()

(670

(67)2

(67)3

0.725227

0.731988

0.730706

0.725291

0.603251

0.606386

0.605762

0.602470

0.555775

0.551262

0.551956

0.553540

0.555527

0.540113

0.542599

0.551074

0.594314

0.563548

0.568467

0.586454

0.674002

0.620786

0.629172

0.660788

0.804518

0.717187

0.730735

0.782709

1.00515

0.864325

0.885824

0.969281

O [0 |~ | ||| W=

1.30870

1.08177

1.11583

1.24935

—_
o

1.76924

1.40075

1.45504

1.67002

Table 1.

Comparison of the moments of nn(t) for the GUE (second column) and for
10° consecutive zeros of the Riemann zeta function (subsequent columns) on the critical

line, starting near zero number 1, 10° and 10?° respectively.

Figure captions

Figure 1 Comparison of nn(t) for the infinite GUE (solid line) and for 10,000 15 x 15

computer generated matrices from the GUE (filled circles).

Figure 2 Comparison of nn(t) for the GUE (solid line) and for 10° consecutive zeros of

the Riemann zeta function on the critical line, starting near zero number 1 (open circles),

10¢ (asterisks) and 10%° (filled circles) respectively.
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was calculated and a histogram was constructed for the number of values out of the 10°
that were tested that fell into the intervals ((k — 1)/20,%k/20), & = 1,2.... In Figure 2
the corresponding empirical values of nn(t) at the points (k — 1/2)/20 are plotted and
compared with the value of nn(t) for the infinite GUE. The convergence towards the GUE
value as the magnitude of the imaginary part increases is evident.

For further comparison the moments (t#) := [;° P nn(t)dl (a = 1,2,3), for p =

1,...,10 were calculated and compared with the empirical data according to the law of
large numbers prediction (t?) ~ (§F), := 107° ZnN;}i(fl 6'?. The results are contained in

Table 1. Again the trend is towards convergence to the GUE value. Note in particular

the four figure agreement between (t) and (6)s.
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consecutive eigenvalues will most likely be nearest neighbour spacings (the factor of 1/2
accounts for the fact that the nearest neighbour occurs with equal probability to the left
or the right).

For the large-t expansion, we follow the corresponding analysis of o(s) (see e.g. [7])
and seek a solution of the form as®+bs+c+d/s+.... Indeed (2.7) has a unique solution

of this form, which when integrated according to (2.6) implies

ﬁ exp ( — (mpt)?/2 + 27pt + 1/ (47pt) + O(l/ﬂ)) (3.2)

As is well known (see e.g. [7]) this leaves the overall multiplicative constant A unspecified.

det(l — [(1) ~

The large-t expansion of nn(t) is obtained by substituting (3.2) in (2.4).

The solution of (2.7) with b = 1 was computed numerically by first calculating the
power series expansion of o1(s) up to O(s'?) and using the corresponding values of (1)
and o/ (1) as initial data in the Mathematica routine NDSolve. The d.e. (2.7) was rewritten
so that o7 occured to the first power (the negative square root is to be taken) and it was
found necessary to use a high precision setting (AccuracyGoal and PrecisionGoal = 20)
to get a stable solution in the interval of interest (s < 13).

Although the results of Section 2 are only exact in the limit N — oo, it is well
known that p(s) can be accurately approximated by considering 2 x 2 matrices which
give the so called Wigner surmise (see e.g. [2]). This suggests that nn(f) may also be
insensitive to the precise dimension of the GUE matrices. Assuming this, to test our exact
expression we have compared nn(t) as calculated from (2.6) with nn(¢) as determined
empirically from 10,000 numerically generalted 15 x 15 matrices from the GUE (see Figure
1). The latter calculation was done using Mathematica. For each matrix the eigenvalues
were calculated and the nearest neighbour spacing of the middle (8th) eigenvalue was
calculated. After scaling the spacings were tested to count how many fell into the intervals
((k—1)/20,k/20),k =1,2,..., and the corresponding empirical value of nn(t) plotted at
the points (k —1/2)/15.

3.2 Empirical value of nn(s) for Riemann zeta function zeros

With the p.d.f. nn(t) for the infinite GUE now evaluated, we can further test the GUE
hypothesis by calculating nn(t) for sequences of consecutive zeros 1/2+17,, of the Riemann
zeta function, using the data of [1]. Three sets of 10° consecutive zeros 1/2 + iv, were
analyzed, the data sets starting at zero number Ny = 1, Ny = 106 +1 and N3 = 10%° +
143,782,842 respectively. The quantity 6] := min(é,,6,-1), where 6, := (Y41 — V) pn
with p, = (1/27)log(v,/27) denoting the smoothed local density of zeros at 1/2 + iv,,

9



where 3 =1, 2.

To pursue our task of deriving the equations in Proposition 2.1, let us return to the
particular case

a1 = —t, a9 = t, (220)

and ag, 41, 71 given by (2.8b) so that ¢ and 1 are given by (2.6). Since

o(—2) = (=1)""¢(z),  P(-2)=(-1)")(z) (2.21)

(recall b € Z5q) we have K(z,y) = K(—z,—y) and thus p(z,y) = p(—z,—y), which
together with (2.21) implies

gor = (=1 g2 = (=1)"""q, por = (=1)’po2 = (=1)’p, v =0. (2.22)

With the aid of (2.22) the equations in Proposition 2.1 can now be deduced in a straight-
forward manner from the equations in Proposition 2.2 and 2.3.

We first use (a) and (b) to eliminate ¢;; and py; in (c)-(e) of Proposition 2.3. Equation
(i) of Proposition 2.1 now follows by choosing j = 2 and substituting (2.20) and (2.22).
The equations (ii)-(iv) of Proposition 2.1 are deduced from (¢),(d) and (f) of Proposition
2.3 respectively. This requires making use of the general formula

d 0 0

=t t) = (— —

dtf( ’ ) (3a2 aal)f(al’ GQ)
using (2.22), and noting from the first equation in Proposition 2.2 with the substitutions

(2.20) and (2.22) that

(2.23)

bl
ag=—a1q =t

R(—t,1) = (—1)”%.

The equations (v) follow immediately from the final line of equations in Proposition 2.2

and (2.22), and the final equation (vi) follows from the second equation in Proposition

2.2 and (2.23).
3. STATISTICS OF THE ZEROS OF THE RIEMANN ZETA FUNCTION

3.1 Solution of the non-linear equation
We have computed many terms of the power series expansion of (2.7) about s = 0 with
b =1 and subject to (2.8). Substitution of the first seven into (2.4) gives

2mplt)?  A(wpt)t  2(wpt)®  32(wpt)”
3 45 315 20257

nn(t) = +O(8). (3.1)

Comparison with the analogous expansion of (1.3a) (see e.g. [2]) shows that p(t) —
(1/2)nn(t) = O(t7) , which in qualitative terms says that very small spacings between

8



In [9] Tracy and Widom show that equations further to those in Proposition 2.2 exist

whenever ¢ and 1) satisfy the coupled differential equations
m(z)¢(z) = A(z)d(z) + B(x)p(z), m(x)p'(z) = —C(x)d(x) — A(z)ip(z).  (2.18)
for m, A, B, C' polynomials. For the choice (2.6), (2.7) hold with
m(z) =z, A(z)=a0, B(z)=pz, C(z)=mz. (2.19a)

with
Qg = —b, ﬁl =M = 1. (2196)

For general ag, 31,71 we can read off from the results of [9] additional equations relating

the quantities R(a;,a;), qxj, prj (k=0,1, j5=1,2) and u,v,w.

Proposition 2.3
Consider the kernel K of Definition 2.1 with ¢ and ¢ defined by (2.18) with m, A, B,C
as in (2.19a). We have

(a) qi; = a;q0; — (vqo; — upo;) [9,eq.(2.12)]

(b)  p1; = a;po; — (wqo; — vpo;) [9,eq.(2.13)]

(©) Jqo;

G T (a0 + 71u)qo; + Brprj + Brvpo;
a;
— Z YarR(a;,ar)qor  [9, eq.(2.25) with modification (2.31)]
k#]
Ivns
(d) g aio? = —7q1; + N1vq0; — copo; + Brwpo;
j

— Z V¥arR(a;,ar)por  [9, eq.(2.26) with modification (2.31)]

k#]

(e) a;R(aj,a;) = (o4 71u)qipo; + (Bipr; + Bivpo;)po;

+(71(J1j — Y1v40;)q0; + (opo; — Biwpo;)qo;

k (q0;Pok — Pojqor)’ . . .
+ E ar [9, eq.(2.27) with modification (2.32)]
a; — ag
k#]

2

0 2
(1) 5a;R(aj,a5) = Bupb; +mad; — D (=) a(R(aj, i)
J

k=1
k#g

[9, eq.(2.28) with modification (2.32)],
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Substituting (2.13) and (iv) in (i) gives
LR = —2b(pq) — 2(pq)” + L(LR) (2.14)

which relates t R to pg. On the other hand, another equation relating these two quantities
is obtained by squaring (iv) and the first equality in (2.12) and subtracting:

((pg)")? = ((LR)')* = —4(pq)*. (2.15)

Solving (2.14) for pq (it follows from a small-¢ expansion that the negative square root is

to be taken) and (pg)’, substituting in (2.15) and introducing the notation
o1(2t) :== —2tR (2.16)

gives (2.7). The boundary condition (2.8) follows from the fact that R(s,s) ~ Ki(s,s) as
s — 0 and the corresponding behaviour of K;(s,s) deduced from (7).
To derive (2.6) we simply substitute (2.16) in (vi) and integrate. The factor 7p in the

upper terminal of (2.6) results from changing the mean eigenvalue spacing from 1/7 to
1/p.

2.3 Theory of Tracy and Widom

To derive the equations in Proposition 2.1 we use the theory of [9] to first obtain some
equations for the quantities in Definition 2.1 considered as functions of the end points a1,
ay. These equations are of two types: those which apply independent of the particular
functions ¢ and v, and those which are dependent on ¢ and .

The equations of interest which fall into the first category are summarized as follows.

Proposition 2.2

For general values of ¢ and % in Definition 2.1 we have

R(a;, a) = 2P0k = Poifok (4 1y, i1og det(1 — K1) = (1)~ R(a;, a;)
a]‘ — dg 8%
and
Ju B i 5 Jv B B Jw B ) )
aak - (_1) (qu) ’ adk - (_1) Pokqok, (?ak - (_1) (pOk) 3
94;

= (_1)kR(ajaak)Qka % = (—1)}63(%7%)}% (J # k)

day, day,

where 5,k =1, 2.

To present the second type of equations, note that the kernel Ki(z,y) as given by
(2.5) is of the type in Definition 2.1 with

¢(x) = mJb+1/2($)v P(z) = mJb—1/2($)- (2.17)
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to specify that the kernel of A is A(z,y). Denote by K an integral operator of this type

with kernel of the form
o(x)¥(y) — (y)(z)
x—y

K(z,y) =
and write
(1—-K)™" = p(x,y) K1 - K)™' = R(z,y).

Also let

T—a

Qi(z) == (1—-K)'y*¢:= /:2 p(z, )y (y), @ = Qi(a;) := 1iH§ Qr(z)

z€(ay,az)

Py(x) = (1-K)y*y = /:2 o)y oY), e = Pilaj) = lim  Py()

z€(ay,az)

wo= [T Qe dr, wi= [ R dy
v [T Qo dy = [ Ry)sly) dy.
where £ = 0,1 and j =1, 2.

The coupled equations which imply (2.7) can now be stated.

Proposition 2.1
Consider the kernel (2.5) with b € Z5¢ on (—t,¢) so that in the setting of Definition 2.1
a; = —t and ay = t. With the notation ¢ := qog, p := po2, R({,1) = R we have

(i) tR=2(=b+u—w)pg+tp*+¢*) +2(pg)* (i) t¢'=(=b+u—w)g+ip
(iii) tp'=—lg—(=b+u—w)p (iv) (tR) =p*+¢*
(v) o' =2¢* w =2p? (vi) (log(l — Kl))/ = —2R

where the dashes denote differentiation with respect to t.

The theory of Tracy and Widom [9] allows equations for the quantities of Definition
2.1 to be derived which imply the equations of Proposition 2.1. Before presenting these
equations let us show how (2.6) and (2.7) can be derived from the equations of Proposition
2.1.

First consider (2.7). We multiply (ii) by p, multiply (iii) by ¢, add and use (v) to
obtain

(pg) =p"—¢* = %(w’ —u') (2.12)
and consequently

pq = %(w —u). (2.13)



with b = 1 (the parameter b is included above for later convenience). Note that with

b =0 (2.7) reduces to (2.2).

2.2 Derivation

Our derivation of (2.4)-(2.8) uses a recent result of Nagao and Slevin [8] to obtain (2.4),
and the theory of Tracy and Widom [9] to obtain (2.7). Nagao and Slevin consider the
random matrix ensemble with unitary symmetry defined by the eigenvalue p.d.f.

N
Iz ®e T ek —aj%  b>—1/2. (2.9)
7=1

1<j<k<N

They prove that in the thermodynamic limit, with each z; scaled z; — X;/V/2N so that
the bulk density is 1/7, the corresponding n-particle distribution is given by

Pn(Xh . ,Xn) = det[](l(X]', Xk)]j,k:l,...,n (210)

where Ki(z,y) is given by (2.5) (for b ¢ Zso, 2(y) <0, z(y) in the denominator needs to
be replaced by |z|(|y|), however below we will only consider the case b € Z5o).

It follows by substituting (2.10) into the general formula
N -
Eo( t,t)—1—|—2 n’ Xm anpn(leaXn)a
n=1 . — 00 — 00

where Fy(—t,t) denotes the probability of an interval (—t,1) being free of eigenvalues in
the ensemble (2.9), that
Eo(—t,t) = det(1 — Ky). (2.11)

Since in the case b =1 (2.9) is precisely the eigenvalue probability density function of the
GUE with an eigenvalue fixed at the origin, the result (2.4) follows.
The derivation of (2.7) relies on a set of coupled equations for quantities associated

with the integral operator Ki. To present these equations, the particular quantities must

first be defined.

Definition 2.1

Suppose A is an integral operator on the interval (aq, az) with kernel A(z,y):

Al = [ A ) dy.

We write
A= A(z,y)



hypothesis by comparing nn(t) for the infinite GUE with the empirical calculation of

nn(t) for the zeros the Riemann zeta function on the critical line from the data of [1] for

{}-
2. A NON-LINEAR EQUATION

2.1 Summary of results
So as to put our calculation of nn(t) in context, we first note that the expression (1.3) for

p(s) has been made more explicit by Jimbo et al. [4], who proved that
det(1 — K) :exp/ot @dt’ (2.1)
where o(s) satisfies the o form of the Painlevé V equation:
(s6")? + 4(s0" — o)((0") — o+ s0') =0 (2.2)
subject to the boundary condition
o(s) ~ —s/m —(s/7)* as s — 0. (2.3)

Subsequent derivations of this result have been given by Its et al. [5], Mehta [6] and Tracy
and Widom [7]. Our expression for nn(t) is given in terms of the solution of a non-linear
equation which generalizes (2.2).

We have obtained the following results. The p.d.f. nn(t) for the infinite GUE is given
in terms of a Fredholm determinant by

nn(t) = —% det(1 — K7) (2.4)

where K7 is the integral operator on (—t,¢) with kernel

Jx
Ki(z,y) = ﬁ(t]b-klﬂ(it)t]b—l/?(y) - Jb+1/2(y)Jb—1/2(fC)) (2.5)
(Jo(z) denotes the Bessel function) and b = 1. Furthermore
mpt ! mpt !
det(1 — Ky) = eXp/ ’ Jl(ﬁt )dt’ and so nn(t) = —M exp/ ’ Ul(ﬁt )dt’
0 0
(2.6)

(here the mean eigenvalue spacing is 1/p), where oy(s) satisfies the non-linear equation
(s07)? + 4(=0% + 507 — 01) ((01)? + {b— (b* — 50} + 01)"/?}?) =0 (2.7)

with 6 = 1, subject to the boundary condition

B (s/2)%*!
I'(1/2 + b)I'(3/2 + b)

o1(s) ~ as s—0 (2.8)
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(= (1/2%)log(y./27)), so that the mean spacing between zeros is unity (any finite value
will do).

We recall (see e.g. [2]) that a random Hermitian N x N matrix is said to belong to the
GUE if the diagonal elements x;;(which must be real) and the upper triangular elements

Tjp = uji + tv; are independently chosen with probability density function (p.d.f.)

Le—l’?] and 26_2(1L3‘“—Hjﬂ2‘“):ge—ﬂﬁﬂ (1'1)

NZ3 s T

respectively. For large N the density of eigenvalues p(\) is given by the so called Wigner

p(\) ~ Vi—N\h . % (1.2)

To apply the GUE hypothesis the eigenvalues should therefore be scaled by V2N /7 before

semi-circle law

the N — oo is taken, to obtain a mean eigenvalue spacing of unity.

One consequence of the GUE hypothesis is that it provides concrete predictions for
statistical properties of {~,}, whenever these are known for the GUE random matrices.
One such example is the p.d.f., p(s) say, for the spacing between consecutive zeros. In
the infinite GUE, scaled so that the mean eigenvalue spacing is 1/7, the corresponding

quantity is given in terms of a Fredholm determinant of an integral operator (see e.g. [2])

by

oot = L qei - i) (1.3a)
PR = e 4 A

where K is the integral operator on the interval (—t,t) with kernel
K(z,y):= w (1.3b)
m(z —y)
Using an eigenvalue expansion of the Fredholm determinant, p(s) can be computed [3]
(see also [1]) to give a tabulation or graph of p(s).

In a large-scale numerical computation of the non-trivial zeros of the Riemann zeta
function by one of the present authors [1], involving over 107 consecutive values of =,
about n = 10?° calculated to an accuracy of about six decimal places, the p.d.f. p(s) has
been determined empirically and compared with p(s) as calculated from (1.3). Excellent
agreement is found. Similar agreement is found when comparing other empirical statistical
distributions with those known exactly for the GUE.

In this paper we present the exact calculation of a new statistical quantity for the
infinite GUE, which is similar in meaning to p(s). This statistical quantity is the p.d.f.,
nn(t) say, for the spacing between nearest neighbor eigenvalues. We then test the GUE
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Abstract

A nonlinear equation generalizing the o form of the Painlevé V equation is used
to compute the probability density function for the distance from an eigenvalue of a
matrix from the GUE ensemble to the eigenvalue nearest to it. (The classical results
concern distribution of the distances between consecutive eigenvalues.) Comparisons
are made with the corresponding distribution for zeros of the Riemann zeta function,

which are conjectured to behave like eigenvalues of large random GUE matrices.

1. INTRODUCTION
The so called GUE hypothesis (see e.g. [1]) states that, in a certain limit, the zeros of the

Riemann zeta function on the critical line Re(z) = 1/2 have the same joint distribution as

that of the eigenvalues of a random matrix from the Gaussian Unitary Ensemble (GUE) of

large (formally infinite) dimensional random Hermitian matrices. Denoting the zeros by

1/2+17,, where n labels the zeros sequentially along the critical line, the GUE hypothesis

applies in the limit n — oo, with each ~,, scaled by the mean density of zeros at 1/2 + i,
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