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Abstract

The average number of distinct block sizes in a partition of a set of n elements is asymptotic to e log n
as n → ∞. In addition, almost all partitions have approximately e log n distinct block sizes. This is in
striking contrast to the fact that the average total number of blocks in a partition is ∼ n( log n)−1 as
n → ∞.
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1. Introduction

A recent paper of H. Wilf [6] compares the number of distinct part sizes to the total number of parts in

various combinatorial partition problems. It is well known and easy to prove that the average number of

cycles of a permutation on n symbols is

log n + γ + o( 1 ) as n → ∞ ,

when γ = 0. 577 ... denotes Euler’s constant. Wilf showed that the average number of distinct cycle sizes in

a permutation on n letters is

log n + γ − Q + o( 1 ) as n → ∞ ,

where

Q =
n =2
Σ
∞

n!
( −1 ) n
_ _____ ζ (n) = 0. 65981 ... .

Thus in this case the numbers of parts and part sizes are almost the same.

The average number of parts in a partition of an integer n is known to be [3]

∼ π −1 ( 3/2 )−1 n 1/2 log n as n → ∞ .

Wilf showed that the average number of distinct part sizes in a partition of n is
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∼ π −161/2 n 1/2 as n → ∞ .

Thus in this case the numbers of parts and of part sizes grow at slightly different rates.

The number of partitions of a set of n elements into k subsets is given by S(n ,k), the Stirling numbers

of the second kind. The asymptotics of the S(n ,k) were known already to Laplace (see [1,5] for extensive

bibliographies), and it follows from these asymptotic estimates that the average number of blocks in a

partition of an n-element set is

∼
log n

n_____ as n → ∞ .

(Wilf has pointed out that this result can also be derived from the asymptotics of the Bell numbers and the

recurrence for the Stirling numbers.) Wilf [6] derived a generating function for B(n ,k), the number of

partitions of an n-element set with exactly k distinct block sizes, but he left open the problem of estimating

b(n), the average number of distinct block sizes. In this note we present two proofs that

b(n) ∼ e log n as n → ∞ .

Thus in this case there is a great difference between number of parts and part sizes. We also indicate how

both our proofs can be easily adapted to show that most of the time the number of distinct part sizes is very

close to e log n (i.e., the normal order is e log n). The first proof is entirely self-contained apart from

using the well-known formula for the asymptotics of the Bell numbers. The second proof relies on the

general result of Hayman [4] about Taylor series coefficients of analytic functions.

In Section 2 we rederive Wilf’s formula for the generating function of the B(n ,k). Our proofs are then

presented in sections 3 and 4. With additional work it might be possible to obtain the complete distribution

function of the B(n ,k).

2. Generating functions and preliminaries

We let B(n ,k) denote the number of partitions of an n-element set that have exactly k distinct sizes of

blocks, and we let
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B(n) =
k =1
Σ
n

B(n ,k)

be the n-th Bell number, the total number of partitions. (We remark in passing that B(n ,k) = 0 for k larger

than approximately ( 2n)1/2 , which immediately indicates that the average numbers of blocks and block

sizes have to be very different.)

Wilf’s generating function for the B(n ,k), which he derives from his more general results [6], is

F(x ,y) =
n,k≥0
Σ n!

B(n ,k)_ ______ x ny k =
m =1
Π
∞

{1 +y( exp (
m!
xm
_ __ ) −1 ) } . (2.1)

To prove it, we expand each of the exponentials on the right side of (2.1), and expand the product. We find

that the coefficient of n!x ny k in the resulting expansion is

Σ
i =1
Π

k

l i ! (m i ! ) l i

n!_ ____________ , (2.2)

where the sum is over choices of l 1 , ... ,l k > 0, m 1 , ... ,m k > 0, Σ l i m i = n. But each of the summands

in (2.2) is the number of ways of choosing l i blocks of size m i from a set of n elements when the order of

the blocks is irrelevant, which proves (2.1).

Setting y = 1 in (2.1) gives

F(x , 1 ) =
n≥0
Σ n!

B(n)_ ____ x n = exp (e x −1 ) , (2.3)

the well-known generating function for the Bell numbers.

Define

B 1 (n) =
k
Σ kB(n ,k) ,

B 2 (n) =
k
Σ k 2 B(n ,k) .

Then
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n
Σ n!

B 1 (n)_ _____ x n =
∂y
∂_ __ F(x ,y) y =1 = F(x ,y) .

m =1
Σ
∞

1 +y( exp (
m!
xm
_ __ ) −1 )

exp (
m!
xm
_ __ ) −1

_ ________________ y =1

(2.4)

= F(x , 1 )
m =1
Σ
∞

( 1 −exp ( −
m!
xm
_ __ ) ) ,

and similarly

n
Σ n!

B 2 (n)_ _____ x n =
∂y
∂_ __ y

∂y
∂_ __ F(x ,y) y =1

= F(x , 1 )



{

m =1
Σ
∞

( 1 −exp ( −
m!
xm
_ __ ) ) }2 +

m =1
Σ
∞

( 1 −exp ( −
m!
xm
_ __ ) ) (2.5)

−
m =1
Σ
∞

( 1 −exp ( −
m!
xm
_ __ ) )2





.

To prove our result about the average number of block sizes, we will show that

b(n) =
B(n)

B 1 (n)_ _____ ∼ e log n as n→ ∞ . (2.6)

To prove the result about normal order, it is sufficient to show that

B(n)

B 2 (n)_ _____ ∼


î B(n)

B 1 (n)_ _____




2

, (2.7)

since then the claimed result follows from Chebyshev’s inequality. We do not present the details of the

proof of (2.7), since they are analogous to the proofs of (2.6), although more involved.

Before proceeding to the proofs, we recall the asymptotic expansion of the Bell numbers (more precise

results are known, see [2]):

n!
B(n)_ ____ =

e√ 2π
1_ _____ exp (

u n

n +1_ ____ − (n +1 ) log u n −
2
1_ _ u n + o( 1 ) ) as n → ∞ , (2.8)

where u n is the unique positive root of

u n e un = n +1 , (2.9)

so that
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u n = log n − log log n + O(
log n

log log n_ ________ ) . (2.10)

This result is obtained by using Cauchy’s formula

n!
B(n)_ ____ =

2πin!
1_ _____

 z= u
∫ F(z , 1 ) z−n −1 dz

with u = u n .

3. First proof

This proof shows, in essence, that the coefficient of z n in the Taylor series of

f k (z) = e e z −1 ( 1 −e− z k / k! ) (3.1)

is approximately B(n)/ n! for k ≤ e log n and is negligible for k > e log n.

First we make some preliminary observations. Since for k ≥ 1

e z −1 =
n =1

Σ
∞

z n / n! , (3.2)

e z −1 − z k / k! =

n≠k

n =1
Σ z n / n! , (3.3)

both have Taylor series coefficients that are ≥ 0, we have for any z ∈ C,

 e z −1 − z k / k! ≤ e  z −1 − z k / k! . (3.4)

Similarly, since the Taylor coefficients of (3.3) are ≥ 0 and less than or equal to those of (3.2), if

exp (e z −1 − z k / k! ) =
m =1
Σ
∞

b(k ,m) z m , (3.5)

then

0 ≤ b(k ,m) ≤ B(m)/ m! , (3.6)

and

 f k (z) ≤ f k ( z ) .
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We now proceed to the main part of the proof. Fix any ε ∈ ( 0 , 10−3 ). Consider k ≤ (e − ε) log n,

where n is taken sufficiently large (depending only on ε). The coefficient of z n in f k (z) is B(n) −b(k ,n).

By Cauchy’s theorem,

b(k ,n) =
2πi
1_ ___

 z= un

∫ exp (e z −1 − z k / k! ) z−n −1 dz ,

and so by (3.4)

b(k ,n) ≤ un
−n

 z= un

max  exp (e z −1 − z k / k! )

= exp (e un −1 −un
k / k! −n log u n )

= √ 2π (n! )−1 B(n) exp ( log u n +u n /2 −un
k / k! + o( 1 ) )

≤ (n! )−1 B(n) exp ( −u n /4 +o( 1 ) ) as n→ ∞ ,

since for 1 ≤ k ≤ (e − ε) log n, un
k / k! ≥ u n (for n large enough). Therefore the coefficient of z n in the

expansion of

k≤(e − ε) log n
Σ f k (z) = e e z −1

k≤(e − ε) log n
Σ ( 1 −e− z k / k! )

is

∼ (e − ε) (n! )−1 B(n) log n as n → ∞ . (3.7)

Also, the corresponding coefficient for the range (e − ε) log n ≤ k ≤ (e + ε) log n is in the range

[ 0 , 2ε(n! )−1 B(n) log n] by (3.6).

It remains to deal with k ≥ (e + ε) log n. If k ≥ 100 ε−1 log n, then by Stirling’s formula, on

 z = u n we have

 z k / k! =
k!

un
k

_ __ ≤ (
k

e log n_ ______ ) k ≤ e−3k ,

and therefore

 f k (z) ≤ exp (e un −1 −2k) .

If (e + ε) log n ≤ k ≤ 100ε−1 log n, then on  z = u n ,
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1 −e− z k / k! =
1≤m≤100ε−1 k−1 log n

Σ ( −1 ) m −1

(k! ) m

z km
_ _____ + O(e−50 log n ) .

Hence the coefficient of z n in the Taylor expansion of

k≥(e + ε) log n
Σ f k (z)

is

2πi
1_ __

 z= u n

∫ {
k≥(e + ε) log n

Σ f k (z) } z −n −1 dz =

k≤100ε− 1 log n

k≥(e + ε) log n
Σ

m =1
Σ

100ε−1 k −1 log n

(k! ) m
( −1 ) m −1

_____
2πi

1_ __
 z= u n

∫ e e z −1 z km −n −1 dz

(3.8)

+O(e exp (u n ) −5 log n −n log u n ) ,

and the last term above is

O


î n!

B(n)_ ____ n−4




. (3.9)

Again by Cauchy’s theorem

2πi
1_ ___

 z= un

∫ e e z −1 z km −n −1 dz =
(n −km) !
B(n −km)_ ________ . (3.10)

We now conclude the proof by showing that

(k! ) m (n −km) !

B(n −km)_ _____________

is small when compared to B(n)/ n! (and (e + ε) log n ≤ k ≤ 100ε−1 log n, 1 ≤ m ≤ 100ε−1 , say).

Suppose that (e + ε) log n ≤ v ≤ 104 ε−2 log n. Then by (2.8),

log
B(n) (n −v) !
B(n −v) n!_ ___________ = −

u n

n +1_ ____ +
u n −v

n −v +1_ _______ + (n +1 ) log u n − (n −v +1 ) log u n −v

+ u n /2 −u n −v /2 + o( 1 ) .

Now by (2.10),
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u n −v = u n − v / n + O(
n log n

v_ ______ ) ,

so

log
B(n) (n −v) !
B(n −v) n!_ ___________ = (n +1 ) (

u n −v

1_ ____ −
u n

1_ __ ) −
u n −v

v_ ____ + (n +1 ) log
u n −v

u n_ ____

+ v log u n −v + o( 1 )

= v log u n + O( 1 ) .

Since for n sufficiently large, and k ≥ (e + ε) log n,

log (k! ) m ≥ m [k log k − ( 1 + ε/100 ) k] ,

we finally obtain

log


î k!mB(n) (n −km) !

B(n −km) n!_ _______________




≤ km log u n − mk log k + ( 1 + ε/100 ) km + O( 1 )

≤ km[ log log n + o( 1 ) − log (e + ε) − log log n

+ ( 1 + ε/100 ) ] + O( 1 )

≤ − εkm /1000 ≤ − ε10−3 log n .

Therefore

k≤100ε− 1 log n

k > (e + ε) log n
Σ

m =1
Σ

( 100ε−1 log n)/ k

(k! ) m
( −1 ) m −1

_____
2πi

1_ __
 z= u n

∫ e e z −1 z km −n −1 dz

= O(
n!

B(n)_ ____ n − ε/2000 ) . (3.11)

It follows from (3.7)-(3.11) that

B(n)

B 1 (n)_ _____ ∼ e log n as n → ∞ ,
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which completes our first proof.

4. Second proof

We now prove our estimate using Hayman’s results [4] concerning admissible functions. A function

f (z) is said to be admissible if (we need only consider the case f entire) with

a(v) = v
f (v)
f ′ (v)_____ =

d log v
d log f (v)_ _________ ,

b(v) = va ′ (v) =
d 2 log v

d 2 log f (v)_ _________ = v
f (v)
f ′ (v)_____ + v 2

f (v)
f ′ ′ (v)_ _____ − v 2 (

f (v)
f ′ (v)_____ )2 ,

the following three conditions hold;

I) for some function δ(v) with 0 < δ(v) < π,

f (ve iθ ) ∼ f (v) e iθa(v) − θ2 b(v)/2 , as v → ∞ ,

uniformly for θ ≤  δ(v), while

II) uniformly for δ(v) ≤ θ  ≤ π

f (ve iθ ) = o( f (v)/√ b(v) ) , as v → ∞

and finally

III) b(v) → ∞ as v → ∞.

Lemma 1: The function

f (z) = e e z −1

m =1
Σ
∞

( 1 − ε− zm / m! )

is admissible.

Proof. The proof that III holds is immediate, since it is easily seen that b(v) ∼ v 2 e v as v → ∞ for this

function.

We now establish that II holds for δ(v) = 2 exp ( −2v /5 ). Let m 0 = m 0 (v) be the largest integer such

that
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m!
vm
_ __ ≥ v for m ≤ m 0 .

We note that m 0 ∼ ev as v → ∞. The argument of Section 3 shows that for m ≤ m 0 , v =  z,

 exp (e z −1 − z m / m! ≤ exp (e v −1 −vm / m! ) ≤ exp (e v −1 −v) .

Furthermore, if z = ve iθ, δ(v) = θ  ≤ π, then for large enough v,

Re e z = e v cos θ cos (v sin θ) ≤ exp (v cos δ(v) )

≤ exp (v( 1 −
3
1_ _ δ(v)2 ) )

≤ exp (v( 1 −e−4v /5 ) ) ≤ e v −ve v /5 ,

so

 exp (e z −1 ) ≤ exp (e v −1 −ve v /5 ) .

Therefore for m ≤ m 0 , z = ve iθ, δ(v) ≤ θ  ≤ π,

 exp (e z −1 ) − exp (e z −1 − z m / m! ) ≤ exp (e v −1 ) ( exp ( −ve v /5 ) + exp ( −v) )
(4.1)

≤ 2 exp (e v −1 −v) .

Moreover for m ≥ m 0 ,  z m / m! < v, so

 exp (e z −1 − z m / m! ) ≤   exp (e z −1 ) exp (v) ,

and thus

 exp (e z −1 ) ( 1 −exp ( − z m / m! ) ≤ 2 exp (e v −1 +v −ve v /5 ) . (4.2)

Finally, if m ≥ v 2 , then


m!
z m
_ __  = O(e−m ) , (4.3)

and so

 exp (e z −1 ) ( 1 −exp ( − z m / m! ) ) = O( exp (e v −m) ) . (4.4)

Applying (4.1) for m ≤ m 0 , (4.2) for m 0 < m < v 2 , and (4.3) for m ≥ v 2 , we obtain
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 exp (e z −1 )
m
Σ ( 1 −exp ( − z m / m! ) ) = O( exp (e v −v) ) ,

which establishes II.

To complete the proof of the lemma, we need to show that I holds. Since

exp (e ve iθ

−1 ) ∼ exp (e v −1 + iθa(v) − θ2 b(v)/2 )

as v → ∞, uniformly for θ ≤  δ(v), it will suffice to show that if

g(z) =
m
Σ ( 1 −exp ( − z m / m! ) ) ,

then in that same range for θ,

g(z) ∼ g(v) as v → ∞ . (4.5)

This part of the proof uses arguments similar to those of Section 3. Fix ε > 0. For m ≤ (e − ε) v,

θ ≤  δ(v), z = ve iθ,

Re (z m / m! ) = (m! )−1 vm cos m θ ≥
2
1_ _ (m! )−1 vm ≥ e εv /10

for large v, so

1 −exp ( − z m / m! ) = 1 + O(e− εv ) , (4.6)

where the constant implied by the O-notation depends only on ε. Also, for m ≥ (e + ε) v,


m!
z m
_ __  =

m!
vm
_ __ ≤ e− εm /10

for large v, so

1 −exp ( − z m / m! ) = O(e− εm /10 ) . (4.7)

Finally, for (e − ε) v ≤ m ≤ (e + ε) v,

Re z m = vm cos mθ > 0 ,

so

 exp ( − z m / m! ) ≤ 1
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and

 1 −exp ( − z m / m! ) ≤ 2 . (4.8)

Combining (4.5)-(4.7), we find that for θ ≤  δ(v),

g(ve iθ ) = ev + O( log v) .

Since this holds for all ε > 0, we obtain (4.5), and in fact even the more precise statement that

g(ve iθ ) ∼ ev (4.9)

as v → ∞, uniformly for θ ≤  δ(v).

We can now prove our result by applying Theorem I of [4], which gives (using (4.9))

n!

B 1 (n)_ _____ ∼
vn

n √ 2πb(v n )

evn_ ____________ ,

where v n is defined by a(v n ) = n. Theorem I of [4] also implies that

n!
B(n)_ ____ ∼

un
n √ 2π(u n +un

2 ) exp (u n )

exp (e un −1 )_ _____________________ ,

where u n is defined by (2.9). Stirling’s formula implies that

a(v n ) = v n e vn +
m =1
Σ
∞

( (m −1 ) ! )−1 vn
m exp ( −vn

m / m! ) g(v n )−1

(4.10)
= v n e vn + O(vn

−1/2 + ε ) .

Next, (2.9) and (4.10) show that

(v n −u n ) e vn + u n (e vn −e un ) = O(vn
−1/2 + ε ) ,

hence

v n −u n = O(e−vn vn
−1/2 + ε ) .

This implies that
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exp (e vn ) = exp (e un +O(vn
−1/2 + ε) ) = exp (e un ) ( 1 +O(vn

−1/2 + ε ) ) ,

vn
n = un

n ( 1 +O(e−vn ) ) ,

and that

b(v n ) = (u n +un
2 ) e un ( 1 +O(e−un ) ) .

Finally, we find that

n!

B 1 (n)_ _____ ∼ evn n!
B(n)_ ____ ∼ eu n n!

B(n)_ ____ ∼ (e log n)
n!

B(n)_ ____ ,

which is our result.
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