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1. Introduction

P. Erdds and D. Silverman (see [4]) posed the problem of determining the maximal density attainable

by aset S = {s;} of positiveintegers having the following property.

PROPERTY NS s; + s; isnot a perfect square for all i#].

J. P. Massias [8] observed that the set S; of integers consisting of al x = 1 (mod 4) together with all
X = 14, 26, 30 (mod 32) has property NS and density % In a previous paper [6] we proved the

following result. Let d(S) denote the natural density of a sequence S.

Theorem A. Let S be a union of arithmetic progressions (mod N) having property NS. Then the density

d(s) < %vvith equality possible only if 320N, For all other N, d(S) < %

In this paper we bound the maximal upper asymptotic density

(S = lim sup 08 n [1,N]0]
N-w N
attainable for an arbitrary sequence S having property NS. It is easy to see that this density cannot exceed
1/2, for any square n? excludes ¥ the positive integers smaller than n?, since at most one element of each
pair (k, n? — k) can bein aset Shaving property NS, while for each ¢ > 0 there is a square between x and

(1+¢)xfor al sufficiently large x.

Our main result appliesto finite sets. Let Sdenote afinite set with al elements< N which has property

NS, and let
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d(N) = mgx N (1.1

denote the maximum density of such aset in[1,N]. Our main result is the following.

Theorem B. There exists an absolute constant N such that for all N = Ny,
d(N) < .475. (1.2
Theorem B is proved using the Hardy-Littlewood circle method, based on an idea used in [6]. It
immediately implies that the upper asymptotic density d(S) of an infinite sequence having property NS
must satisfy

d(S) < .475. (1.3
The bound (1.2) can be improved by extending the methods used in this paper, but we see no hope of

attaining an upper bound near to % without some new ideas. (In fact, it may well be that sequences with

1 .
des) > ﬁexmt.)

The methods of this paper also apply to the analogous problem of bounding the maximal density

attainable by asequence S = {s;} of positive integers having the following property.

Property NP(K). s; + s; isnot a perfect k™ power for all i#j.

Fork = p-1lwherepisanodd primetheset S, = {x : x=i(modp),1<i< p;l} has property

NP(k), since xX = 0 or 1 (mod p) for all x. Sp has density % - 2_1p By an adaptation of the method of

this paper it can be shown that for any sequence Swith Property NP (k),

A < 5 - colk),

where ¢ (k) is a positive absolute constant depending on k.

It isinteresting to note that the density behavior of sets having property NS differs completely from that
of sets Shaving the following property
Property DS. s; — s;j isnot a perfect square whenever i # j.

Sarkozy [9] has shown that any sequence having property DS must have density zero; he shows the
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number of elements< xin such asetisODMg_D
0 (log x) 0

In another related direction, Erdds [3] has proposed the following problem: Given a segquence
n; < n, <.. of positive integers with n;,¢1/n; - 1 asi — o, and such that the n; are uniformly

distributed modulo d for every d, does it follow that if S = {s;} is an infinite sequence of positive integers

forwhichs;, + s # n; forall i, k thend(S) < %?

2. Proof of the Main Theorem

In this section we prove Theorem B assuming certain results proved by the circle method in later

sections.

Proof of Theorem B. Let Sbe a subset of [ 1,N] having Property NS. We wish to bound [5from above.
Let G* (N) denote the graph having N vertices labelled 1 through N, and in which {i,j} is an edge if and
only if

i+ =k (2.1)
for some integer k. Note that G* (N) contains loops at those verticesi withi = % k2. If a*(N) denotes
the independence number of the graph G* (N) then
a*(N)

N
sinceif S O [1,N] has Property NS, it consists of an independent set in G* (N) plus some integers j such

d(N) < + N~Y2 (2.2)

that 2j = k2, and there can only be < N¥2 of those. Thus the problem is that of bounding the
independence number of G* (N).
We may compare G* (N) with the graph G(N) of [6], inwhich {i,j} wasan edgeif and only if
i+j=k? (mod N).
All edges of G*(N) are edges of G(N), but G*(N) has O(N®?) edges, while for any € > 0 and all

N > Ng(g), G(N) has at least N>~ ¢ edges. In [6] we showed the independence number a(N) of G(N)

satisfies a(N) < %N. We may expect a weaker bound here since G* (N) has many fewer edges than

G(N) and hence, presumably, alarger independence number.



Asin [6] we view the problem of calculating the independence number a(G) of a graph G as that of

solving the following 0 -1 integer programming problem: Maximize

N

1
E

x

(2.3
subject to

Xj + Xj <1, (24)
if {i,j}isanedge of G. We will obtain an upper bound for (2.3) by first replacing the constraints (2.4) with
a set of weaker constraints implied by (2.4), and second by treating the resulting program as a linear
program with the added constraints

0<x; <1, (2.5
for all i.

The weaker constraints we consider are obtained as follows. If H is a subgraph of G the constraints

(2.4) for G imply

2 Xisa(H), (2.6)
iOV(H)
where V(H) isthe set of vertices of H. For example, if Hisa(2s+1)-cycle, then a(H) = s. Wewill use

a subset of the constraints

S X <s, (27)
iOV(Cys.1)

where C,g, 1 isany (2s+1)-cyclein G* (N).

We can produce a large number of explicit (2s+1)-cyclesin G* (N) using simple identities involving

sums of squares. Letyyg,...,Yos be 2s+ 1 integers such that

>y =0 (mod 2) . (2.8
i=0
For0 < k < 2sset
2s -
2ng = 3 (-1)' Yisie (2.9)

i=0

where the subscripts on the y, . +1 are interpreted (mod 2s+1). The congruence (2.8) is a necessary and

sufficient condition that all the n, beintegers. A calculation shows that



N + Nger = Yier (2.10)

for 0 < k < 2s-1, and that

Ng + Nys = Y3 . (2.11)
Consequently if al the n,’s are positive then (ng,nq,...,Nyg) isa(2s+1)-cyclein G*(N). We label this
cycleC(yg,Y1,---,Y¥25)- A sufficient condition to guarantee that all of (ng,n4,...,N,s) be positiveisthat all
they; be nearly equal in size. Such aconditionis given by

(1-ey M<y; <M, 0<ic<2s, (2.12)

forany M > 0and any € with

1

O<ege< .
s+1

(2.13)

To see this, we note that (2.9), (2.12), and (2.13) imply
2ng > (s+1) (1-&e M -sM=0.
Next note that the constraint (2.7) corresponding to C(yg,Y1,---,Y2s) IS

2s
2 Xp <. (2.19)
k=0

We now consider the linear program L ¢ having the objective function (2.3) and the constraints (2.5) and

(2.14) for al C(yg,...,Y2s) satisfying (2.12), for afixed valueof s. Lety = (yg,...,Y2s). If weadd up the

constraints C(y) in (2.14) weighted with nonnegative weights w(y) we obtain

N O2s O

> r(n) xp = XY w(y) 0¥ X0

n=1 y [k=0 O
< sgz w(y)g , (2.15)

y
where
r(n) = 3 my(y) w(y) , (2.16)
y

and m,, (y) is the number of times n occurs as a component in the vector (ng,...,N,s) corresponding to y

via(2.9). Notethat we have the identity

N

2 r(n) =(2s+1) 3 w(y) , (2.17)
y

n=1

since each y produces a vector of 2s+1 n;’s. If we can find nonnegative weights w(y) such that (2.16)

gives



r(n) 21, 1<n<N, (2.18)
then
N
Z< 3y r(n) x
n=1
< s(X w(y))
y
_S 05 rn)o 2.19
< .
T 2s+1 Dzlr(n)g (2.19)
using (2.15) and (2.17). If furthermore
r(gj) <y, 1<j<N, (2.20)
we obtain the upper bound
S
R TI M N, (2.22)
i.e, d(N) < Zss+1 M. In linear programming terms the w(y) are dua variables and (2.18) are the

conditions that the w(y)'s be a dual feasible solution. Dual feasible solutions always provide an upper

bound on the primal problem’s objective function, which in this case is (2.19).

We have now transformed the problem to that of finding a "good" choice of the nonnegative weights
w(y) so asto make all ther (j) nearly equal as given by (2.18) and (2.20). Now the formula (2.16) for r(j)
shows that it is aweighted sum over those y such that

2n = ; (-1)' y?, (2.22)
i=0

for somek, i.e., over representations of 2n by the indefinite diagonal quadratic form

2s .
Q) = ¥ (-1)' 7. (2.23)

i=0

We can count the number of weighted integral representations of such a form satisfying certain side

conditions using the Hardy-Littlewood circle method. Let r’,f,,,g(zn) denote the number of

ordered (2s+ 1)-triples of integersz = (zg,21,...,Z25) suchthat 2n = Q(z) and

(1-¢)M <z, <=M (2.24)
for 0 < i < 2s, and such that all the z; are distinct. Using the circle method, in Section 3 we will prove the

following result.
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TheoremC. Let s=2, and suppose0 < € < G Thereisaconstant & > 0 such that
we(2n) = M7 Gg(2n) f( Z) + OMBTI8) (22

where the O-constant depends on s and €, but not onnand M. Here:
(i)  For all positiveintegersn, G¢(2n) satisfies

c1(s) = G4(2n) = cp(s) (2.26)

for certain constants ¢4 (s) and ¢y (S).

(i) f(t) is a continuously differentiable function which is nonnegative and not identically zero. It

vanishes outside the interval | s given by

1-2(s+1l)e + (s+1)e? <t <1 + 2se — s . (2.27)
In this theorem G¢(2n) is the singular series; it is defined by (3.18) below. The proof of Theorem C

shows that we can take & = 1_12 a constant independent of M, s, and €. In addition we note that the
conditions on € and sinsure that
s O [%,2] .
The constant ¢ (S) is strictly positive for s = 2, aswill be seen in Section 4.
We can use Theorem C to obtain weights w(y) so as to obtain r(n) Bry . (2n). However ry . (n)
fluctuates greatly in sizein theinterval 0 < n < N dueto the term f(%). We damp out these fluctuations
by choosing weights that involve afurther averaging over the parameter M. Wefirst set

w(y,M) = M™% (2.28)
provided that

M(1-¢) <y; <M, O0<i<2s, (2.29)
and that al they,; aredistinct. Otherwise we set w(y,M) = 0. Our choice of weightsis

w(y) = 2 w(y,M) , (2.29)
M

where the prime in this and later summationsindicatesit is over all integers M in the range

e VN <M < (3-¢) VN. (2.30)



Lemma 2.1. For s = 2 and the choice of weights w(y) given by (2.29), (2,30), there are positive constants

C, and &rr such that

r(n) = c, Gg(2n) + O(N™9") (2.31)

fore N <n < (1-¢) N.Inanycase

r(n) < c,G4(2n) + O(N™9") (2.32)
for 1 < n < N. The O-symbol constants depend on s and €, but not N.

Proof. Recall Q(y) = i:E()(—l)‘y? and let
w*(2n) = > w(y)
y
>3 QL) 72N

y
Q(y)=2n

S M. (2n)
M

= 5 (ML Gg(2n) F(2D) + OM~1-%)}
v M

= 5 ML Gy(@n) 1(25) + O((eVN) P [2,33)
M

1
- =&
using Theorem C. Since € >0 isfixed, we can replace the error termin (2.33) by O(M 2 ) Now

(3-¢)VN 1

S M1 f(%”f) = [ f(%;)dt + O(N 2), (2.34)
M VN

using

Or(t)E Ko(e,8) , te(—o,0) .
t
V2n

The change of variablesu = yields

(3_5)\/—%— 1

> M f(%) = [ ulfu?)du+ON Z). (2.35)
M

Vo



Fore N < n < (1-¢€) N, therange of integration in (2.35) includes [%, 2], hence using Theorem C (ii)

we have
1 2n ., _ - %
2 M7 f(—) =c3 + O(N ), (2.36)
vl M
where
2
¢z = [ ut f(u?) du.
1/2
Then (2.33) and (2.36) yield

w*(2n) = c3 G4(2n) + O(M~9"), (2.37)

with & = min(%é:, %),fornintheranges N<n<(l-¢) N,and

w’(2n) < c3 Gg(2n) + O(N™9") (2.38)

forl<n<N.
A counting argument now shows that

r(n) = (2s+1) w-(2n) . (2.39)
To prove (2.39), let o; be the cyclic permutation acting on y by

gi(Yj) = Yi+j
where subscripts are interpreted (mod 2s + 1). Note that the definitions (2.28)-(2.30) guarantee that

w(ai(y)) = w(y) (2.40)
foral o;,0 < i < 2s. The condition that y has distinct coordinates implies that

oi(y) #y (241)
for 0 < i < 2s. Now each w(y) weights2s+1 n;’s, (see (2.9)) but only the weights corresponding to ny’s

ae counted in w (n). The permutation o©; sends y to o;(y), and
No(oi(y)) = nj(y). This gives a one-to-(2s+1) weight-preserving map (by
(2.40)) from the set {(y, ng(y)) Odl y} onto {(y, n;(y)) Oal y,0 < i < 2s},
which proves (2.39).

Thelemmafollows from (2.37)-(2.39), withc, = c3(2s+1).00
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Lemma 2.1 shows that the choice of weights (2.29) has eliminated almost all
fluctuations in the resulting r(n), except those due to the singular series. By
increasing s we can reduce the fluctuations in the singular series given by (2.26).

In Lemma4.3 we provethat fors = 7and all n,

1.0085 = G;(n) = 0.9915. (2.42)
Now choosing s = 7 and applying (2.42) with Lemma 2.1 and (2.19), we obtain
N
09915 coZ< v c2 G7(2n) Xp
N =1
< 5 r(n)x, + 1.0085 c(2eN) + O(N1™9;
n=1
7 OO = 1-&
< — 0O r(n)g+ 1.0085c,(2eN) + O(N )
15 D‘I:l |:|
7 [JN [ 1-5
< _—c20Y G7(2n)0 + 2.017 coeN + O(N-™?)
T 0

< 02(1.0085)(% + 2e)N + O((243)) .

The term 2.017 c,eN arises from n in the intervals [0, eN] and [(1-¢€)N, N] where (2.32) was used.

1

Choosinge = .0001 < — —__
g A(s+1)

and dividing by c,, we obtain

Z < 4747 N + O(N17%).

For sufficiently largeN > Ny it follows that

Z < 475N, (2.44)
the desired result. O

Remark. There are anumber of ways to improve the above bound. For example, it is easy to see that

% G¢(2n) = N + O(N).
n=1

If we used thisin the inequalities leading to (2.43) instead of (2.42) we would obtain
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Z < .4707 N.

Further improvements are possible because G4(2n) depends largely on the residue classes of 2n modulo
small prime powers, and so cannot be close to its lower bound too often. To get substantial improvements,
however, we would need to take s much smaller than 7. (The circle method as we use it here works only
for s = 2, but since we only need results that hold for most values of n, rather than all n, we could modify
the method to work for s=1 as well.) For small s, however, the G¢(2n) factors oscillate wildly, and to
smooth out the oscillations we would need to consider weights w(y,M) that depend on the congruence

properties of yg,...,Y2s. This can be carried out (cf. [7]), but the proofs are quite cumbersome, and since it

seems that they would not yield a bound close to % N, we have not pursued this subject further.

3. Application of the circle method

In this section we prove Theorem C following a version of the circle method incorporating
improvements of 1. M. Vinogradov, which is described in Davenport [2, pp. 9-48]. Since this proof is a

relatively routine variant of the circle method, we shall only sketch the details.

Proof of Theorem C. We shall first estimate the number of representationsry, . (n) of (Yo,...,Y2s) Of

2s .
n=73 (-1)'y (3.1)
i=0
for which
(1-e)M <y; < M, 0<i<2Zs, (3.2
where the y; need not be distinct.
We suppose s = 2 and € are fixed, 0 < € < ﬁ M will be alarge variable integer, and we set

M; = [M(1-¢)].

The circle method involves study of the trigonometric sum

T(a) = % e(ax?), (3.3)
X=M,

where
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e(a) = exp(2ma) .

Clearly we have

1
rme(n) = [ T(a)s*! T(-a)® e(-na)da . (3.4)
0

We estimate this integral by dividing the interval [0,1] into major and minor arcs. We take a parameter 9,
to be chosen later, which satisfies0 < 6 < 1_10 and define the major arcs m, 4 to be the sets m, 4 with
1<qsM®and(a,q) = 1, 1<a<q, where

Maq = {00 Osa<d, Do - %D< M™2*3} (35)
(We consider a modulo 1 here)) Let U denote the union of the major arcs and let V be its complement, the

minor arcs.

We obtain the minor arcs estimate asin Davenport [2, p. 20]. (Note Davenport’ssisour 2s+1.)

Lemma 3.1. (Minor Arcs Estimate) We have

[ OT(a) B3 OT(-a)d da = O(M*™17%), (3.6)
\

for afixed d; > 0 depending on d.
An examination of Davenport’s proof showswe may taked, = 8/2 + nforany fixedn > 0.

We next treat the major arcs. Analogously to [2, Lemma 4, p. 22] we obtain:

Lemma3.2. Leta OO myq,andset = a/q — a. Wehave

T(a) = a7" Saq 1(B) + O(M?)

where

g a
Saq = 2 &(=K?) (3.7)
k=1 q
isa Gaussian sum, and where
M
1(B) = [ e(Bt?) dt.
M,

Summing up over all the major arcs and making a change of variables leads to the following. (See [2,

Lemmab, p. 23])
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Lemma 3.3. (Major Arcs Estimate). We have

[ T(a)*** T(-a)® e(-na)da = M?* G(n, M®) J(n,M?)
U

+ O(MZS—l—BZ) ,
whered, = 1-56 > 0, and where

G(n, M®) = ¥ % 972571 [B, 4 Saq e(—%)

gsM®  a=1
(a,q)=1
and
5y — s+1 s ny
J(n,M?°) = _I H(y) H(-y) e(_W) dy,
yE M°
where

1
H(y) = [ e(yt?)dt.

1-¢

We next approximate J(n,M?®). We define

f(u) = [ H(y)*"™* H(-V)® e(-yu) dy.

Thisintegral converges, since we have

H(y) = O(yO?)

(3.9)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

asy — oo, afact checked by letting x = t2 in (3.11) and integrating by parts. Comparing (3.12) and (3.11)

using the bound (3.13), absolute value estimates yield

J(n, M%) = f(V”T) + O(M~25) (3.14)

We claim f(u) is a real-valued nonnegative function which vanishes outside the interval | = I,
defined by

1-2(s+1)e + (s+1)e? su< 1+ 2se — sg? . (3.15)

To seethis, we note using (3.11) that H(y) isthe Fourier integral transform

H(y) = [ h(u) e(yu) du

of
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d 1

0,7
h(U) — Diu 2 (1—8)2 <u<l, (316)

g 0 elsewhere,

and H(-Y) the Fourier integral transform of h* (u) = h(—u). But (3.12) says f(u) is the
inverse Fourier integral transform of H(y)S*1H(~-y)S, which implies that f(u) is
given by the repeated convolution

f(u) = [ha(u)O..Theeq (U)] O[hgeo(u) O..Chas,q (U)] (3.17)
where
0 h(u) 1<is<s+l,
hi(u) = O

th(u) s+2<i<2s+1.
Using the definitions of h(u) and h” (u), the expression (3.17) shows f(u) is real and
nonnegative, and that it vanishes outside the interval (3.15). The fact that s > 2

shows that f (u) in (3.17) is continuously differentiable, since h(u) and h* (u) are
pi ecewi se continuous.

We next approximate G(n, M 6) by the singular series Gg(n)
defined by

2 el 2 na

Gs(n) = z q 2s-1 z |:Sa,qﬁs Sa|q e(_ —) ’ (3-18)
q:]_ a=1 q

(a,0)=1

provided this sum converges absolutely. Since S,  isaGaussian sum, we have

Saq = (%) Siq» (3.19)

where (%) isthe Jacobi symbol, and we can rewrite G4(n) as

Gq(n) = % 072 8 4F° Aq(N), (3.20)
q=1

where

4 na
Agn) =gt 3 Siqe(- —) . (3.21)
a=1 q
(ag)=1

The quadratic Gaussian sum is explicitly evaluated to be (e.g., [1, Theorem 4.15]):
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H1+1)V3 =0 (mod 4),
s,.=p Yo g=1(mod4),
1.q

= (3.22)
o O q=2 (mod 4),
o g g=3 (mod 4).
Hence
[B.q(k V2q.
Absolute value estimates show that
A, (n)O< V2g.
and hence that (3.18) converges for s=2, and that for all n
(G (N)0< cy(s) = 251 (s- %) . (3.23)
Similar absolute value estimates give
3
-3(s- )
Gs(n, M%) = G¢(n) + O(2%*1M 27 . (3.24)
Combining lemmas 3.2 and 3.3 with (3.14), (3.23) and (3.24) we obtain for s = 2 that
— n2s-1 n 2s-1-0
Fme(n) =M Gs(n) f(MT) + O(M ), (3.25)

where & = min[23s, d(s— ;) + n, 1-59, gﬂ]] for any n > 0. We can choose &' = 1_12 by

taking o slightly exceeding % Here G¢(n) and f(x) satisfy (i), (ii) of Theorem C, by (3.15) and an earlier
remark.

Theorem C will be proved if we show that for s = 2,

rme(n) = Fue(n) + O(M?S7271/10), (3.26)
Let rj (n) denote the number of solutionsto (3.1), (3.2) withy; = y;, sothat
. 2s
rve() —rwe(m s 3 3 ri(n). (3.27)
i=0 j#i

But r; (n) isexactly the number of solutionsto

Qij(y) =n,
where Q;; isadiagonal quadratic formin either 2s or 2s -1 variables and all the variables satisfy

M(1l-€) <y; < M.
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If we now fix al but 2 of the variables, we will have O(M") solutions for each n >0, which yields the
desired result. O
4. The Singular Series

In this section we evaluate the singular series G¢(n) in Theorem C, in order to abtain the bound (2.44).

Again the method is standard, asin [2].

We first examine the expressions A, (n) givenin (3.21).

Lemma 4.1. We have

oo & @)
Aq(n) = > ! (4.2
T g3 )
(g,x°=n)
Moreover, Ag o, (N) = Ag (N)Ag, (n)if(d1,92) = 1.
Proof. From (3.21) we obtain
a4 d a
A =ty 3 e(=(k*-m)
k=1 a=1 q
(a,g)=1
q
=q !t 3 cq(k?-n), (4.2)
k=1
where ¢, (m) is Ramanujan’s sum. This sum can be evaluated explicitly [5, Theorem 272] as
Cq(m) = u(%)ﬂ, (4.3)
q
o(5)

where d = (q,m). This proves (4.1). The multiplicativity of A,(n) follows from the multiplicativity of

H(k) and @(k). O

We can now represent G¢(n) as an Euler product, using (3.20) and noting that q~2° 0S8 q 4 is

multiplicative. We obtain

Gs(n) = 1 (1 + &p(m) , (4.4)
p

where the product is over all primes p, and where by (3.22) we find for odd p that
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&p(n) = kil p~*s Ag(n), (4.5)

and that

g,(n) = 3 26 DAL (n) .
k=1

The next step isto evaluate explicitly all the Ay (n).

Lemma4.2. If pisanodd primethen A (n) = (%) andfor k > 1,

O

[ 2k
CVPT pk 2if1 p*m,
_ 91 P O
Ap2k+1 (n) = [
O
O .
0 0 otherwise,

aok-l(p -1) 2if1 p?mh,

Apx(n) = 0 -pk 1 2if1 (p-1)On,

ooooo

0 otherwise.

Ifp = 2thenA,(n) = Oandfork = 1

gzk 2if1 n=2%2 (mod 2%*1),
0

A22k+1(n) = D_zk 2if1 n= 22k + 22k—2 (mod 22k+1)’
0
D .
00 otherwise,
gzk—l 2if1 n=0, 2272 (mod 224,
0

Aze(n) = B-2¢71 2if1 n=2%"1 32%2 (mod 2%),

O

U .
0 0 otherwise.

Proof. These are derived from (4.1). The only nonzero contributionsto A, (n) for g = pX come from those

xwith (g,x?-q) = gand (g, X*~q)

1
©

Apk(n) = p~Hp Agc(n) = Agt(n)}, (4.6)

where
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Apk(n) = Ox:1<x<pk, x? =n (mod p)}o

Ab’k(n) = [{X 1 <x< pk , X2 =nN (md pk_l)}D
Suppose pisodd. Then A4 (n) = 1, 2 or 0 according as pLh, n is a quadratic residue

(mod p ), or n is a quadratic nonresidue (mod p), respectively. On the other hand
Ap (n) = pin al cases. Hence Ap(n) = (%) using (4.6). We
next treat Ap2(n). Here Ap2(n) = p,0,2,0 in the four
cases pZEh, ptn, plh and (%) =1, plth and

(%) = -1, respectively. Similarly

A"3(n) = p,p,2p,0. If p2h 2then
Apk(n) = Apk(n) = |f p<[h,
however theh

Apk(n) = p Apt( ).

A() = P Apt2( ).

The lemmafollows for odd p. The analysis for q =2 is similar and isomitted. O

We now estimate G, (n). (Note that somewhat better estimates can be obtained by bounding &, (n)
from above and below, instead of estimating [§ , (n)L)
Lemma 4.3. For all n,

1.0085 = G(n) = 0.9915. 4.7
Proof. Using Lemma 4.2, we have for odd p that

I
|~

INES

©
N
=

(A (N)E

Ooooooodg
NS

p it 2Ck.

Applying thiswhens = 7in (4.5) we obtain
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§ Nk S p—7(2k—1)+(k—1) + 5 p—7(2k)+k
k=1 k=1

_ p . p—13 _ p6 +1 .
1_p—l3 pl3 -1

Also from Lemma4.2,

Ok_o1

022 2 if 21k,
Ax(n) <O

O ko

522 if 20k,

Henceusing A,(n) = Owe obtain

E,(n)k 5 2-7(2)+k 4 >3 p—7(2k—1)+(k—1)
k=1 k=1

- 2—13 N 2—7
T1-278 0 1-278

- 26+1
AR
Hence
8260 O ps+10
G < + < 1.0085 ,
W= gres [1 0 gD
p=3
8130 O ps+10
G(n) = 227 - > 0.9915 .
(M= g5 [1 2 gm0

el
Vo
w

(sq

(4.8)

(4.9)
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ABSTRACT

This paper studies the maximal density attainable by a sequence S of positive integers having the
property that the sum of any two distinct elements of Sis never a square. It shows there is a constant N
such that for all N = Ny any set S O [1,N] having this property must have [B(0< .475N. The proof uses
the Hardy-L.ittlewood circle method.
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