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Proof: It suffices to prove that (r,(s)/Cr,_,(s) is analytic when F;/F;_; is either
normal or an extension of the type considered in Theorem 3, for then we may ”build
up” in much the same way as Theorem 3 was proved. If F;/F;_; is normal, then
the fundamental result of Aramata [1] tells us that (g,(s)/(r,_,(s) is analytic. In
the other cases, though, this follows from Proposition 1.

O

We also remark that our method sometimes yields stronger results than those
given by the statements of our theorems. For example, if L = Q[2'/?], p an odd
prime, and K = @, Theorem 1 shows that (.(s) has no Siegel zeros. If we let
M = Llexp(27i/p)] be the normal closure of L, then ((s) has no Siegel zeros by
Heilbronn’s result [6], say, and easy estimates of discriminants. This means that
Cu(s) has no zeros within (esp*logp)~" of 1. Since we showed that (. (s) has no
Siegel zeros, it follows that (3(s) has no zeros within (¢gplogp)~' of 1.

The proof of Theorem 3 relied on all the nonlinear irreducible characters of the
group G that satisfy the conditions of case (ii) having the same degree f. 1. M.
Isaacs has pointed out that if f and |G|/f are relatively prime, then it follows
from [13] that G can be constructed as a semidirect product of a cyclic group H’
acting regularly on an abelian group A’. In this case H' is necessarily a Frobenius
complement in G. Thus our argument cannot be readily extended to other classes
of groups. The basic approach can be used even if the degrees of the nonlinear
irreducible characters of G differ, but we have not found any nice generalization.
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which is a contradiction. Hence § must be a zero of (x(s). That it is a simple zero
follows from di < dj. This establishes Theorem 3.

O

We next show how Theorem 1 can be derived from Theorem 2. Since any radical
extension can be obtained as a tower of radical extensions of prime degrees, it
suffices to prove Theorem 1 when all the degrees [F; : F;_;] are odd primes. When
[F; : F;_1] = p is prime, there are no intermediate fields F, F;_; C F/ C F;. Let
F; = F;_y[a"'?], a € F;_;. Then it is easy to show (and well-known, cf. [20, 22])
that if £} is the normal closure of F; over F;_;, then Gal(F;/F;_;) = A- H, where
A is isomorphic to Z, and H is isomorphic to a subgroup of Z;. Since [F; : Fj_,] is
odd, Theorem 2 applies.

3. CONCLUDING REMARKS

We make some final remarks regarding Theorem 2 and some of its implications.
First, one immediately notices that Theorem 2 and Heilbronn’s results [6] can be
combined to get

Theorem 4. Let Fy C F} C --- C F,, be a tower of extensions such that [F; : F;_]
is odd and F;/F;_; is either normal or of the form of Theorem 2. Then any real
zero of (g, (s) in the range

Co

1—
log dp,,

<p<l
is a simple real zero of (g,(s).
Also, there is the following application.

Corollary 2. Let Q = F; C F}, C --- C F,, be a tower of fields as in Theorem 4.
Let k,, denote the residue of (g, (s) at s = 1. Then

Cy4

7 Jog d,

where ¢, is an effectively computable constant depending only on c¢,.

Proof: This follows from Lemma 4 of [18] and Theorem 4.
a

We also make an observation about the analyticity of the ratios of the (g,(s).
The result below follows already from the theorem of Uchida [21] and van der Waall
[23, 24], which states that if M is a normal extension of a number field K with a
solvable Galois group, then the quotient (1(s)/(k(s) is entire for any number field
L intermediate between K and M.

Theorem 5. Let Fy C F} C --- C F,, be a tower of fields as in Theorem 4 (or
Theorem 2). Then, if ¢ > j
Cr.(s)
Cr,(s)

18 entire.
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and therefore

Next,
L= (Xol,»®0) = (X0s9%)
and so by (10) and (11)
(12) G5(1) = xo(1) + fha+ D _si = Al =1+ [k ,
iEX
where X is the set of ¢ such that x; is a linear character of G, ¢ # 0. Since s; > 0
for all ¢, (12) is possible only if s; = 0 for all ¢ € X, which proves (B).

The claims (A) and (B), which were proved above, lead to the following result
about zeta functions.

Proposition 1 Under the conditions of case (ii) of Theorem 3,
(13) C(s) = (x(s)L(s),

(14) Cu(s) Ci(s)La(s)L(s)

where f = |H| and the functions Li(s) and L(s) are entire.

Proof: Let Y be the set of nonlinear characters of G. We have
Cr(s) = L(s,¢0) = L(s,83) = L(s,x0) [] L(s,x:) -
X:€Y
If we let
L(s) = H L(s,xi) ,
X:€Y

we obtain (13). By Lemma 4, each x; is induced by a linear character A; of A, so
each L(s,x;) = L(s, A;) is entire, and so is L(s).

Next,

Cu(s) = [T Lls,xi ™ = Cu(s)La(s)L(s)
Xi

where L,(s) is the product of L(s, x;) over the nonprincipal linear irreducible char-
acters y; of G. Since all these L-functions are abelian, they are entire, and so is
Ly(s).

|

Finally, we return to our original investigation of the possible real zeros of (. (s).
Suppose 3 is a real zero of (,(s) in the range (2). If 5 is not a zero of (x(s), then it
must be a zero of L(s), and so by Proposition 1, 3 is a zero of (3(s) of multiplicity
at least f. By Lemma 3,

10g dM S 2f10g dL-

Choose ¢y = (4¢;)!. Then for r = ¢/(logdy ), Lemma 1 applied to (p(s) gives

f§n(T)<1—|—cl7‘long§1—|—£§f,
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(B) The only linear character y; of G with s; # 0 is the identity character xo.
To prove (A), note that if @ € A, h,hy € H, then since H is abelian (as we are
in case (ii) of Theorem 3),

(ahy)h(ahy)™' = aha™" .

If aha™ = d' for some @’ € A, then h = a~'d¢’a € A, and so by Lemma 2, h = 1.
Hence for h € H,

i} 1 _ 1 _
Aj(h) = WZAJ'(%W )= mz Y Aj((ahy)h(ahy)™")
T€eG acA h,eH
| [ ] ih=1,
m%)\j(aha ) = { 0 otherwise ,

since G = AH by Lemma 2. Therefore
(8) ’\; |H: Z bi -
Next, suppose x; is some nonlinear irreducible character of G. Then, by Lemma 4,
Xi = Aj for some j, and
si = (dgsXi) = (¢37A;) = (4507/\;|H) =1,

and this proves (A).
To prove (B), note that since

Gl = (12,

and |G| = |A| - f, if we let k; be the number of linear characters of G and k, the
number of nonlinear characters, then by Lemma 4,

(9) JAlf = k1 + [k
Now in general k; = |G|/|C|, where C is the commutator subgroup. In our case
C=A,sok, =|G|/|A| = f, and so (9) yields
(10) Al =1+ [k .
Since A is normal, and H N A = {1} by Lemma 2, we find that for a € A,
* _ 1 -1y _ |A| ifa:lv
%o(a) = ﬁ;%(ggax )= { 0 otherwise .

Therefore

% 4 Z/\i ’

Hence

(1) G(1) =Y A1) = 14] .
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G, and so the fixed field of H; is a normal extension of K that lies between L and
M. Since M is the minimal normal extension of L over K, we must have H, = {1},
which means that h; = 1, and this contradicts the basic assumption. Thus we must

have H N (gHg ') ={1} forall g€ G\ H.
O

Lemma 3. Under the conditions above,
(4) dM|dif ’
where f = |H|.

Proof: Let L' # L be a conjugate of L over K. We will prove below that M = L-L'.
Once this is established, we apply Lemma 7 of [18] and obtain

dMldj[c,dJIc/’ ’

which yields (4).

It remains to show that M = L-L’. The field L' is fixed by a conjugate of H, say
gHg™ ', where g € G\ H. By Lemma 2, HN(gHg™') = {1}. If L - L’ were a proper
subgroup of G, it would be fixed by a nontrivial subgroup of GG, which would also
fix L and L’. This would contradict H N (gHg™ ") = {1}.

|
We next investigate the characters of G. If 7 is a character of a subgroup of G,

we let n* denote the character of GG induced by 7.

Lemma 4. Under the above conditions on the group G, the nonlinear irreducible
characters of GG are of the form A*, where A denotes an irreducible character of A,
and are of degree f = |H|.

Proof: See p. 199 of [12].
O

Let {x:}, {¢:}, and {X\;} be the sets of irreducible characters of G, H, and A,
respectively. Let xq, ¢g, and Ag be the identity characters of G, H, and A. We then
have

(5) Cu(s) = HL(SaXz')XI(l)
and

(6) Ce(s) = L(s,¢7) ,
where L(s,n)is the Artin L-function of 5. Let

(7) ¢y = ZSiXi )

where the s; are integers, s; > 0. We will show that

(A) Every irreducible nonlinear character x; of G appears in (7) with s; = 1.
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Theorem 3. There is an effectively computable constant ¢y > 0 with the following
property. Let L O K be number fields with no intermediate field (i.e., no field L’
such that L D L' D K). Let M be the normal closure of L over K, and assume
that G = Gal(M/K) is solvable. Let A be the minimal normal subgroup of G' with
|A| > 1, and let H be the subgroup of G fixing L. If either (i) G = A and |G| is
odd or (ii) H is abelian with |H| > 1, then any real zero of (r(s) in the range

Co

(2) 1

_ <f<1
ogd, =P <

is a simple zero of (k(s).

Theorem 2 follows from repeated application of Theorem 3 to each stage of the
tower of extensions.

From now on we concentrate on proving Theorem 3. We first note that if case
(i) of Theorem 3 holds, then the conclusion of the theorem follows from Heilbronn’s
results [6], which say that if L/K is a normal extension of number fields, and K’ is
the compositum of quadratic subfields of L/ K, then any real simple zero of (.(s)
is a zero of (k/(s). Therefore from now on we assume that we are in case (ii).

Lemma 2. Under the above conditions, (i) G = AH, (ii) AN H = {1}, (iii) A is
elementary abelian, and (iv) H N (gHg ') = {1} for any g € G\ H ( so that H is
a Frobenius complement in G).

Proof: (i) Since L/K has no proper subfields, H must be a maximal subgroup of
G. Therefore AH = Gor H. If AH = H,then A C H. Let M’ C M be the subfield
fixed by A. Then L C M’ and M’ is normal over K, contrary to the choice of M.
This is a contradiction, so AH = G.

(i) AN H is normal in AH = G,so AN H = {1} as A is minimal.

(iii) See Satz 9.13 on p. 52 of [11].

(iv) Suppose this claim is not true, and that h; = gho,g~"' for some hy, hy € H,
g € G, hy # 1. We can write g = ah, a € A, h € H. We consider a and h; to be
fixed from now on. Since H is abelian,

hi = ghyg™ ' = ahsa™" .

Then
(3) @ = ahya™'hy' = hihy' .

Since A is normal, hya=thy' € A, so @ = ahya”'h;' € A. But by (3), 2 = hihy' €
H, and therefore, by part (ii) of this lemma, z = 1 and h; = hs.

Let H' = aHa™', and let F be the subgroup of G generated by {hah™ : h € H}.
Fis a subgroup of A, since A is normal, and is fixed under conjugation by H. Since
A is abelian, this means that /' is a normal subgroup of G, and therefore F' = A or
{1}. But @ € F, a # 1, so we must have F' = A.

Since F' = A, any element of A can be written as a product of elements of the
form hsahs', hs € H. But H is abelian, and h; commutes with a, so h; commutes
with every element of A. Therefore the subgroup H; generated by h; is normal in
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near s = 1, more zeros than allowed by known bounds. This argument can be
generalized to classes of fields other than those we consider, but its applicability
is limited by the requirement that certain relations hold for the representations of
the Galois group of the field being considered. What is essential for our method of
proof is that in each stage of the tower of extensions, the normal closure M of an
extension L of K is the compositum of only a few of the fields conjugate to L, so
dy is not large, and that (u(s)/(k(s) is the product of a high power of (1(s)/(k(s)
and other well-behaved functions. The group representation arguments we use are
similar to those employed by Uchida [21] and van der Waall [23, 24] in their proofs
that if M is a normal extension of a number field K with a solvable Galois group,
then the quotient ((s)/(k(s) is entire for any number field L with K C L C M.
It would be desirable to prove a strengthening of Theorem 2, in which the only
requirement would be that the groups Gal( £}/ F;_;) have to be solvable. Any such
strengthening would have to allow for the possibility of a Siegel zero coming from
a quadratic subfield. As we remark at the end of Section 3, there are indications
that our arguments cannot be extended too far.

We prove Theorems 1 and 2 in Section 2. We conclude in Section 3 with some
observations about the residue of (p,(s) at s = 1 and the analyticity of the functions

Cri(8)/Cry(s) (1> 7).
2. PROOF OF THEOREM 2 AND DERIVATION OF THEOREM 1 FROM THEOREM 2

In this section, we prove some results that imply Theorem 2. The first lemma
presents an estimate of the number of zeros of (x(s) in a region near 1 that is valid
for all number fields K.

Lemma 1. Let n(r) denote the number of zeros p of (x(s) with |1 — p| < r. Then
for all » > 0,

(1) n(r) < 14 cirlogdg
where ¢, is an effectively computable constant that is independent of K.

Proof: For r < (4logdg )" the previously mentioned result of Stark implies the
truth of (1). Suppose that r > (4logdg)™'. By Lemma 2.2 of [14], we know that

n(r) < co(1 + rlogdg)
for some effectively computable constant ¢,. (We have used ng < czlogdg.) Put
¢; = bey. Then

Cz( + 1) < 5C2 = (3.

rlogdg
Hence,
n(r) < eyl +rlogdx) <14 c¢irlogdg.

Theorem 2 follows from the following result.
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extensions of number fields. For radical extensions, their results give little informa-
tion.

The restriction to odd degree extensions in Theorem 1 is necessary to exclude
the possibility of a Siegel zero of (r,, (s) coming from (g(s) where E is a quadratic
extension of some F;. In the study of Siegel zeros, quadratic extensions are the
hardest to deal with. As far as anyone knows, a quadratic number field K can have
a Siegel zero within about dg'/* of 1. A standard result (cf. Lemma 11 of [18])
shows that the hypothetical Siegel zero is < 1 — c”df_{l/2 for some ¢” > 0, and the
recent work of Gross and Zagier [5] allows one to increase the distance from 1 only
by a power of log dg.

Theorem 1 is a consequence of the following more general result.

Theorem 2. There is an effectively computable constant ¢y > 0 with the following
property. Let Fy C F C --- C F,, be a tower of extensions of number fields. Assume
that for each ¢, 1 < ¢ < m, there is no number field F] such that F;_; C F] C F;.
Let F} be the normal closure of F; over F;_;, and assume that the Galois group
G; = Gal(F;/F;_1) is solvable. Let A; be the minimal normal subgroup of G; with
|A;| > 1, and let H; be the subgroup fixing F;. If for each ¢, 1 < i < m, either
(i) G; = A; and |G| is odd, or (ii) H; is abelian with |H;| > 1, then any real zero §

of (p, (s) in the range
Co

- <g<1
ogdp =P <

is a simple zero of (g (s).

The derivation of Theorem 1 from Theorem 2 will be sketched in Section 2. At
this point we note that Theorem 2 is more general, as it shows, for example, that if
L and K are number fields with L cubic over K, then any Siegel zero of (,(s) is a
Siegel zero of (k(s).

We note here that we define a Siegel zero with respect to the field, and not to
any of the L-functions it is a zero of. Thus, for example, if 8 is a Siegel zero of
the (-function of the field K = Q[,/p] for a prime p, then it is also a zero of the
(-function of the field L = Q[e,], where ¢, is a primitive pth root of unity. However,
(3 is not a Siegel zero of (;(s) since 3 < 1—¢"p~/2 whereas log d;, is of order plog p.

Zeros of zeta functions of radical extensions are especially interesting because of
their connection with Artin’s conjecture that any integer a not equal to —1,0, or a
perfect square is a primitive root for infinitely many primes (and even for a positive
fraction of all primes). Hooley [9], [10] proved this conjecture under the assumption
of the Generalized Riemann Hypothesis. Unfortunately, our results do not help to
obtain an unconditional proof, because a much wider zero-free region appears to be
needed (cf. [10]), and in any event, real zeros of (x(s) for K = Q[¢/a] would only
help in bounding the error terms that arise in the proof.

The results of Sunley, Goldstein, Heilbronn, and Stark were proved by showing
that a Siegel zero of (k(s) had to come from (p(s) for some subfield F of K, usually
a quadratic subfield. Our proof relies on showing that for some normal extension
L of K, a Siegel zero of (k(s) would imply the existence of many zeros of (.(s)
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only on ¢. The Brauer-Siegel Theorem [2] yields a lower bound for x as K runs over
certain sequences of normal extensions of QQ by using the argument of Siegel that
few fields can have Siegel zeros. However, the Brauer-Siegel result is ineffective.

Siegel zeros also play a role in determining the distribution of prime ideals. For
example, the asymptotic size of the error in the prime ideal theorem, which counts
prime ideals with norm < z, is determined by how close the zeros of (x(s) come to
the line Re(s) = 1, with the influence of any single zero being negligible for « large.
However, if there is a Siegel zero, z has to be extremely large before the influence of
that zero becomes small. Therefore in statements of the prime ideal theorem that
give explicit dependence on the parameters of the field, the influence of a possible
Siegel zero is usually included separately from that of other zeros.

The best general results to date about Siegel zeros and the concomitant bounds
for residues are due to Stark [18], who significantly generalized and strengthened
earlier results of Sunley [19], Goldstein [3], and Heilbronn [6]. Other bounds on
Siegel zeros of certain number fields have been obtained recently by Hoffstein and
Jochnowitz [7], [8].

In what follows, we redefine a Siegel zero by altering the constant ¢. This is done
to ensure that certain technical arguments go through. This paper is concerned with
showing that for an appropriate choice of ¢, (kx(s) often has no Siegel zeros. We
have not worried about getting the best possible constants, and it may be possible
to prove that the results below hold with ¢y = £ or an even larger constant.

Recall that a radical extension of a number field K is a field L = K[a] such that
a” € K for some integer n. We prove the following theorem about Siegel zeros of
radical extensions.

Theorem 1. There is an effectively computable constant ¢y > 0 with the following
property. Let Fy C F; C --- C F,, be a tower of extensions of number fields such
that [F; : F;_;] is odd and F; is a radical extension of F;_; for i =1,...,m. If 8 is
a simple real zero of (p, () in the range

Co
1-— < 1
ogdy, =<

then (3 is a simple real zero of (p,(s).

Since (g(s) has no real zeros with 0 < 5 < 1, we have the following corollary.

Corollary 1. Let Q = F, C F;, C --- C F,, be a tower of extensions such that
[F;: Fi_1]is odd and F; is a radical extension of F;_; fori =1,...,m. Then (p,(s)

has no zeros in the region
Co Co

10g dpm '

c>1-—

1| <
10g dFm7 | | -
For towers of radical extensions, Corollary 1 is much stronger than the corre-
sponding result of Stark, which has np, logdp,, in place of logdp, [18, Lemma 8].

The results of Sunley, Goldstein, Heilbronn, and Stark are strongest for normal
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ABSTRACT. Given a number field K, it is shown that for a tower of radical
extensions of odd degree over K, a Siegel zero of any Dedekind {-function
of a field in the tower must be a zero of the (-function of K. In particular,
towers of radical extensions of odd degree over (Q have no Siegel zeros.
This result is derived from a more general theorem, covering wider classes
of field extensions. The basic results are obtained by showing that a Siegel
zero not coming from a lower field would be a zero of high multiplicity
of some normal extension of the field under consideration, a multiplicity
greater than allowed by simple bounds.

1. INTRODUCTION

Let K be an algebraic number field of degree ny and let di be the absolute
value of its discriminant. Let (x(s) denote the Dedekind (-function of K. It is well
known that there is an effectively computable constant ¢ such that for any K, (k(s)
has at most one zero o + ¢ in the range

c

c>1

LS

" logdy’ log dy ’

if such a zero exists, it must be real and simple. Stark [18] has shown that one may
take ¢ = i. Exceptional zeros of this kind are called Siegel zeros. It is conjectured
that there are no Siegel zeros, but this has not been proved in general.

The main motivation for studying Siegel zeros arises because they determine the
size of the residue k of (x(s) at s = 1, and thus the product of the class number and
the regulator of K. Good unconditional upper bounds for £ can be derived easily,
but lower bounds are much harder to obtain. It was first observed by Gronwall [4]
and Hecke (see Landau [15]) that for quadratic fields non-existence of Siegel zeros
yields good lower bounds for . In general, it is known that if (x(s) has no Siegel
zero, then k > ¢/(logdg)~! for an effectively computable constant ¢’ that depends
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