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Abstract

It is shown that if { p j } is a discrete density function on the integers with support contained in
{0 , 1 , ... , d }, and p 0 > 0, p 1 > 0, p d −1 > 0, p d > 0, then there is an n 0 such that the n-fold convolution

{ p j }*n is unimodal for all n ≥ n 0 . Examples show that this result is nearly best possible, but weaker
results are proved under less restrictive assumptions.
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1. Introduction

The unimodality of distribution functions has been of substantial interest, especially in connection with

the question of whether all class L distributions are unimodal (which was finally answered in the affirmative

by Yamazato [7]). In view of the (at that time unproved, but widely conjectured) unimodality of the

limiting distributions of class L, A. Re ́ nyi conjectured [4] that something stronger ought to hold for a

discrete distribution { p j } on the integers, namely that for each such distribution there ought to be an integer

n 0 such that the n-fold convolution { p j }*n is unimodal for all n ≥ n 0 . Medgyessy [4] extended this

conjecture to continuous distribution functions. However, the Re ́ nyi and Medgyessy conjectures are both

false, as was recently shown by Brockett and Kemperman [1] and by Ushakov [6]. Their counterexamples

show that it is hard to guarantee unimodality even for high convolutions of a discrete distribution if the

distribution has infinite support. However, Brockett and Kemperman conjectured that if p 0 ,p 1 , ... ,p d > 0

and p k = 0 for k < 0 and k > d, then for n ≥ n 0 the n-fold convolution { p j }*n is unimodal, and they

proved this conjecture for d = 2. A similar question was raised by B. McKay (unpublished). This paper

proves a result stronger than that conjectured by Brockett and Kemperman, namely that { p j }*n is even

strongly unimodal.

A probability distribution { p j } on the integers is called unimodal if the sequence { p j +1 −p j }− ∞
∞ has

exactly one change of sign. Various results about unimodal distributions are contained in [2,4]. A more

restrictive concept than that of unimodality is that of strong unimodality; a discrete distribution { p j } is
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strongly unimodal if { p j } * { q j } is unimodal for any unimodal discrete distribution { q j }. A strongly

unimodal distribution is unimodal, but not conversely. A discrete distribution { p j } is strongly unimodal if

and only if it is log concave; i.e., pj
2 ≥ p j −1 p j +1 for all j ∈ Z [3]. We prove:

Theorem 1. If { p j } is a discrete distribution with p j = 0 for j < 0 and j > d, while p 0 > 0, p 1 > 0,

p d −1 > 0, p d > 0, then there exists an integer n 0 such that for n > n 0 the n-fold convolution { p j }*n is

strongly unimodal.

Theorem 2. If { p j } is a discrete distribution with p j = 0 for j < 0 and j > d, while p 0 > 0 , p d > 0, and

gcd{ j : p j ≠0} = 1 , (1.1)

then for any δ > 0 there is an n 0 = n 0 (δ) such that if a k,n denotes the value of the n-fold convolution

{ p j }*n at k, then for n ≥ n 0 ,

ak,n
2 ≥ a k −1 ,n a k +1 ,n

for δn ≤ k ≤ (d − δ) n.

The greatest common divisor condition (1.1) of Theorem 2 is obviously necessary for the conclusions

of that theorem to hold (as otherwise the distribution and all multiple convolutions of it with itself are

concentrated on multiples of that greatest common divisor), but it is not sufficient to obtain the conclusions

of Theorem 1. In Section 2 we show that for any ε > 0, there is a distribution satisfying the hypotheses of

Theorem 2, and for which the inequalities

a k,n > a k +1 ,n , a k +1 ,n < a k +2 ,n (1.2)

hold for k as large as n 1 − ε and n ≥ n 0 (ε).

It is possible to obtain results stronger than those of our theorems 1 and 2 by more careful analysis. For

example, it can be shown that high convolutions of distributions satisfying the
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hypotheses of Theorem 1 have stronger variation-diminishing properties than that guaranteed by strong

unimodality. (See [2] for a discussion of such properties.)

Our proofs also provide quantitative information about the distribution { p j }*n . For example, it can be

deduced easily from our proofs that if the { p j } satisfy the conditions of Theorem 1, if k → ∞ in such a way

that nd −k → ∞, and α is defined as the unique positive solution to

p(eα )

eα p ′ (eα )_ ________ =
n
k_ _ , (1.3)

where

p(z) =
j =0
Σ
d

p j z j , (1.4)

then a k,n , the value of { p j }*n at k, satisfies

a k,n ∼
2√ πn βk (n)

e− αkp(eα ) n
_ ___________ as n → ∞ , (1.5)

where

βk (n) =
2
1_ _

∂x 2

∂2
_ ___ log p(e x )x = α . (1.6)

Finally we mention that related results and references to many unimodality results from combinatorial

theory are contained in [5].

The authors thank the referee for several useful comments and corrections.

2. Examples and elementary proofs

In this section we show that under the hypotheses of Theorem 2, its conclusions cannot be strengthened

significantly. We also prove Theorem 1 for 0 ≤ k ≤ n 1/4 and dn −n 1/4 ≤ k ≤ dn, provided n is large

enough.

To show that Theorem 2 is nearly best possible, consider the distribution

p 0 = p 2 = p m = 1/3 , p j = 0 for j ≠ 0 , 2 , m ,
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where m is an odd integer ≥ 3. Then condition (1.1) is satisfied. We will show that for this distribution,

(1.2) holds for k ≤ n 1 −2/ m if n is large enough. This result can also be proved by a more elementary

argument that uses estimates of multinomial coefficients, but we prefer to use the analytic proof given

below, since it introduces the techniques which we find necessary to use in later sections.

The value of the n-fold convolution { p j }* n at the integer k is at the integer k is 3−na k,n where a k,n is

the coefficient of z k in p(z) n , p(z) = 1 + z 2 + z m. Now a k,n is given by

a k,n =
2πi
1_ ___

 z= r
∫ p(z) nz−k −1 dt , (2.1)

where r > 0 is any constant. Choose r = k 1/2 ( 2n −k)−1/2 , 0 ≤ k ≤ n. Then, on  z = r, for k ≤ n, we

have

p(z) = 1 + z 2 +O(r m ) = ( 1 + z 2 ) ( 1 +O(r m ) ) ,

and so for nr m = O( 1 ), say, which we assume from now on,

p(z) n = ( 1 + z 2 ) n ( 1 +O(r m ) ) n = ( 1 + z 2 ) n ( 1 +O(nr m ) ) .

Therefore for nr m = O( 1 ),

a k,n =
2πi
1_ ___

 z = r
∫ ( 1 + z 2 ) nz−k −1 dz +O(nr m −k −1

 z= r
∫  1 + z 2  ndz) . (2.2)

Now the first integral above is just the coefficient of z k in ( 1 + z 2 ) n , which equals (k /2
n ) if k is even and 0

otherwise. On the other hand,

 z= r
∫  1 + z 2  ndz = O(r( 1 + r 2 ) n ) = O(r exp (k /2 ) ) . (2.3)

If h = [k /2 ] (the greatest integer ≤ k /2), then the last term in (2.2) is

O(n ( 3 −m)/2 h (m −1 )/2 (ne / h) h exp ( −9h 2 /( 10n) ) .

But h! ∼ ( 2πh)1/2 (h / e) h as h → ∞, so for large h,


î h
n
 =

h!
n(n −1 ) ...(n −h +1 )_ _________________ ≥ ( 3πh)−1/2



î h

ne_ __




h

j =0
Π
h −1 


î
1 −

n
j_ _





≥ ( 100h)−1/2


î h

ne_ __




h

exp ( −2h 2 /( 3n) ) .
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Therefore the quantity in (2.3) is

O(n 3 (h / n) m /2 
î h
n
 exp ( −h 2 /( 5n) ) .

This is o( (h
n) ) as n → ∞ if h = O(n 1 −2/ m ), (which guarantees nr m = O( 1 )), and so in that range

a 2h −2 ,n > a 2h −1 ,n , a 2h −1 ,n < a 2h,n ,

which shows that the sequence oscillates in that range.

We next prove Theorem 1 for k very small. Suppose that p 0 ,p 1 > 0,

p(z) =
j =0
Σ
d

p j z j ,

and we are interested in the value a k,n of the n-fold convolution { p j }*n at k. Then a k,n is again given by

(2.1). This time we choose r = p 0 p1
−1 k(n −k)−1 . On  z = r, as n → ∞, k = o(√ n ),

p(z) = p 0 +p 1 z +O(k 2 n−2 ) ,

p(z) n = (p 0 +p 1 z) n ( 1 +O(k 2 n−1 ) ) ,

so

a k,n =
2πi
1_ ___

 z= r
∫ (p 0 +p 1 z) nz−k −1 dz + O(k 2 n−1

 z= r
∫  p 0 +p 1 z n  z −k −1 dz)

= 
î k
n
 p0

n −kp1
k + O(k 2 −kn k −1 p0

n −kp1
k e k ) .

Now for n → ∞, k = o(√ n ),

(k
n) ≥

k!
n k
_ __ ≥ (ck)− 1⁄2 (

k
ne_ __ ) k ,

for some constant c > 0, so

a k,n = (k
n) p0

n −kp1
k ( 1 +O(k 5/2 n−1 ) ) .

Hence if k = o(n 2/7 ), then ak,n
2 > a k −1 ,n a k +1 ,n for large n, which is the desired result. (By a more

careful analysis, the range of values of k for which this inequality holds can be extended.) Note that in this

part of the proof we did not use the fact that p d −1 > 0.
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To conclude this section, we only have to consider the range dn −n 1/4 ≤ k ≤ dn. However, this range

corresponds to the range 0 ≤ k ≤ n 1/4 for the n-fold convolution of the distribution pj
* = p d − j , 0 ≤ j ≤ d,

and so is covered by the preceding discussion. (Note that this part of the proof uses p d −1 > 0 but not

p 1 > 0.)

3. Main part of the proofs of theorems 1 and 2

In view of the preceding results, it will suffice to prove that ak,n
2 ≥ a k −1 ,n a k +1 ,n holds for

n 1/4 ≤ k ≤ dn −n 1/4 under the conditions of Theorem 1, and for δn ≤ k ≤ (d − δ) n under the conditions

of Theorem 2. From Cauchy’s theorem we have

a k,n =
2πi
1_ ___

 z= eα
∫ p(z) nz−k −1 dz , (3.1)

where α is any constant. We can write this as

a k,n =
2π
1_ __ e− αk

− π
∫
π

exp (n log p(eα + iθ ) − ikθ) dθ . (3.2)

Eq. (3.2) now defines a k,n as a real function of the real variable k for any fixed value of α. (There is a

mistake in [5] on this point in the proof of Theorem 2 of that paper, but it is easily corrected along the lines

used in this paper.) It is immediate from the definition that as a function of k,

a k = a k,n (α ) ∈ C ∞ ( − ∞,∞). To prove our results it suffices to show that

ak
2 ≥ a k −1 a k +1 (3.3)

for k in the appropriate ranges. To prove (3.3) for k = k 0 , we choose α = α(k 0 ) by

eα

p(eα )

p ′ (eα )_ ______ =
n

k 0_ __ , (3.4)

and, defining a k = a k,n by (3.2) with α defined by (3.4), show that

∂k 2

∂2
_ ___ log a k < 0 (3.5)

for k ∈ [k 0 −1 ,k 0 +1 ].
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To prove (3.5) with the α given by (3.4), we define for m = 0 , 1, and 2,

Jm =
− π
∫
π

θm exp (n log p(eα + iθ ) − ikθ) dθ .

Note that J 0 and J 2 are real, whereas J 1 is purely imaginary. Inequality (3.5) is equivalent to

J 0 J 2 > J1
2 . (3.6)

Since J 1 is purely imaginary, (3.6) will follow if we show J 0 > 0, J 2 > 0. To prove (3.6), we estimate the

Jm. We first consider p(z) that satisfies the conditions of Theorem 1, i.e., deg p(z) = d,

p 0 ,p 1 ,p d −1 ,p d > 0. It is also sufficient to consider n 1/4 ≤ k 0 ≤ 3dn /4, since the range k 0 > 3dn /4 can

be treated by considering the polynomial z dp( 1/ z).

Define, for any k ∈ [k 0 −1 ,k 0 +1 ],

θ0 = n 1/30 k−1/2 . (3.7)

Since k 0 ≤
4

3dn_ ___, α ≤ c for some constant c, and so for θ ∈ [θ0 , 2π − θ0 ],


 p(eα + iθ ) ≤ 

 p 0 +p 1 eα + iθ
 +

j =2
Σ
d

p j e jα .

But


 p 0 +p 1 eα + iθ


2 = p0

2 + 2p 0 p 1 eα cos θ + p1
2 e 2α

= (p 0 +p 1 eα )2 + 2p 0 p 1 eα ( cos θ −1 )

≤ (p 0 +p 1 eα )2 ( 1 −c ′ eα θ0
2 )2

for some constant c ′ > 0, and so


 p(eα + iθ ) ≤ p(eα ) exp ( −c ′ ′ eα θ0

2 ) (3.8)

for some c ′ ′ > 0. Therefore if

Jm
* =

− θ0

∫
θ0

θm exp (n log p(eα + iθ ) − ikθ) dθ , (3.9)
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then

Jm = Jm
* + O(p(eα ) n exp ( −c ′ ′ neα θ0

2 ) ) . (3.10)

Next, we consider Jm
* . Since θ0 → 0 as n → ∞, for θ ≤  θ0 we have

log p(eα + iθ ) = log p(eα ) + iθeα

p(eα )

p ′ (eα )_ ______ − θ2 β + O(θ 3 γ) , (3.11)

where

β = β(k 0 ) =
2
1_ _

∂x 2

∂2
_ ___ log p(e x )x = α , (3.12)

γ = γ(k 0 ) =
θ ≤  θ0

max


 ∂y 3

∂3
_ ___ log p(eα + iy )




y = θ . (3.13)

Since p 0 > 0 , p 1 > 0, and α is bounded above, βe− α , γe− α ∈ (a 1 ,a 2 ) for some constants a 1 , a 2 ,

0 < a 1 < a 2 < ∞. Therefore, by (3.4) and (3.11),

Jm
* p(eα )−n =

− θ0

∫
θ0

θm exp ( −nθ2 β + O(nθ 3 γ) + i(k 0 −k) θ) dθ .

By (3.4), γn / k ∈ (a1′ ,a2′ ) for some constants a1′ , a2′ , 0 < a1′ < a2′ < ∞, so

nθ 3 γ = O(θ n 1/15 )

in θ ≤  θ0 . Hence

Jm
* p(eα )−n =

− θ0

∫
θ0

θm exp ( −n β θ2 +O(θ n 1/15 ) ) dθ

=
− θ0

∫
θ0

θm exp ( −n β θ2 ) dθ + O(
− θ0

∫
θ0

n 1/15 θ m +1 exp ( −n β θ2 ) dθ)

= cm (nβ)− (m +1 )/2 + O(n 1/15 (nβ)− (m +2 )/2 ) ,

where c 1 = 0 (since the integrand is odd), c 0 = π1/2 , c 2 = π1/2 /2. Therefore J 0 > 0, J 2 > 0, and (3.6)

holds for n sufficiently large, n 1/4 ≤ k ≤ 3dn /4, and this completes the proof of Theorem 1.

The estimates of the Jm obtained above yield easily the estimates for the coefficients a k, n that were
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mentioned in the Introduction.

The proof of Theorem 2 is very similar, and will not be presented in detail. The major difference is that

α is bounded below as well as above, and so an estimate like (3.8) can be obtained (under the assumptions

of Theorem 2) even when p 1 = 0. To see this we first show that if (1.1) holds then for large n, for each θ

satisfying θ0 ≤ θ  ≤ π (θ0 defined by (3.7) as before) there is at least one j with p j > 0 such that the

inequality

cos (θ j) ≤ 1 − θ0
2 /4 (3.14)

holds. If there were no such j, then for each j > 0 with p j ≠ 0 there would be an integer m j ≠ 0 such that

 m j  < j and

 θ j − 2πm j  <  θ0 .

But then

 θ  − 2πm j / j ≤  θ0 / j ≤ θ0

for all j > 0 with p j ≠ 0, and so if n is sufficiently large (and δn ≤ k ≤ (d − δ) n)) then

 m i j − m j i < 1/2 (3.15)

for all i > 0, j > 0 with p i ≠ 0, p j ≠ 0. But (3.15) means that

m i j = m j i

for all i > 0, j > 0 with p i ≠ 0, p j ≠ 0. If j 0 denotes the smallest j > 0 for which p j ≠ 0, then for each

i > 0 with p i ≠ 0 we have

i = m i j 0 / m j 0
. (3.16)

Now  m j  < j, so if D is the greatest common divisor of j 0 and m j 0
, then j 0 / D ≠ 1, and by (3.16), j 0 / D

divides all i > 0 with p i ≠ 0, which contradicts (1.1). Hence we have shown that (3.14) holds for every θ,

θ0 ≤ θ  ≤ π, and some j with p j ≠ 0.

Once (3.14) is established, an estimate of the form (3.8) is easily obtained for θ0 ≤   θ  ≤ π. Theorem

2 then follows easily from the estimates for J 0 obtained in the proof of Theorem 1.
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