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I. INTRODUCTION

In this paper we give some partial results about the following process: Let { X 0 (i) , i = 0 , 1 , ... } be

independent, identically distributed, non-negative integer variables. For j = 1 , 2 , ... we define recursively,

X j (i) = (X j −1 ( 2i) − 1 )+ + (X j −1 ( 2i +1 ) − 1 )+ , i = 0 , 1 , ...

We may think of the { X 0 (.) } as being the number of customers associated with the leaves of a

complete binary tree. At each epoch, the number of customers at each leaf is diminished by one, if it is

positive. The customers remaining at each pair of leaves are handed down and collected at the parent node,

which now becomes a leaf. We want to study the behavior of X k = X k ( 0 ) as k → ∞. This model

originally arose as a crude model of the Aloha network as well as of a resource allocation model slightly

related to that of [2] and became interesting in its own right.

One obvious question is to determine those probability laws governing X 0 for which X k tends to zero as

k → ∞. In general we might ask what types of limiting behavior can occur.

In particular consider the case where X 0 is Poisson with mean λ. While this arrangement bears a

superficial resemblance to the tree-structured contention resolution algorithms introduced by Capetenakis

[1], there appears to be no real connection. In any event, for Poisson variables we are interested in that

value of λ below which X k → 0. We find, using the results to follow and extensive numerical calculations,

that for λ ≤ .999, X k → 0, and for λ ≥ 1. 001, X k → ∞, but have been unable to prove or disprove the

tempting conjecture that the critical value of λ is 1.

In the sequel we prove three results concerning the limiting behavior of X k .



- 2 -

Theorem 1: If the probability distribution of X k approaches a limit X∞ , then either

i) Pr [X∞ = 0 ] = 1, i.e. X∞ ≡ 0

ii) Pr [X∞ = 2 ] = 1, i.e. X∞ ≡ 2

iii) Pr [X∞ < t] = 0 for all t, i.e. X∞ ≡ ∞.

Furthermore, case ii) only occurs if for all k = 0 , 1 , ..., Pr [X k ≡ 2 ] ≡ 1. Now for any j, define

g j (α ) = E [αX j ] ,

where X j is a generic j th generation variable. We shall prove

Theorem 2: If for some α > 2 and some j, g j (α ) satisfies

g j (α ) < (α − 1 )2 ,

then

X k
_ ____>
a. s.

0 .

On the other hand,

Theorem 3: If for some j, the mean of X j satisfies

E [X j ] > 2 ,

then X k blows up, i.e.

X k
_ ____>
a. s.

∞ .

Corollary to Theorem 3 is a form parallel to that of Theorem 2:

Corollary 3a: If for some α < 1 and some j, g j (α ) satisfies

g j (α ) < α2 ,

then X k blows up.

We show also that there is a gap between the hypotheses of Theorems 2 and 3, i.e. there are X 0

satisfying neither hypothesis. We nevertheless think it may be true that one of X k → 0, X k → ∞, or
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X k ≡ 2, always holds.

Proofs of the results. We first prove Theorem 1. Note that if X k approaches a limit, then for all

0 ≤ α ≤ 1, g k (α ) approaches a limit g∞ (α ). Now, since

X j +1 (i) = (X j ( 2i) − 1 )+ + (X j ( 2i +1 ) − 1 )+ ,

then for

g j (α ) =
0
Σ
∞

Pr [X j = i] α i ,

we get the recurrence

g j +1 (α ) =


 α

g j (α ) + (α − 1 ) p j_ ________________




2

, (1)

where

p j
∆= Pr [X j = 0 ] .

Now if g j (α ) → g∞ (α ) for 0 ≤ α ≤ 1, then p j → p∞ and

g∞ (α ) =


 α

g∞ (α ) + (α − 1 ) p∞_ _________________




2

.

This quadratic equation can be solved to yield

g∞ (α ) = ( 1 − α) p∞ +
2

α2
_ __ ±

2
1_ _ α √ α2 − 4p∞ α + 4p∞ . (2)

If p∞ = 0, this has the solutions

g∞ (α ) = 0 , α2 ,

corresponding to cases ii) and iii) above. If p∞ = 1, then (2) has solutions

g∞ (α ) = 1 , ( 1 − α)2 .

The former corresponds to case i), and the latter is spurious (i.e. not increasing and so clearly not a

probability generating function). We can further see that case ii) cannot be approached, but can only arise

if Pr [X 0 (.) = 2 ] = 1. To see this, let p j i = P (X j = i) and thinking of j as fixed, set
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α i = Pr [X j = i] ,

and

β i = Pr [X j +1 = i] .

Since rule (1) gives

β2 = 2 (α 0 + α1 ) α 3 + α2
2

and since (α 0 + α1 ) + α3 ≤ 1 − α2 we have

β2 ≤ 2


î 2

1 − α2_______




2

+ α2
2 < α2 if

3
1_ _ < α2 < 1 .

Thus if p j2 satisfies
3
1_ _ < p j2 < 1, then p j +1 , 2 < p j2 , so that p j2 cannot approach 1 from below.

Note also that a solution to equation (2) for which 0 < p∞ < 1 cannot be a generating function. The

reason for this is that a generating function, viewed as a function on the complex plane, must have its

innermost singularity on the real line (see [3; Section 7.2]). However, since the solution of equation (2) has

singularities at

α = 2 p∞ ± 2 √ p∞ (p∞ − 1 ) ,

these singularities are complex unless p∞ = 0 or p∞ = 1.

Theorem 1 is proven.

Now, to prove Theorem 2, assume that for some j and α > 2,

g j (α ) = θ(α − 1 )2 ,

where, by the hypothesis of Theorem 2 and the fact that g j (α ) > 1 for α > 1,

(α − 1 )2

1_ _______ < θ < 1 . (3)

Using (1), we get
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g j +1 (α ) =


 α

g j (α ) + p j (α − 1 )_ ________________




2

(4)

=


 α

θ(α − 1 )2 + p j (α − 1 )_ ___________________




2

= (α − 1 )2


 α

θ(α − 1 ) + p j_ ____________




2

,

or since p j < 1

g j (α )

g j +1 (α )_ _______ <
θ
1_ _



 α

θ(α − 1 ) + 1_ ___________




2

.

The right-hand side is strictly less than 1 for all θ satisfying (3), so that g j (α ) ↓ 1. Now if

g j (α ) = 1 + δ, then from (4) since p j ≤ 1,

g j +1 (α ) ≤


 α

1 + δ + α −1_ ____________




2

=


î
1 +

α
δ_ _





2

= 1 +
α
2_ _ δ +

α2

δ2
_ __

= 1 + δ


 α

2_ _ +
α2

δ_ __




.

Now since α > 2, if δ is sufficiently small,

g j +1 (α ) < 1 + ρ δ, for

some

ρ < 1 ,

hence for all j > j ′

g j (α ) < 1 + ρj − j ′ δ .

Now
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g j (α ) ≥ Pr [X j = 0 ] + α Pr [X j > 0 ]

= p j + α( 1 − p j ) .

1 + ρj − j ′ δ ≥ p j + α( 1 − p j ) , for all j > j ′

or

(α − 1 ) ( 1 −p j ) ≤ ρ j − j ′ δ

(α − 1 )
j ′
Σ
∞

( 1 − p j ) ≤ δ
j ′
Σ
∞

ρ j − j ′ =
1 − ρ

δ_ _____ < ∞ ,

so by the Borel-Cantelli lemma Pr [X j > 0 ] → 0 a.s.

To prove Theorem 3, suppose that

E [X j ] = 2 + δ .

Since

X j +1 (i) = (X j ( 2i) − 1 )+ + (X j ( 2i +1 ) − 1 )+

≥ X j ( 2i) + X j ( 2i +1 ) − 2

E [X j +1 ] ≥ 2E [X j ] − 2

= 2 + 2δ .

Thus

E [X j ′ ] ≥ 2 + 2( j ′ − j) δ , for all j ′ ≥ j .

Now

Var (X j +1 ) = 2 Var [ (X j − 1 )+ ] .

But

Var [ (X j − 1 )+ ] = Var (X j ) + p j ( 1 − p j − 2E X j ) .

Since

E X j > 2

the last term is < 0, so
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Var (X j +1 ) < 2 Var (X j ) .

Hence

Var (X j ′ ) < 2 j ′ − j Var (X j ) .

Since the mean of X j grows, we can apply the Chebyshev inequality to show that for any finite t, for

sufficiently large j ′ ,

Pr [X j ′ < t] ≤ k


î 2

1_ _




j ′

,

hence goes to zero. A Borel-Cantelli argument shows X j → ∞ strongly.

To show the equivalence of Theorem 3 and Corollary 3a, note that g j (α ) is continuous, at least on the

unit disc. Then since

E X j =
dα
d_ ___ g j (α ) α = 1 ,

the function g j (α ) − α2 is continuous on [ 0 , 1 ], is zero at α = 1 and increasing at that point. Hence it

must be negative for some interval including the point α = 1. Therefore

E [X j ] > 2 = = > g j (α ) < α2

for some α sufficiently near 1.

As for the reverse implication, consider the function

h j (α ) =
α

g j (α )_ _____ .

Clearly h j ( 1 ) = 1. Now

hj′ (α ) =
α

gj′ (α )_ _____ −
α2

g j (α )_ _____ .

Also
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hj′ ′ (α ) =
dα2

d 2
____

0
Σ
∞

p j α j −1 (5)

=
dα
d_ ___

0
Σ
∞

( j −1 ) p j α j −2

=
0
Σ
∞

( j −1 ) ( j −2 ) p j α j −3 .

Since all the terms in (5) are non-negative, h j (α ) is convex. If

E X j < 2 ,

then

hj′ ( 1 ) =
1

gj′ ( 1 )_ _____ −
1

g j ( 1 )_ _____ < 1 .

Thus h j (α ), since it is convex must lie above the line α, and we have shown

E [X j ] ≤ 2 = = > g j (α ) ≥ α2 ,

for all α < 1. Therefore Theorem 3 is equivalent to Corollary 3a.

II. CONCLUSION

We have proved the theorems described in the introduction. In particular, Theorems 2 and 3 applied to

a Poisson starting distribution yield that

λ < 0. 999 = = > X k → 0 ,

and

λ > 1. 001 = = > X k → ∞ .

The lower number follows from the fact that g 55 ( 2. 03 ) = 1. 059 < ( 2. 03 − 1 )2 = 1. 0609. The upper

value is implied by the fact that E [X 170 ] = 2. 311. The region of uncertainty can be narrowed with more

numerical work, but the computations become onerous because of difficulty of dealing with roundoff errors.

Our computations were carried out using the multiprecision facilities of the Maple symbolic computation

language.
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It remains to be seen whether any behavior other than that described in Theorem 1 is possible.

We finally prove there is a gap between the hypotheses of Theorems 2 and 3, that is there is an X 0

which satisfies neither hypothesis. Nevertheless, it seems likely that the conclusion of Theorem 1 always

holds, i.e. either X k → 0, X k → ∞, or the trivial case X k ≡ 2 holds. We have been unable to prove this.

To show an example it seems worthwhile to slightly change notation by replacing for each k ≥ 0,

Y k = (X k − 1 )+

so that the recurrence becomes

Y k +1 = (Y k + Yk′ − 1 )+ , k ≥ 0 .

Although X k represents the original notation, calculations become simpler in the Y k notation. Theorems 2

and a slightly stronger version of Theorem 3, become in the Y notation,

Theorem 2′ . If E αY k ≤ α − 1 for some α > 2 and k ≥ 0, then

Y k
_ ____>
a. s.

0 .

Theorem 3′ . If E Y k ≥ 1 for some k and if Y 0 ≡/ 1, then

Y k
_ ____>
a. s.

∞ .

We will give an example of Y 0 where E αY k > α −1 for all k and α > 0 but E Y k < 1 for all k. To do

this fix 0 < η < 1 and let Y 0 (η ) take values 0 and 2 only with probabilities

P(Y 0 (η ) = 2 ) = η

P(Y 0 (η ) = 0 ) = 1 − η .

We will show that for some η , Y 0 (η ) lies in the gap.

Let η n be that value of η for which E αY n (η ) is tangent to the line α − 1, i.e. there is a value α = α n for

which
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E αn
Y n (η n ) = αn − 1

dα
d_ ___ E αY n (η n ) = 1 at α = α n .

It is easy to verify since E αY n (η ) increases in η for α > 1 that α n ↓ in n and η n ↑ in n. Denote

η ∞ = lim η n .

For each fixed n, Y k (η n ) → 0 as k → ∞ because of Theorem 2′ so that by Theorem 3′ ,

E Y k (η n ) < 1 for all k ≥ 0 , n ≥ 0 . (6)

Since Y k (η n ) ↑ Y k (η ∞ ) we must have from (6),

E Y k (η ∞ ) ≤ 1 for all k ≥ 0

It follows that Y 0 (η ∞ ) satisfies neither the hypothesis of Theorem 2′ nor 3′ and X 0 = Y 0 (η ∞ ) + 1

satisfies neither the hypothesis of Theorem 2 nor of Theorem 3.

Nevertheless it seems possible that there is no Y 0 for which Y k oscillates, i.e. neither Y k → 0 nor

Y k → ∞ (except for Y 0 ≡ 1). On the other hand, if there is such an example it probably has the following

property:

E Y k < 1 for all k (7)

but if Y0′ > Y 0 in the stochastic sense then

Yk′ → ∞ .

To see that there are Y 0’s with this property, suppose Y0
( 0 ) has P(Y0

( 0 ) > 1 ) > 0 and (7) holds for

Y 0 = Y0
( 0 ) . Let P(Y0

( 1 ) = j) = P(Y0
( 0 ) = j) for j > 1 and let P(Y0

( 1 ) = 1 ) be as large as possible subject

to (7) holding for Y 0 = Y0
( 1 ) . If Y0

(n) has been defined, let P(Y0
(n +1 ) = j) = P(Y0

(n) = j) for j > n +1 and

for j < n and let P(Y0
(n +1 ) = n + 1 ) be as large as possible subject to (7) holding for Y 0 = Y0

(n +1 ) . Then

we have Y0
(n) stochastically increases in n say to Y0

(∞) . Since

E Yk
(n) < 1

for all k and n we must have
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E Yk
(∞) ≤ 1

but since P(Y0
( 0 ) > 1 ) > 0, we must have

E Yk
(∞) < 1 for all k .

It follows that if Y0′ > Y0
(∞) then Y0′ > Y0

(k) for some k and Yk′ → ∞.
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ABSTRACT

Let X 0 be a nonnegative integer-valued random variable and let an independent copy of X 0 be assigned

to each leaf of a binary tree of depth k. If X 0 and X0′ are adjacent leaves let

X 1 = (X 0 − 1 )+ + (X0′ − 1 )+ be assigned to the parent node. In general, if X j and Xj′ , are assigned to

adjacent nodes at level j = 0 , ... , k −1, then X j and Xj′ are, in turn, independent and the value assigned to

their parent node is then X j +1 = (X j − 1 )+ + (Xj′ − 1 )+. We ask what is the behavior of X k as k → ∞.

We give sufficient conditions for X k → ∞ and for X k → 0 and ask whether these are the only nontrivial

possibilities. The problem is of interest because it asks for the asymptotics of a non-linear transform which

has an expansive term (the + in the sense of addition) and a contractive term (the +’s in the sense of positive

part).


