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The reason this set § works is that a;p*~* is also an element of 7 due to the multiplicative
symmetry, so that the rotation length in (3.3) is a sum of k elements of T, so these are distinct
— except for the possibility of two such sums being the same sum in a different order, which

cannot happen since we have picked one representative from each equivalence class. [ |
4. Open problems

1. Understand the multiplicative symmetries of Si-sets in Z,,.

2. Here are two alternative ways to define nonabelian Si-sets S inside a nonabelian group

G.

o Consider the 2k-letter words whose letters are alternately in $ and in S~!, and
where we only allow words such that no letter is adjacent to its inverse. We require

that none of these words are the identity.

e Consider the (-letter words w whose letters lie in S or S™1. Again, no letter of w is
allowed to be adjacent to its inverse. We require that none of these words are the

identity.

Can large nonabelian Si-sets of these two types be constructed? If these problems are
solved, then one will have also made progress on an open problem in graph theory,
the problem of finding the graphs of fixed girth ¢ > 2k and having the most edges.
Specifically, Cayley graphs and bipartite doubles of Cayley graphs constructed using

generators from S will have large girths.



Note that the complicated steps here were the selection of g and the discrete logarithm
calculations. (Both of these computations are of course easy to verify by binary powering,
but it is not immediately clear how to do them.) Selecting ¢ is actually quite efficiently
accomplished by random trial. The probability that a random nonzero element of G F(p*) is a
generator is ¢(m)/m, where ¢ is Euler’s totient function and m = p* — 1, and the probability
that a random generator g will obey ¢”/* = a is 1/k. The combined probability o(m)/(mk)
(which in the present case is 1288/16105 ~ 0.08) is of order at least 1/(k*log p).

The discrete logarithms are certainly the computational bottleneck. In small cases such as
this one, exhaustive search suffices. For larger values of m = p* —1, one can use the polynomial

factorization algorithms in [6] and discrete logarithm algorithms in [13, 14].
3. Large nonabelian Si-sets

In this section we prove Theorem 2.

The group is the following group of permutations of m = p* — 1 letters:

z — x +amodm, a =0..m— 1, rotations
x — xp + a mod m, scramblings

(3.1)
and the permutations they generate, namely
t—zp°+amodm, (e=0..k—1,a=0..m—-1). (3.2)
We observe that
e The group has order km.
e The kth power of a scrambling is a rotation (since p* = 1 mod m).

Note that the composition of k scramblings with a-values aq, a9, a3,... a; is the following

permutation:

x — xpk + (alpk_l + agpk_2 + ...+ ag) (3.3)
which is actually a rotation since p* = 1 mod m. (It is not the identity, however, unless
ag=ay=...=a; € {0,p—1}.)

Let T be an ordinary abelian Sg-set of cardinality p, inside Z,, constructed in Theorem 1,
and having the multiplicative symmetry Tp = T'. Then divide T into (|7| — 1)/k equivalence
classes of size k (also called orbits) under this symmetry plus a singleton. Then let S be the

scramblings with a’s consisting of one representative from each cardinality-k equivalence class.



has exactly one solution (h,j) with A = j, namely h = j = 1/(a — 1), corresponding to the
fixed point. There cannot be orbits of length r, 2 < r < k, since that would imply

o —1

a—1

h=a"h—

so that (we are allowed to divide out the factor of a” — 1, since it is nonzero, since a is a
primitive kth root of unity) A = 1/(a — 1), but that was the fixed point. [ |
2. Our construction requires that k|(p — 1). Conversely, one can show that if Eq. (2.6) is
satisfied for any h and j, and some a € GF(p), with z of degree k over GF(p), then k|(p—1).
3. The value of the offset b may be deduced, from Eqs. (2.5), (2.7), and the fact that a is

a primitive kth root of unity, to be

(r" = (k- 1)
(p— Dk

4. The symmetric Si-sets in Z,, which arise in this construction will remain symmetric

b= (2.11)

Si-sets if any multiple of m/k is added to each element, or equivalently to b.

In practice, to construct the set S, we would select a to be any element of GF(p)\ {0} of
multiplicative order k, and let f(X) be one of the irreducible factors of degree k of X? —aX —1
over GF(p). The field GF(p*) would then be represented as GF(p)[X]/(f(X)), with = the
image of X, and g would be a ((p* — 1)/k)-th root of a generating GF(p*).

We now give an example to illustrate the construction procedure. Let p = 11 and k£ = 5.
Note 5|(11 — 1). The prime factorization of m = 11° — 1 = 161050 is 2 - 5% - 3221.

We select o = 9 since 9° = 1 mod 11.

The factorization of z'* — 9z — 1 over GF(11) is
(74 2)(2+ 42 + 92* + 62° + 22* + 2°)(7 + 42 + 92* + 62° + 22* + 2°). (2.12)

We will therefore use f(z) =2+ 4z + 922 + 623 + 22* + 2°.

A suitable g, which is a 32210th root of 9 (modulo F and modulo 11),is g = 2 + 2%. The
fact that this g is a generator (as opposed to just being any old 32210th root of 9) may be
verified by observing that none of ¢°°? = 2z + 622 + 42 4 1024, g32?152 = 9, and ¢3??155 =4
are 1.

We find Eq. (2.11) that b = 12884. Then log,(z + 7) = 3221, log,(z + 0) = 30542,
log,(z + 6) = 70549, and so on, as are easily verified, so that, upon adding b to these values,

we arrive finally at the sought-after S5-set modulo 161050:

{16105} U {43426, 83433} x {1, 11, 11%, 11°, 11*}. (2.13)



Suppose that k|(p — 1). We will show that a suitable choice of z and a exists so that
Eq. (2.6) holds with A = (5 + 1)/« for all 5. We choose

a =gk (2.7)

We first show that a satisfies Eq. (2.5). To prove this, it suffices to show that p — 1 divides

(p* — 1)/k. This is equivalent to showing that k divides

k

—-1
LA R
p—1

However, modulo p — 1 the sum on the right hand side above is k, and since k divides p — 1,
we are done.

We now come to the heart of the proof. Consider the equation
2 —az-1=0. (2.8)

When we factor this over GF(p), we claim that it has one linear factor and (p—1)/k irreducible
factors, each of which is of degree k. If z is in GF(p), then 2P = z by Fermat’s little theorem,
so (2.8) shows that z = —1/(a —1). Further, (2.8) has no multiple roots by the derivative test,
so we have established the claimed result about linear factors. Suppose now that z is a root

of (2.8) but z is not in GF(p). The conjugates of z are 27, 2P, 2P ,.... We find that
sz:(az—l—l)p:azp—}—1:a22—|—a—|—1. (2.9)
An easy induction establishes the more general relation

,
r o —1
2 =a"z 4+

— (2.10)

Since a is a primitive kth root of unity, we find that z*" = 2 for p = k, but for no smaller
positive u. Hence z is of degree k over GF(p), and our claim is now proved.

We have shown that for k|(p — 1), if we select o according to (2.7), then there will be an «
satisfying (2.8) such that the set S will have the multiplicative symmetry pS = 5. [ |

We now mention some further consequences of the above proof.

1. The mapping z — pz of our set S to itself consists of one fixed point and (p — 1)/k
orbits of length k. To see this, note that for z and a, a # 0, fixed,

Ozh—j:mp—ax:l



2. Si-sets with multiplicative symmetries

In this section we prove Theorem 1. We modify the Bose-Chowla construction [2, 9]. Let g
be a primitive element of GF(p*) (i.e., an element of multiplicative order p* — 1). The discrete
logarithm of y € GF(p*), y # 0, is an integer ¢, taken as an element of Z,,, m = p* — 1, such
that y = g°. We write £ = log, y. We will often use the bijection between Z,, and GF(p*)\ {0}
given by the discrete logarithm.

As in the Bose-Chowla construction, choose z € GF(p*) so that z is of degree k over

GF(p), and is thus not in any proper subfield of GF(p*). For a fixed b € Z,,, we let
S={log,(z+7)+b: 0<j<p—-1}. (2.1)

The standard Bose-Chowla construction has b = 0. The present sets remain Sg-sets since the
addition of a constant to all elements does not affect the Sg-set property.

We now show that if we choose z and b properly, then S will have the multiplicative
symmetry pS = 5. This symmetry property will hold if for every j € GF(p), there is an
h € GF(p) such that

pllogy(z + j) + b) = log,(z + h) + b (2.2)

holds in Z,,. Exponentiating, we find this is equivalent to the equation
9"z + ) =g"(x +h) (2:3)

in GF(p*), which (by the “freshman’s dream” identity (A + B)? = AP 4+ B? mod p) in turn is
equivalent to

a? = gt Vg 4 gbe-Dp _ 5 (2.4)

If there are fixed ¢, « and b such that as j varies over GF(p), the h defined by Eq. (2.4) remains
in GF(p), then we must have
a=g7"P Y e GF(p) . (2.5)

Moreover, we then must have

2 =ax+ah—j. (2.6)

If Eq. (2.6) holds for even a single pair (h,j) with a € GF(p), then for every 7 € GF(p), there
will be an h € GF(p) such that Eq. (2.6) holds, and the set S will satisfy pS = S.



Theorem 1. For every integer k > 2 and every prime p so that k|(p — 1), there exists an

Si-set S of cardinalily p inside Z,,, where m = p* — 1, such that S = pS.
Next, we will extend the Si-set notion to nonabelian groups G.

Definition 3. A nonabelian Si-set is a set S C G, where GG is a (nonabelian) finite group,
such that all k-letter words, whose letters are selected (with replacement) from 5, are distinct

in GG.

Notice that any Si-set, including a nonabelian one, is also an S;-set for every 7 = 1,2,...k.
(Proof: consider appending a (k — j)-letter constant suffix to the end of the j-letter words.)

We prove the following result.

Theorem 2. For each value of k = 2,3,..., and any prime p with k|(p — 1), a nonabelian

group G of order |G| = (p* — 1)k exists which contains a nonabelian Sg-set S of cardinality

(p—1)/k.

Analogously to (1.1), one easily sees that any nonabelian Si-set S inside a group G' must
obey
5] < |G|k, (16)

so the construction of Theorem 2 comes within a constant factor (in the asymptotic regime
where £ is fixed and |G| is large) of this upper bound. When £ is large, this constant factor is
approximately k.

We can do better if £ = 2 and if we do not require that words a? be distinct (or equivalently,

if we remove the words with replacement from Definition 3):

Theorem 3. Let g be a prime power. Then there exists a set S of cardinalily g+ 2 inside the
dihedral group Dsy,, of order 2m, where m = (¢°> — 1)/(q — 1), such that the products zy with
z,y €85,z #y, are distinct. (In particular, zy # yz for x #y.)

Proof. Let D,,, be generated by r and f where 7™ = f2 = (rf)? = 1. Let S consist of the
¢ + 1 elements of Dy, of form r*f where z is in Singer’s perfect difference set inside Z,,, and

1. |

Remark: One may also construct a set S of cardinality 1+ [];(¢; + 1) inside a group of order
211;(¢? — 1)/(g;: — 1) where the ¢; are prime powers, such that all the words zy, z # y, are

distinct.



An upper bound with better asymptotic behavior is

Lk/2] - [k/2] )
L1 = [k/2)+ )+ 11 (81+3)

Gf > (1.3)

[k/2]t- [k/2]!
This arises as follows. Choose |k/2| elements with replacement from 5, and let their sum be
A. From the remaining > [S| — |k/2] elements, choose [k/2] elements, and let their sum be B.
Then the differences A — B are distinct, and their number is bounded below by the quantity
on the right hand side of (1.3). When |G| is large and k is fixed, this leads to

IS 3 (Lk/2]!- TR/21E- |GDYE (1.4)

When k& = 2, Singer’s construction, known results on prime gaps, and this upper bound
are sufficient to determine the asymptotics of the minimal order v(n) of an abelian group G

containing an S9-set of cardinality n:
v(n) ~n* . (1.5)

This observation settles an open problem mentioned in [3, p. 1343].

R.C. Bose and S. Chowla [2] constructed Sg-sets of cardinality ¢ + 1, where k = 2,3,4, ...

- qk+l_1
= =1

and ¢ is any prime power, inside Z,,, where m . These specialize to Singer’s sets when
k = 2. They also constructed Si-sets of cardinality ¢, where k = 2,3,4,... and ¢ is any prime
power, inside Z,,, where m = ¢* — 1.

Observe that in the limit when k& > 3 is fixed and |G| is large, Bose and Chowla’s Sj-sets
are only a constant factor (= 2’“—6, if k is large, where e ~ 2.71828 is Euler’s constant) smaller

than the asymptotic upper bound (1.4). When k > 3, however, Bose and Chowla’s sets are

not necessarily ezactly optimal.

¢ Example: Bose and Chowla supply a 6-element Ss-set inside Zy56, but there is a 8-element

Sg—Set in Z156§ S = {1,5,25, 125} U {2, 10,50,94}

¢ Example: Bose and Chowla supply a 5-element Ss-set inside Z194, but there is a 6-element

Sg—Set in Z124§ S = {1,5,25} U {2, 10,50}

Also note that both these examples have a multiplicative symmetry S = 55.
In the present paper, we will observe that in an infinite number of cases some isomorph of

Bose and Chowla’s second type of set possesses a multiplicative symmetry.



isomorphisms) that has ever been found for perfect difference sets. It is not known whether
perfect difference sets exist that are not of Singer’s type.

Marshall Hall found that Singer’s sets, as well as all known generalized difference sets (that
is, in which each nonzero element of Z,, is represented in A [a constant] number of ways as a
difference of two elements in 5') always possess isomorphs exhibiting multiplicative symmetries.
That is, multiplying S by some integer ¢ (modulo m) leaves it invariant. Indeed, Hall observes
[10] that for every known generalized difference set, any prime ¢ such that ged(m,¢) = 1 and
t|(]S| — A) gives rise to a multiplicative symmetry.

For example, with ¢ = 2, m = 7, the set S = {1,2,4} is a perfect difference set featuring
the multiplicative symmetry S = 25. With ¢ = 3, m = 13, the set 5 = {0,1,3,9} is a perfect
difference set featuring the multiplicative symmetry 5 = 35.

This phenomenon was partially explained by Hall and Ryser’s multiplier theorem [10, The-
orem 11.4.1, p. 160 and Theorem 11.15.2, p. 166].

Perfect difference sets may be generalized in the following two ways. First, we may consider
replacing Z,, by an arbitrary abelian group. (As motivation, we mention that, as was observed
in [3], there is an Sy-set of size 7 inside G = Z3 X Z3, |G| = 24. The least m so that an Sy=set
of size 7 exists inside Z,, is 48 [8].) Secondly, we note that the sums of two elements in
are distinct if and only if the differences of elements in S are distinct, since a + b = ¢ + d if
and only if a« — d = ¢ — b, which suggests the generalization of letting there be more than two

elements in the sum:

Definition 2. Sj-sets are sets S C (G, where (G is any abelian finite group, such that the sum
of any k elements selected (with replacement) from S is not equal to the sum of any other k

elements of 5.

Thus Sy-sets in G = Z,,, if m = |S|?> — | S|+ 1, are precisely the perfect difference sets.
Applications of Si-sets may be found in [5, 11, 7, 3].

How large can an Sk-set be, compared to the size of the containing group G?7 Obviously

612 18081+ D (81 £k - 1) )

since the right-hand side is the number of ways to choose (a multiset of) k elements from 9,

with replacement. Thus when |G| is large and k is fixed, we have

S| 3 (R1GYE. (1.2)
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A. M. Odlyzko
AT&T Bell Laboratories
Murray Hill, New Jersey 07974
W. D. Smith

NEC
4 Independence Way
Princeton, New Jersey 08540

1. Introduction

Sets with distinct k-sums are (hopefully large) sets S such that all sums of k elements
selected from S are distinct. (For short, we will call such sets Sg-sets.) In the past, interest
has generally been focused on such sets inside of Z,, (that is, the sum is evaluated modulo m).
Most of the applications still work if S and the + operation live inside any abelian group. In
some cases, larger sets S may be found inside such groups than exist in the cyclic group of the
same order. Si-sets have many uses in combinatorics [5, 11, 7, 3].

We first show that for each k£ > 2, an infinite number of values m exist so that a set S with
distinct k-sums exists inside Z,,,, where |S|* > m, and such that these sets S enjoy a mulli-
plicative symmetry modulo m. (These sets are a slight variant of a well-known construction.
What is new is that our modification gives sets with multiplicative symmetries.)

Second, we extend the Si-set notion to nonabelian groups GG. We prove that for each value
of k =2,3,..., an infinite number of groups G exist, such that there is a set 5 inside G' with
|G|'/% = O(|S|k) and such that all k-letter words whose letters are in S are distinct in G.
These sets arose in connection with the second author’s ongoing work on maximal number of

edges in graphs of small girth.

Definition 1. Perfect difference sets are sets S, S C Z,,, where Z,, is the additive abelian
group of integers modulo m, such that every nonzero integer modulo m has a unique represen-

tation as a difference ¢ — bmod m,a € 5,b€ S.

In 1938, James Singer ([15], [10], [16]) constructed perfect difference sets for |S| = g¢,

g any prime power. So far, Singer’s construction is the only construction (up to obvious
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ABSTRACT

A modified Bose-Chowla construction of sets with distinct sums of k-element subsets is
presented. In infinitely many cases it yields sets with a certain multiplicative symmetry. These
sets are then used to construct large sets S in certain nonabelian groups with the property

that all k-letter words with letters from S are distinct.
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