radaXa(x)

(1-ry2)(1-1y) °
wherex 00 S, and [(Z< 1. By Theorems 2.1 and 5.2,

df n%%

(5.28) O(x,2)E = TETNE = o2

n', xOS,adZk 1.

We conclude from (5.27) and (5.28) that

- —)\Txln! _ 1 _ o — At —t
(5.29) lim E(e ) = 153 _jo eMeldt, A20.

Equation (5.16) follows from the Continuity Theorem for Laplace transforms [4]. Equations (5.17) and
(5.18) may be derived in the same way as (5.15) and (5.16). They aso follow from the latter by averaging

over X.

Theorem5.5. Let Cbeevenand # {e}. Letx 0 A, andx # e. Then

1 Om O
(5.30) E(T,) = Ny OD_n' uni formly in x .
2 0T
.. nt U . .
(5.31) lim PO, 2t —= €', uniformlyin xfort>0 .
n- o D 2 D
] 1 Um O
(5.32) EM =2+ " +on™n.
2 2CO DECEE
X D n| D
(5.33) limPOr=2t—0 t=0.
n- oo D 2 D

Theorem 5.4 is derived from the formulas of Theorem 4.2 and Theorem 3.1 which gives the irreducible
characters of A, for undivided classes. Thisis the case here as the number of 1-cycles - o whenn - oo,

We omit the proof of Theorem 5.5 which is aimost identical with that of Theorem 5.4. Observe that the
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result (5.30) is somewhat weaker than its counterpart (5.15) as the sum = x2 (C)r, (x) can not be handled

by the above method.

We also remark that Theorems 5.4 and 5.5 and their proofs go through with some minor modifications
in case the measure | is concentrated on a finite number of fixed conjugacy classes, uniformly over each

class. Again, we omit the proof.

Finally, we abtain a limit theorem for T in case p is uniformly distributed on the class of transpositions
(12),..,(1n).
Theorem5.6. Asn — oo,

(5.34) E(T)

n' + (n-1)! + o[(n-1)!7 ,

el 0<st< o,

(5.35) lim P[T 2 tn!]
n- oo

Proof: By (4.6),

(536) E(T) = Zdf + Zdy Trpp(v) + Zdy Tr pf(v) + Zdy Tr{pR(V)[1x—pa ()17} .

We have
(5.37) ve L S, vi= L [n-ne+ T (jkn) .
n-1 i=1 ' W jzk#n
Hence
(539 Tpa(v) = X (12), Trpf(v) = 2 + % (123) .
From (5.36), (5.38) and Theorems 2.1, 3.7 we obtain
i ij 3
s di(g=)
(5.39) E(T) = nli+(n-1)! +o[(n-1)1] + S dp 5 — =
j=1 i, 1
1-( 7 )

where we have used the same notation as in Theorem 3.7.
We estimate the double sum of (5.39) whichwerefertoas. Let 0 < a < 1 and divide the partitions

A~y
A of n, A # (n), into A and B, with A consisting of those A for which Dﬁ[ls afor al j, and B of all
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other A. We have

a S . a a n!
5.40 Oy x -2 S d di(A; —i)? = dy Tr p3(v) < .
( ) A%A 1-a Z )\jzzl J( i |]) 1-a Z A rp)\(v) 1-a n-1
S
Since-(A1-1) < Aj —ij < Ap-1foralljand > d; = d,,wealsohave
j=1
(5.41) OSny dsn I &+ 3 dl=2n 3 d&.
AOB AOB A >a(n-1) A, > a(n-1) A >a(n-1)

Hence by Corollary 2 of Theorem 3.2,

lim 0 <_2
noo (N=1)1 1-a

(5.42)

Letting a - 0, we conclude

(5.43) s =o(n-1)! .

Expansion (5.34) follows from (5.39) and (5.42). To prove (5.35) we rewrite (4.4) as

_ 1
f(2) = -
1+ET(1-2)+9(2)(1-2)
(5.44) .
s dj “( Ii_ ])
0 =~ T 3
Coa- nj—lJ ) (- nj—lJ 2)
and observe that
s d:
M 3 dy 3 + = o(n? - n!) .
j=1 lj I 42
[1-—]

The remainder of the proof isidentical with that of (5.16).

6. Other Groups

In Section5 we showed that for certain random waks on G = S, orA,, E(T) OOGOand

lim P[T > [G] = e, t > 0. One may inquire to what extent these limit laws carry over to other

n- o

infinite classes of groups. We consider the simple random walk on Z¢. We show that the above limit laws
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break down completely for d = 1 and partially ford > 2.

The group Z is the direct product of d copies of the cyclic group of order n. Its elements are the d-

tuples x = [Xq,..,Xq4], €ach X; an integer from O to d —1, and addition of coordinates is performed modulo

n. ThusZd0= nY. Thesimplerandom walk on Z9 is given by the measure pu(x) = %whenxisany of

the 2d points [0,..,0,+1,0,..,0]. AsZd isabelian, al irreducible representations are 1-dimensional. They
are given by p(x) = n~texp(2mij-x), wherej = [jy,..,jal, i - X = jiX1 +..+jgXg, €ach j; an integer

between 0 and n — 1. The number s, defined in section 4 is given by

1 3 2mj
(61) Sp = E kgl cos - ,
and formulas (4.16) and (4.14) become
d
(6.2) E(T) = _ -
]¢Zo 2T[Jl 2T[Jd
[1-cos ——]+.+[1-cos ]
ad ) Ol
X E(z") = +(1- 0
(6.3) (z") = g+(1-2) > . M
0 79 11~z cos ]+..+[1-2z cos 10
Lemma: We have
O
D -,_-[2_ s d = 1
g 6
(6.4) 2 _ﬁl O E ™ log n d=2
- 1<jjesn J1t-Fid O 7%
= g O
d-2
EEL“ 7+ +t2un ,d>2
] 17Tl O

wheredt = dt; .. dty, and
19 = {(ty,.,tg): 0<Sty,.. tg <1}
Proof: Ford = 1, (6.4) isawell known identity. Letd = 2. Define
Aj = {(ty,tp): jisty<ji+1, i=1,2} for 0<ji,jp,andj#0.

We have
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1 < dt < 1
(12+1)2+(j2+1)? ~ A tE+t3 ~ j1+j53

(6.5)

(6.6){(t1,t2):ty,t,20,2<tf+t5<n?} 0 [ AO{(ty,tz):t1,1,20, 2<ti+t3 <2(n+1)%} .

J1:j25N
A simple integration exercise then gives

(6.7) > - ; log n + O(1) .

anys
1<j,.j,5n J1F])2

Thecased > 2istreated likewise and the proof is omitted.

Theorem6.1. For the simple randomwalk on Z¢,

68) BN D d=1,
2 _

(6.9) E(T) 0= n*logn, d=2,

(6.10) E(T) De(@dn®, d>2,

where

B dt
(6.11) C(d) - Ild COs 2Tt +..+Cos 2Tt 4 > 1
d

Remark: The constant cq for d = 3 also equals the expected number of returns to the origin of the simple
random walk on the infinite d-dimensional lattice Z9, starting at the origin [18]. Is there a simple

explanation for thisfact?

Proof: d = 1: We have

1 2 2

(6.12) Toe=T = = + W + g(t), g(t) continuous on [0,21] .
Hence
O
n-1 1 n2 n-1 1 H’\—l DZT[]D 1
(6.13) E(T) = > = > 5+ gn—pg- =m.
=1 1-cos 2 ™ 5] §=1 ono néh
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Asg iscontinuous,

n-1 o O 2
(6.14) im 5 g L= [T gyt
0 n 0 n 0

n- o J =1
Hence (6.8) follows from the lemma and (6.14).

d=2 Let0 < < % Using (6.8), we have

(6.15) ET) =8 3

1<j,,j,<6én

211 ¢ 2T »
2-cos - C0S

the constant in O depending only on .

Fore > 0,choose0 < &, < msuch that

1 2442
—=(tf+t
S (G+8)

O
(6.16) g
[2-cost;—cost,

O
_ 1g< g if @,00,0< &, and (ty,t,) # (0,0) .
O

0
Let din (6.15) be 2_;[ We conclude from the lemma and (6.15) that

(6.17) 1-g< lim E(T) < Iim E(T) <1l+eg.
™= £ n2logn """ Zn?logn
T g T g
Lettinge — 0, weget (6.9).
O Ji jitl O
d>2LetB) = 0 = (t;,.,tg): —<t; < ,1<i<ddand
O n n O
= 1
O . . onBj, j#0,
O 21y, 2Mj 4
0 (cos +.+cO0s —)
(6.18) f.(t) = 01 -
0 d
]
g 0 on By .

We have
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En(T)
(6.19) — = J faOet,
. 1
6.20 lim f,(t) = . on 19,
(6.20) i n(1) COS 2Tt +... +COS 2Tty ae on
d
En(T)

By the dominated th i = c(d).
y the domin convergence theorem nLnl —a c(d)

COS 21Tt +...+COS 2TT 4

Let f(t) = 1 - |

Then I,d f(t)dt = 1. We conclude from the Schwarz
inequality

1=[ 702 2 @dt < [ @ def f(0dt = c(d)

Theorem 6.3. For the simple randomwalk on Z4, we have

i) (6.21) lim P(T=E(T) x) =e* x20,d=2.
n - oo
- —2T[2(n+%)2x
i) 622) imP(Tzn) =25 & "~ xso0d=1.
n-e ™ n=0 1.,
(n+3)

Remark. For d = 1, the density is athetafunction. Formulas similar to (6.22) occur also in the analysis of

other random walks [18].

Proof: i) By (4.14) and (4.16),

_AT
(6.23) Ee 1) = . ., 20,
1+ET[1-e FT] + ge F")[1-e F ]2
where
S
(6.24) 902 = 3 P ik 1.

=1 (1-sp)(1-5,2)°

We have
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O 1 O 1 d
(6.25) h(z2)x max o > < - ET.
Dp¢1 1_Sp|:| p#1 1_Sp 1-cos 21
We conclude from (6.23) and (6.25) that
AT 1
; BTy — Z (% oM . amx
(6.26) lim (e &) = _jo e eXdx, A=0,

and (6.21) follows from the Continuity Theorem.

i) By (6.3),
0 - 0t
-AT d A [——1 O
v W 1 O
(6.27) E(e " ) = %l+2(1—e )3 . — +0(1)7
0 FLe T cos 20 a
g n u
_— 1
Expanding in powers of —
1 n? - Up-10
(6.28) = : +0(1), 1<j<O——0,
—FA, omj 212 )%+ \ 02 g
l-e cos —=
the O(1) term being uniforminj. Hence
N ) 2 N .
6.29 =n + O(n) .
1-e " cos —
We conclude from (6.27) and (6.29) that
A O 0t
-4 © tanh /2
(6.30) lim fie ™) = E‘HL s 1 0= —ﬂ A>0.
a TR g VE
21
-\/_% . o —2T[2(n+i)2x
ow tan is the Laplace transform o e . p , formula 8.51] and (6.
N h he Lapl of f 4 27 [16, p. 294, f la 8.51] and (6.22)
= n=0

2

follows from (6.30) by the Continuity Theorem.
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7. Boundsfor E(T)

In the previous sections we obtained very precise asymptotic results for some special classes of groups.

In this section we consider bounds for E(T) valid for al finite groups G.

The bounds are given as functions of (G We use results of Mazo on random walks on graphs [15].
Let G be a finite connected graph with nodes 1,2,..,n. The nodes are considered as states of a Markov
chain with transition probabilities p;;. It is assumed that the chain is irreducible, i.e. any node can be
reached from any other one in afinite number of steps with positive probability, and al p;; = 0. Let n;; be

the expected number of steps required to go fromi to j, and define

_ 1 n n
(7.1) N = NGED) i§1 J§1 njj .

J

Asaspecial caseg, let p;; = 0if i and  are not connected and p;; = Di if i and j are connected, O ; being
i

the number of edges leaving nodei. We refer to this chain as random routing. The following lower bound

holds for N.

Theorem7.1. i) N = % equality holding if and only if G consists of n nodes placed consecutively along

a circle and one moves deterministically from one node to the next. ii) For random routing N = n—1,

equality holding if and only if G is the complete graph on n nodes.

The above results have direct applications to random walks oA a finite group G. The assumptions on G

L > ny = E(T)foral j, wheren = [G[]
trandate to: u(e) = 0 and Q generates G. We have —7 i=1

i%]

GHE 1

sothat E(T) = ——=

N. Under these assumptions on |, Theorem 7.1 yields the following result.

Theorem7.2. i) E(T) = GO- 1, equality holding if and only if G is cyclic and p(g) = 1 for some
generator g of G. ii) If, in addition to the above assumptiononpt, Q™! = Qand p isconstant on Q, then

E(T) = (GE 1)/IGlJequality holding if and only if Q = G —{e€}.

We remark that al the random walks considered in sections5 and 6 satisfy the conditions of
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Theorem 7.2 ii). The examplep, = po; = 1-¢ € - 0, shows that N can be made arbitrarily large for
n > 2, thus ruling out an upper bound for N. However, in case of random routing, Mazo [14] obtained the

following upper bound.

Theorem7.3. Letd = diameter of G, 0, = max O, O, = min O ;. Then

3/2

(7.2) Ns 7 (1+d)n.
Um

In [15] an exampleis given for which N = cn® asn - «, ¢ a positive constant independent of n. Using

(7.2), we prove the following result.

Corollary:
0oy O
(7.3) N<6O0—0 n?
O
o=mQO
In particular, if all O ;’sare equal, then
(7.4) N < 6n? .

Observe that, for random walks on finite groups satisfying the conditions of Theorem 7.2 ii), al 00 ;'s

areequal. Hence

(7.5) E(T) < 6[GHF .

As shown in section 6, for the simple walk on a cyclic group E(T) O %[Gﬁ. Thus the exponent 2 in

(7.5) isbest possible.

Proof of Corollary: Let p,q be two nodes of G which can be linked by d edges but no fewer. We then have
d+1nodesp = pg,P1,..Pq = qwith p; connectedto p;,1,0 < i < d—-1. Letr beany node of G which
is connected to some p; and let j be the smallest value of i for which this occurs. r is not connected to p
for k > i +2, otherwise we can replace p;j,pj+1,--,Pk BY PP Pk in the above chain to produce one with
fewer than d edges linking p to g. It follows that any node of G is connected to amost 3 p;’s. Hencein

counting the nodes connected to p;, 0 < i < d, any node of G is counted at most 3 times, so that
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(7.6) (d+1)0, < 3n.

Inequalities (7.6) and (7.2) give (7.3).
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