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ABSTRACT

Suppose that vectors v 1 , . . . , v p are chosen at random from the ±1 vectors of

length n. The probability that these at least are ±1 vector in the subspace (over the ????)

spanned by v 1 , . . . , v p that is different from the ± v j is shown to be
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as n → ∞ ,

uniformly for p ≤ n − 10n /( log n). Moreover, the main term in this estimate is the

probability that some ???? of the v j contain another ±1 vector in their linear span. This

result answers a question that arose in the work of Kanter and Sompolinsky on

associative memories.
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1. Introduction

The work of Kantor and Sompolinsky [ ] on associative memories gives rise to the

following question. Let the vectors v 1 , . . . , v p be chosen randomly from among

{±1}n (the ±1 vectors of length n). What is the probability that the subspace spanned by

v 1 , . . . , v p ??? the reals contains a ±1 vector different from ± v 1 , . . . , ± v p? (The

reals can be replaced by any field of characteristic zero, since the answers are the same.)

Some of the results of [ ] seemed to suggest that if p , n → ∞ while p / n → α for some

α , 0 < α < 1, then this probability might tend to 0 for α < 1 − 2/πand might tend to 1

for α > 1 − 2/π. However, G. Kalai and N. Limial conjectured that this is not the case,

and that in fact this probability is dominated by the probability that some 3 of the v j have

a linear combination that is a ±1 vector different from the v j . We will prove this

conjecture here.

Theorem. If v 1 , . . . , v p are chosen at random from {±1}n , then the probability P that

the linear subspace spanned by v 1 , . . . , v p over the reals contain a ±1 vector different

from the ± v j equals
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as n → ∞ , (1.1)

where
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as n → ∞ (1.2)

is the probability that some subset of 3 of the v j has a linear combination in {±1}n that

differs from the ± v j , and where the above estimates are uniform for

p ≤ n − 10 n ( log n) − 1 . (1.3)

In light of the above result, the Kanter-Sompolinsky results of [ ] have now been

taken to suggest a different result. Let Q be the probability that when v 1 , . . . , v p are

chosen at random from {±1}n , and V is the linear space spanned by the v j , then there is a

vector w ε {±1}n more of whose neighbors (i.e., vectors u ε {±1}n that differ from w

in one coordinate) is in V, but such that w is closer to V (in the sense of ordinary

Euclidean distance) than any of its neighbors. The current conjecture, based on the

results of [ ], is that Q → 0 as p , n → ∞ with p / n → α for α < 1 − 2/π, and Q → 1

for α > 1 − 2/π. Our method do not shed any light on this conjecture.

The error term O( ( 7/10 ) n ) in our Theorem can be substantially improved with

additional effort. On the other hand, the limitation p ≤ n − 10 n ( log n) − 1 seems hard

to improve (except for the value of the constant 10). When p = n, a result of Komlo ´s [ ]

implies that the vectors v 1 , . . . , v n are linearly independent with probability → 1 as

n → ∞, so that V = {±1}n . It would be interesting to find out just how large p has to be

so that P → 1, but this problem appears very hard.

The present work is closely related to that of Komlo ´s. The distribution of

determinants of matrices whose entries are drawn from some common distribution is
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only known in a few special cases [ ], such as when they are all normal. The problem of

determinants of random ±1 matrices (or of (0,1)-matrices, since there is a well-known

correspondence between the two problems) has been of substantial interest for a long

time [ ]. Komlo ´s [ ] was the first one to show that the probability of a random n × n ±1

matrix being singular → 0 as n → ∞. We later [ ] extended this result to the case where

the entries are drawn from any non-degenerate distribution. Finally, in [ ], he developed

a simplified method that enabled him to show that the probability of a random n × n ±1

matrix being singular is O(n − 1/2 ) as n → ∞. (It is conjectured that this probability is

O(n 2 2 − n ), so that such matrices are singular primarily when two rows or columns are

equal to each other or the negations of each other.) Parts of our proof use techniques

very similar to those of [ ].

There are many other open problems about 0,1 or ±1 random variables. For example,

L. Babai has conjectured that the characteristic polynomials of adjacency matrices of

random undirected graphs (i.e., of random symmetric (0,1)-matrices with 0’s on the

diagonal) are irreducible as the dimension → ∞. (If true, this would say that testing for

graph isomorphism is easy most of the time.) This author has also conjectured that

polynomials of degree n with coefficients 0,1 and constant term 1 are irreducible with

probability → 1 as n → ∞.

Some additional results on convex combinations of vertices of an n-cube and linear

subspaces can be found in [ ].
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2. Proof of Theorem

Let P m denote the probability that there is a linear combination of some m out of the

p random vectors v 1 , . . . , v p ε {±1}n which is in {±1}n , and such that all m

coefficients in this combination are nonnegative. We will estimate P 3 and show that

P 2 , P 4 , P 5 , . . . , P P are negligible.

We start with the bounds for P 5 , P 6 ,... . Our basic tool will be the following

lemma, which was proved by Erdo
. .
s [ ], but is usually referred to as the Littlewood-

Offord Lemma after the people who first raised the problem and proved a weaker form of

the result [ ]. (The most general result of this type is due to Kleitman [ ].)

Lemma 2.1. Suppose that x 1 , . . . , x m ε  R \ {0}, y ε  R. Then








î
(ε 1 , . . . , ε m ) : ε i = ±1 for all i ,

i
Σ ε i x i = y










≤


î  m /2

m 



. (2.1)

We now use Lemma 2.1 to prove the following result.

Proposition 2.2. If

5 ≤ m ≤ p ≤ n − 10 n ( log n) − 1 ,

then

P m ≤ ( 0. 69 ) n as n → ∞ (2.2)

for n sufficiently large.

Proof of Proposition 2.2. We clearly have
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P m ≤ 
î m

P
 R m , (2.3)

where R m is the probability that a random m × n ±1 matrix M will have some

combination of its m rows with all coefficients ≠ 0 in {±1}n . Denote the rows of M by

w 1 , . . . , w m . Suppose that 0 < q < n − m, and assume that the first m + q columns

of M have ????? m. If columns j 1 <... < j m ≤ m + q of M are linearly independent, then

for each choice of α 1 , . . . , α m ε {±1}, there will be a unique set of coefficients

x 1 , . . . , x m with the j g-th coordinate of x 1 w 1 +... + x m w m equal to α g . Thus there

will be at most 2m sets x 1 , . . . , x m ε  R \ {0} with the property that the first m + q

coordinates of x 1 w 1 +... + x m w m are all ±1. Consider now a fixed choice of

x 1 , . . . , x m . The probability that the j-th coordinate of x 1 w 1 +... + x m w m equals 1

for m + q < j ≤ n, as the j-th column of M varies, is

2 − m


î  m /2

m 



by the Littlewood-Offord lemma, and similarly for the probability that this coordinate

equals -1. Since columns j, m + q < j ≤ n, are independent of each other, we obtain

R m ≤ 2m 
î q
m + q







2 − m



î  m /2

m 








n − m − q

+ Q m , q , (2.4)

where Q m , q is the probability that a random m × (m + q) ±1 matrix has rank < m.

We next bound Q m , q . We have

Q m , q ≤
k = 1
Σ

m − 1
(m − k) 

î k
m



î k
m + q

 Q m , q , k , (2.5)
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where Q m , q , k is the probability that a random m × (m + q) ±1 matrix will have the

property that every k of its rows are linearly independent, the upper left k × k submatrix

has rank k, and the (k + 1 )-st row is linearly dependent on the first k rows. Given a

matrix satisfying the above properties, the rows u 1 , . . . , u k + 1 of the upper left

(k + 1 ) × k submatrix determine unique nonzero coefficients x 1 , . . . , x k + 1 such that

i = 1
Σ

k + 1
x i u i = ( 0 , . . . , 0 ). Given x 1 , . . . , x k + 1 , the probability that this same relation

will also hold in columns k + 1 , . . . , m + q is

≤




2 − k − 1



î  (k + 1 )/2

k + 1 








m + q − k

, (2.6)

and so this is a bound for Q m , q , k . Therefore, combining (2.5) and (2.6), we obtain

Q m , q ≤ m
k = 1
Σ

m − 1 
î k
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,

and so, by (2.3) and (2.4),
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
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+ m 
î m
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Σ

m − 1 
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.

For 5 ≤ m ≤ n /1000, we select
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 ≤ 23n /1000 ,

and for 1 ≤ k ≤ m − 1,
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k + 1 

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m + q − k

≤ 2 − q ,

so that in this range

P m ≤ O( 0. 67n ) as n → ∞ . (2.8)

We next consider n /1000 < m ≤ p < n. This time we use the inequality

P m ≤ 
î m

P
 R m ′ + Q p , q , (2.9)

where R m ′ is the probability that a random m × n ±1 matrix has some nonzero

combination of its rows in {±1}n , and that its first p + q columns have rank m. Then, by

the previous argument,
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R m ′ ≤ 2p + q 
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for large enough n. On the other hand,

Q p , q ≤ n
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Now for large n,
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≤ n 22n n − (p + q − k) 4 ≤ n 22n n − n /10000 ≤ 2 − n .

At the same time, for some positive constant C,
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Combining all these estimates we obtain

P m ≤ 
î m

P
 22n 

 8n − 1/2 


n − p − q
+ 2 − n + e n 2/3

2 − p − q

≤ 23n 
 8n − 1/2 


n − p − q

+ e n 2/3

21 − p − q , (2.11)

valid for sufficiently large n and n /1000 < m ≤ p < n. We now select q so that

n − p − q =


 log n

7n log 2_ _______




,

and obtain the claim of Proposition 2.2.

We now proceed to consider P 2 , P 3 , and P 4 . If v , w ε {±1}n , then the only way to

have α v + βw ε {±1}n for α β ≠ 0 is if v = ± w, to an even that has probability 21 − n .

Therefore

P 2 = O 
î n 2 2 − n 

 as n → ∞ . (2.12)
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Proposition 2.3. We have, for 3 ≤ p ≤ n,

P 3 = 4 
î 3
P
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3_ _
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n
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
î
P
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5_ _
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as n → ∞ . (2.13)

Proof. By (2.3), P 3 ≤ 
î 3
P

 R 3 . Since multiplying any collection of rows or columns of

a ±1 matrix by ±1’s does not change the property that some ±1 vector is in the span of

rows of the matrix, we have

R 3 = 22 − 2n N , (2.14)

where N is the number of 3 × n ±1 matrices M with rows v 1 , . . . , v 3 for which

v 1 = ( 1 , 1 , . . . , 1 ), the first column equals ( 1 , 1 , 1 ) T , and such that for some α , β, γ

with α β γ ≠ 0, we have α v 1 + βv 2 + γv 3 ε {±1}n . We will estimate the number of

such matrices M.

Let v m = (v m1 , . . . , v mn ), and suppose that α v 11 + βv 21 + γv 31 = u. If M

contains a column of the form ( 1 , − 1 , − 1 ) T or ( 1 , 1 , − 1 ) T , say in the r-th position,

and α v 1r + βv 2r + γv 3r = X, then x = −u, since if x = u, subtracting this equation

from α v 11 + βv 21 + γv 31 = u would give β = 0 or γ = 0, which is impossible.

Similarly, if M contains the column ( 1 , − 1 , − 1 ) T , say in the r-th position, and another

column, say the g-th one, equals ( 1 , − 1 , 1 ) T or ( 1 , 1 , − 1 ) T , then

α v 1r + βv 2r + γv 3r = u. Therefore we cannot have all 4 possible columns appearing

in M, since then we would have the 4 equations
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α v 11 + βv 21 + γv 31 = u ,

α v 1r + βv 2r − γv 3r = −u ,

α v 1s − βv 2s + γv 3s = −u ,

α v 1t − βv 2t − γv 3t = u ,

and adding them shows that α = 0, which is a contradiction. On the other hand, for any

selection of 3 out of the 4 possible columns of M (always including the first column

( 1 , 1 , 1 ) T), the matrices consisting of precisely those columns, will have the required

property, since we will obtain a nonsingular system of 3 equations in 3 unknowns. For

any particular choice of 3 columns to appear in M, we will have 3n − 1 choices of M.

There are 3 possible choices of 3 out of 4 columns (since ( 1 , 1 , 1 ) T always has to be

included). If only 2 different columns appear in M, then some two of v 1 , v 2 , and v 3 an

equal, and there are O( 2n ) such matrices M. Hence we conclude that

N = 3n + O( 2n ) , (2.15)

and so

R 3 = 4 ( 3/4 ) n + O( 2 − n ) . (2.16)

By the analysis above,

P 3 ≤ 4 
î 3
P




î 4

3_ _




n

+ O 
î P 3 2 − n 

 . (2.17)

To get a lower bound for P 3 , consider the probability that 2 sets of 3 vectors each,

v i 1
, v i 2

, v i 3
and v j 1

, v j 2
, v j 3

simultaneously have linear combinations with nonzero

coefficients that are in {±1}n . If I = { i 1 , i 2 , i 3 } ∩ { j 1 , j 2 , j 3 } is empty or has
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exactly one element, this probability is R3
2 . If I contains 2 elements, then this probability

is 23 − 3n times N 2 , the number of 4 × n ±1 matrices with the first row and column 1

and with the property that the submatrices formed by deleting the third or the fourth row

have at most 3 distinct columns. If we let k denote the number of 1’s, in the second now,

we obtain

≤ 2max (k , n − k) + 1

choices for each of the third and fourth rows, so

N 2 ≤ 4
k = 1
Σ
n 

î k
n
 4max (k , n − k)

≤ 8
k = 0
Σ
n 

î k
n
 4k = 8 . 5n . (2.18)

Therefore the probability of finding 2 sets of 3 vectors, each of which gives the desired

combination, is O(P 4 ( 5/8 ) n ), and therefore we obtain the estimate (2.13) of

Proposition 2.3.

Proposition 2.4. If 4 ≤ p ≤ n, then

P 4 = O



î
P 4



î 8

5_ _




n 




as n → ∞ . (2.19)

Sketch of proof. The proof of this result uses the same ideas as that of Proposition 2.3,

but is considerably easier, since only a weak upper bound is required. We reduce the

problem of bounding P 4 to that of counting the number of 4 × n ±1 matrices M with

rows v 1 , . . . , v 4 such that v 1 = ( 1 , 1 , . . . , 1 ), the first column of µ is ( 1 , 1 , 1 , 1 ) T ,

and for some nonzero α , β, γ, δ, α v 1 + βv 2 + γv 3 + δv 4 ε {±1}n . A short
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argument then shows that such a matrix cannot have more than 5 distinct columns, which

then immediately yields (2.19). (A more careful argument shows that such a matrix

cannot have more than 4 distinct columns, which then gives P 4 = O(P 4 2 − n ).)

The Theorem easily follows from all the estimates that have been obtained.
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