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11.6 Discrete logarithms over finite fields

Andrew Odlyzko, University of Minnesota

Surveys and detailed expositions with proofs can be found in [7, 25, 26, 28, 33, 34, 47].

11.6.1 Basic definitions

11.6.1 Remark Discrete exponentiation in a finite field is a direct analog of ordinary
exponentiation. The exponent can only be an integer, say n, but for w in a field
F , wn is defined except when w = 0 and n ≤ 0, and satisfies the usual properties,
in particular wm+n = wmwn and (for u and v in F ) (uv)m = umvm. The discrete
logarithm is the inverse function, in analogy with the ordinary logarithm for real
numbers. If F is a finite field, then it has at least one primitive element g; i.e., all
nonzero elements of F are expressible as powers of g, see Chapter ??.

11.6.2 Definition Given a finite field F , a primitive element g of F , and a nonzero element
w of F , the discrete logarithm of w to base g, written as logg(w), is the least
non-negative integer n such that w = gn.

11.6.3 Remark The value logg(w) is unique modulo q − 1, and 0 ≤ logg(w) ≤ q − 2. It is
often convenient to allow it to be represented by any integer n such that w = gn.

11.6.4 Remark The discrete logarithm of w to base g is often called the index of w with
respect to the base g. More generally, we can define discrete logarithms in groups.
They are commonly called generic discrete logs.

11.6.5 Definition If G is a group (with multiplication as group operation), and g is an
element of G of finite order m, then for any element h of 〈g〉, the cyclic subgroup of
G generated by g, the discrete logarithm of h to base g, written as logg(h), is the
least non-negative integer n such that h = gn (and therefore 0 ≤ logg(h) ≤ m− 1).

11.6.6 Remark The definition of a group discrete log allows for consideration of discrete
logs in finite fields when the base g is not primitive, provided the argument is in
the group 〈g〉. This situation arises in some important applications, in particular
in the U.S. government standard for the Digital Signature Algorithm (DSA). DSA
operations are performed in a field Fp with p a prime (nowadays recommended to
be at least 2048 bits). This prime p is selected so that p − 1 is divisible by a much
smaller prime r (specified in the standard to be of 160, 224, or 256 bits), and an
element h of Fp is chosen to have multiplicative order r (say by finding a primitive
element g of Fp and setting h = g(p−1)/r). The main element of the signature is of
the form hs for an integer s, and ability to compute s would break DSA. DSA can be
attacked either by using generic finite group discrete log algorithms in the group 〈h〉
or finite field algorithms in the field Fp (which can then easily yield a solution in
〈h〉).

11.6.7 Remark The basic properties of discrete logs given below, such as the change of base
formula, apply universally. On the other hand, many of the discrete log algorithms
described later are valid only in finite fields. Generally speaking, discrete logs are
easiest to compute in finite fields, since they have a rich algebraic structure that
can be exploited for cryptanalytic purposes. Much of the research on discrete logs in
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other settings has been devoted to embedding the relevant groups inside finite fields
in order to apply finite field discrete log algorithms.

11.6.8 Remark This section is devoted to finite field discrete logs, and only gives a few
references to other ones. For elliptic curve discrete logs, the most prominent collec-
tion, see Section ??. However, other groups have also been used, for example class
groups of number fields [27].

11.6.2 Modern computer implementations

11.6.9 Remark Most popular symbolic algebra systems contain some implementations of
discrete log algorithms. For example, Maple has the mlog function, while Mathe-
matica has FieldInd. More specialized systems for number theoretic and algebraic
computations, such as Magma, PARI, and Sage, also have implementations, and
typically can handle larger problems. Thus for all but the largest problems that are
at the edge of computability with modern methods, widely available and easy to use
programs are sufficient. Tables of finite fields, such as those in [25], are now seldom
printed in books.

11.6.3 Historical remarks

11.6.10 Remark Until the mid-1970s, the main applications for discrete logs were similar to
those of ordinary logs, namely in routine computations, but this time in finite fields.
They allowed replacement of relatively hard multiplications by easier additions.
What was frequently used was Zech’s logarithm (also called Jacobi’s logarithm,
cf. [25]), which is a modification of the ordinary discrete log. In a finite field F
with primitive element g, Zech’s log of an integer n is defined as the integer Z(n)
mod (q − 1) which satisfies gZ(n) = 1 + gn. This provides a quick way to add
elements given in terms of their discrete logs: aside from boundary cases, gm+gn =
gm(1 + gn−m) = gm+Z(n−m).

11.6.11 Remark As with ordinary logarithms, where slide rules and log tables have been
replaced by calculators, such routine applications of discrete logs in small or mod-
erately large fields now rely on computer algebra systems.

11.6.12 Remark Interest in discrete logs jumped dramatically in the mid-1970s with the
invention of public key cryptography, see Chapter ??. While discrete exponentiation
is easy, the discrete logarithm, its inverse, appeared hard, and this motivated the
invention of the Diffie–Hellman key exchange protocol, the first practical public
key cryptosystem. Efficient algorithms for discrete logs in the field over which this
protocol is implemented would make it insecure.

11.6.13 Remark The Diffie–Hellman problem is to compute gxy, the key that the two
parties to the Diffie–Hellman protocol obtain, from the gx and gy that are visible
to the eavesdropper. Although this problem has attracted extensive attention, it
has not been solved, and for the most important cases of finite field and elliptic
curve discrete logs, it is still unknown whether the Diffie–Hellman problem is as
hard as the discrete log one. See [4] for recent results and references.

11.6.14 Remark It is known that single bits of discrete logs are about as hard to compute
as the entire discrete logs [14].

11.6.15 Remark There are some rigorous lower bounds on discrete log problems, but only
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for groups given in ways that restrict what can be done in them [31, 45].

11.6.16 Remark Various cryptosystems other than the Diffie-Hellman one have been pro-
posed whose security similarly depends on the intractability of the discrete log
problem, see Section ??. Many of them can be used in settings other than finite
fields.

11.6.17 Remark There are close analogies between integer factorization and discrete logs
in finite fields, and most (but not all) of the algorithms in one area have similar
ones in the other. This will be seen from some of the references later. In general,
considerably less attention has been devoted to discrete logs than to integer fac-
torization. Hence the smaller sizes of discrete log problems that have been solved
result both from the greater technical difficulty of this problem as compared to
integer factorization and from less effort being devoted to it.

11.6.18 Remark Peter Shor’s 1994 result [44] shows that if quantum computers become
practical, discrete logs will become easy to compute. Therefore cryptosystems based
on discrete logs may all become suddenly insecure.

11.6.4 Basic properties of discrete logarithms

11.6.19 Remark Suppose that G is a group, and g an element of finite order m in G. If u
and v are two elements of 〈g〉, then

logg(uv) ≡ logg(u) + logg(v) (mod m),

logg(u
−1) ≡ − logg(u) (mod m).

11.6.20 Remark (Change of base formula): Suppose that G is a group, and that g and
h are two elements of G that generate the same cyclic subgroup 〈g〉 = 〈h〉 of order
m. If u is an element of 〈g〉, then

logg(u) ≡ logh(u) ∗ logg(h) (mod m),

and therefore
logg(h) ≡ 1/ logh(g) (mod m).

These formulas mean that one can choose the most convenient primitive element
to work with in many applications. For example, in finite fields F2k , elements are
usually represented as polynomials with binary coefficients, and one can find (as
verified by experiment and inspired by heuristics, but not proved rigorously) primi-
tive elements that are represented as polynomials of very low degree. This can offer
substantial efficiencies in implementations. However, it does not affect the security
of the system. If discrete logs are easy to compute in one base, they are easy to
compute in other bases. Similarly, the change of the irreducible polynomial that
defines the field has little effect on difficulty of the discrete log problem.

11.6.5 Chinese Remainder Theorem reduction: The
Silver–Pohlig–Hellman algorithm

11.6.21 Remark If the order of the element g can be factored even partially, the discrete
log problem reduces to easier ones. This is the Silver–Pohlig–Hellman technique
[36]. Suppose that g is an element of finite order m in a group G, and m factors
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as m = m1m2 with gcd(m1, m2) = 1. Then the cyclic group 〈g〉 is the direct
product of the cyclic groups 〈gm2〉 and 〈gm1〉 of orders m1 and m2, respectively.
If we determine a = loggm2 (wm2) and b = loggm1 (wm1), the Chinese Remainder
Theorem tells us that logg(w) is determined completely, and in fact we obtain

logg(w) ≡ b ∗ x ∗m1 + a ∗ y ∗m2 (mod m),

where x and y come from the Euclidean algorithm computation of gcd(m1, m2),
namely 1 = xm1 + ym2. This procedure extends easily to more than two relatively
prime factors.

11.6.22 Remark When m, the order of g, is a prime power, say m = pk, the computation
of logg(w) reduces to k discrete log computations in a cyclic group of p elements.
For example, if r = pk−1 and h = gr, u = wr, then h has order p, and computing
logh(u) yields the reduction of logg(w) (mod p). This process can then be iterated
to obtain reduction modulo p2, and so on.

11.6.23 Remark The above remarks, combined with results of the next section, show that
when the complete factorization of the order of g can be obtained, discrete logs can
be computed in not much more than r1/2 operations in the group, where r is the
largest prime in the factorization.

11.6.24 Remark In a finite field, any function can be represented by a polynomial. For
the discrete log, such polynomials do turn out to have some esthetically pleasing
properties, see [30, 32, 50, 51]. However, so far they have turned out to be of no
practical use whatever.

11.6.6 Baby steps–giant steps algorithm

11.6.25 Remark We next consider some algorithms for discrete logs that work in very
general groups. The basic one is the baby steps–giant steps method that combines
time and space, due to D. Shanks [43].

11.6.26 Algorithm Baby steps–giant steps algorithm: Suppose that G is a group and g is
an element of G of finite order m. If h ∈ 〈g〉, h = gk, and w = dm1/2e, then k can
be written as k = aw + b for some (often non-unique) a, b with 0 ≤ a, b < w. To
find such a representation, compute the set A = {gjw : 0 ≤ j < w} and sort it. This
takes m1/2 +O(log(m)) group operations and O(m1/2 log(m)) sorting steps, which
are usually very easy, since they can be performed on bit strings, or even initial
segments of bit strings. Next, for 0 ≤ i < w, compute hg−i and check whether it is
present in A. When it is, we obtain the desired representation k = jw + i.

11.6.27 Remark The baby steps–giant steps technique has the advantage of being fully
deterministic. Its principal disadvantage is that it requires storage of approximately
m1/2 group elements. A space-time tradeoff is available, in that one can store a
smaller list (the set A in the notation above, with fewer but larger “giant steps”)
but then have to do more computing (more “baby steps”).

11.6.28 Remark The baby steps–giant steps algorithm extends easily to many cases where
the discrete log is restricted in some way. For example, if it is known that logg(w)
lies in an interval of length n, the basic approach sketched above can be modified
to find it in O(n1/2) group operations (plus the usual sorting steps). Similarly, if
the discrete log k is allowed to have only small digits when represented in some
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base (say binary digits in base 10), then the running time will be about the square
root of the number of possibilities for k. For some other recent results, see [46].

11.6.7 Pollard rho and kangaroo methods for discrete logs

11.6.29 Remark In 1978, J. Pollard invented two randomized methods for computing
discrete logs in any group, the rho method, and the kangaroo (or lambda) tech-
nique [37]. Just like Pollard’s earlier rho method for integer factorization, they
depend on the birthday paradox, which says that if one takes a random walk on
a completely connected graph of n vertices, one is very likely to revisit the same
vertex in about n1/2 steps. These discrete log algorithms also depend, just as the
original rho method does, on the Floyd algorithm (Section 3.1 of [23]) for detecting
cycles with little memory at some cost in running time, in that they compare x2i

to xi, where xi is the position of the random walk at time i.

11.6.30 Remark Since the rho and kangaroo methods for discrete logs are probabilistic,
they cannot guarantee a solution, but heuristics suggest, and experiments confirm,
that both run in expected time O(m1/2), where m is the order of the group. This is
the same computational effort as for the baby steps–giant steps algorithm. However,
the rho and kangaroo methods have two advantages. One is that they use very little
memory. Another one is that, as was first shown by P. van Oorschot and M. Wiener
[49], they can be parallelized, with essentially linear speedup, so that k processors
find a solution about k times faster than a single one. We sketch just the standard
version of the rho method, and only briefly.

11.6.31 Algorithm Rho algorithm for discrete logs: Partition the group 〈g〉 of order m
into three roughly equal sets S1, S2, and S3, using some property that is easy
to test, such as the first few bits of a canonical representation of the elements of
G. To compute logg(h), define a sequence w0, w1, . . . by w0 = g and for i > 0,
wi+1 = wi

2, wig, or wih, depending on whether wi ∈ S1, S2, or S3. Then each wi
is of the form

wi = gaihbi

for some integers ai, bi. If the procedure of moving from wi to wi+1 behaves like
a random walk (as is expected), then in O(m1/2) steps we will find i such that
wi = w2i, and this will give a congruence

ai + bi logg(h) ≡ a2i + b2i logg(h) (mod m).

Depending on the greatest common divisor of m and bi − b2i this congruence will
typically either yield logg(h) completely, or give some stringent congruence con-
ditions, which with the help of additional runs of the algorithm will provide a
complete solution.

11.6.32 Remark The low memory requirements and parallelizability of the rho and kanga-
roo algorithms have made them the methods of choice for solving general discrete
log problems. There is a substantial literature on various modifications, although
they do not improve too much on the original parallelization observations of [49].
Some references are [6, 20, 38, 48].

11.6.33 Remark The rho method, as outlined above, requires knowledge of the exact order
m of the group. The kangaroo method only requires an approximation to m. The
kangaroo algorithm can also be applied effectively when the discrete log is known
to lie in a restricted range.
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11.6.8 Index calculus algorithms for discrete logs in finite fields

11.6.34 Remark The rest of this section is devoted to a brief overview of index calculus
algorithms for discrete logs. Unlike the Shanks and Pollard methods of the previous
two subsections, which take exponential time, about m1/2 for a group of order m,
the index calculus techniques are subexponential, with running times closer to
exp((log(m))1/2) and even exp((log(m))1/3). However, they apply directly only to
finite fields. That is why much of the research on discrete logs in other groups
of cryptographic interest, such as on elliptic curves, is devoted to finding ways to
reduce those problems to ones in finite fields.

11.6.35 Remark In the case of DSA mentioned at the beginning of this section, the
recommended size of the modulus p has increased very substantially, from 512 to
1024 bits when DSA was first adopted, to the range of 2024 to 3036 bits more
recently. The FIPS 186-3 standard specifies bit lengths for the two primes p and r
of (1024, 160), (2048, 224), (2048, 256), and (3072, 256). The relative sizes of p and
r were selected to offer approximately equal levels of security against index calculus
algorithms (p) and generic discrete log attacks (r). The reason for the much faster
growth in the size of p is that with the subexponential running time estimates,
the effect of growing computing power is far more pronounced on the p side than
on the r side. In addition, while there has been no substantial theoretical advance
in index calculus algorithms in the last two decades, there have been numerous
small incremental improvements, several cited later in more detailed discussions.
On the other hand, there has been practically no progress in generic discrete log
algorithms, except for parallelization.

11.6.36 Remark The basic idea of index calculus algorithms dates back to Kraitchik,
and is also key to all fast integer factorization algorithms. In a finite field F with
|F | = q, and with primitive element g, if we find some elements xi, yj ∈ F such
that

r∏
i=1

xi =
s∏
j=1

yj ,

then
r∑
i=1

logg xi ≡
s∑
j=1

logg yj (mod q − 1).

If enough equations are collected, this linear system can be solved for the logg xi and
logg yj . Singular systems are not a problem in practice, since typically computations
generate considerably more equations than unknowns, and one can arrange for g
itself to appear in the multiplicative relations.

11.6.37 Remark To compute logg w for some particular w ∈ F with index calculus algo-
rithms, it is often necessary to run a second stage that produces a relation involving
w and the previously computed discrete logs. In some algorithms the second stage
is far easier than the initial computation, in others it is of comparable difficulty.

11.6.38 Remark For a long time (see [33] for references), the best index calculus algorithms
for both integer factorization and discrete logs had running times of the form

exp((c+ o(1))(log q)1/2(log log q)1/2) as p→∞
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for various constants c > 0, where q denotes the integer being factored or the size
of the finite field. The first practical method that broke through this running time
barrier was Coppersmith’s algorithm [9] for discrete logs in fields of size q = 2k

(and more generally, of size q = pk where p is a small prime and k is large). It had
running time of approximately

exp(C(log q)1/3(log log q)2/3),

where the C varied slightly, depending on the distance from k to the nearest power
of p, and in the limit as k →∞ it oscillated between two bounds [33]. The function
field sieve of Adleman [1], which also applies to fields with q = pk where p is
relatively small, improves on the Coppersmith method, but has similar asymptotic
running time estimate. For the latest results on its developments, see [17, 19, 39].

11.6.39 Remark The running time of Coppersmith’s algorithm turned out to also apply to
the number field sieve. This method, which uses algebraic integers, was developed
for integer factorization by Pollard and Hendrik Lenstra, with subsequent contribu-
tions by many others. It was adopted for discrete log computations in prime fields
by Gordon [13], with substantial improvements by other reseachers. For the latest
estimates and references, see [8, 18, 40, 41].

11.6.9 Smooth integers and smooth polynomials

11.6.40 Remark The index calculus algorithms depend on a multiplicative splitting of
some elements, such as integers or polynomials, into such elements drawn from a
smaller collection. This smaller collection usually is made up of elements that by
some measure (norm) are small. The essence of index calculus algorithms is to select
general elements from the large set at random, but as intelligently as possible in
order to maximize the chances they will have the desired type of splitting. Usually
elements that do have such splittings are called “smooth.”

11.6.41 Remark There are rigorous analyses that provide estimates of how often elements
in various domains are “smooth.” For ordinary integers, there are the estimates of
[15]. For algebraic integers, we can use [5, 42]. For polynomials over finite fields,
recent results are [35].

11.6.10 Sparse linear systems of equations

11.6.42 Remark Index calculus algorithms for discrete logs require the solution of linear
equations modulo q − 1, where q is the size of the field. As in the Silver–Pohlig–
Hellman method, the Chinese Remainder Theorem (and an easy reduction of the
case of a power of a prime to that of the prime itself) reduces the problem to
that of solving the system modulo primes r that divide q − 1. (For more extensive
discussion of linear algebra over finite fields, see Section ??.)

11.6.43 Remark The linear algebra problems that arise in index calculus algorithms for
integer factorization are very similar, but simpler, in that they are all just mod 2.
For discrete log problems to be hard, they have to be resistant to the Silver–Pohlig–
Hellman attack. Hence q−1 has to have at least one large prime factor r, and so the
linear system has to be solved modulo a large prime. That increases the complexity
of the linear solution computation, and thus provides slightly higher security for
discrete log cryptosystems.
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11.6.44 Remark A key factor that enables the solution of the very large linear systems
that arise in index calculus algorithms is that these systems are very sparse. (Those
“smooth” elements do not involve too many of the “small” elements in the multi-
plicative relations.) Usually the structured gaussian elimination method (proposed
in [33] and called there intelligent gaussian elimination, afterwards renamed in the
first practical demonstration of it [24], now sometimes called filtering) is applied
first. It combines the relations in ways that reduce the system to be solved and do
not destroy the sparsity too far. Then the conjugate gradient, the Lanczos, or the
Wiedemann methods (developed in [12, 52], the first two demonstrated in practice
in [24]) that exploit sparsity are used to obtain the final solution.

11.6.45 Remark For the extremely very large linear systems that are involved in record-
setting computations, distributed computation is required. The methods of choice,
once structured gaussian elimination is applied, are the block Lanczos and block
Wiedemann methods [10, 11, 29].

11.6.46 Remark Some symbolic algebra systems incorporate implementations of the sparse
linear system solvers mentioned above.

11.6.47 Remark As a demonstration of the effectiveness of the sparse methods, the record
factorization of RSA768 [22], mentioned below, produced 64 billion linear relations.
These were reduced, using structured gaussian elimination, to a system of almost
200 million equations in about that many unknowns. This system was still sparse,
with the average equation involving about 150 unknowns. The block Wiedemann
method was then used to solve the resulting system.

11.6.11 Current discrete log records

11.6.48 Remark Extreme caution should be exercised when drawing any inferences about
relative performance of various integer factorization and discrete log algorithms
from the record results listed here. The computing resources, as well as effort in-
volved in programming, varied widely among the various projects.

11.6.49 Remark As of the time of writing (early 2012), the largest cryptographically hard
integer (i.e., one that was chosen specifically to resist all known factoring attacks,
and is a product of two roughly equal primes) that has been factored is RSA768, a
768-bit (232 decimal digit) integer from the RSA challenge list [22]. This was the
result of a large collaboration across the globe stretching over more than two years,
and used the general number field sieve.

11.6.50 Remark The largest discrete log case for a prime field Fp (with p chosen to resist
simple attacks) that has been solved is for a 530-bit (160 decimal digit) prime p.
This was accomplished by T. Kleinjung in 2007 [21]. The number field sieve was
used.

11.6.51 Remark In fields of characteristic 2, the largest case that has been solved is that
of Fq with q = 2613, using the function field sieve. (An earlier record was for
q = 2607 using the Coppersmith algorithm.) This computation took several weeks
on a handful of processors, and was carried out by A. Joux and R. Lercier in 2005
[16].

11.6.52 Remark The largest generic discrete log problem that has been solve in a hard
case is that of discrete logs over an elliptic curve modulo a 112-bit prime, thus a
group of size about 2112. This is due to J. W. Bos and M. E. Kaihara [3], and
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was done in 2009.. Right now, a lage multi-year collaborative effort is under way
to break the Certicom ECC2K-130 challenge, which involves computing discrete
logs on an elliptic curve over a field with 2131 elements [2]. All these efforts rely on
parallelized versions of the Pollard rho method.
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