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Table 1. Comparison of the moments of nn(t) for the GUE (second column) and for
10° consecutive zeros of the Riemann zeta function (subsequent columns) on the critical
line, starting near zero number 1, 106 and 10%° respectively. The mean spacing between

consecutive (eigenvalues) zeros has been normalized to unity.

Figure 1 Comparison of nn(t) for the GUE (solid line) and for 10° consecutive zeros of
the Riemann zeta function on the critical line, starting near zero number 1 (open circles),
10 (asterisks) and 10 (filled circles) respectively. The mean spacing between consecutive

(eigenvalues) zeros has been normalized to unity.



To summarize, the exact evaluation of the p.d.f. nn(¢) for the spacing between nearest
neighbor levels in the infinite GUE has been given in terms of a certain solution of the
non-linear equation (6). This p.d.f. can be readily calculated from empirical eigenvalue
data, so our exact evaluation provides a statistical test for the hypothesis that the data
has the distribution of the eigenvalues of a random Hermitian matrix. Applying this
test to the zeros of the Riemann zeta function on the critical line, we have found further

evidence supporting the validity of the the GUE hypothesis.
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Using the facts that ¢ and @ satisfy a pair of coupled first order differential equations,
and that for b odd(even), ¢(z) is even(odd) and () is odd(even), from the theory of [9]

we can deduce that the following equations hold

LR =2(=b+u—w)pq + L(p* + ¢*) + 2(pq)* (13)
lg'=(=b+tu—w)g+ip (14)
tp'=—tqg—(=b+u—wp (15)

(tR) =p* + ¢ (16)
u' =2¢%,  w =2p?. (17)

Also, it is easy to check from the definitions that

d
o log(1 — K1) = —2R. (18)

To derive (5a) we set

o1(2t) :== —2tR (19)

and integrate (18) (the factor 7p in the upper terminal of (5) results from changing the
mean eigenvalue spacing from 7 to 1/p). To derive (6) we multiply (14) by p, multiply
(15) by ¢, add and use (17) to obtain

(pq) =p*—¢* = %(w’ —u') (20)

and consequently
1
pg = 5w —u). (21)

Substituting (21) and (16) in (13) gives
LR = —2b(pq) — 2(pq)* + L(LR)’ (22)

which relates t R to pg. On the other hand, another equation relating these two quantities
is obtained by squaring (16) and the first equality in (20) and subtracting:

((pg)")? = ((tR)')* = —4(pq)*. (23)

Solving (22) for pg (the negative square root is to be taken) and (pq)’, substituting in (23)
and introducing the notation (19) gives (6). The boundary condition (7) follows from
the fact that R(s,s) ~ Ki(s,s) as s — 0 and the corresponding behaviour of Ki(s,s)
deduced from (4).



matrix ensemble with unitary symmetry defined by the eigenvalue p.d.f.

N
Ilze T lar — 2l b>—1/2. (8)
=1

1<j<k<N

They prove that in the thermodynamic limit, with each z; scaled z; — X;/V/2N so that
the bulk density is 1/7, the corresponding n-level distribution is given by

pn(Xla s 7XTL) = det[[(l (va Xk)]]'7k=17~~~7n (9)

where Ki(z,y) is given by (4) (for b ¢ Zso, z(y) < 0, z(y) in the denominator needs to
be replaced by |z|(|y|), however below we will only consider the case b € Z5o).

It follows from (9) (see e.g. ref. [1]) that the probability E(0;(—t,1)) of an interval
(—t,t) being free of eigenvalues in the ensemble (8) is given by det(1 — K7). Since in the
case b =1 (8) is precisely the eigenvalue p.d.f. of the GUE with an eigenvalue fixed at the
origin, the result (3) follows. In fact this interpretation of (8) suggests another derivation
of (9) in the case b = 1. Thus with b6 =1 (9) must be equal to the (n+1)-level distribution
of the GUE (see e.g. Ref. [1])

sin(Xj — Xk)

GUE
Xi,..., X, = det
lon-}—l ( 1 ’ +1) € [ ,R_(X] _Xk)

lik=1,..n+1 (10)

with one of the levels, X, i say, fixed at the origin. Setting X,4; = 0 in (10) and
performing Gaussian elimination so that all entries below the first in the final column are
zero gives (9) in the case b = 1.

To derive (6) we introduce the quantities
(1— K)'=p(z,y), Ki(l—K\)'=R(z,y), R(t,1):=R (11)
(the symbol = denotes ‘has kernel’) and
Qz)=(1-FKi)"'¢, q:=Q(7)

P(z):=(1-FK)™¢, p=P(7)

w= [ Qs w=[ P, (124)

= \/C%Jbﬂ/?(l’)a P(z) = mjb_lﬂ(x) (128)

(note that Ki(z,y) = (6(x)(y) — ¢(y)(2))/(z — y))-

where



with 6 = 1, subject to the boundary condition

B (s/2)%*
I'(1/2 + 6)I'(3/2 + b)’

as s — 0 (7)

o1(s) ~

with b = 1 (the parameter b is included above for later convenience). Note that with
b =0 (6) reduces to (2).

We have computed many terms of the power series expansion of (6) about s = 0
with b = 1 and subject to (7). Comparison with the analogous expansion of (1) (see
e.g. [1]) shows that p(t) — (1/2)nn(t) = O(t") , which in qualitative terms says that
very small spacings between consecutive eigenvalues will most likely be nearest neighbor
spacings (the factor of 1/2 accounts for the fact that the nearest neighbor occurs with
equal probability to the left or to the right). The solution of (6) with b = 1 was computed
numerically (the power series solution to O(s'!) was used to compute o1(1) and (1)
which were used as initial conditions) and substituted in (5b) with p = 1 to give the
theoretical prediction for nn(t) in the infinite GUE, which was then compared with nn(t)
determined empirically from the data of [6] for {7,}. Three sets of 10° consecutive zeros
1/2 + 47, were analyzed, the data sets starting at zero number Ny = 1, Ny = 10° + 1
and N3 = 10%° + 143,782,842 respectively. The quantity &/, := min(8,,8,-1), where
0n := (Ynt1 — Yn)pn With p, = (1/27)log(y,/27) denoting the smoothed local density of
zeros at 1/2 + i7y,, was calculated and a histogram constructed for the number of values
out of the 10° tested that fell into the intervals ((k — 1)/20,%/20), k =1,2.... In Figure
1 the corresponding empirical values of nn(t) at the points (k — 1/2)/20 are plotted and
compared with the value of nn(t) for the infinite GUE. The convergence towards the GUE
value as the magnitude of the imaginary part increases is evident.

For further comparison the moments (t#) := [° P nn(t)dt (a = 1,2,3), for p =

1,...,10 were calculated and compared with the empirical data according to the law of
large numbers prediction (t?) ~ (8}, := 107° Zg;}}ffl 6'?. The results are contained in

Table 1. Again the trend is towards convergence to the GUE value. Note in particular the
four figure agreement between (¢) and (¢! )s. The p.d.f. nn(t) therefore provides quantative
statistical evidence supporting the validity of the GUE hypothesis, thus adding to the
statistical evidence obtained in Ref. [6] and the analytic arguments of Ref. [7].

Our derivation of (3)-(7) uses a recent result of Nagao and Slevin [8] to obtain (3), and
the theory of Tracy and Widom [9] to obtain (6). Nagao and Slevin consider the random



where o(s) satisfies the o form of the Painlevé V equation:
(SJ")2 + 4(so’ — o) (50’ —0o+ (0'/)2) =0 (2)

subject to the boundary condition o(s) ~ —s/7 — (s/7)* as s — 0.

The GUE is applicable to chaotic quantum systems with broken time reversal symme-
try. The zeros of the Riemann zeta function ((z) for large imaginary part on the critical
line Re(z) = 1/2 are known to possess characteristics of such a system [5], and according
to the so called GUE hypothesis (see e.g. Ref. [6]) in the limit of infinite imaginary
part the joint distribution of the zeros is locally equal to the joint distribution of the
eigenvalues of the GUE. The eigenvalues and zeros must be scaled so that their mean
spacing takes on the same fixed value, 1/p say. In a large-scale numerical computation
by one of the present authors [6], involving over 107 zeros 1/2 + i, about n = 10%° (here
n labels the zeros along the critical line) the p.d.f. p(s) has been determined empirically
and compared with p(s) for the GUE. Excellent agreement is found.

In this Letter a statistic for the infinite GUE which is very similar to the spacing be-
tween consecutive levels is calculated exactly, and compared to that obtained empirically
from the data of [6] for {v,}. This statistic is the p.d.f. nn(t) for the spacing between
nearest neighbor levels (note that each eigenvalue has two neighbors but only one nearest
neighbor).

Below the following results are established. The p.d.f. nn(t) for the infinite GUE with

mean eigenvalue spacing 7 is given in terms of a Fredholm determinant by

nn(t) = —% det(1 — K7) (3)

where K is the integral operator on (—t,¢) with kernel

K3, 1= 525 (s o) = o) ol (1)

(Jo(z) denotes the Bessel function) and b = 1. Furthermore

ot !
det(1 — Ky) = exp/ ’ #dt’ (5a)
0
and so
27 pl ot oy (2t
nn(t) = _M exp/ ’ Ul(t, )dt’ (5b)
0

(here the mean eigenvalue spacing is 1/p), where o1(s) satisfies the non-linear equation
(s09)* +4(=8" + 507 — o) { (1) + [b— (B* — sy + 1) 2} = 0 (6)

2
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Abstract

For infinite GUE random matrices the probability density function nn(t) for the
nearest neighbor eigenvalue spacing (as distinct from the spacing between consecu-
tive eigenvalues) is computed in terms of the solution of a certain non-linear equa-
tion, which generalizes the o form of the Painlevé V equation. Comparison is made
with the empirical value of nn(t) for the zeros of the Riemann zeta function on the

critical line, including data from 10° consecutive zeros near zero number 10%°.
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Random matrix theory successfully predicts many features of the statistical properties
of the energy levels of classically chaotic quantum systems (see e.g. Refs. [1,2]). One
such statistical property is the probability density function (p.d.f.), p(s) say, for the
spacing between consecutive energy levels. Jimbo et al. [3] (see Refs. [4] for subsequent
derivations) proved that for the Gaussian Unitary Ensemble (GUE) of infinite dimensional

random matrices, scaled so that the mean eigenvalue spacing is 1/p, p(s) is given by

po) = g [ s (1)
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