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ABSTRACT

Given 3n points in the unit square, n ≥ 2, they determine n triangles whose vertices exhaust the given
3n points in many ways. Choose the n triangles so that the sum of their areas is minimal, and let a *(n) be
the maximum value of this minimum over all configurations of 3n points. Then
n − 1/2 << a *(n) << n − 1/9 is deduced using results on the Heilbronn triangle problem. If the triangles are
required to be area disjoint it is not even clear that the sum of their areas tends to zero; this open question is
examined in a slightly more general setting.
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1. Introduction

Given a set P = { p 1 , ... ,p 3n } of 3n points in a convex planar body Σ, let a(n ,P ,Σ) denote the smallest

sum of areas of a collection ∆ = {δ 1 , ... ,δ n } of n triangles such that (i) the vertices of the δ i exhaust the 3n

points of p, and (ii) the intersection of any δ i with any δ j , j ≠ i, has zero area. A system of triangles

satisfying (i) and (ii) shall henceforth be called a disjoint triangle partition.

Let a(n ,Σ) denote the supremum of a(n ,P ,Σ) over all sets P ⊆ Σ of 3n points, and let a(n) denote the

supremum of a(n ,Σ)/ A(Σ) over all convex planar sets Σ of positive area. We establish for n ≥ 2 that

(1.1) n − 1/2 << a(n) ≤ 0. 8 + O(n − 1 ) ≤ 0. 9 .

Elementary considerations (see §5) show that the limit of a(n) as n → ∞ exists, but the authors do not

know whether or not it is zero, although they can improve on (1.1) to some extent.

If the disjointness requirement (ii) is dropped, so that we ask for that collection of triangles

∆ = {δ 1 , ... ,δ n } whose vertices exhaust the points of P and which has minimal sum of areas of the

triangles, the problem becomes somewhat more tractable. Denote the function in this case by a *(n), so

that a(n) ≥ a *(n). We show that for every ε > 0,
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(1.2) n − 1/2 << a *(n) << n − 1/8 + ε .

As is explained in Section 3, it seems likely that the lower bound in (1.2) is close to the true value of a * (n).

Our problem is related to Heilbronn’s triangle problem, which asks for an estimate of the area of the

smallest triangle determined by any three out of n points located in the unit square. As a result of the deep

work of Schmidt [11], Roth [6-10], and Komlo ´s, Pintz, and Szemere ́ di [5] it is known [5] that there is

always a triangle of area

(1.3) << n − 8/7 + ε ,

for every ε > 0. On the other side, Erdo
. .
s’ early example [6] of a configuration without a triangle of area

<< n − 2 was recently improved by Komlo ´s, Pintz, and Szemere ́ di [4], who showed that there are

configurations without triangles of area << n − 2 log n. Our proofs rely on a modification of the Erdo
. .
s

construction and on the Komlo ´s, Pintz, and Szemere ́ di result (1.3).

2. The Upper Bound

We first establish that

(2.1) a( 2 ,P ,Λ) ≤ .8A(Λ)

where Λ is the convex hull of the given set P of 3n = 6 points. The argument splits into cases according to

whether

(2.2) b = P∩ ∂ Λ ,

the number of points of P on the boundary ∂ Λ of the convex hull Λ, is six, five, or at most four.

Whenever there are two collections of triangles {δ 1 , ... ,δ n } and {γ 1 , ... ,γ n } satisfying (i) and (ii) such

that each δ i is area-disjoint from each γ j , clearly one of the collections has total area at most

(2.3)
2
1_ _ A(Λ) ,

where Λ is the convex hull of P. For 3n = 6 and b ≤ 4, it is easy to verify that two such collections exist.

For b = 6 label the vertices in clockwise order as
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{ p 1 , ... ,p 6 } = { B ,C ,D ,E ,F ,G } .

Then the three disjoint triangle partitions

(2.4) { BCD ,EFG } , { CDE ,FGB } , { DEF ,GBC }

have total combined area at most 2A(Λ), so some one of them has total area at most

(2.5) ( 2/3 ) A(Λ) .

Finally, suppose that b = 5 and

(2.6) { p 1 , ... ,p 5 } = { B ,C ,D ,E ,F }

are the vertices, in clockwise order, of a convex pentagon, inside of which is p 6 = G. Then the hull Λ

splits into five triangles

(2.7) GBC , GCD , GDE, GEF , GFB ,

so without loss of generality

(2.8) A(GDE) ≥
5
1_ _ A(Λ) .

Now G lies in one of the triangles

(2.9) BFE , BED , BDC ;

without loss of generality it lies in BFE or BED. Thus

(2.10) { BCD ,GEF }

forms a disjoint triangulation of area at most

(2.11) A(Λ) − A(GDE) ≤ .8A(Λ)

by (2.8). This proves (2.1).

We now establish the right inequality of (1.1). Let m be a positive integer. To find a disjoint

triangulation for P ⊆ Σ where P = 6m + 3, start with a vertical line t outside and to the left of Σ. We

may assume (rotate Σ if necessary) that none of the ≤ ( 2
3n) lines determined by the 3n points is parallel to t.
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Then find M = 2m + 2 lines t 1 , ... ,t n parallel to t, each to the right of the previous one, such that (a) in each

closed strip T i formed by t i , t i + 1 there are 3 distinct elements of P, namely p i1 , p i2 , p i3 , and (b) the union

of all { p i1 ,p i2 ,p i3 } is P. (Remarks: (1) Some of the t i may coincide due to multiple points. (2) If Σ is a

rectangle with two sides parallel to t, the triangles p i1 , p i2 , p i3 immediately provide a disjoint triangulation

of area at most .5A(Λ).)

The procedure now is to combine pairs of adjacent strips to produce roughly half the original number of

parallel strips, with each new strip containing 6 distinct points of P. Of course, there will be one strip T *

left over that contains only 3 points. Since there are m + 1 ways of doing this, we can insure that T *

intersects Σ in a set of area at most

(2.12) A(Σ)/(m + 1 ) ,

and hence the triangle formed by the points in T * has at most this much area.

The first result of this section shows that the six points in each of the remaining m strips T i can be

triangulated so that at most .8 of each T i ∩ Σ is covered. Let α be the fraction of the area of Σ that lies in

T *. Then the fraction of Σ covered by the resulting disjoint triangulation is at most

(2.13) . 8 ( 1 − α) + α ≤ .8 +
m + 1

.2_ ____ ≤ .9 .

If P = 6m the argument simplifies, and we have the better upper bound .8. This proves the right

inequality of (1.1).

3. No Disjointness Requirement

We now use the Komlo ´s, Pintz, and Szemere ́ di result (1.3) to prove the upper bound of (1.2). We first

prove a general result which gives an upper bound for a * (n) in terms of any upper bound for Heilbronn’s

triangle problem. Since the asymptotic behavior of a * (n , Σ )/ A( Σ ) is the same for all convex Σ , we

will take Σ to be the unit square.

Notation: Let ∆(n) denote the maximum possible value of the minimum of the areas of the triangles

p i p j p k (taken over all selections of three out of n points p 1 , . . . , p n), where the maximum is taken over
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all distributions of p 1 , . . . , p n in the unit square. Let ∆̃(n) = ∆( 3n).

Theorem. If 1≤ f (n) ≤n λ is monotonically increasing and

(3.1) ∆̃(n) ≤
n 1 + λ
f (n)_ ____ ,

where 0 < λ ≤1, then

(3.2) a * (n) ≤
λ

500_ ___ ( f (n) n − λ ) 1 + λ
1_ ____

.

Proof. The upper bound a * (n) ≤ 1 implies the claimed assertion for n ≤ 24, for example. We suppose

that the assertion is true for all j < n, where n≥25. We divide the square into 4 smaller squares of area 1/4

and choose one of these little squares, say Q′, which contains at least 3n /4 points. By possibly shrinking

Q′ to a square Q′ ′ we can assume that the number of points in Q′ ′ is 3k with
4

n − 3_ ____ ≤ [n /4 ] ≤k≤n − 1 (if

we additionally make the convention that points on the boundary of Q′ ′ are to be considered (separately) to

belong to Q′ ′ or not according to our decision). Now we proceed as follows.

1) We choose the smallest triangle in Q − Q′ ′, afterwards the smallest remaining triangle in Q − Q′ ′, etc.,

until the number of remaining points is 3 [M], where

M =
100

( f (n) . n) 1 + λ
1_ ____

_____________ .

(Note M≤n /100.) The sum of the areas of these triangles is

≤
➳ = [M] + 1

Σ
n − k

∆̃(➳) ≤ f (n)
➳ = [M] + 1

Σ
∞

➳1 + λ
1_ _____ ≤

λM λ
2 f (n)_ _____

(3.3) ≤
λ

200_ ___ ( f (n) n − λ ) 1 + λ
1_ ____

.

2) To each of the 3 [M] remaining points in Q − Q′ ′ we associate successively 2 points from Q′ ′ so that the

resulting 3 [M] triangles (with disjoint vertices) all have areas

≤
2
1_ _ (√ 2 )2 sin

4
3n_ __ − 6M

2π_ ________ ≤
n
10_ __ .
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The sum of the areas of these triangles is therefore

(3.4) ≤
n

30M_ ____ < ( f (n) n − λ ) 1 + λ
1_ ____

.

3) Finally for the remaining 3k − 6 [M] points in Q′ ′, where

5
n_ _ ≤

4
n − 3_ ____ −

50
n_ __ ≤ k − 2 [M] ≤ n − 1 ,

we have by our inductive hypothesis k − 2 [M] triangles with total area

≤
4
1_ _ a * (k − 2 [M] ) ≤

4
1_ _ .

λ
500_ ___ ( f (n) (

5
n_ _ ) − λ ) 1 + λ

1_ ____

(3.5) ≤
λ

125_ ___ . √ 5 ( f (n) n − λ ) 1 + λ
1_ ____

.

Summing the areas of all these triangles ((3.3)-(3.5)) we obtain

a * (n) ≤
λ

500_ ___ ( f (n) n − λ ) 1 + λ
1_ ____

,

as claimed.

Remark. Since we know by [5] that ∆(n) << n − 9/8 , for example, we are entitled to suppose λ ≥1/8 and so

the constant 500/λ can be replaced by 4000.

Using the inequality

∆(n) << e c√ log n . n − 8/7

proved in [5], we obtain

Corollary 1. a * (n) << e c′√ log n . n − 1/8 .

Although Heilbronn’s conjecture was disproved in [4] by showing that

∆(n) >> n − 2 log n ,

one may conjecture that ∆(n) << n − 2 + ε , however.

Corollary 2. The conjecture ∆(n) << n − 2 + ε implies that a * (n) << n − 1/2 + ε .
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The strongest possible conjecture ∆(n) << n − 2 log n would imply a * (n) << n − 1/2 ( log n)1/2 .

These results show that probably the inequality a * (n) >> n − 1/2 cannot be improved significantly. Our

Theorem also shows that a proof of a relation of type
n→ ∞
lim
_ __

a * (n) n 1/2 = ∞ would imply

n→ ∞
lim
_ __

∆(n) n 2 = ∞, so it would lead to a new disproof of Heilbronn’s conjecture (if the inequality

∆(n) >> n − 2 log n is not used in course of the proof, naturally). This connection shows that the following

problem might be interesting.

Problem. Is it true that a * (n) << n − 1/2?

4. The Lower Bound

Since

(4.1) a *(n) ≤ a(n) ,

the left side of (1.1) follows immediately from the left side of (1.2), which we shall establish after a

preliminary lemma.

Lemma. Let p be an odd prime, and let z 1 , ... ,z p be the lattice points in

[ 0 ,p − 1 ] × [ 0 ,p − 1 ]

whose coordinates are congruent modulo p to those of

(k ,k 2 ) , 0 ≤ k ≤ p − 1 .

Then (i) every triangle formed by 3 distinct z i has area at least 1/2 and (ii) we have

(4.2)
i < j
Σ z i − z j

1_ ______ ≤ 8√ 2 (p − 1 ) .

Proof. Statement (i) is an observation of Erdo
. .
s [6, Appendix]; simply note that the area is half the value of

a determinant that is not congruent to 0 modulo p.

For (ii), first observe the general inequality
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(4.3) (a 2 + b 2 ) − 1/2 ≤ √ 2 /(a+b) .

Write z i = (x i ,y i ) and let N(k) be the number of solutions of

(4.4) x i − x j + y i − y j = k , i < j .

Clearly the sum on the left side of (4.2) is bounded by

(4.5) √ 2
k = 1
Σ

2p − 2

N(k)/ k .

Now if

(4.6) 0 ≤ a ,b ≤ p − 1 ,

then the simultaneous equations

(4.7) x i − x j ≡ a mod p ,

xi
2 − xj

2 ≡ b mod p ,

have at most one solution with i < j modulo p. Hence N(k) ≤ 4k and the lemma follows.

To prove our claimed result, it suffices to show that there is a way of placing 3n points inside the unit

square so that the area covered by any vertex-disjoint triangulation is >> n − 1/2 .

In what follows, P is a set of ∼∼ n points with a distinguished subset Q of ∼∼ √ n points. The cardinality

of P shall be divisible by 3. It clearly suffices to construct such a set P in an s×s square Φ, where s ∼∼ √ n ,

so that every triangle of P with some vertex in Q has area at least 1/2 (the total area of these triangles is

>> √ n , while the square has area << n).

Let p be an odd prime such that

p < √ n ≤ 2p .

The square Φ shall be

[ 0 , 100p] × [ 0 , 100p] ,

and the distinguished subset Q shall be the set { z 1 , ... ,z p } of the lemma. The set P shall consist of Q

together with
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p 2 − p ( or p 2 − p + 1 or p 2 − p + 2 )

points on a certain vertical line segment t such that no two are closer than 1/ p. For t we choose the

rightmost vertical edge of Φ; i.e.,

(4.8) t = {(x ,y) : x = 100p , 0 ≤ y ≤ 100p } .

If all 3 vertices of a triangle δ lie in Q, then A(δ) ≥ 1/2 by the lemma. If one vertex of δ lies in Q, it

has area

(4.9) ≥
2
1_ _ ( 100 − 1 ) p( 1/ p) ≥

2
1_ _ .

Finally, if 2 vertices of δ, say z 1 , z 2 , lie in Q, consider the line ➳ joining them. If its slope exceeds 2

(say) in absolute value, the area δ of triangle z 1 z 2 z 3 for any z 3 on t is clearly very large. If the slope is less

than 2 and q is the intersection of t and ➳, then

(4.10) A(δ) = A(δ(z 1 z 2 z 3 ) ) ≥ z 1 − z 2h /( 2 ( 12 + 22 )
1⁄2 ) ,

provided every point of P on t is at least h units of distance above or below q. To insure that each such

A(δ) is at least 1/2, it suffices to exclude from t a collection of subintervals of total length no more than

(4.11) σ = 2
i < j
Σ z i − z j

√ 5_ ______ ≤ 16√ 10 p < 64p ,

by the lemma. Clearly enough remains of t to carry out the construction ( 36p /(p 2 − p + 2 ) > 1/ p), so the

result follows.

5. Existence of a Limit, and Epsilon Simplicity

For any integer q we have

(5.1) 3n = 3qm + 3r , 0 ≤ r < q .

Let

(5.2) f (n) = a(n ,P ,Σ)/ A(Σ) .

The argument at the end of §2 shows that
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(5.3) f (n) ≤ f (q) ( 1 − α) + α

≤ f (q) + ( 1 − f (q) )/(m + 1 ) ≤ f (q) +
m + 1

1_ ____ ,

where, by (5.1), we have

(5.4) m = [n / q] .

Hence

(5.5)
n→ ∞

lim sup f (n) ≤ f (q) ,

and it follows immediately from (5.2) that a(n ,Σ) has a limit as n → ∞.

We can make another use of (5.3). A statement that can be put in the form

(5.6) x = 0

shall be called epsilon-simple if knowledge of its truth (provided, say, by an oracle) enables us to explicitly

write down a proof of

(5.7) x < ε

for any given rational ε > 0 (the proof may be different for different values of ε). For example, a well-

known though unpublished paper of J. B. Rosser establishes the epsilon-simplicity of the prime number

theorem by means of the old Chebyshev method (see [2, pp. 578-581]).

Say Σ is the unit square. We show that the statement

(5.8)
n→ ∞
lim a(n ,Σ) = 0 ,

if true, is epsilon simple. By the continuity of the area of a triangle as a function of its vertices, we can

compute a(q ,Σ), for any fixed constant value of q, to within any preassigned tolerance η. (Simply examine

all sets of q triangles whose vertices lie on a rational grid with mesh size very small compared to η). Since

m → ∞, as n → ∞, the result follows from (5.3). Of course, given an ε, this crude method does not given

us any a priori bound on the length of the proof as a function of ε.



- 11 -

6. Remarks

What makes this problem seemingly harder than Heilbronn’s is the requirement of disjointness.

However, if 3n points are in Euclidean 3 space (say n are red, n are white and n are blue) and no 4 are

coplanar, then there is a disjoint triangulation into tricolored triangles. This was shown nicely by means of

the "Ham Sandwich Theorem" independently by Karl W. Heuer, Richard Goldstein, and D. Winter [3].
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