On the number of distinct block sizesin
partitions of a set

A. M. Odlyzko
Bell Laboratories
Murray Hill, New Jersey 07974
USA

and

L. B. Richmond
Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada

Abstract

The average number of distinct block sizesin a partition of a set of n elementsis asymptotic to e log n
asn - o. In addition, amost all partitions have approximately e log n distinct block sizes. Thisisin
striking contrast to the fact that the average total number of blocks in a partition is O n(log n)~! as
n —» oo,
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1. Introduction

A recent paper of H. Wilf [6] compares the number of distinct part sizes to the total number of partsin
various combinatorial partition problems. It is well known and easy to prove that the average number of

cycles of a permutation on n symbolsis
logn+vy +0o(l) a n - o,

wheny = 0.577... denotes Euler’ s constant. Wilf showed that the average number of distinct cycle sizesin

apermutation on n lettersis
logn+y -Q+0(1) as n - o,

where

(-1)" _
-2 Z(n) = 0.6598L... .

Q=3
n=2 '
Thus in this case the numbers of parts and part sizes are amost the same.
The average number of partsin a partition of an integer n isknown to be [3]

On~1(3/2)'nY2 logn a n - o .

Wilf showed that the average number of distinct part sizesin a partition of nis



On~16Y2nY2 as n - o .

Thus in this case the numbers of parts and of part sizes grow at dightly different rates.

The number of partitions of a set of n elements into k subsets is given by S(n,k), the Stirling numbers
of the second kind. The asymptotics of the S(n,k) were known already to Laplace (see [1,5] for extensive
bibliographies), and it follows from these asymptotic estimates that the average number of blocks in a

partition of an n-element set is

(Wilf has pointed out that this result can also be derived from the asymptotics of the Bell numbers and the
recurrence for the Stirling numbers.) Wilf [6] derived a generating function for B(n,k), the number of
partitions of an n-element set with exactly k distinct block sizes, but he |eft open the problem of estimating

b(n), the average number of distinct block sizes. In this note we present two proofs that

b(n) O elognh a n - o,

Thus in this case there is a great difference between number of parts and part sizes. We also indicate how
both our proofs can be easily adapted to show that most of the time the number of distinct part sizesis very
close to e log n (i.e., the normal order is e log n). The first proof is entirely self-contained apart from
using the well-known formula for the asymptotics of the Bell humbers. The second proof relies on the

general result of Hayman [4] about Taylor series coefficients of analytic functions.

In Section 2 we rederive Wilf's formula for the generating function of the B(n,k). Our proofs are then
presented in sections 3 and 4. With additional work it might be possible to obtain the compl ete distribution

function of the B(n, k).

2. Generating functionsand preliminaries

We let B(n,k) denote the number of partitions of an n-element set that have exactly k distinct sizes of

blocks, and we let



B(n) = % B(n,k)
k=1

be the n-th Bell number, the total number of partitions. (We remark in passing that B(n,k) = 0 for k larger
than approximately (2n)Y2, which immediately indicates that the average numbers of blocks and block

sizes have to be very different.)

Wilf’ s generating function for the B(n, k), which he derives from his more general results[6], is

Foey) = 3 200 sopes [ (aey(en(X)-1)) 21)
n,k=0 : m=1 :

To prove it, we expand each of the exponentials on the right side of (2.1), and expand the product. We find
that the coefficient of n!x"y¥ in the resulting expansion is

n!

, (2.2)
M 1itm)"
i=1

>

where the sum is over choicesof |4,...,Ix > 0, my,....m > 0, 3 [ym; = n. But each of the summands
in (2.2) is the number of ways of choosing |; blocks of size m; from a set of n elements when the order of

the blocksisirrelevant, which proves (2.1).

Settingy = 1in(2.1) gives

Fix1) = 5 Br(ﬂ”) X" = exp(e* 1) | 2.3)

n=0
the well-known generating function for the Bell numbers.

Define
Bi(n) = X kB(n,k) ,
k

B,(n) = 5 k2B(n,k) .
k

Then



m
. Pl

B
B o o a"_y FouGL, = Fixy) - S

=1

n! =1 xm
m l+y(exp(w)_l)
249
00 Xm
= F(x1) 3 (1-exp(- —)) ,
m=1 m:
and similarly
Bo(n) ,_ 98 0
nl x" = W y a—y F(Xay)l;lzl
O o xM 5 0 xM
=FDH Y (I-ep(- NP + 3 (1-exp(- =) (25)
(O m=1 m: m=1 m:
o0 xm O
- (1-exp(- —)%0.
mgl m! O
To prove our result about the average number of block sizes, we will show that
b(n) = B.(n) Oelogn as n-oo (2.6)
B g -0, .
To prove the result about normal order, it is sufficient to show that
B,(n O f
2(n)  HBa(n) 27

B(n) B o

since then the claimed result follows from Chebyshev’s inequality. We do not present the details of the

proof of (2.7), since they are analogous to the proofs of (2.6), although more involved.

Before proceeding to the proofs, we recall the asymptotic expansion of the Bell numbers (more precise

results are known, see [2]):

B(n) _ 1 n+1 _ _1
i T exp( ™ (n+1) log uy, >

u, +o(l)) as n- o, (2.8)

where u,, is the unique positive root of

u

u,e"” =n+1, (2.9

S0 that



log log n

U, =logn-loglogn + O( 691

) .
Thisresult is obtained by using Cauchy’s formula

B(n) - 1 -n-1
n! 2min! EZJ;.UF(Z’l)Z dz

withu = u,.

3. First proof
This proof shows, in essence, that the coefficient of z" in the Taylor series of
fi(2) = e~ (1-e7? /)
isapproximately B(n)/n! for k < e log nand isnegligiblefor k > e log n.

First we make some preliminary observations. Sincefork = 1

e’-1= 5y z"/nt,
n=1
e?-1-z¢/kl = 5 Zz"/n!,
n=1
nzk

both have Taylor series coefficients that are> 0, we havefor any z O C,
e -1-Z¢kIx e™-1-0ah/k! .

Similarly, since the Taylor coefficients of (3.3) are> 0 and less than or equal to those of (3.2), if

exp(e? -1-z%/k!) = 3 b(k,m)z™,

m=1
then
0 < b(k,m) < B(m)/m! ,
and

(20 fi(ED) .

(2.10)

(3.1)

(3.2)

(3.3)

(3.4)

(35)

(3.6)



We now proceed to the main part of the proof. Fix any € 0 (0,1073). Consider k < (e—¢)log n,
where n is taken sufficiently large (depending only on €). The coefficient of z" in f, () is B(n) —b(k,n).

By Cauchy’ s theorem,

b(k,n) = Zi exp(e? —1-24/k1) 7" Ldz ,

T OE v,
and so by (3.4)
b(k,n) < uy" max Cexp(e?-1-2z%/k!)0
F= u,
= exp(e™ —1-uk/k! -n log u,)
= V2m (n!)"'B(n)exp(log u,+u,/2-uk/k! + o(1))

< (n!)"1B(n)exp(-u,/4+0(1)) as n- o,

since for 1 < k < (e—¢) log n, uk/k! = u, (for n large enough). Therefore the coefficient of z" in the

expansion of
5 f(2) = e 1 5 (1_e—zk/k!)
k<(e-g)log n k<(e—€)log n
is
Oe-g)(n!)"'B(n) logn a n - o . (3.7)

Also, the corresponding coefficient for the range (e-¢€) log nh < k < (e+¢€) log n is in the range

[0,2¢(n!)"1B(n) log n] by (3.6).

It remains to deal with k > (e+¢) logn. If k=100 ¢! log n, then by Stirling'’s formula, on

(0= u, wehave

elog n
k

K us K o o-3k
= s Y<e

and therefore
0 (2)(k exp(e™ -1-2K) .

If (e+¢€) log n < k < 100e~tlog n, then on x0= u,,,



1_e—z“/k1 — z (_1)m—1 zm + O(e'50'°9 n) .
1=m<100e "k log n (k)™
Hence the coefficient of z" in the Taylor expansion of
2 @

k=(e+¢€)log n

— { > f(@}z " tdz =
2T B4E; {n k>(e+¢€)log n
100e Tk tlog n (_1)m—1 1

> (k)M 27T

k>(e+¢€)log n m=1
k<100¢7! log n

[(ZF up

+O(eexp(un)—5 log n—n log un) ’

and the last term aboveis

O
ODB(?) n—AD
oM 0
Again by Cauchy’stheorem
1 J‘ g€ ~1zkm-n-14, — B(n-km)
2m oE (n-km)!

We now conclude the proof by showing that

B(n -km)
(K"™(n—km)!

Z
ee —1ka—n—1d2

(3.8)

(3.9)

(3.10)

is small when compared to B(n)/n! (and (e+¢€) log n < k < 100e"*log n, 1 < m < 100, say).

Supposethat (e+¢) log n < v < 10*e™?log n. Then by (2.8),

B(n-v)n! _ _n+1 + n-v+1
B(n)(n-v)! Un Un-y
+ U,/2-uy_,/2 + 0o(1) .

log

Now by (2.10),

+ (n+1) log u, = (n-v+1) log u,_,



v
U,_y = Uy — Vv/in + O(W) ,

T = (M D(G T = 50~ o * (1+1) log

log —— 72 "~
9 Bmm-w)! Unoy Unoy Unoy

+ vlog u,_, + 0(1)
=vlogu, + O(1) .

Sincefor n sufficiently large, and k > (e+¢€) log n,
log(k")™ = m [k log k = (1+¢&/100)K] ,
wefinally obtain

gg B(n—-km)n!

a
KIB(n)(n—km)! O< kmlog u, — mk log k + (1+¢&/100) km + O(1)
0 n)(n-km

< km[log log n + o(1) - log(e+€) — log log n

+ (1+¢/100)] + O(1)

< —-ekm/1000 < -€107%log n .

Therefore
-1
100 I /K -1
( Zs °g n) (-nm 1 eez—lzkm—n—ldZ
m -
k>(e+¢€)log n m=1 (k!) Za [(ZF up
k<100 tlog n
B(n _
— O( ( ) 8/2000) . (311)
n!
It follows from (3.7)-(3.11) that
B1(n)

Oelogn a n - o,

B(n)



which completes our first proof.

4. Second proof

We now prove our estimate using Hayman's results [4] concerning admissible functions. A function

f(z) issaid to be admissible if (we need only consider the case f entire) with

f1(v) _ dlog f(v)

av) =V 5w dTog v

_ _d?log f(v) _ . fi(v) fri(v) _ fr(v)
b(v) = var(v) = Plog v =v ) + v? ) v2 (W)Z ,

the following three conditions hold;
1) for some function &(v) with0 < §(v) < 11
f(veie) 0 f(V) eiSa(v)—Szb(v)/2, as Vv o o,

uniformly for Bk d(v), while

I1) uniformly for 8(v) < B0 < T
f(ve'®) = o(f(v)/Vb(v)), as v - o

and finally
M) b(v) - 0 as v - o,
Lemma 1: The function

f(Z) - eez—l % (1_8—zm/m!)

m=1
is admissible.

Proof. The proof that Il holds is immediate, since it is easily seen that b(v) Ov?e’ asv — o for this

function.

We now establish that 11 holdsfor d(v) = 2 exp(—2v/5). Let mg = mg(Vv) bethe largest integer such

that



-10-

Vm

—=2v for m<smg.

m!

Wenotethat my O evasv — . Theargument of Section 3 showsthat for m < mg, v = [Z[]
Cexp(e*—1-z"/m![k exp(e' -1-v™/m!) < exp(e¥ -1-vV) .

Furthermore, if z = ve'®, 5(v) = B0 < 1 then for large enough v,

Re e? = " ®®cos(v sin 8) < exp(v cos 3(V))

IN

exp(v(L - £8(v)2))

IN

exp(v(l_e—4v/5)) < v _Vev/5 ,

Cexp(e? -1)[k exp(e’ -1-ve'®) .
Thereforeform < mgy, z = ve'®, 8(v) < BO< T,

Cexp(e? -1) — exp(e?—1-z"/m!)k exp(e’ -1)(exp(-ve"®) + exp(-V))

4.1
< 2exp(e’-1-v) .
Moreover for m = mg, ZM/m! < v, 0
Cexp(e? —1-zM/m!)k Cexp(e?—1)0Oexp(v) ,
and thus
[exp(e? -1) (1-exp(-z™/m!)k 2 exp(e’ -1+v-ve’) . (4.2)
Finaly, if m = v, then
q§ﬂ=0@W), (43)
and so
Cexp(e”—1) (1-exp(-z"/m!))d= O(exp(e'-m)) . (4.9

Applying (4.1) for m < mg, (4.2) formg < m < v2, and (4.3) for m = v2, we obtain



-11-

[exp(e’-1) > (1-exp(—-z™/m!))O= O(exp(e'-V)) ,

which establishes 1.
To complete the proof of the lemma, we need to show that | holds. Since
exp(e*’ -1) Oexp(e’ —1+i0a(v)- 62b(v)/2)
asv — oo, uniformly for Bk &(v), it will suffice to show that if
9(2) = % (1-exp(=2"/m!)) ,
then in that same range for 6,

g(z) Og(v) as v - . (4.5)

This part of the proof uses arguments similar to those of Section 3. Fix € > 0. For m< (e-¢)yv,

Bk 8(v),z = ve'®,
Re(z™/m!) = (m!)"tv™ cos m @ = %(m!)‘lvm > etV/10

for largev, so

l1-exp(-z"/m!) =1+ O(e™¥) , (4.6)
where the constant implied by the O-notation depends only one. Also, form = (e+¢€)v,

2= Vg gremio
m!

for largev, so

1-exp(-z™/m!) = O(e ®™10) (4.7)
Finally, for (e—g)v<m< (e+g)y,

Rez™ =v™cosm@ >0,

Cexp(-z"/m!)k 1



-12 -

and
-exp(-z"/m)k 2. (4.8)
Combining (4.5)-(4.7), wefind that for Bk d(Vv),
g(ve'®) = ev + O(log v) .
Sincethisholdsfor all € > 0, we obtain (4.5), and in fact even the more precise statement that
g(ve'®) Dev (4.9)

asv - oo, uniformly for B &(v).

We can now prove our result by applying Theorem | of [4], which gives (using (4.9))

B1(n) 0 &Vp
n! Vi /2T (V,)

wherev,, isdefined by a(v,) = n. Theorem | of [4] also impliesthat

B(n) g exp(e™ —1)

Nt w2, + uZ)exp(un)

whereu,, is defined by (2.9). Stirling’'s formulaimplies that

avy) = vpe" + 3 ((m-1)1) " vfexp(~vi/m!)g(vy)t
m=1

(4.10)

vpe'" + O(vpY?*e) |
Next, (2.9) and (4.10) show that
(Va-up)e”™ + u,(e"-e™) = O(v;*?*%)
hence
Vp—Uu, = O(e "vpl2rey

Thisimplies that



-13-

exp(e”) = exp(e™ +O(va''**?) = exp(e™)(1+0(v;2*%))

Vi = uj(1+0(e™™)
and that
b(va) = (up+uj)e™ (1+0(e™™)) .
Finally, we find that

B1(n) B(n) B(n) B(n)
1n! Oev, o Oeup, o O (e log n) o

which is our result.
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