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Abstract

Information goods have negligible marginal costs, and this will create possibilities for novel
distribution and pricing methods. The main concern of this paper is with pricing of goods that
are likely to be consumed in large quantities by individuals. For example, will software continue
to be sold at a fixed price for each unit, or will it be paid for on the basis of usage? There is
substantial evidence both from observing marketplace evolution and from surveys that customers
overwhelmingly prefer subscription pricing. It turns out that even if we ignore this factor, per-
use pricing is not a clear winner, and therefore when the preference effect is taken into account,
subscription pricing is likely to dominate.

We model competitive pricing between two companies that supply essentially equivalent services
(such as movies or word processing software). One company charges a fixed fee per unit, while the
other charges on a per-use basis. Fach is interested in maximizing its revenue. We consider instances
of the models that have stable competitive equilibria between suppliers along with situations that
are unstable and, in the absence of collusion, lead to ruinous price wars.



1. Introduction

There are wide expectations that electronic commerce, especially in “soft” or “information”
goods (such as news stories, software, network games, database access, and entertainment) will
move largely to a la carte pricing. Consumers will select the items they want, and pay for each
through one of the many micropayment schemes that are being developed. However, economic
arguments and observations of market behavior show that this is unlikely to be the dominant mode
of pricing for established producers [9, 14, 15]. Information goods are characterized by negligible
marginal costs, and therefore arguments in favor of bundling are stronger for them than for physical
goods. The combination of matrimonial ads and reports of boxing matches that appears in print
newspapers might appear to be caused by the impracticality of producing physically separate
editions for each one. However, bundling arguments show that producers can obtain more revenue
by combining disparate items, since that allows them to exploit uneven preferences that consumers
have for different goods. While it is not true that bundling is always better than offering items
separately, in most situations bundling is advantageous to the producers, since it depends only on
moderate variations in preferences [2, 13] (see also [9] for various examples). Hence in the future
we are likely to subscribe to electronic newspapers that carry wide ranges of stories (even though
the selection of those stories might be personalized), and not buy individual stories.

The arguments in favor of bundling are strong, and suggest that ¢ la carte or unit pricing will
not be the dominant mode of commerce in information goods. However, unit pricing is still likely
to be widespread. For many goods, that appears to be the most appropriate approach. Moreover,
even if bundling does dominate, as we predict, there are likely to be niches for fixed-fee sales.
Newspapers probably will be selling individual stories. All we suggest is that they will contribute a
small part of total revenues, just as is true today. One of the few general results about the economics
of bundling is the observation of Adams and Yellen [1] that mixed bundling (in which items are
offered for sale separately, as well as in combination, but with the price of the individual items
higher than they would be otherwise) is always better (with proper prices) than pure bundling, in
which items are available only in combination. Hence we might see the electronic version of the New
York Times available through annual subscription for $0.50 per day, a single day’s edition for $1.00,
and individual stories for $0.25, say. Furthermore, bundling is most appropriate for producers with
an established brand. An amateur selling Christmas card designs is most likely to sell them a la
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or stupidity of publishers, are likely to attempt selling their works themselves. Even though most
of them are likely to be disappointed by the outcome, this will create demand for micropayment
systems. (Furthermore, there will be enough successes to keep up the interest. After all, shareware
revenues do provide comfortable living for many programmers, even though shareware is a small
factor in the entire software industry.)

Chuang and Sirbu [3] argue that publishers will benefit from a combination of unbundled and
bundled sales of scholarly journal articles. Since the majority of scholarly journals are purchased
by academic libraries and not individuals, and this market is both unstable and full of perverse
economic incentives not easily captured by standard economic models (see [10] for a discussion
of this subject), we feel that the Chuang and Sirbu analysis is most appropriate for publications
aimed at individuals. Further, even in those cases, the consumer preferences discussed in Section
2, which are hard to take into account in the conventional economic utility maximization model of
[3], suggest that the balance will be tilted more towards subscription pricing than individual article
sales.

Most of the discussion of the advantages of bundling in [2, 9], for example, was about one-time
sales of several different items, and the arguments were that bundling is likely to be advantageous to
the producers in most cases. In this paper we consider a la carte versus priz fize approaches to sales
of many units of the same or similar good, for example software or entertainment programs. While
most of the sales to consumers are on the fixed price (for software) or subscription (for cable TV, for
example) basis, there is frequent discussion of per-use pricing. The entertainment industry continues
to test such schemes. One of the big attractions of Java, downloadable applets, and the Network
Computer to the software industry seems to be the possibility of charging consumers according
to their usage of a particular product. There is a widespread feeling that selling shrink-wrapped
software allows heavy users to avoid paying a “fair share” of the development cost. Moreover,
even some consumers speak up in favor of per-use pricing. There are many people who do not use
Microsoft Word often, but when they do need to use it, they have an urgent need to do so, typically
to read documents prepared in that system that are sent to them. These people find it worthwhile
to buy (or have their employer buy) the latest version of Word for just such use, and would benefit
from per-use pricing. (See, for example, the discussion in [12].)

While there are obvious attractions to per-use pricing, the basic economic arguments based
on utility theory are not as clear as for bundling, where those arguments strongly support the
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gather more revenue from heavy users, but less from the light users. For some distributions of
demands, per-use pricing might be more advantageous than fixed-fee plans. However, in Section
3, we present some computations that show that even if consumers attach well-defined values to
information goods, and know how much of each good they are likely to consume, a monopolist can,
for many reasonable distributions of values, obtain more revenue from a fixed-fee pricing plan.

While the simple utility maximization argument might favor per-user pricing in a substantial
fraction of cases, what we observe in the market are repeated failures of ¢ la carte pricing. Many
pay-per-view TV schemes have flopped. Furthermore, there has been a tremendous pressure from
consumers towards subscription plans for information services. The flat-rate Internet access plan
may not be viable, since there are substantial marginal costs in providing such services, but the
strong consumer preference that has forced even America Online to switch to fixed-fee pricing has
to be taken into account. In Section 2 we discuss some of the extensive evidence that is available
in the literature for this preference, and the reasons for it. This preference is not easy to take
into account in standard economic models (other than by saying, as Baumol reportedly did, that
consumers derive a positive utility from priz fize pricing), but it appears to be a major factor
that will favor fixed-fee schemes, at least for individual consumers. (For businesses, the evidence
from market behavior is that they are more willing to accept per-use plans than are consumers.)
Content producers can take advantage of this preference by charging higher prices than they would
if consumers behaved more as utility maximizers. In Section 2 we also discuss other arguments,
which are again not easy to cast into quantitative economic terms, as to why even producers might
favor flat-rate plans.

While producers of information goods typically have a monopoly on their product (after all,
there is only one New York Times, and in general copyright laws provide protection for the produc-
ers), this monopoly is seldom perfect. Readers of the New York Times can switch to the Washington
Post, or rely on online access to Associated Press dispatches, say. Competition is always present,
even in muted form, and constrains pricing decisions, including the extent of bundling. Unfor-
tunately it is hard to model competition in information goods. If two producers offer the same
good with zero marginal costs for distribution of an additional unit, then each producer can un-
dercut the other one, if only by a small margin, and gain revenue and thus profit. Since the other
producer has the same incentive, in the absence of collusion, the only possibility is for a ruinous
price war that drives prices to zero. To have a realistic model, we would need to include product
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Since we cannot do that, we study some much simpler models in Section 4, in which one producer
offers its product on a per-use basis, and the other a competing and nearly equivalent product
on a fixed-fee plan. We do not put in any bias towards subscription pricing into our model, and
assume that consumers know their usage and choose the cheaper of the two options. We find that
in most cases, in the absence of collusion, there is destructive price competition. In those cases
where we find a competitive equilibrium, it typically favors the producers charging on a fixed-fee
basis. Furthermore, the competitive equilibria we do find yield much less revenue for the content
producers than a monopolist could extract.

What conclusions can we draw from our observations? The models in Section 4 show that the
simple utility maximization argument does not lead to a clear win for per-use pricing, and (as
discussed in Section 2) consumers are willing to pay a lot to avoid it. It seems likely, therefore, that
subscription or fixed-fee approaches are likely to continue to be more successful in selling software
or entertainment goods than per-use schemes. We do not exclude the possibility of various sliding-
scale plans (with a charge for each use that declines with the quantity used), but strongly suspect

that pure a la carte pricing schemes will not be successful in the marketplace.

2. Consumer and producer preferences in pricing plans

There is considerable evidence of consumer preferences for subscription over per-use pricing.
Much of it is anecdotal, but there are quantitative measures of just how much extra people are
willing to pay for fixed-rate plans. Many of the examples come from telephone service experiments.
For example, during the 1970s, the Bell System started offering customers a choice between the the
traditional flat rate option, which might cost $7.50 per month, and allow unlimited local calling,
and of a measured rate option, which might cost $5.00 per month, allow for 50 calls at no extra
charge, and then cost $0.05 per call. Anyone making fewer than 100 local calls per month would be
better off with the measured rate option. However, in the numerous trials that were carried out,
the flat rate option was usually selected by over 50% of the customers who were making fewer local
calls than the 50 covered by the measured rate basic charge, even though they clearly would have
benefited from per-use pricing. These results are documented in [4, 6, 7]. Similar preference for
subscription pricing was observed in the choices made by customers signing up for various AT&T
long-distance calling plans in the 1980s, in which many people paid for plans that provided more
calling than they actually used [8]. More recently, this same observation was made about a flat-rate
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common for customers to pay for larger blocks of time than they used.

There are three main reasons that probably lead consumers to prefer flat-rate pricing, and they
were recognized a long time ago [4, 6, 7]:

(i) Insurance: It provides protection against sudden large bills. (What happens if my son comes
back from college, and starts talking to his girl friend around the clock?)

(i) Overestimate of usage: Customers typically overestimate how much they use a service, with
the ratio of their estimate to actual usage following a log-normal distribution.

(iii) Hassle factor: In a per-use situation, consumers keep worrying whether each call is worth
the money it costs, and it has been observed that their usage goes down [7]. A flat-rate plan allows
them not to worry as to whether that call to their in-laws is really worth $0.05 per minute.

All three factors are part of a general preference by consumers for simple and predictable pricing.

In addition to the consumer preference for flat-rate pricing, there are reasons for producers,
especially in areas like software, where network externalities are important, to also like these plans.
Since per-use pricing does repress usage [7], it goes counter to the producer’s desire that a software
package be used as much as possible in order to lock customers into that product. Producers would
like consumers to become so used to the particular features and commands of their software that
they will find it hard to change to another system. Producers also want their systems to be easy
to try out, and be widely used, to capture additional customers. Subscription pricing and site
licensing promote these goals.

In general, subscription plans also make it easier to develop close relations with customers. If
access is on a strict per-use basis, there is no reason to obtain information about the users. On
the other hand, subscription pricing lends itself to finding out what the consumers need, and to

customization of offerings.

3. Optimal pricing for a monopolist

In this section we argue that a flat fee is better than a metered rate for a monopolist selling
information goods on the Internet. We give an example to indicate that in the market of information
goods, coexisting companies must differentiate themselves more than in a market with distribution
costs.

We restrict our price and demand curves to simplify the monopolist’s problem of optimizing
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consumers represented by our demand curves will optimally set a price curve of restricted type.
The restrictions on price and demand curves together imply that each consumer finds it optimal
to watch only the price of one quantity, rather than the whole price curve. As some examples
show, the monopolist may earn more from a flat fee or from a metered rate, depending on the
distribution of consumers; we feel that the population distributions for which a flat fee is most
profitable are more natural than the other populations. This contrasts with the situation in many
real world markets, in which a high distribution cost makes the metered rate more profitable. Our
restrictions about price curves extend nicely to competitive models: a consumer of our restricted
type, when faced with multiple companies offering price curves of our restricted type, still shops
simply, making his decisions based on the price at only one quantity rather than the whole curve. So
some competitive situations are amenable to our simple analysis as well. We find that the Internet
market requires companies to differentiate their products more than do markets with distribution
costs. Similar companies can coexist normally if they face a distribution cost, and their price curves
are constrained so that they must split the market: one company may offer better deals on bulk
service, while the other is optimal for consumers buying small quantities. Without the distribution
cost, the companies must enter a ruinous price war.

It simplifies our computations if each consumer chooses what quantity of service to buy (or not
buy) before examining the available prices. The monopolist serving such rigid consumers can set the
price of each quantity of service independently. If no consumer shopping for small quantities would
consider buying bulk, then the monopolist can disregard the price of bulk service when setting the
price of a small quantity. We want to simplify the monopolist’s problem this way. Under what
restrictions on price and demand curves is this consumer behavior reasonable? If the consumers
have a constant demand for services up to quantity ¢ (and no demand for more), then the optimal
price is increasing, and has decreasing unit price. (The conditions of increasing price and decreasing
unit price imply the price curve is continuous.) That the price increase and unit price decrease,
and the demand be constant and positive, and then 0, is sufficient to insure that each consumer
maximizes utility by buying either nothing or everything he has a positive demand for.

Our simple structure for consumers’ demands allows a two-dimensional parametrization. Each
consumer has demand d for up to quantity ¢ of service; the maximum this consumer will pay
is w = qd. It is convenient to view the consumers in the ¢, w plane because price curves and
willingness to pay curves (the integral of the demand curve) are functions from ¢ to w. If the
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price p(q) to maximize p(q) times the population willing to pay more than p(q) for quantity g.
If at some ¢ the consumers are uniformly distributed over some interval of w-values, the optimal
price is half of the maximal w among consumers or the minimal w among consumers, whichever
is larger. This reasoning, applied at every ¢, determines the monopolist’s best price when faced
with a population uniform in the area between two functions from ¢ to w. To assure that the
resulting price function has diminishing unit price, we could assume that the functions bounding
the population of consumers have f' < f/z. Or let the population as a function of w be independent
of ¢, but scaled by f(q): p(q,w) =¥ (w/f(q)). Let pg be that p maximizing pfw>p ¥(w). Then our
monopolist’s optimal price is p = pof.

In the ¢, w plane, we can see the price function p(¢) = w and the distribution of consumers
simultaneously: those with w values below the price function buy no service; those above buy their
preferred amount. If p is uniform on a rectangle containing the origin, then the flat fee is optimal
and earns 33% more than the metered rate. But there are two other parameter spaces: ¢,d and
d,w, where d = w/q is the consumer’s demand. A uniform population on the same rectangle in
d, w space favors the metered rate by 47%. Finally, a rectangle in ¢,d = ¢, w/g-space is equivalent
to a population in ¢, w-space which is independent of ¢ but for a scaling factor which is a constant
multiple of ¢. By the last sentence of the preceding paragraph, a metered rate is optimal for
this population. So for a uniform population on a rectangle containing the origin in either of our
alternate parametrizations the metered rate is better. Why? The population distribution has three
parameters: ¢, w,d. A uniform rectangle (containing the origin) in two parameters hides a very
wide distribution in the third parameter. Apparently, wide distribution in d, with the other two
parameters constrained, favors a flat fee. But if the distribution is widest in one of the other
two parameters, then the metered rate is better. Which, in reality, is most likely to vary widely?
For information goods, d may well have the greatest variation, and a uniform distribution would
approximate p(q, w) better than it approximates p(q, d) or p(d, w). For noninformation goods, one
of the other parameter spaces may be more reasonable. For non-Internet markets, the cost of
distribution may also make the metered rate more attractive. Indeed, the cost of distribution may
be simply passed on to the consumers, so that the price of various quantities is the profit plus the
linear, or metered, distribution cost.

Distribution cost allows companies to coexist which sell similar or even identical services. If
they are free to set arbitrary price curves, then each can subtly undercut the other, and a price
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pieces. In the presence of a distribution cost, this allows many companies to coexist, each reaping
the same profit, so that neither is tempted to trade the other’s price curve for his own. But if
there is no distribution cost, then the companies must fight a price war. No company alone finds
it optimal to set a price schedule which would entice a user to buy any other quantity than his
entire desired quantity of service, or nothing. Each price curve is increasing, with decreasing unit
price. So the minimum over any collection of price curves is also increasing, with decreasing unit
price. Equivalent to the condition that unit price decrease is the condition that any ray from any
point below the origin on the w-axis intersects the price function only once; clearly this property
is preserved under taking the minimum of functions with this property. So each user buys his
total desired quantity or nothing at all. Given a collection of price functions, each of which is the
minimum of them all at some point, we can introduce a distribution cost which is only slightly
less than the minimum of the price functions, so that whichever company lowers its prices to pick
up some new consumers begins to serve consumers which are a liability to serve. If we alter the
population of consumers, we can create very many of these consumers no one wants to serve.
Then we can place profit-yielding consumers barely above the minimal price function, and vary
their density with respect to ¢ so that the profit to the various companies is equal. So for any
collection of price functions, each of which is somewhere the minimum of them all, there exists a
population density and a distribution cost making that collection of price functions a competitive
equilibrium. Without any distribution cost, however, each company finds it optimal to undercut
one of its neighbors by lengthening or lowering one of the pieces of its piecewise linear price curve.

So there is no competitive equilibrium.

4. Fixed-fee vs. pay-per-use competition

We use two models with somewhat different emphases to examine analytically competitive
pricing between two companies, denoted by A and B. Company A charges a fixed subscription fee
per unit, for example $20 per month, whereas B charges on a per-use basis, for example $1 for each
use or hit. We denote A’s fee by a, and B’s per-use cost by b. It is assumed that ¢ and b are fixed
within each time period, whose length equals the time unit for A’s fixed fee, but the companies
can change their fees from period to period. Such changes are announced prior to the beginning
of each new period. At that time, every customer decides whether to use A or B or neither in the
next period. Thus, over a succession of periods, an individual customer might choose A, then A,

then B, then neither, then B, ... .



The models presume characteristics for the population of potential consumers that remain
unchanged over time. When a and b are announced for the next time period, every customer
chooses A or B or neither for that period on the basis of a straightforward minimum cost calculation
according to the particular aspects of the model. Given these choices, we denote by A(a,b) the
average revenue per consumer paid to A, and by B(a,b) the average revenue per consumer paid to
B. Thus, if there are N potential customers of the service, A earns N A(a,b) and B earns N B(a, b)
during the period in which ¢ and b are in effect.

We now describe the two models. In both, @ and b are treated as continuous variables for
analytical convenience. We assume also that other parameters, such as customer usage rate and
willingness to pay, are continuous, and that probability functions or probability density functions

defined for these parameters are continuous and differentiable.

Model 1

Let z denote the expected number of hits per period for a potential customer if the customer
actually uses the service provided by A and B. We assume that z has a probability density function
v over the population of potential customers, with [;* p(z)dz = 1. The probability that a customer
chosen at random has z € [z, 2] is faff p(z)dz, assuming of course that z; < z,.

An additional probability overlay for single-customer variability will be avoided by assuming
that a customer’s expected usage z is its actual usage if it subscribes to the service. We refer
to z as the usage rate of a potential customer. This usage rate remains constant over time for
each customer. If a customer with usage rate x subscribes, it pays ¢ during the period if it uses
company A, and pays bz if it uses company B. Thus, assuming that customers are cost minimizers,

a customer with usage rate
paysato Aif a < bz , or
pays bx to Bif bz < a ,

given that it uses the service.

Model 1 incorporates a notion of willingness to pay by assuming that there is a probability
function P on ¢t > 0 such that P(¢) is the probability that a customer will actually use the service
when it would pay ¢ if it does so. Thus, a customer with usage rate z will subscribe to the service
with probability

P(min{a, bz}) ,
and will not subscribe, hence pay nothing to either A or B, with probability 1 — P(min{a,bz}). We

have 0 < P(t) < 1 for all ¢, and anticipate that P decreases in , i.e., that probability of subscribing
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decreases as the cost of doing so increases. It should be noted that P is defined independently of
xz. This may be unrealistic in settings where we expect heavy-usage customers to be willing to pay
more. We use this feature in our other model.

It follows from our definitions and assumptions for Model 1 that the average revenues per

consumer to A and B for a period in which (a,b) applies are

o0

A(a,b) = aP(a) - p(z)dz (1)
a/b
Bla,b) = /z | baP(w)a(a)ds (2)

Under the assumption that the companies know p and P, we are interested in their choices of
the cost variable under their control — a for A, b for B — when they desire to maximize their own

revenues. We return to this after we describe the second model.

Model 2

Model 1 is an all-or-nothing model which says that a potential customer with usage rate z
either does not use the service at all or subscribes and uses it z times during the period. This may
be appropriate for situations in which a third party (parent, company) pays for the usage of the
consumer (teenager, employee) but does not control that usage, but it neglects situations in which
consumers limit usage to less than their usage rates because of a budget constraint or a limit on
their willingness to pay more than certain amounts for the service.

Our second model factors in the latter aspect by assuming that each customer has a willingness-
to-pay amount or budget constraint w, which is the most it will pay for the service during each pe-
riod. With 2 denoting usage rate as in the first model, Model 2 assumes that (w, z) has a joint prob-
ability density function f(w,z) over the consuming population, with [;* [ f(w, z)dwdz = 1. The
probability that a customer chosen at random has (w, z)e[wy, wa| X [z1, z2] is ffjiwl ffizl flw, z)dzdw.

We assume for Model 2 that every potential customer actually subscribes, or, alternatively, that

f applies only to subscribing consumers. Assuming that customers are cost minimizers, a customer

with parameter pair (w,z) in a period where (a, b) applies will
choose A and pay @ to A if ¢ < min{bz,w}, or
choose B and pay min{bz,w} to B if min{bz, w} < a .

In other words, if either the willingness-to-pay amount w is less than a, or the full-usage per-hit-

basis cost bz is less than a, then and only then will the customer subscribe to company B. In this
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case, if w < bz, then the customer limits its hits to y such that by = w. On the other hand, a
customer who has a < min{bz, w} and subscribes to A uses its hit rate x but pays only a.
It follows for Model 2 that the average revenues per consumer to A and B for a period in which

(a,b) applies are

A(a,b) = a/::a z:oa/b flw,z)dz dw (3)
B(a,b) = /::0 /z(:w/b wf(w,z)dr dw+ ::/; /::Ib bz f(w,z)dw dz . (4)

We assume here that both companies know f and wish to maximize their own revenues by choices

of the cost variable under their control.
Dynamic behavior, equilibria, and price wars

As indicated above, companies A and B can change their costs to customers periodically. We
will assume this occurs for each period, but no generality would be lost if changes were allowed
only sporadically, for example every tenth period. Because each company could gain a competitive
advantage if it knew the other company’s new fee before it set its own, we will assume that new fees
are determined and announced simultaneously. In the absence of collusion, this implies that each
company must estimate or guess what the other will charge when it sets its new fee. This casts the
price-changing behavior as a repetitive noncooperative game in which the pricing strategies used
by the companies could have various forms.

One of these, which we refer to as naive strategies, is for each company to set its new price to
maximize its revenue under the assumption that the other company will not change its price in
the coming period. Naive strategies are obviously myopic and can result in very different revenues
than anticipated when the other does in fact change its fee. More sophisticated strategies arise
when the companies anticipate each others’ changes. If this is carried to an extreme, the companies
can engage a succession of changes and counterchanges “on paper” before finally arriving at their
to-be-announced new fees.

In this paper we will not assume explicit forms or methods for new price determination, but
will use an analysis of changes and counterchanges to suggest how the companies’ fees might evolve
over time, or might be affected by sophisticated computation during a single period. Our procedure
begins with a fee pair (ag, bg) and determines a series of optimal new prices on an alternating basis
for the companies under the assumption that the other company retains its “old price” for at least

“one more period.” Thus, if A goes first, it computes a; to maximize A(a,bo), then B computes

12



by to maximize B(ay,b), then A computes ay to maximize A(a,b;), B computes by to maximize

B(agz,b), A computes az to maximize A(a,bz), and so forth. The result is a series
aq, b07 ay, b17 a2, b27 e

of potential changes and counterchanges. We denote the series by S, or by S(ag, bo) to note explicitly
the initial position.

Among other things, we are interested in the behavior of S(ag, by) as n for a,, and b,, gets large.
We write S(ag, bo) — (a’, ") if S(ao, bo) converges to (a’,b'), i.e., if for every ¢ > 0 there is an n(¢)
such that |a, —a'| + |b, — b'| < ¢ for all n > n(¢). And when S(ag, bo) — (@, ') for a unique (a’, ')
that is the same for every initial position (ag,bg) > (0,0), we write S — (a/,b') and say that S
converges uniquely to (a’,b’). Our experience with a variety of specific assumptions about p and
P in Model 1 or f in Model 2 indicates that unique convergence usually occurs although other
behaviors are possible. We defer consideration of the latter until later and focus for the moment
on unique convergence.

Two forms of unique convergence are possible, namely
S — (a*,b") with ¢* > 0and b* >0,

and

S — (0,0) .

In the first case, we refer to (a*,b*) as a strong equilibrium point, or S.E.P. for short. It typically

occurs when

A(a™,b%) > A(a,b*) forall a # a*,

B(a™,b") > B(a™,b) forall b#b*,

and (a*,b*) is the only such point with this property. If the initial position is (a*,b*), which might
be determined by the companies at the start, then neither company has an incentive to change
its price and we have S(a*,b*) = a*,b*,a*,b* ... . If (ag,bp) # (a*,b*), then a succession of
revenue-maximizing calculations will drive (a;, b;) toward (a*, b%).

Natural assumptions about p and P, or about f, imply that we never have S — (a*,0) where
a* > 0or S — (0,b%) when b* > 0. For example, B(a*,0) = 0 by definition since b = 0 means
that B offers its service without charge, whereas B(a*,b) > 0 for small positive b. For a similar

reason, the second form of unique convergence, S — (0,0), never identifies (0,0) as an S.E.P. We
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refer to S — (0,0) as a price war because its typical behavior for S(ag, bo) with ag and by positive
has ag > a1 > az > ...(a, = 0) and bg > by > by > ...(b, — 0). In this case, each company
lowers its price to increase its market share and, hopefully, its revenues, but the long-run outcome
is that A(a;, b;) and B(a;, b;) are driven toward zero. To avoid such a ruinous result, the companies
might revert to pricing schemes that bypass our form of competitive maximization and which could
involve covert or overt collusion, perhaps with a revenue-sharing agreement. We will not discuss
the legality of such schemes and will focus on non-collusive competitive pricing. However, effects
of collusion or ‘cooperation’ will be noted in examples.

We now describe selected results for the two models. Following usual practice, we refer to

(a*,b*) as an equilibrium point if, for all nonnegative (a, b),
A(a*,b") > A(a,b™) and B(a™,b") > B(a",b) . (5)

Assuming differentiability, the first-order conditions for (5) are

dA(a,b)
Jda

9B(a, b)
|(a*,b*) = 0 and Tka*’b*) = 0 .

The usual second-order conditions for maxima require concavity, i.e., *A(a,b)/da? < 0 and
?B(a,b)/0b* < 0 at (a,b) = (a*,b*), but to ensure that (5) holds globally and not just in the

vicinity of (a*, b*) it may be necessary to look beyond local concavity.

Results for Model 1
When A(a, b) and B(a,b) in (1) and (2) are differentiated with respect to a and b, respectively,
we obtain the following first-order conditions for an equilibrium point:

span () = 1P@ + P @) [ pla)do (6)

rz=a/b

() P (&) = [ 1pw) + 2P G2 lan(rrar g

=0
where P'(z) = dP(z)/dz. If (a*,b*) is an equilibrium point, (6) and (7) must hold when (a,b) =
(a*, b%).
It turns out that there is no (a, b) solution to (6) and (7) for many specifications of P and g,
and in most of these cases we have observed that S — (0,0), i.e., a price war. But there are other
situations with equilibrium points, and in some of these cases they are strong equilibrium points.

We begin with an example of S.E.Ps.
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EXAMPLE 1. Our first example assumes that P is a negative exponential function with P(z) =
e~ ", ¢ > 0, so that P(0) = 1. Changes in ¢ allow us to control the effects of the probability P(z)
that a customer with usage rate z will actually subscribe to the service. For example, if x = 10,
we have P(10) = 0.905 when ¢ = 0.01 and P(10) = 0.607 when ¢ = 0.05.

We combine P with the negative power function for p with parameters k£ and « defined by

ple) = %
with @ > 0 and k& > 2. The special case of £ = 2 has limited interest because then the expected
value of z, defined by F(z) = [;~ zu(z)dz, is infinite. For k& > 2, F(z) = a/(k — 2). For example,
if @ = 20 and k = 2.5, the average number of hits per customer during one period equals 40.

The first-order conditions (6) and (7) for an equilibrium point simplify when we combine the

scale parameters ¢ and « with the decision variables and define p and ¢ by
p=ca, q=ach.

Then (6) and (7) reduce to

g=plp+k—-2)/(1-p) (8)
Pozlk=Nz—q _,,
/z_o We dz=0, (9)

respectively. It turns out that (8) and (9) have a joint positive solution (p*, ¢*) that depends on
k when 2 < k < 3, and this solution defines an S.E.P. for each such k£ with S — (p*/c, ¢*/(ac)).
However, when k > 3, there is no such solution and the situation is a price war with S — (0,0).

The effect of k£ for 2 < k < 3 on the a* value at the strong equilibrium point is as follows. As k
increases from 2 toward 3, ¢* decreases from about 0.3/c¢ to 0, indicating a steady decrease in price
at equilibrium as we approach the price war status at £ = 3. At the same time, the revenue ratio
at equilibrium favors A slightly but approaches parity as k& approaches 3. We note also that both
companies’ equilibrium revenues approach 0 as k& — 3. Specific calculations show that A’s revenue
at k = 2.5 is 42% of its revenue at k = 2; at k = 2.75, A’s revenue is 22% of its revenue at k& = 2.

O
EXAMPLE 2. Our second example involves variations on the price war theme and unusual

pricing schemes. We assume throughout that u is a negative exponential with parameter v > 0:
p(z) =ye ™.
The expected usage rate in this case is E(z) = 1/7.
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Before we consider particulars, we note a general result for this p, namely that if 2P(z) is
increasing and concave up to a maximum point and then decreases, we have S — (0,0). Many
reasonable P functions have the stated properties for zP(z), which suggests that the price war
situation may well be the rule rather than the exception for instances of Model 1.

Now suppose that, like Example 1, P(z) = e”“*. Then z P(z) satisfies the preceding conditions
which ensure that S — (0,0). We consider four pricing schemes that avoid a ruinous price war.

1. A chooses a fixed subscription fee and announces that it will not deviate from this fee.
We assume that B maximizes its own revenue, given A’s announcement. Suppose « is A’s fee and
b = g2(a) is B’s best response. Then A chooses a to maximize A(a, go(a)). Computations show that
a is approximately (0.7)/c and gy(a) for a = (0.7)/c is about v/(2.86¢). For example, if ¢ = 0.05
and v = 1/10, then @ = 14 and b = 0.7, or A charges $14 per month and B charges 70 cents per
hit. As anticipated, B gets the lions share of the business: the revenue ratio at the solution point
is A(a, g2(a))/B(a, g2(a)) = 0.325.

2. B chooses a fixed per-use fee and sticks to it. Then A maximizes its own revenue with best
response a = g1 (b) when B chooses b. We assume that B chooses b to maximize B(g;(b),b). In this
case b is approximately v/cand g1 (b) is about (0.5)/c,so when ¢ = 0.05 and v = 1/10, A charges $10
per month and B charges $2 per hit. The revenue ratio at the solution is A(g1(b),b)/B(g1(b),b) =
2.784.

The sum of the companies revenues per potential customer is (0.19)/c for case 1 and (0.25)/c
for case 2. Greater totals are possible when A and B collude, to the detriment of consumers. We
consider two collusion schemes.

3. The two companies agree to set (a, b) so that their revenues are equal, and do this to maximize
what each gets. The (a, b) solution is (1.38/¢,v/(.6¢)) with A(a,b) + B(a,b) = (0.3034)/c.

4. The companies collude to maximize A(a, b)+ B(a, b), which would be the monopolist solution
if A and B were the same company. They then agree to split A+ B equally. The maximum occurs
here when b is effectively co and @ = 1/¢ = arg maxzP(z). The total revenue, all of which comes
from A’s fixed fee, is e /c = (0.368)/c, a 21% increase over the total of case 3, and a 94% increase
over the total of case 1. When ¢ = 0.05, A charges $20 per month in case 4. O

We conclude our remarks for Model 1 by considering the unrealistic but analytically interesting
situation in which P(z) is constant and positive. In this situation, (6) and (7) reduce to

tu(t) = /xoo p(z)dzr and t2u(t) = [I_, zp(z)de

=t
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where ¢ = a/b. When p is a negative exponential, as in Example 2, S — (0,0), and when g is
a negative power function (Example 1) with parameters @ > 0 and k£ = 2, a succession of price
changes and counterchanges drive (a;, b;) the other way, toward (0o, c0). There are cases in which
(6) and (7) have a unique solution t* > 0, for example when p is a specific convex combination of a
negative exponential and a negative power function with £ = 2. In such cases, («a, b) is an equilibrium
point if and only if a/b = t*, with A(bt*,b) = B(bt*,b), so we have a continuum of equilibrium
points. If (ag,bo) is not an equilibrium point, a revenue-maximizing change by one company but
not the other makes (a1, b1) an equilibrium point at which neither company can benefit by a further
unilateral change. If both companies change naively and simultaneously in every period, we obtain
an alternating pattern in which every other period has (a, b) = (ag, bp) and the in-between periods
have (a,b) = (bot*, ap/t*). Finally, because t* is fixed and A(a,b) = a [ p(z)dz when a/b = t*,
both companies have an incentive to collude and make a and b arbitrarily large.
Results for Model 2

Differentiation of A(a,b) and B(a,b) in (3) and (4) with respect to ¢ and b, respectively, gives

the following first-order conditions for an equilibrium point for Model 2:

Jo JL ot = [ s [ () o 10

a/b  poo a’ [ a
/ zf(w,z)dw dz = —/ f <'w, —) dw . (11)
w=bx b2 a b

=0 w=

We have examined many instances to Model 2 for specific forms of f, both when w and z are
bounded above and when they are unbounded, and found in most cases that (10) and (11) have
no feasible (a,b) solution. The predominant result in S — (0,0), a price war of successive price
reductions toward 0.

A main reason for this finding is brought out by considering the separable case in which

f(w,z) = g(w)h(z)

where g and h are probability density functions for w and x respectively. Separability has the defect
that the expected usage rate, given w, is independent of w, whereas we anticipate an increase in
that rate as w increases. In other words, it seems likely that consumers who are willing to pay more
for the service will, on average, have greater usage rates. We will, however, assume separability in
what follows because it simplifies matters and facilitates illustrations of key points.

Given separability, let H and A’ denote the cumulative distribution function and the first deriva-

tive of h, respectively. It can then be shown that (10) and (11) have no feasible (a,b) solution,
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hence admit no equilibrium point, if
[(2)]? + B (2)[1 — H(2)] > 0 (12)

for all z in the domain of the usage rate variable. When z is bounded with domain [0, K], it turns
out that (12) holds for most h’s that seem reasonable, and it takes some imagination to formulate
h’s that violate (12) over some subdomain of [0, K]. Even then there is no assurance that (10)
and (11) have a solution. In fact, we have failed thus far to construct a specific example with f
separable and w and z bounded that has an S.E.P.

Plausible failures of (12) are easier to imagine when z is unbounded. We conclude with one
such case that has an S.E.P.

EXAMPLE 3. For scaling convenience, we define a separable f by

(1.5)2
(1+w)2~5(1—|—x)2-5

Then F(z) = E(w) = 2 in the units used for # and w. For example, if each unit of w represents

f('w7 'r) =

for all z,w >0 .

$10, and each unit of z represents 7 hits, then the average willingness to pay is $20 and the mean
usage rate, prior to reductions caused by budget constraints, is 14 hits per period. The unit
interpretations of $10 for w and 7 hits for x are presumed in what follows.

Our f admits a unique feasible solution for (10) and (11) at approximately (a*, b*) = (0.15,0.13),
and the solution is an S.E.P. In ‘real’ terms, A charges $1.50 per month and B charges $1.30 for
7 hits, or about 19 cents per hit, at equilibrium. The average per capita revenues are A(a*,b*) =
0.0385 and B(a*,b*) = 0.0365, so A has a slight edge over B.

The preceding revenues translate into 38.5 cents per consumer for A and 36.5 cents per consumer
for B. These amounts, which seem low in view of the average willingness to pay of $20, are a
consequence of competition. For example, if B stopped offering the service, leaving A without a
competitor, A would change « from 0.15 to 2, or $20, and realize a 10-fold increase in revenue to
$3.85 per consumer on average. In other words, about 19% of the original consumers would pay A

the new fee of $20 per month, and the others would stop using the service altogether.

Acknowledgements: We thank Bill Infosino for his comments on an earlier draft of this work.
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