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Abstract

If m(n ,l) denotes the maximum number of subsets of an n-element set such that the intersection of any
two of them has cardinality divisible by l, then a trivial construction shows that

m(n ,l) ≥ 2[n / l] .

For l = 2, this was known to be essentially best possible. For l ≥ 3, we show by construction that
m(n ,l) 2− [n / l] grows exponentially in n, and we provide upper bounds.
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1. Introduction

We consider the problem of estimating m(n ,l) which is the maximum number of subsets A 1 , ... ,A m of

an n-element set such that

 A i ∩ A j  ≡ 0 ( mod l) , 1 ≤ i < j ≤ m .

Suppose B 1 , ... ,B [n / l] are pairwise disjoint l-element subsets of {1 , 2 , ... ,n }. Then the sets formed by the

union of any collection of the B i has the desired property, and so

m(n ,l) ≥ 2[n / l] . (1.1)

P. Erdo
. .
s conjectured that this is essentially best possible for l = 2. This was proved by Berlekamp [1] and

Graver [5] by different methods. They showed that if n = 8 or n ≥ 10, then

m(n , 2 ) = 2n /2 if n is even ,

m(n , 2 ) = 2(n −1 )/2 + 1 if n is odd .

It turns out that for l > 2, the natural generalization, namely that
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m(n ,l) = O( 2n / l ) , (1.2)

is false. We prove the following bounds for m(n ,l).

Theorem 1. If a Hadamard matrix of order 4l exists (which is known to be true for 1 ≤ l ≤ 66, and is

conjectured to be true for all l), then

m(n ,l) ≥ ( 8l)[n /( 4l) ] . (1.3)

In any event, for l ≥ 67

m(n ,l) ≥ 256[n /( 4l) ] = 28 [n /( 4l) ] . (1.4)

Theorem 2. If Ω(l) is the number of prime-power divisors of l, then

m(n ,l) ≤ 2[n /2 ] + Ω(l) n , (1.5)

and

m(n ,l) ≤ 2
i =0
Σ

[n /( 2l) ] 
î i
n
 + Ω(l) n . (1.6)

For l = 2 , 3 , 4 the bound (1.5) is better than (1.6), but for larger values of l, (1.6) is sharper, and it is

markedly so for large l. It is not hard to show that

c(l) =
n→ ∞
lim m(n ,l)1/ n

exists, and the two theorems imply that

c(l) ≥ exp (
4l
1_ __ log 8l) (1.7)

if a Hadamard matrix of order 4l exists, and that

c(l) ≤ min (√ 2 , exp (h( ( 2l)−1 ) ) ) , (1.8)

where h(x) = −x log x − ( 1 −x) log ( 1 −x) is the entropy function (with log (x) = log e (x) ). For

l → ∞, (1.7) gives

c(l) ≥ 1 +
4l

1 +o( 1 )_ _______ log l ,
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while (1.8) yields

c(l) ≤ 1 +
2l

1 +o( 1 )_ _______ log l .

It would be very interesting to know whether one has equality in (1.7). Some other open questions are

discussed in Section 4.

2. Constructions

Let m 1 (n ,l) denote the maximum size of a collection of subsets A 1 , ... ,A m of {1 , ... ,m } such that

 A i ∩ A j  ≡ 0 ( mod l) , 1 ≤ i , j ≤ m ,

(i.e. we omit the condition i ≠ j).

Lemma 1. We have

m 1 (n ,l) ≤ m(n ,l) ≤ m 1 (n ,l) + Ω(l) n ,

where Ω(l) denotes the total number of prime factors of l, multiple factors counted according to their

multiplicity.

Proof. The first inequality of the lemma is trivial. To prove the second suppose that  A i  ≡  / 0 ( mod l)

for 1 ≤ i ≤ k ≤ m and let B = (b i j ) be the incidence matrix of the collection A 1 , ... ,A k; i.e.,

b i j =





î 0

1

if

if

i /∈ A j ,

i ∈ A j ,

where  A i ∩ A i  ≡ 0 (mod l) for 1 ≤ i < j ≤ k. To prove the lemma, it is sufficient to prove k ≤ Ω(l) n.

B has n rows, so rank (B) ≤ n. Next set

C = B TB .

If C = (c i j ), then

c i j =  A i ∩ A j  .

Let l =
i =1
Π

r

pi
α i , where the p i are distinct primes. As  A j  ≡  / 0 (mod l),  A j  ≡  / 0 (mod pi

α i ) for some
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i , 1 ≤ i ≤ r.

For a fixed i , 1 ≤ i ≤ r, and for a fixed β, 1 ≤ β ≤ α, let A i 1
, ... ,A i s

be the sets for which

 A i j
 ≡ 0 ( mod pi

β −1 ) ,

 A i j
 ≡  / 0 ( mod pi

β ) .

The submatrix of C formed by taking rows and columns numbered i 1 , ... ,i s becomes, when divided by

pi
β −1 , a diagonal matrix mod p i with non-zero entries on the diagonal. This implies s ≤ n, since

rank C = rank B ≤ n. Summing over i and β, we obtain the claim of the lemma.

Lemma 2. For 1 ≤ r ≤ n,

m 1 (n ,l) ≥ m 1 (r ,l) m 1 (n − r ,l) .

Proof. Suppose A 1 , ... ,A s are subsets of {1 , 2 , ... ,r } such that

 A i ∩ A j  ≡ 0 ( mod l) , 1 ≤ i , j ≤ s ,

and B 1 , ... ,B t are subsets of { r +1 , ... ,n } such that

 B i ∩ B j  ≡ 0 ( mod l) , 1 ≤ i , j ≤ t .

Define

C i , j = A i ∪ B j , 1 ≤ i ≤ s , 1 ≤ j ≤ t .

Then the C i , j are all distinct, and

 C i , j ∩ C p,q  =   A i ∩ A p  +   B j ∩ B q  ≡ 0 ( mod l) ,

which proves the lemma.

We now proceed to our constructions of large collections of subsets A 1 , ... ,A m of {1 , ... ,n } such that
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 A i ∩ A j  ≡ 0 ( mod l) , 1 ≤ i , j ≤ m .

These constructions are based on Hadamard matrices. Recall that a Hadamard matrix M of order 4t is a 4t

by 4t matrix with ±1 entries such that the scalar product of any two distinct rows is zero. One can always

assume that the first row is of the form ( 1 , 1 , ... , 1 ).

It is conjectured that Hadamard matrices of order 4t exist for every t ∈ Z + and this is known to be true

for t ≤ 66, as well as for several infinite families of values of t, including t ≡ 3 (mod 4), t a prime power —

cf. [4].

Assume first that a Hadamard matrix M = (m i j ) of order 4l exists. Define subsets

S 1 , ... ,S 4l , T 1 , ... ,T 4l of {1 , ... , 4l } by

S i = { j : 1 ≤ j ≤ 4l , m i j = 1}

T i = { j : 1 ≤ j ≤ 4l , m i j = −1} .

Of course T i = {1 , ... , 4l } − S i , T 1 = ∅ . The orthogonality of the rows implies

a)  T i  =   S i  = 2l, 2 ≤ i ≤ 4l,

b)  S i ∩ S j  =   T i ∩ T j  = l, 2 ≤ i < j ≤ 4l,

c)  T i ∩ S j  = l, 2 ≤ i , j ≤ 4l , i ≠ j.

Setting F = { T 1 ,T 2 , ... ,T 4l , S 1 , ... ,S 4l }, we deduce that  F ∩ F ′  ≡ 0 (mod l) holds for F ,F ′ ∈ F.

Thus

m 1 ( 4l ,l) ≥ 8l ,

and so, by Lemmas 1 and 2

m(n ,l) ≥ m 1 (n ,l) ≥ ( 8l)[n /( 4l) ] .

Now consider the hypothetical case that there is no Hadamard matrix of order 4l. Suppose

l = l 1 + ... + l q , where l 1 ≤ l 2 ≤ ... ≤ l q , and l i ∈ Z + are such that Hadamard matrices M i of order 4l i

exist.

Let S j (i), T j (i), 1 ≤ j ≤ 4l i , 1 ≤ i ≤ q be the sets obtained from the matrices M i by our construction

above, where we can assume that S j (i) and T j (i) are subsets of {4l 1 + ... +4l i −1 +1 , ... , 4l 1 + ... +4l i }.
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Now define, for 1 ≤ j ≤ 4l 1 ,

S j =
i =1
∪

q

S j (i) ,

T j =
i =1
∪

q

T j (i) .

It is straightforward to verify that these sets have pairwise intersections of cardinality divisible by l, and so

m 1 ( 4l ,l) ≥ 8l 1 .

Since every integer l ≥ 67 can be written as the sum of integers from {33 , 34 , ... , 66}, an application of

Lemmas 1 and 2 yields the desired lower bound.

The bound (1.4) can be improved for large n and l even without assuming unproved hypotheses about

existence of Hadamard matrices. It can be shown that l has a representation l = l 1 + ... + l q with l i ≥ εl,

ε > 0 a fixed constant, such that Hadamard matrices of order 4l i exist, which enables one to replace 256 by

8εl.

3. Upper bounds

First we derive the upper bound

m 1 (n ,l) ≤ 2[n /2 ] . (3.1)

Suppose A 1 , ... ,A m are subsets of {1 , ... ,n } such that

 A i ∩ A j  ≡ 0 ( mod l) , 1 ≤ i , j ≤ m .

Let c i be a vector of length n defined by

(c i ) j =


î 0

1

if

if

j /∈ A i .

j ∈ A i ,

Let p be a prime divisor of l. Consider the vector space C over GF(p) spanned by the c i . Then C is self-

orthogonal, since

c i
.c j = 0 , 1 ≤ i , j ≤ m .
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Therefore, by basic linear algebra ([6]),

dim C ≤ [n /2 ] .

Now each c i is a 0 −1 vector in C, thus (3.1) follows from the following result.

Theorem 3 ([7]). Suppose that U is a k-dimensional subspace of a vector space V over some field. Then, in

any coordinate system for V, U has at most 2k 0 −1 vectors.

Combining (3.1) and Lemma 1 we obtain (1.5).

In order to prove (1.6) we need the following result (a somewhat weaker bound follows from results in

[8]).

Theorem 4 ([3; Theorem 11]). Suppose F is a collection of subsets of {1 , 2 , ... ,n } such that for F ≠ F ′ ,

F ,F ′ ∈ F,  F ∩ F ′  takes only s values. Then

 F ≤
i =0
Σ
s 

î i
n
 .

In view of Lemma 1 it is sufficient to prove

m 1 (n ,l) ≤ 2
i =0
Σ

[n /( 2l) ] 
î i
n
 . (3.2)

Suppose without loss of generality that A 1 , ... ,A k have cardinalities ≤ n /2, and A k +1 , ... ,A m have

cardinalities > n /2.

Then  A i ∩ A j  ∈ {0 ,l , ... , [n /( 2l) ] l }, 1 ≤ i , j ≤ k, and moreover  A i ∩ A j  = [n /( 2l) ] l implies

i = j. Thus, by Theorem 4, we have

k ≤
i =0
Σ

[n /( 2l) ] 
î i
n
 (3.3)

Next, define B i = {1 , 2 , ... ,n } − A i , k +1 ≤ i ≤ n. Then

 B i ∩ B j  = n −  A i  −   A j  +   A i ∩ A j  ≡ n ( mod l), moreover for i ≠ j we deduce

 B i ∩ B j  ≤ n /2 − l = (n −2l)/2. Thus  B i ∩ B j  for i ≠ j takes at most [n /( 2l) ] different values.

Again from Theorem 4 we obtain
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m −k ≤
i =0
Σ

[n /( 2l) ] 
î i
n
 . (3.4)

From (3.3) and (3.4) the bound (3.2) and thus (1.6) follows.

4. Related problems.

Our paper leaves a number of questions open. The main problem, as stated in the introduction, is to

determine c(l). Barring that, it would be interesting to decide whether c(l) is monotone decreasing. (At

this point we only know that c( 2 ) ≥ c(l) for l = 3 , 4, and c( 2 ) > c(l) for l ≥ 5.)

One can also ask similar questions about collections of equal-sized sets. Let k be a positive integer and

I a subset of {0 , 1 , ... ,k −1}. Denote by m(n ,k ,I) the maximum number of k-subsets of an n-set such that

the intersection of any two distinct sets has cardinality belonging to I. It was proved in [2] that for

n > n 0 (k ,I),

m(n ,k ,I) ≤
i ∈ I
Π (n − i)/(k − i) . (4.1)

In particular, if n = bl, k = al, and I = {0 ,l , ... , (a −1 ) l }, then (4.1) gives

m(n ,k ,I) = 
î a
b
 . (4.2)

It would be nice to know given a and l what is the least value of b 0 such that for b ≥ b 0 and n = bl,

k = al, (4.2) holds. Binary self-dual codes show that in general the bound 
î a
b
 does not hold even for

l = 2.

One can generalize our problem by asking for m(n ,l ,s), the maximum number of subsets of an n-set,

such that the intersection of any s distinct ones has cardinality divisible by l.

Obviously m(n ,l ,s) ≥ 2[n / l] . It can be shown that

c(l ,s) =
n→ ∞
lim m(n ,l ,s)1/ n



- 9 -

exists, and that c(l ,s) is monotone nonincreasing in s. It seems reasonable to conjecture that for s > s(l),

c(l ,s) = 21/ l .
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