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ABSTRACT

If f(z) =3 ana™ has a, > 0 for all n, then for each z > 0 for which the series converges
we have a, < z7"f(z) for each n. By choosing that z which minimizes the upper bound
one obtains a “saddle point estimate” for each a, that has been known to be close to best
possible in several cases. This paper presents a lower bound for summatory functions of the
coefficients that is derived by elementary methods. It is not as sharp as the estimates that
one obtains from most modern Tauberian theorems. However, this method can be used when
Tauberian theorems are not applicable, for example, when one is dealing not with a single
generating function but a sequence of them. Applications to partitions, integers without large

prime factors, and other problems are presented.
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We now show how to derive Theorem 3 in the smaller range exp((log z)°) < y < exp((logz)'/?)
from Proposition 1 and Theorem 1. We again let ¢(s) = log F'(s). The prime number theorem
shows (cf. [4, 10, 12]) that for 3/4 < s < 1, y*=° > (log 95)5/10,

g(s) = li(y'")(1+0((logy)™")) + Olog |1 - s]) , (3.24)
g(s) ~ —(1-s)7ly' ™, (3.25)
g"(s) ~ (1-s)""y'"logy , (3.26)

(s) (3.27)

3.27

s) ~ —(1—s)"'y'>(logy)?

as ¢ — oo, uniformly for s and y in the specified ranges. We need to find the minimum value

of g(s) + slogz. This occurs at ¢'(s) ~ —log z, so that the minimizing s satisfies
(1—s5)"'y'™ ~logz . (3.28)

For this value of s, we see that |¢"(s)| = o((g"(s))*/?), so the hypotheses of Theorem 1 are
satisfied. The error term sA/? in (1.10) will be o(ulogu) for y < exp((logz)'/?). For larger

values of y, we obtain poorer error terms.

The main point of this subsection was to show how Theorem 1 can give a lower bound
almost for free once the upper bound of Proposition 1 has been established. Most of the slight
extra cost is due not to the conditions on derivatives that are required by Theorem 1, but to

the need to obtain the optimal bound from Proposition 1.
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breaks down. For this choice of parameters, it is easy to see that the conditions of Theorem 1
apply, and so the number of lattice points inside ¢S5, + (w1, ...w,) behaves like ¢, where ¢
varies in a bounded interval (for o fixed) as (wy, ..., w,) varies. This is dealt with in detail in
[11] for ¢ = 2, and is only mentioned for other ¢ in [5] (since for the main results of that paper
only the upper bound of Proposition 1 was needed). Lattice points in other kinds of bodies,

such as those studied in [5], can also be estimated by using Theorem 1.

3.3 Integers without large prime factors

Let ¥(z,y) denote the number of positive integers < z and free of prime factors > y. This
function has been investigated extensively because of its applicability to sieve methods, integer
factoring algorithms, and other problems. For extensive references and the best currently
known bounds, see [10]. If we let

F(s)= [T -p)" (3.20)

Py

then F(s) can be represented as in (1.1) with ¥(z,y) = p(logz). The best currently known
estimates for ¥(z,y) have been obtained by Hildebrand and Tenenbaum [10] using complex
integration, but at the cost of complicated proofs. Most of the papers in the literature, such as
[4, 14], use Proposition 1 to obtain an upper bound for ¥(z,y), and then prove lower bounds
by combinatorial methods, counting integers of certain special kinds. These methods yield
weaker results, but ones that are usually sufficient for applications. The advantage of these
methods is that they are simple. The argument of Pomerance [12] is particularly short. He

proves the following result.

Theorem 3 If € > 0 is fized, and y satisfies

exp((logz)) < y < exp((logz)' ™) , (3.21)
then
U(z,y) =zexp(—(1+ o(1))ulogu) (3.22)
uniformly as v — oo, where
1
u= 2" (3.23)

~logy
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Theorem 2 Suppose that the a(n) are defined by (3.13),

Z b(k) ~ Cz"(logz)" as z — oo, (3.14)
k<z

where C > 0, u > 0, and b(k) > 0 for all k. Then

log (Engm a(n)) ~ N Cul (u + 2)¢(u + 1)}/ (D)

(3.15)
(u + 1))/ () g/ (et 1) (Jog ) v/ (w41)
as m — oo.
Brigham proved Theorem 2 by showing that
F(s)~Cs™(—logs)'T(u+1)¢(u+1) as s— 07 (3.16)

and then invoking the Hardy-Ramanujan Tauberian theorem [9]. We can obtain another
derivation by using Theorem 1. The crucial part, the estimate (3.16), is the same in both
proofs, and the very crude bounds on the derivatives of log F'(s) that are needed to apply
Theorem 1 are much easier to establish than (3.16). The advantage of using Theorem 1 is that
it can be applied in many more situations than just those covered by the Hardy-Ramanujan

theorem.

3.2 Lattice points in superballs

For any o > 0, a o-superball S, in R" is defined by

S, = {XGR”: > |$j|0§1} . (3.17)

i=1

The number of integer lattice points in ¢S, + (wy,...,w,) is easily seen to be p(t”), where

[ eine) = 5. (3.18)

o0

Ji(s)= Y exp(=slk —w,l%) . (3.19)

k=—c0

This is a case where the generating function F(s) = Il f;(s) varies with n and so none of the
standard Tauberian theorems apply. As is explained in [5] and [11], the most interesting case
to study is t = (an)l/" for a fixed o, @ > 0 and n — oo, since in that case Gauss’ principle

that the number of lattice points in a “nice” body in R” is approximated well by its volume
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(The simplest way to obtain these estimates is to use the Euler-Maclaurin sum formula. For
other, more precise methods, see [1, 2].) Hence, for y — o0, s(y) ~ 7r/(6y)1/2, the conditions

of Theorem 1 hold, and so (1.1) gives us a lower bound for

p(L)+p(2)+ -+ p(y)

that is within a multiplicative factor of exp(cy1/4) of the upper bound given by Proposition 1.

So far we have not said what the upper bound of Proposition 1 is. The reason is that the
quality of this bound depends on how carefully one estimates g(s) at the optimal s. Since
F(s) = exp(g(s)), even small errors in g(s) yield huge errors in the bound for p(y). Using the
bound (3.6) gives a useful but poor estimate. Thus here we have a common situation that
arises in applying Theorem 1; the estimate of Proposition 1 requires more care to derive than

the additional estimates required by Theorem 1.

Careful estimates of F/(s) show [1, 2] that
F(s) ~ (21)" Y25 2 exp(n?/(65)) as s — 0T . (3.10)
Therefore Proposition 1 gives a bound of
p(1)+ -+ py) < 274 Ay= (1 4 o(1)) exp(2m6 ™2y ?) (3.11)

which is off only by a factor of y!/4 from the correct value, since the asymptotic formula for

p(n) [1, 2] shows that
p(1) 4 -+ p(n) ~ 2732071y~ exp (2762 ?) as y — o . (3.12)

On the other hand, the lower bound of Theorem 1 is off by a factor of exp(cy1/4).

We next consider more general partition problems. Let

F(s) = ﬁu e f: a(n)e™" (3.13)
k=1 n=0

where the b(k) are nonnegative integers. When b(k) = 1 for all k£, a(n) is the ordinary partition
function p(n). When b(k) = k, a(n) is the number of plane partitions of n. Many other partition
problems can be put in this form. Brigham [3] proved a widely used theorem that applies in

this setting.
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so that (1.1) holds with p(z) = [z| + 1. The upper bound exp(sy)/(1 — exp(—s)) for u(y) of

Proposition 1 is minimized for
s=log(l+y )=y +0(y™?), (3.2)

and shows that

wy) <(e+o(l))y as y— oo, (3.3)

which is too large by a factor of e. The lower bound (1.1) of Theorem 1 would tell us that
w(y) > ey for some € > 0, since A ~ ey? as y — oco. However, we cannot apply Theorem 1
here, since the hypothesis (1.9) of Theorem 1 is not satisfied, as the third derivative of log F'(s)
is comparable to A3/2. It is possible to modify the proof of Theorem 1 to obtain a nontrivial

lower bound, but it requires more careful estimates.
3.1 Partitions

This section applies Theorem 1 to enumeration of partitions, and shows how this method
compares with other ones. Unlike in the next two sections, in this one we will always deal with
asymptotics of coefficients of a single generating function, so one of the main advantages of

the new method will not be apparent.

First, let us consider p(n), the number of ordinary (unordered) partitions of an integer n

into positive summands. Then we have the well known formula

F(s) = ip(n)e_m = ﬁ(l — ko)1 (3.4)
n=1 k=1

Let, as in the proof of Theorem 1, g(s) = log F'(s). Then

o0

g(s) = Z —log(1 — e_ks) , (3.5)
k=1
and we find that for s — 07,
2
T
o) ~ 5 (36)
2
-7
g'(s) ~ 652 (3.7)
2
T
g"'(s) ~ R (3.8)
2
g9"(s) ~ — (3.9)



where

B — mn .
jpax lg"'(s)]

The same arguments, mutatis mutandis, show that inequality (2.16) follows from
(s3 — 82)29”(52) > 2log4 + 2B|s3 — s5° .
We select s; and s by
Sy — 81 = 83 — S9 = 10(9"(51))_1/2 .
Since

19"(s2) = ¢"(s1)| < (52 —51) B,

(2.22)

(2.23)

(2.24)

(2.25)

the conditions of Theorem 1 guarantee that (2.21) and (2.23) do hold, which proves (2.15) and

(2.16), and therefore (2.17).

By (2.14) and (2.17), we now have

(y1) — p(ys) = F(sz2)exp(yssz)/2 .

However, F(sz) is close to F/(sy);

9(52) = g(s1) + (52 = 51)g'(s2) + 552 = 517" (50)

for some sg, s1 < sg < s9, S0
g(s2) > g(s1) — (82 — s1)y1 — 60,
and so
F(sy)exp(yss2)/2 > F(s1)exp(y1s1 — (y1 — y3)s2 — 61) .
Now for some s7, s1 < s7 < s3, we have

n

0< 91 —ys=9'(s3) —g'(s1) = (s3 — 51)9"(s7) ,

and so we obtain the claim of Theorem 1.

3 Applications

3.0 Integers

(2.26)

(2.27)

(2.28)

(2.29)

To show the power and limitations of the method of this paper, we consider the trivial

case of

i 1
F(s) = Ze_m: —,
= 1-—e¢

(3.1)
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which obviously holds for @ > y;, and so h(z) < 0 for z > y;. A similar argument shows that
h(z) <0 for z < ys.

Since h(z) < 0 for # < y3 and = > y;, and

h(z) < exp(yzs2 — x53) (2.13)

for all z, we see that

h(z) < exp(y2s2 — yY3S2)
for all z. This shows that
f(y1) — w(ys) > Hexp(—(y2 — y3)s2) - (2.14)

It remains to obtain a lower bound for H.

If we can choose sy and s3 so that

exp(yas2)F(s2) > 4exp(yist + y2s2 — y152)F(s1) , (2.15)
exp(yas2)F(s2) > 4exp(ysss + Y252 — y3s2)F(s3) , (2.16)

then we will have
H > exp(y2s2)F(s2)/2, (2.17)

which will give the desired bound of the theorem. We consider the inequality (2.15) first. We

need to prove that

9(s2) = g(s1) + y1(s1 — s2) +log4 . (2.18)
Now
9(s0) = 9(s2) + (51— 52)0/(52) + (1 = 32)%0"(s2) & o1 = 2°9"(s2)  (219)
for some s4, s1 < s4 < s9. Furthermore,
h = 0/ (1) =~ (52) ~ (51— 32)"(52) = 51— $2)79"(55) (2:20)
for some s5, 51 < s5 < s3. Thus inequality (2.18) will follow if

(51 — 52)29"(52) > 2logd + 2B|s; — 52|3 , (2.21)
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for all s > 0, since by the Cauchy-Schwarz inequality
(F'(s5))? = </OOO $6_5$d,u($))2 < /OOO e Tdu(z) /OOO e du(u) ,
and equality cannot hold because of the assumption on u(z).

Since p(x) is nondecreasing and p(z) — oo as & — oo, we have

g'(s) = —o00 as s—0F, (2.6)
g'(s) — —z9g as s— o, (2.7)

where
zo = inf{z : p(z) > 0} . (2.8)

Therefore for every y > zg, there is a unique solution s = s(y) > 0 to

—-g'(s)=y. (2.9)
Moreover, s(y) < s(y') if y > ¢’ > 0.

To prove Theorem 1,let y; = y, 51 = s(y1), and choose 0 < 51 < s < s3, with y; = —¢'(s;),
J = 2,3, s0 that y1 > yo > y3 > z¢. (The precise choice of the s; and thus of the y; for j = 2
and 3 will be made later. We note here that the roles of s; and s3 were switched by mistake

n [11].) Define

H = exp(y2s2)F(s2) — exp(yis1 + Y252 — y152)F (1)
(2.10)
—  exp(ysss + Y252 — y3s2)F(s3) ,
so that
H= / h(@)du(z) (2.11)
0
with

h(z) = exp(yz2s2 — ¥s2) — exp(yis1 + Y282 — Y182 — T51)
(2.12)

— exp(ysss + Y282 — Y3sg — x83) .

We first show that h(z) < 0 for > y;. It suffices to prove that in this range,

Y2S2 — xSy < Y181 + Y282 — Y152 — TSy .

This inequality is equivalent to

y1(s2 —s1) < x(se —s1)
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combination of Proposition 1 and Theorem 1. Theorem 1 makes assumptions on the derivatives
of log F'(s), unlike the theorem of [9]. (The existence of these derivatives is trivial, as is noted
in Section 2.) However, in many applications, such as those of Section 3, verifying that the

conditions on derivatives hold is easy, usually much easier than estimating the minimum of

exp(sy)F(s).
2 Proof of theorem

The proof of the proposition came from writing

UF() = [ et dp(a)

and noting that all the contributions to the integral are nonnegative, and that for 0 < 2 < y

the “weight” exp(s(y — z)) is > 1. To obtain a lower bound, we will consider

"= /OOO h(z)du(z) , (2.1)

where h(z) is > 0 only for w < & < y. Then we obtain

(max h(x)) (u(y) — p(w)) > H . (2.2)

The problem is to choose h(z) so that the bound obtained from (2.2) is useful. (In particular
we need H > 0.)

Since the integral in (1.1) converges for all s > 0, the integrals

/ sFe™ " du(x)
0

converge for all s > 0 if k € Z*, and so F(s) is in C*°(0,00). Furthermore, F(s) > 0 for all

5> 0. Let
g(s)=log F(s) . (2.3)
Then g(s) is also in C*°(0, o), and
F(s)
") —
g'(s) = Fs) <0 (2.4)

for s > 0. On the other hand,
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Theorem 1 Suppose that u(z) is nondecreasing, pu(z) — oo as & — oo, and the integral in
(1.1) converges for all s > 0. Let xg = inf{lz : u(z) > 0}. Then for any y > g, there is a
unique s = s(y) > 0 that minimizes exp(sy)F(s). Let

92

A= 5a7 log F(s) s=s(a) (1.7)
If A > 10° and for all t with
s(y) <t < s(y) 4+ 204712 (1.8)
we have
93
~3 43/2
‘853 log F'(s)| | <10774%%, (1.9)
then
u(y) — ply = 30A71%) > F(s(y)) exp(ys(y) — 30s(y)A*/* = 100) . (1.10)

The constants in Theorem 1 are far from best possible, and no effort was made to opti-
mize them, since the only goal was to obtain explicit estimates that can be applied to obtain

asymptotic estimates.

The above theorem is a generalization of the lower bound method used in [11] to estimate
the number of lattice points in high-dimensional spheres. That this method could be extended
to some related problems was mentioned in [5]. No details were provided, though, since only
the upper bound of Proposition 1 was needed to obtain the main results of [5]. Since it has
recently become clear that there are many more applications, it seems desirable to present in

an explicit form a general version of the bound.

The bound of Theorem 1 can be improved, as was already mentioned in [11], by choosing
better weights. However, this requires more work, and when it is necessary to obtain improved

bounds, one can usually use other methods, such as complex integration.

The bound of the proposition is usually much closer to the true size of x(y) than the bound
of the theorem. The method of proof of the theorem is crude and leaves a lot of slack. It
is similar to the proofs of some of the early Tauberian theorems, especially that of Hardy
and Ramanujan [9]. It yields results that are comparable to those of [9] in strength in many
applications, but much more general and simpler to prove. The Hardy-Ramanujan result is one
of the few Tauberian theorems in the literature that apply to functions F(s) that grow rapidly

as s — 0%. It also gives asymptotics only for log u(y), and not for u(y) itself, just like the
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they do provide information in many situations where Tauberian theorems do not apply. Fur-
thermore, these new results have a very simple proof. A strong assumption on pu(z) is made,

namely that p(z) is nondecreasing, but that is common to many Tauberian theorems as well.

From now on we will assume that p(z) > u(y) for all 2 > y > 0. In the cases of power
series (1.3) or Dirichlet series (1.5), this implies that a,, > 0, and in general that the “measure”
dp(z) is nonnegative. This assumption is crucial for what follows. We will also assume that
the integral in (1.1) converges for all s > 0 and that p(z) — 0o as  — 00, so that the integral
diverges for all s < 0. This will let us study the asymptotics of u(z). In situations where the
integral (1.1) converges for s > sy for some sy, we can renormalize by redefining p(z), but then

the estimates we obtain will not be for the original u(z).

The genesis of the new method is in the following well-known and trivial upper bound.

Proposition 1 Suppose that p(x) is nondecreasing, and the integral in (1.1) converges for all

s> 0. Then for any y > 0 and any s > sg,

uly) < eV E(s) . (1.6)

Proof Note that

e F(s) = [T et lauta) > [ dpta) = uw)

This result is old. In number theory, for F(s) in the form (1.5), it was used by Rankin
in the study of integers without large prime factors [14], and is often referred to as “Rankin’s
method.” However, Hardy and Ramanujan [9] had used this argument earlier, and similar

arguments have been used frequently in probability theory and other fields.

The upper bound of Proposition 1 is optimized for each z by choosing that s for which
exp(sz)F(s) is minimized. For s — 0 and s — oo, exp(sz)F(s) — o0, so we can expect
that there will be some intermediate point that minimizes this expression. (It is easy to show
that there is a unique minimizing s; see Section 2.) Since F(s) is analytic for complex s with
Re(s) > 0, and p(z) is nondecreasing, there is a “saddle point” at this minimizing s, and
in some cases the saddle point method can be used to obtain precise estimates. It has been
remarked by many authors that the upper bound obtained from using the saddle point in (1.6)
is often surprisingly good. The main result of this paper is to show that this is a general

phenomenon.
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1 Introduction

Consider a function F(s) defined by the Laplace-Stieltjes transform

F(s) = /Oooe_”du(x) , (1.1)

where p(z) is of bounded variation on every finite interval. This is the representation used

S

most frequently in Tauberian theory. It covers most of the important cases. If z = ¢7* and

o)=Y an, (1.2)

then we reduce to a power series

F(s) = Z a,z" . (1.3)
It

wa)= 3 an, (14)

then we reduce to a Dirichlet series

F(s) = Zann_s . (1.5)

Tauberian theorems obtain information about the function u(z) from information about
F(s). (See [6, 13] for results and references.) Their advantage is that usually only weak
assumptions about F'(s) have to be made. A major disadvantage is that the error bounds in
Tauberian theorems are usually poor, and so they yield only the leading term of the asymptotic
expansion. It is usually impossible to apply them in situations where one is dealing not with
a single function F(s) but a sequence of such functions. As the examples in Section 3 show,

there are many cases where one does need to deal with varying generating functions.

The aim of this paper is to present an elementary method that yields satisfactory estimates

in a variety of situations. These estimates are usually not very accurate. On the other hand,



