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ABSTRACT

The Riemann Hypothesis is equivalent to the conjecture that the de Bruijn-Newman con-
stant A satisfies A < 0. However, so far all the bounds that have been proved for A go in the
other direction, and provide support for the conjecture of Charles Newman that A > 0. This
paper shows how to improve previous lower bounds and prove that

—2.7-1077 < A.

This can be done using a pair of zeros of the Riemann zeta function near zero number 10%° that
are unusually close together. The new bound provides yet more evidence that the Riemann
Hypothesis, if true, is just barely true.
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1. Introduction

The Riemann Hypothesis is currently the most famous unsolved problem in mathematics.
Since more general results have often been easier to prove than the special cases that were
originally sought, many attempts have been made to embed the Riemann zeta function into
a larger family, and prove a generalized Riemann Hypothesis for the entire family. One of
the more interesting approaches of this type is due to Pélya, and is based on considering a
one-parameter family of trigonometric integrals.

The Riemann Hypothesis is trivially equivalent to all zeros of the Riemann function E being

real [Titchmarsh]. This function can be written (see p. 255 of [Titchmarsh]) as

) (g) /8= /000 ®(u) cos(zu)du  (z € C), (1.1)

where

o
O(u) := Z (27*n*e™ — 3mn2e™) exp (—mn?e™™) (0 <u < o0). (1.2)
n=1
Pélya considered the more general trigonometric integral

Hy(z) := /000 etuzq)(u) cos(zu)du  (t € Ryz € C). (1.3)

With this definition, Hy and the E-function are related through

Ho(z) = E (%) /8, (1.4)

so that the Riemann Hypothesis is also equivalent to the statement that all zeros of Hy are
real.

De Bruijn [deBruijn] showed that



(i) H; has only real zeros for ¢t > 1/2;

(79) if H; has only real zeros for some real ¢, then Hy has only real zeros
for any t' > t.
Charles Newman [Newman| proved that there exists a real ¢ such that H; has at least one
zero that is not real. (Therefore, by the symmetry properties of Hy, it must have at least 4
zeros that are not real.) Combined with de Bruijn’s result, this proves that there is a real

constant A, which satisfies —oo < A < 1/2, such that
H; has only real zeros if and only if ¢ > A. (1.5)

The constant A is referred to as the de Bruijn-Newman constant. The Riemann Hy-
pothesis is equivalent to the conjecture that A < 0. Unfortunately no upper bound for A better
than de Bruijn’s original A < 1/2 has been proved. On the other hand, there has been a series
of lower bounds for A. Csordas, Norfolk, and Varga [CsordasNV] showed that

—50 < A, (1.6)
te Riele [teRiele] improved this to
—5 <A, (1.7)
Norfolk, Ruttan, and Varga proved
—0.385 < A, (1.8)

and this was improved further by Csordas, Ruttan, and Varga [CsordasRV] to
—0.0991 < A. (1.9)
That result was followed by the Csordas, Smith, and Varga [CsordasSV] bound
—4.379 1075 < A, (1.10)
which was then improved by Csordas, Odlyzko, Smith, and Varga [CsordasOSV] to
—5.895-107% < A. (1.11)

The lower bounds support the conjecture of Newman [Newman] that A > 0. This conjecture
says that if the Riemann Hypothesis is true, it is barely true, in that even small perturbations

to the zeta function lead to counterexamples.



This paper shows how to obtain an improved lower bound,
—2.7-107% < A. (1.12)

This result by itself serves to provide additional evidence in favor of the Newman conjecture
that A > 0. Further evidence is provided by the methodology used in the proof. All the
published lower bounds for A were obtained using extensive numerical computations. Those
of [CsordasSV, CsordasOSV] relied on finding extreme examples of what are called Lehmer
pairs, namely two zeros of the Riemann zeta function very close to each other on the critical
line. The best previous bound, that of [CsordasOSV], used an unusually extreme Lehmer pair
near zero number 10° of the zeta function. That example was found by van de Lune, te Riele,
and Winter during their verification of the Riemann Hypothesis for the first 1.5 - 10° zeros
of the zeta function. The bound (1.12) is obtained using a pair of zeros near zero number
10%° found during the computations reported in [Odlyzko3]. Tt might seem disappointing that
huge computations in the vicinity of zero number 10%° produced an improvement only by a
factor of 2 over the results obtained with zeros at much lower heights. However, this was
not unexpected. As is explained in the last section of this paper, the method of [CsordasSV]
for producing lower bounds for A by finding extreme Lehmer pairs benefits much more from
examining many zeros than from examining high zeros. Further, the Lehmer pair of van de
Lune, te Riele, and Winter was an unusually extreme one. Thus the surprise is not that the
new bound (1.12) is weak, but that the bound (1.11) is strong.

In any large numerical computation, especially one dealing with floating point numbers,
there is a serious question about the validity of the final results. In the calculations of
[Odlyzko2, Odlyzko3|, the basic method is completely rigorous. However, in the interests
of computing large sets of high zeros, assurance of accuracy was abandoned. Reported results
are correct only if roundoff errors cancel about as much as if they were independent. The com-
putational method used there has many checks built on, checks not only on whether roundoff
errors cancel to the expected extent, but also on correctness of the programs, of the operating
system, and of the hardware. (There is extensive discussion of this in [Odlyzko2, Odlyzko3].)
Still, sometimes it is desirable to produce more rigorous results by controlling roundoff errors
more precisely. One way to do this is to modify the codes of [Odlyzko2, Odlyzko3] to operate
with high enough precision to guarantee that the output is correct. One purpose of this paper

is to show that it is possible to obtain such rigorous results with much less computation and



with simpler codes than those of [Odlyzko2, Odlyzko3], at least for small sets of zeros. Thus
it is possible to use the large-scale computations with the method of [Odlyzko2, Odlyzko3] as
a heuristic device, and then prove rigorous results about a few interesting phenomena that are
observed.

The computations reported in this paper do not obtain full control of roundoff errors, and
thus are still not completely rigorous. That is why the claims in the Abstract and earlier in this
section are stated so indirectly (about showing how to improve previous lower bounds, and not
about improving previous lower bounds). However, there are again special checks built into
the computational procedures to ensure that final results are convincing. To obtain complete
control over roundoff errors would require somewhat more effort, both in programming and in

processor time.
2. Lehmer pairs and bounds for the de Bruijn-Newman constant

This section outlines the basic method. It shows how an extreme Lehmer pair of zeros
leads to the bound (1.12) for the de Bruijn-Newman constant A.

We will assume the Riemann Hypothesis throughout the rest of this paper. If it were false,
then we would have A > 0, so (1.12) would be trivially true.

The theoretical method is exactly the same as that of [CsordasSV, CsordasOSV], and we
will follow the notation of those papers with only some slight simplifications. Since we are
assuming the Riemann Hypothesis, the zeros of Hy are all real, and for every zero z, —zx is

also a zero. We number the positive zeros (there is no zero at 0) of Hy in increasing order,
O<z1 << 23+, (2.1)

where each zero appears with the proper multiplicity. (It is conjectured that there are no
multiple zeros, and none have been found, but there is no proof there are none. A multiple
zero would provide an immediate proof of Newman’s conjecture A > 0, see [CsordasSV].) We
also let

T_j = —Zy (] = 1,2, . ) (2.2)

We note that the zeros of the Riemann zeta function in the upper half plane are precisely of
the form 1/2 +4-z;/2 for j =1,2,---.

Following [CsordasSV], we next define a Lehmer pair of zeros.



Definition 2.1. With k a positive integer, let zj and xx; be two consecutive simple positive
zeros of Hy, and set

Ak =Tkl — Tk (23)

Then, (zg,zk+1) is a Lehmer pair of zeros of Hy if
A2 g <45, (2.4

where

gk = Z’{( ! 5+ ! 2}; (2.5)

ithre1 Tk~ j) (Tht1 — z5)
here (and in what follows), the prime in the above summation means that j # 0, so that the

above summation extends over all positive and negative integers with 7 # 0, k,k + 1.

With the above definition, we have the following result from [CsordasSV], basic to our

bound, as well as the bounds of [CsordasSV, CsordasOSV]:

Theorem 2.1. Let (zk,zx11) be a Lehmer pair of zeros of Hy. Set

(- 3A% gt -1

A 1= ) 2.6

. 2 (26)
so that —1/[8gx] < Ap < 0. Then, the de Bruijn-Newman constant A satisfies

A <A (2.7)

If we expand A\ in a Taylor series, we find that

M=o Dk Bkge gy AL (2.8)
8 64 128 2048 ’ '

Thus if g is not too large, Ay is close to —AZ2 /8. Therefore to obtain a good lower bound
for A we should look for k& with A, as small as possible, and then verify that for that k, g, is

not large enough to cause any problems.
3. Specific Lehmer pairs and the bounds they yield

The bound (1.11) of [CsordasOSV] was obtained by applying Theorem 2.1 with k£ =
1,048, 449,114, where z;, = 7.777177... - 108. Van de Lune, te Riele, and Winter noted in their

work [vandeLunetRW] that zj and zj,1 were unusually close. The result of [CsordasOSV] was



obtained by carefully computing precise values for z; and z; and a few thousand neighboring

zeros. It turned out that

Ay =2171392... -107%, (3.1)

and g < 24,058, which yields (1.11). (The bound of Theorem 2.1 is monotone decreasing in
gk, S0 only an upper bound for g is necessary.)

The new bound (1.12) is obtained by taking k = K, where
K =10% 4 718,107, 321. (3.2)

This appeared to be the best choice from around 5-10° high zeros of the Riemann zeta function
that had been computed by March 1999 [Odlyzko3]. (The title of [Odlyzko3] refers to additional
zeros that were to be computed in the future.) The values of z;/2 (that is, the ordinates of the
corresponding zeros of the zeta function) for several values of j with j — K small are shown in
Table 1. We find that

Ak <0.000145. (3.3)

We next obtain an upper bound for gg.
Definition 3.1. For y > 0, let
N*(y)={j:y<z<y+2}. (3.4)

Lemma 2.1 of [CsordasOSV] (derived from classical estimates for the zeta function) then

yields the following result.

Lemma 3.1. N*(y) satisfies

N*(y) <logy for y>6-10%. (3.5)
Next, for n > 0, define
Sn={j:oxm+2n<z; <zg41+2n+2}, (3.6)
and
Tn ={j:|j| > 1048449114, 25 —2n —2 < z; <z —2n} . (3.7)



(The choice of the bound 1048449114 in the definition above is arbitrary, and is made just
because the value of z; for &k = 1048449114 has been quoted in the first paragraph of this
section.) Then for j € S, n > 1,

1 n 1 2

<
(:L‘K — .’L‘j)2 (-TK—H — :Ej)z - (-TK—H — :I,‘j)

1
< ol (3.8)

while for j € Sy,

1 N 1 - 2 59)
(zx —25)?  (Tr1—25)? = (Tr1 — Tr42)? '

Therefore by Lemma 3.1,

Syt

n=0j€S, ($K+1 o :L‘J)Q

2logz . log(z + 2n
gTK 41 'y g(Tx 41 )

— 5 2
(Tx+1 —TK42)® 1 2n

2log x > logz >, log(2n
e T B S Dl
K+1 K+2 — 1
90

< 40 . 3.10
T (Tk41 —Tr42)? * ( )

A similar argument shows that

ZZ{W_% + ! _)2}5( % +40. (3.11)

Finally,
1 1 2-2-1048449114 o7
+ } < <2.107%7, (3.12)
B e e S s
J#0
Combining all these estimates we find that
90 90
< + +81. 3.13
= ok —ax1)? | (@x1 — Tr12)? (3.13)

So far we have only used an approximate value for z i to obtain this bound, whereas we needed

precise values of zx and zx 1 to estimate Ag. If we now use the values for zx_1 and zx 4o

from Table 1, we find
grx < 1830. (3.14)

Together with (3.2), this shows that
Ak > —2.63-1077,

which proves the desired bound (1.12) for A.
Note that all we needed were very precise values of zx and Tk 1, and moderately precise

values of xx_1 and T o.



4. Computations and their validity

The computations of [Odlyzko2, Odlyzko3] are based on the algorithm of [OdlyzkoS]. The
only substantial modification is that band-limited function interpolation is used in place of
Taylor expansions in the final computation of individual values of the zeta function. This
algorithm enables computation of large sets of zeros at large heights. However, in the imple-
mentations of [Odlyzko2, Odlyzko3], the results are correct only if the floating point roundoff
errors cancel almost to the extent they would if they were independent. There are two steps
in the algorithm, a rational function evaluation step (similar to, but independent of, the fast
multi-pole method of Greengard and Rokhlin), and a giant FFT step, which make it hard
to control roundoff. In principle it can be done, but it would require much greater use of
multiprecision arithmetic, and would slow down the computation substantially. There are nu-
merous checks built into the algorithm (based on comparison of separate runs that compute
totally unrelated numbers, and whose results coincide only because of mathematical analy-
sis). These checks serve to verify the correctness not only of the assumption about random
cancellation of roundoff errors, but also of the code, the operating system, and the hardware.
Still, the results are not completely rigorous. However, as we next show, more rigor can be
obtained relatively easily if one is interested in smaller sets of zeros than the billions computed
in [Odlyzko2, Odlyzko3].

The previous section showed that to obtain the new bound for A, it is only necessary
to compute zx and i1 to within about 1075, and zx_1 and Tk o to within about 10—2.
That appears to require a total of 8 function evaluations of Hy(t), one on either side of each
of the four zeros. (The points of evaluation can be taken from the less rigorous large scale
computations of [Odlyzko3].) Actually, somewhat more is required. We need to know that the
values of xx_1, Tk, Tk +1, and Tk 1o are indeed the values of 4 consecutive zeros of Hy(t). We
do not need to know the value of K, but the correctness of the estimates for gx in the previous
section depends crucially on the gaps between zx_; and zx and between k1 and zx 2 not
being much smaller than Table 1 shows they are. To ensure that there are no undesired zeros
hiding close to zx, we use the nice technique of Turing (see [Edwards, Odlyzkol] for details).
It allows one to conclude that all zeros of the zeta function in an interval on the critical line
has been found based just on computations on the critical line. In our application, it requires

finding about 25 zeros below xx and about that many above g 1.



The algorithm that was used is a simplified version of that in [Odlyzko2, Odlyzko3, OdlyzkoS].
We do not go into the details, and only point out the key differences. The basic step is to

compute values of the trigonometric sum

N
f(t) _ Z n—1/26it10gn (41)

n=500
on a grid of evenly spaced points, where N = 1555488184 is the number of terms in the
Riemann-Siegel formula. Afterwards, band-limited function interpolation is used to compute
individual values, as in [Odlyzko2, Odlyzko3]. (The interpolation process is easy, and does not
introduce large roundoff errors.)
Two separate grids were used for the computations (in addition to the one in [Odlyzko3]

that first found the zeros). They were both of the form
t=T—-M§ T—(M-1)5, ..., T+ (M —1)6, (4.2)

where N = 1555488184. The values of T, M and ¢ used in the two runs were

T = 1.5202440116027338057 - 10 ,
M = 3000,
§ = 0.288061 ,

and

T = 1.5202440116027338092 - 10" ,
= 500,
6 = 0.07,
respectively. They allowed the computation of over 10,000 and over 300 zeros z; near zg,
respectively.

Computations of f(t) at the grid points (4.2) were partitioned, in order to lessen roundoff

errors, into computations on smaller grids of the form
t=U, U+6,U+2-6, ..., U+99-6. (4.3)

The values of f(t) at these grid points were computed by considering blocks of values of n,

say H; < m < Hj. For any such block, U - log(H;) was computed using the Bailey multiple



precision package and reduced modulo 2w. This value was then used to compute the values
of U -log(Hy 4+ 1),..., U -log(Hy — 1), all reduced modulo 27, using Taylor expansions of the

logarithm function. This enabled the computation of double precision values of
n—l/ZeiUlogn’ H, <n<H,.

These values were then multiplied repeatedly (in double precision arithmetic) by exp(id logn)
to obtain the contribution of n to f(U), f(U + 9),....

This computational approach makes the roundoff problem much less severe than it is in
[Odlyzko2, Odlyzko3], but at the cost of reducing the scale of the computation. It also does not
provide complete rigor, in that the addition of 1.5 billion terms in the sum (4.1), even though
carried out in 52-bit precision, could potentially lead to errors that would destroy the accuracy
of the values for zeros of the zeta function. The standard 52-bit precision of double precision
floating point on the computers that were used is not quite enough, at least not with the simple
programs that were used. With more care devoted to programming, one could protect against
possible mistakes. However, as is discussed extensively in [Odlyzko2, Odlyzko3], that would
still leave the possibilities of problems with other software or the hardware.

The basic argument for correctness of the results of [Odlyzko2, Odlyzko3] is that results
of overlapping computations agree within the expected bounds, even though the intermediate
steps in the computations are totally different. That is also how we can argue for the correctness
of the values of zeros calculated for this paper. There were 350 zeros z; that were computed
twice, once from each of the two grids (4.2). The maximal difference in the values was 3.6-10~%.
All the values for the zeros in Table 1 agreed to all the digits shown there. On the other
hand, when the values computed in these two runs are compared to those from [Odlyzko3], all
differences were below 8-10~8, except for the values of ¢ and zx 1. The fractional parts of the
values of zx /2 and zx41/2 computed in [Odlyzko3] were 0.8183171... and 0.8183847... This
serves to show the greater effect of roundoff in that large computation. It also demonstrates
that inaccuracies in values of zeros tend to be much larger when the zeros are close together.

All the computations were performed on SGI computers with R10000 200 MHz chips. Total
run time, for a single processor, was a few months, and could easily have been decreased, both
by more careful programming, and by computing fewer zeros. (Note that only about 50 zeros

were needed, whereas one of the computations produced values for over 10,000 zeros.)
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5. Discussion and Conclusions

The computations of [vandeLunetRW] were designed only to establish the truth of the
Riemann Hypothesis, not to compute precise values of zeros. Thus there is no guarantee that
there is no other value of k < 1.5 - 10° that might yield a smaller Ay than the one of (3.1).
However, that is unlikely, since that Ay is already far better than one could normally hope for,
as we will explain.

The calculations of [Odlyzkol, Odlyzko2, Odlyzko3] all computed precise values for zeros
of the zeta function. They were designed from the beginning not just to verify the Riemann
Hypothesis numerically for some zeros, but to collect detailed statistics of the zeros. The pur-
pose was to provide evidence about some conjectures that go beyond the Riemann Hypothesis,
and relate the distribution of zeros of the zeta function to that of eigenvalues of certain classes

of random matrices. These conjectures suggest, among other things, that for y small

y3 (log z,)*

Prob(A, <vy) = So

(5.1)

The computations of [Odlyzkol, Odlyzko2, Odlyzko3] found remarkably good agreement be-
tween these speculative conjectures and the data for the zeta function. In particular, if we
continue to compute more zeros of the zeta function, and the agreement continues to hold, we
should find k& with Ay arbitrarily small. Further, a small A almost guarantees a small value
for Ag, since zeros of the zeta function repel each other, and it is very rare to find three zeros
close to each other.

Searching at large heights does increase the chances of finding a small A (because of the
(log zx)? factor in (5.1)). However, it is more important to check many values than it is to
consider high zeros.

The Lehmer pair (zx,Zx+1) that gave the bound (1.12) is the best one that was found
among roughly 5 billion zeros near zeros number 10?°, 10?!, and 10?2 [Odlyzko3]. However, it is
only about as extreme as (5.1) would lead one to expect among that many zeros, and so serves
to provide more evidence for the conjecture that zeros of the Riemann zeta function behave like
eigenvalues of random matrices. On the other hand, the Lehmer pair found by van de Lune et
al. that led to the bound (1.11) is truly exceptional, since by (5.1), the probability of finding
it among the first 1.5 billion zeros of the zeta function is around 7%.

How far can we expect to improve the bounds for the de Bruijn-Newman constant by meth-

ods of this and preceding papers? One can certainly hope for small additional improvements
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on the order of the gain from the bound of [CsordasOSV] to that of this paper. Something
like that could even result from the completion of the computations of [Odlyzko3]. However,
even with more time on faster computers, we cannot expect dramatic improvements. Suppose,
for example, that we wished to prove —1072° < A. That would probably require finding a k
with Ay < 3-10!°. However, the conjecture (5.1) suggests that to do this we would need

030 zeros. The total number of simple arithmetic operations that

to examine on the order of 1
have been performed by all digital computers in history is only on the order of 10%® (close
to Avogadro’s number). Even with improvements in hardware, we cannot hope to compute
1030 zeros of the zeta function using existing methods in the next couple of decades. Thus

research on better algorithms for bounding the de Bruijn-Newman constant is a wiser course

than continuing with current approaches.
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Table 1: High zeros of the Riemann zeta function. For each index j, presents the height of the
j-th non-trivial zero of the zeta function.

zj/2

J
10%° + 718,107, 310
10%° 4+ 718,107, 311
10%0 + 718,107, 312
10%0 + 718,107, 313
10%° + 718,107, 314
1020 + 718,107, 315
1020 + 718,107, 316
10%0 + 718,107, 317
1020 + 718,107, 318
10%0 + 718,107, 319
10%° + 718,107, 320
10%° 4 718,107, 321
10%0 + 718,107, 322
10%0 + 718,107, 323
10%0 + 718,107, 324
1020 + 718,107, 325
10%0 + 718,107, 326
10%0 + 718,107, 327
10%0 + 718,107, 328
1020 + 718,107, 329

15202440116027338091.2242705...
15202440116027338091.3996817...
15202440116027338091.5582027...
15202440116027338091.6199370...
15202440116027338091.7996865...
15202440116027338091.8904349...
15202440116027338092.0427716...
15202440116027338092.1653606...
15202440116027338092.3170162...
15202440116027338092.4882758...
15202440116027338092.6841839...
15202440116027338092.8183149...
15202440116027338092.8183868...
15202440116027338093.0316170...
15202440116027338093.1807310...
15202440116027338093.3490216...
15202440116027338093.5183145...
15202440116027338093.7585243...
15202440116027338093.8237557...
15202440116027338093.9173261...
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