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Abstract

This paper begins with the observation that half of all graphs contain-
ing no induced path of length 3 are disconnected. We generalize this in
several directions. First, we give necessary and sufficient conditions (in
terms of generating functions) for the probability of connectedness in a
suitable class of graphs to tend to a limit strictly between zero and one.
Next we give a general framework in which this and related questions can
be posed, involving operations on classes of finite structures. Finally, we
discuss briefly an algebra associated with such a class of structures, and
give a conjecture about its structure.



1 Introduction

The class of graphs containing no induced path of length 3 has many remarkable
properties, stemming from the following well-known observation. Recall that an
mnduced subgraph of a graph consists of a subset S of the vertex set together with
all edges contained in S.

Proposition 1.1 Let G be a finite graph with more than one vertezx, containing
no induced path of length 3. Then G s connected if and only if its complement
15 disconnected.

Proof: Tt is trivial that the complement of a disconnected graph is connected.
Moreover, since Pj is self-complementary, the property of containing no induced
Ps is self-complementary. So let G be a minimal counterexample: thus, G and
G are connected but, for any vertex v, either G — v or G — v is disconnected.
Choose a vertex v and assume, without loss, that G — v is disconnected. Then v
is joined to a vertex in each component of G — v. Since G is connected, there is
a vertex 2’ not joined to v (in GG). Let w’ be a neighbour of v in the component
C of G — v containing z’. Then there is a path from w’ to ' in C', and hence
an edge wz such that w ~ v, 2 % v. If u is a neighbour of v in a different
component of G — v, then {u, v, w,z} induces Ps, contrary to assumption.

The particular view of this result we will take here is that a random Ps-free
graph on more than one vertex is connected with probability % This leads
to the general question: wn which classes of graphs, having good notions of
“connectedness” and “induced substructure”, does it hold that the probability of
connectedness of a random n-vertex graph in the class tends to a limit p, with
0<p<1, asn— oco? There are two questions here, since we could take either
labelled or unlabelled structures.

One example is the class of forests of rooted trees, where the limiting prob-
ability of connectedness is 1/e = 0.3679... for the labelled structures, and
1/2.997...=0.3367. .. for the unlabelled structures. (The latter holds because
there is a natural bijection between forests of rooted trees on n vertices, and
rooted trees on n + 1 vertices; and 2.997 ... is the exponential constant in the
asymptotic formula for the number of unlabelled trees: see Otter [11]. For the
labelled case, see Rényi [15].

There is no need to restrict ourselves to graphs. The probability of connect-
edness of a random N-free poset tends to (v/5 — 1)/2, in both the labelled and
the unlabelled case (El-Zahar [4]; see also Stanley [18]). (Incidentally, there is
no simple explanation for why the golden ratio appears here, nor for why the
answer is the same in the labelled and unlabelled case.)

Contrary to what Proposition 1.1 might suggest, this question turns out
to have little to do with the detailed structure of the class, but involves the
rate of growth of the number of n-element structures. This will be analysed in



Section 2, where we show that a sufficient condition can be expressed in terms
of convergence and smoothness properties of the generating function.

The relation between connected and arbitrary structures has several ana-
logues, such as that between partial and total structures, or between reduced
and arbitrary structures in a class whose members have a natural “congruence”
relation (where a structure is reduced if the congruence is equality). These are
best described in terms of two kinds of composition of classes of finite struc-
tures, “multiplication” and “substitution”, defined in Section 3. The behaviour
of generating functions under these operations is expressed in terms of a cycle
index function, described in Section 4. The final section defines a graded alge-
bra based on a class of structures, and gives a conjecture on this algebra and a
structure theorem under additional hypotheses.

2 Convergence and smoothness

Let A be a class of graphs or other structures which has a notion of “connect-
edness”; let C denote the class of connected structures in A. We assume that
every member of A can be expressed uniquely as a disjoint union of members
of C, and that any disjoint union of members of C is in A. Let ¢, and C, be
the numbers of unlabelled and labelled structures in C, and a, and A,, the cor-
responding numbers for A. (We assume that ¢g = Cy = 0, ag = Ag = 1.)
As is usual in enumeration theory, we use exponential generating functions
C(z) =30, Cpz™/nt and A(z) = Y00 Apz"/n! for labelled structures, and
ordinary generating functions ¢(z) =Y > ;¢ 2™ and a(z) = Y o an2™ for un-
labelled structures. (This notation will be used throughout this section.) With
our assumptions, we have

Alz) = exp(C(2)), (1)
a(z) = exp (Z C(%n)) = H(l — e, (2)

(See Wright [19]; we will derive these well-known equations in Section 5.) Now
the probability of connectedness of a random n-element structure in A is ¢, /a,
in the unlabelled case, or C), /A,, in the labelled case. So the general question is:
What conditions on the sequence (Cy) or (cn) guarantee that Cn /A, or cp/an
tends to a limit strictly between zero and one as n — oo, where A,, and a, are
defined by the formulae above?

Similar questions were first considered by Wright [19], who proved the fol-
lowing.

Theorem 2.1 If ¢, >0 for all n, then ¢,/a, — 1 if and only if

(a) e(z) has radius of convergence 0, and



n—1
(b) Z hshp_s = o(hy), where hy, may be either ¢, or a,.
s=1

The same holds for C,, and A,.

In Cameron [2], it was conjectured that a necessary and sufficient condition
for the probability of connectedness to tend to a limit strictly between zero and
one 1s that the appropriate generating function has finite radius of convergence
R and converges at z = R, and that its coefficients satisfy some “smoothness”
condition. In this section, we prove a result of this form. First, we observe that
the convergence condition is necessary.

Theorem 2.2 Suppose that, with the above notation, C(z) has finite non-zero
radius of convergence R, and that C(z) is unbounded on its circle of convergence.
Then liminf, o Cy /A, = 0. The analogous result holds also for ¢(z) and a(z).

Proof: Consider the labelled case, and suppose that C,, > § A, for all n, where
d > 0. Then C(z) > §(A(z) — 1) for 0 < z < R, and so C(z) > d(exp(C(z) — 1)
as z = R. This is clearly impossible if C'(R) is divergent. If C(R) is convergent,
then C(z) is uniformly convergent for |z| = R.

The argument in the unlabelled case is similar.

Here is an example. Take a finite alphabet @, with |Q| = ¢, and let A
consist of all finite words in ). An induced substructure is taken to be a (not
necessarily consecutive) subword. (This example can be recast as a relational
structure, where a word on n letters is regarded as n-set which is totally ordered
and is partitioned into ¢ subsets corresponding to the elements of Q.) A Lyndon
word is one which is lexicographically smaller than any proper cyclic shift of
itself. Now it can be shown that any word can be expressed uniquely as the
concatenation, in lexicographically decreasing order, of Lyndon words. Thus,
taking “disjoint union” to mean concatenation in decreasing order, we are in
the general situation of this section. In this case, a, (the number of words of
length n) is equal to ¢", while ¢, (the number of Lyndon words of length n) is
given by the well-known formula

1 n q"
en = EZp(d)q ld o 2
dln

n

We see directly that the radii of convergence of a(z) and ¢(z) are equal to 1/q,
and that both series diverge at 1/¢; also

en/an ~1/n—0.

Furthermore, because words are totally ordered, we have C,, = nle, and A, =
nla,, so also Cy, /A, — 0.



In addition, some smoothness condition on the coefficients is required to
ensure that liminf(C,/A,) = limsup(Cy,/A,) (or the analogous condition for
¢n/an). An example to show this was given in Cameron [2]. We give two alter-
native definitions of “smoothness” which will work. In the analysis that follows,
the arguments in the unlabelled and labelled cases are virtually identical. So
we speak of the functions ¢(z) and a(z), but C(z) and A(z) may be substituted.

The first smoothness condition we consider is Hayman admaissibility, defined
in Hayman [8] or Odlyzko [10]. Rather than give the definition here, we quote
a theorem of Hayman which frequently allows an easy proof of Hayman admis-
sibility for generating functions in combinatorial situations.

Theorem 2.3 (Hayman) Let f(z) and g(z) be admissible for |z] < R, R < co.
Let h(z) be analytic in |z| < R and real for real z. Let p(z) be a polynomial with
real coefficients.

(i) If the coefficients ay, of the Taylor series of exp(p(z)) are positive for all
sufficiently large n, then exp(p(z)) is Hayman admissible for all z.

(i) exp(f(z)) and f(z)g(z) are admissible for in |z| < R.
(iii) If, for some n >0 and Ry <r < R,

max |h(z)] = O(f(r)'™7"),

|z|=r
then f(z) + h(z) is H-admissible in |z| < R. In particular, f(z) + p(z) is
H-admissible in |z| < R and, if the leading coefficient of p(z) is positive,
then p(f(z)) s H-admissible in |z] < R.

Hayman [8] proved the following theorem:

Theorem 2.4 Let f(z) =Y fn2™ be Hayman-admissible in |z| < R. Let

)

RO
I I R AN
by =rdl) = Tyt (f(r)) |

Then
fn ~ (27Tb(rn))_1/2f(rn)r;" as n — 0o,

where ry,, is defined uniquely for sufficiently large n by a(ry) = n. Furthermore,
for all € > 0, we have r, = R, f(r,) = o0, and b(ry) = o(f(rn)) as n = co.

The first result of this section is:



Theorem 2.5 Let ¢(z) be the generating function for the unlabelled (or labelled)
connected structures in a class and let 0 < R < oo be the radius of convergence
of e(z). If exp(c(z)) is admissible, then c¢(x) — oo diverges as x — R and the
probability of connectedness of an unlabelled (or labeled) structure goes to 0 as
n — 0o.

Proof: In the unlabeled case, a, is at least as large as the coefficient of z™ in
exp(c(z)). Hence it suffices to work with f(z) = exp(e(z)) in both the labeled
and unlabeled cases and show that ¢, /a, — 0.

The divergence of f(z), and hence ¢(z), at = R follows from f(r,) — oo
in Theorem 2.4.

We have

(27b(rn)) " exp(e(rn))r"
exp((1 — €)e(ry))r, ™
Me(rp)e(rn)r, "

M log(f(rn))en,

where the last inequality follows from the fact that a sum of nonnegative terms
is at least as large as a single term. Since f(r,) — oo, the proof is complete.

fn

i

v Vv Vv

The other smoothness condition we impose on c¢(z) is satisfaction of the
Flajolet—Odlyzko singularity analysis [6]. See [10], Section 11, for the definition
of a function of slow variation at oo, and for the definition of the region A.
Flajolet and Odlyzko showed:

Theorem 2.6 Suppose that c(x) has a unique singularity at R on its circle of
convergence, that the radius of convergence of h(x) exceeds R, that L(u) is a
function of slow variation at oo, and that

c(z) —h(z) ~ (R—z)"L(1/(R — z))
as x — R i A, where a is not a non-negative integer. Then

R=™n=%"1L(n)
I'(a)

Cp ~
as n — o0.

Remark. A similar result is proved in [6] when « is a non-negative integer: T'(«)
must be replaced by a suitable constant.

Remark. If o < 0 and
L(u) = (log U)’Gl(log log u)ﬁ2 .

then exp(c(z)) is admissible (Hayman [8]), and we can use Theorem 2.5.
We now come to the other result of this section:



Theorem 2.7 Suppose that C(z) satisfies the hypotheses of Theorem 2.6. A
necessary and sufficient condition for the probability of connectedness of labelled
structures in the class to have a limit strictly between 0 and 1 is that C(z)
converge at R.

Suppose that c(x) satisfies the hypotheses of Theorem 2.6 and has radius of
convergence R < 1. A necessary and sufficient condition for the probability of
connectedness of unlabelled structures in the class to have a limit strictly between
0 and 1 is that C(z) converge at R.

Proof: ;From Theorem 2.1, we cannot have ¢, /a, — 1 if R > 0.
Suppose ¢(R) diverges (that is, if & < 0). As in the proof of Theorem 2.5, it
suffices to consider a(z) = exp(e(z)). We have

[2"] exp(c(z))
[2")e(2)?/2
~ 2 ()T (20),

an

v

and the result follows.
Suppose now that ¢(z) is convergent at « = R. Then, in A, we have

() — h(x) ~ (R 2)*L(1/(R— 2)),

where @ > 0 and h(z) is analytic in |z| < R 4 ¢ for some § > 0. Note that
h(R) = ¢(R). In the labelled case, as ¢ — R in A,

a(z) — ") ~ PPN (R — 2)*L(1/(R — z)),

and we conclude that
Cn,

WR) _ o—c(R)

so that ¢, /a, — e~ as n — o0o. The unlabelled case is similar

provided R < 1.

€

For example, Cayley’s Theorem for the number T;, of labelled trees on n
vertices, combined with Stirling’s approximation, shows that

Tn/n!~ Cn=5/%e",

It is known that T'(z) = > T,2"/n! satisfies the hypotheses of Theorem 2.7,
and we conclude that the probability of connectedness of a random forest tends
to a limit strictly between zero and one. In fact the limit is 1/+/e (Rényi [15]).

It remains to prove that various natural classes of graphs satisfy “smooth-
ness” conditions of the types described above. We pose the following problems.
If C is a class of finite graphs, let X'(C) denote the class of finite graphs con-
taining no induced subgraph isomorphic to a member of C. Note that, if every
member of C is connected, then a graph lies in X'(C) if and only if all its con-
nected components do, so the analysis of this section applies (if the appropriate
growth and smoothness conditions can be shown).



(a) Ts it true that, if C is finite, then the probability of connectedness of labelled
or unlabelled graphs in X'(C) tends to a limit?

(b) Ts it true that Ps is the only finite connected graph H such that, in X' ({H}),
the limiting probability of connectedness is strictly between 0 and 17

3 Operations on classes

In this section, we propose a general framwork in which a number of questions
like the probability of connectedness can be posed and studied. We work in the
context of a class A of finite structures, which is closed under isomorphism and
closed under taking induced substructures. Thus .4 may be the set of models of
a universal theory in a first-order relational language. (We allow the language
to have infinitely many relation symbols, but require that there are only finitely
many n-element structures in A (up to isomorphism), for each n. As in the
preceding section, we let a, and A, be the numbers of unlabelled and labelled
n-element structures in A, and use the ordinary generating function Y . a, 2"
for the sequence (ay), and the exponential generating function > -, A,2"/n!
for (An). We assume that ag = Ag = 1.

Following Fraissé [7], the age of a countable structure M is the class of all
finite structures embeddable in M as induced substructures. Among structures
satisfying our assumptions, ages are characterised by the joint embedding prop-
erty: given A, B € A, there exists C € A containing both A and B as induced
substructures.

We will frequently make use of the class S of sets (without any structure).
We have S,, = s, = 1 for all n; so S(z) = exp(z), s(z) = 1/(1—z). Other simple
classes are T, the total orders, with ¢, = 1, T,, = nl,#(z) = T(z) = 1/(1—=2); and
the class P of permutations, with P, = n!, p, = p(n) (the partition function),
P(z) = 1/(1 = 2), p(z) = [I,—, 1/(1 — 2™). (Two permutations are isomorphic
if and only if they are conjugate in the symmetric group, so the number of
unlabelled permutations of an n-set is the number of partitions of n.)

Now we define two operations on classes of structures as follows. Let A, B be
classes. Then the operation of multiplication produces the class A x B, defined as
follows: a structure in the class with point set X consists of a partition of X into
two parts Y, Z (possibly empty), with an A-structure on Y and a B-structure
on 7.

Proposition 3.1 IfC = A x B, then C(z) = A(z)B(z) and ¢(z) = a(z)b(z).

For example, if D is the class of derangements (permutations with no fixed
points), then P = D x 8, from which we obtain the exponential generating
function for derangement numbers: D(z) = 1/((1 — z) exp(z)).

The operation of substitution of B into A produces the class A[B—1], defined
as follows: a structure in the class on the point set X consists of a partition



of X into an arbitrary number of non-empty parts, a B-structure on each part,
and an A-structure on the set of parts. The —1 in the notation is intended
to suggest that we remove the empty structure from B before performing the
substitution.

Proposition 3.2 If C = A[B — 1], then C(z) = A(B(z) — 1).

The function ¢(z) cannot be determined from a(z) and b(z) alone, as we see
in the next section.

For example, if C denotes the class of cyclic orders, then the cycle de-
composition of a permutation can be expressed as P = S[C — 1], so that
P(z) = S(C(z)—1), in agreement with the values calculated above for P(z) and
S(z) and the fact that C'(z) = 1 — log(1 — z) (from C,, = (n — 1)! for n > 1).

Now let A be a class of graphs closed under disjoint unions, and let C be
the class of connected graphs in A. We have A = S[C — 1]. So the problem
of the probability of connectedness is an instance of the following more general
problem:

Problem: Suppose that A is obtained from B and C by some operation such as
multiplication or substitution. Under what conditions does it hold that C, /A,
or ¢, /a, tends to a limit strictly between zero and one?

We give two further examples.

If A =8 xC, then A-structures can be regarded as partial C-structures,
consisting of a set with a C-structure on a subset. For example, if A is a class
of graphs closed under adding isolated vertices, and C is the class of members
of A with no isolated vertices, then this relation holds. So our question would
be: When does it occur that the proportion of partial structures which are total
tends to a limit between zero and one? This is discussed in Cameron [2].

Suppose that .4 = C[S—1]. Then an A-structure carries a natural equivalence
relation or congruence =, such that if a relation holds for an n-tuple of points,
then it remains true if some or all of the points are replaced by equivalent ones.
With this interpretation, C is the class of reduced structures, those in which the
relation = is just equality. For example, in a suitable class A of graphs, set
v = w if v and w have the same neighbour sets; a graph is reduced if different
vertices have different neighbour sets. Now our question is: When does it occur
that the proportion of structures which are reduced tends to a limit between
zero and one?

4 Cycle index

It is possible, following Joyal [9], to define a cycle index of a class of struc-
tures such that the generating functions for labelled and unlabelled structures



defined above are specialisations of it. Its behaviour under multiplication and
substitution can also be described.

Recall that the cycle inder z(g) of a permutation g on n letters is the mono-
mial in indeterminates s1,..., s, given by

(9) .c2(9)

2(g) =578y
where ¢;(g) is the number of cycles of length 7 in the cycle decomposition of g.
If G is a permutation group on n letters, the cycle index of G is the average of

the cycle indices of its elements:
1
Z(G) = ] > 2(9).

Now if G is a class of finite permutation groups, containing only finitely many
members of degree n for each n, we define the cycle index of G by Z(G) =
Y _Geg Z(G). (This is a formal power series in infinitely many indeterminates;
but the assumption guarantees that each monomial occurs only finitely often in
the sum.)

This definition can be extended in two ways. First, let A be a class of
structures, as in the preceding section. We define its cycle indez to be Z(A) =
Z({Aut(A) : A € A}), where each unlabelled structure in A is used once in the
sum. Now the generating functions for .4 are specializations of the cycle index.
If ® is a formal power series, we let ®(s; < #;) be the result of making the
substitution ¢; for s; for all i. Some conditions are required in general in order
that this is well-defined. For example, if the #; are formal power series in one
indeterminate z, it suffices that ¢; has no term of degree less than 3.

Proposition 4.1 (i) A(z) = Z(A)(s; « 2°).
(ii) a(z) = Z(A)(s1 + z,8; « 0 fori>1).
The cycle index behaves as follows under multiplication and substitution:
Proposition 4.2 (i) Z(A x B) = Z(A)Z(B).
(ii) Z(A[B—1]) = Z(A)(s; < t; — 1), wheret; = Z(B)(s; + sij)-

;, From the second part of this proposition, we obtain the missing formula for
the generating function for unlabelled structures in A[B — 1]:

Proposition 4.3 If C = A[B — 1], then ¢(z) = Z(A)(si «+ b(z%) — 1).

For the class & we have

Z(8) = exp (i %) .

n=1
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;, From this, the formula of Section 2 relating connected and arbitrary graphs in
a class closed under taking disjoint unions follows.

The other extension is to a class of infinite permutation groups. A permu-
tation group G on a set X is called oligomorphic if the number of orbits of G
on the set of n-tuples of points of X is finite for all n. See Cameron [1] for an
account of these groups.

Clearly, the previous definition of the cycle index of an infinite permutation
group makes no sense. However, an oligomorphic permutation group G has a so-
called modified cycle index Z(G), defined as follows. Choose representatives for
the orbits of G on finite subsets of X. (By assumption, there are only finitely
many of each size.) For each representative Y, let G(Y) be the permutation
group induced on Y by its setwise stabiliser in G. Then Z(G) is defined to be
the cycle index of this collection of finite permutation groups.

The relationship with the preceding is as follows. A structure M is said to
be homogeneous if any isomorphism between finite substructures of M extends
to an automorphism of M. Examples of homogeneous structures include the
pentagon, the rational numbers @ (as ordered set), and the random graph or
Rado’s graph [5], [14]. A theorem of Fraissé [7] characterizes the ages of count-
able homogeneous structures. In particular, a class A of structures satisfying
our conditions (that is, closed under isomorphism and under induced substruc-
tures and containing only finitely many n-element structures up to isomorphism)
is the age of a countable homogeneous structure if and only if it satisfies the
amalgamation property: if B,C € A have isomorphic substructures A, A’ re-
spectively, then there is a structure D € A in which B and C can be embedded
in such a way that the substructures are identified or “glued together” according
to the 1somorphism.

Proposition 4.4 Let M be a countable homogeneous structure with automor-
phism group G and age A. Then

(i) the number of orbits of G on n-element subsets is equal to the number of
unlabelled n-element structures in A;

(ii) the number of orbits of G on n-tuples of distinct elements is equal to the
number of labelled n-element structures in A;

(iii) Z(G) = Z(A).

This result gives a covenient translation between ages satisfying the amalga-
mation property and oligomorphic permutation groups. Under this translation,
multiplication and substitution of ages correspond to the direct product (in
its intransitive action) and the wreath product (in its imprimitive action) of
permutation groups.

11



5 Algebras

In this section, a graded algebra is associated with a class of finite structures.
We make a conjecture about its structure, and give a structure theorem under
additional hypotheses. See Cameron [3] for more details of the latter.

Let A be a class of finite structures satisfying our usual conditions (closed un-
der 1somorphism and under induced substructures, and containing only finitely
many n-element structures up to isomorphism). For each n, let V}, denote the
Q-vector space of all isomorphism-invariant rational functions on the set of n-
element structures in 4. Thus, dim(V,,) = a,; a basis for V, consists of the
characteristic functions of the isomorphism classes of n-element structures.

We define -
n=0

and define a product as follows. Take f € V,,, g € V. Then fg is the function
in V,4m whose value on the (n + m)-element structure X € A is given by

(f9)(X) = D f(V)g(X\Y).

YCx
1YT=n
This multiplication is extended linearly to the whole of Alg(.A). The algebra is
easily seen to be commutative and associative. An element of Alg(.A) is said to
be homogeneous of degree n if it 1s contained in V.
The construction behaves well with respect to multiplication of classes:

Proposition 5.1
Alg(A x B) = Alg(A) ®q Alg(B).

For A = &, we have dim(V,,) = 1 for all n, and in fact Alg(S) is a polynomial
algebra in one variable, the generator being the function in V; taking the value
1 on all singleton sets.

Congecture: Suppose that A has the following property: for any A, B € A, there
exists C' € A in which A and B can be embedded as disjoint substructures. Then
Alg(.A) is an integral domain (i.e., has no divisors of zero).

We make some remarks about this conjecture. First, the condition is clearly
necessary. For, if A and B cannot be embedded disjointly in any .A-structure,
then fafp = 0, where f4 is the characteristic function of the isomorphism class
of A. Also, the condition is a strengthening of the joint embedding property;
so a class A satisfying it is the age of a countably infinite structure M. In this
case, Alg(A) is a subalgebra of the reduced incidence algebra of the poset of
finite subsets of M (Rota [17]).

12



If a graded algebra is a polynomial algebra generated by homogeneous el-
ements, then the relation between the sequence enumerating the polynomial
generators by degree and the sequence of dimensions of the homogeneous com-
ponents is identical to the relation between the sequences enumerating unla-
belled conneced and arbitrary structures, met with at the start of Section 2.
This observation motivates the following result, taken from Cameron [3].

Theorem 5.2 Let A be a class of structures. Suppose that A possesses
(i) a subclass of “connected” structures;

(ii) a partial order < of “involvement” on the set of n-element structures for
each n;

(iii) a commutative and associative “composition” o such that |Ao B| = |A| +

|B|.
Assume:
(i) Any structure in A is uniquely the composition of connected structures.
(ii) If A € A is partitioned into substructures Ay, As, ..., then AjoAso--- < A.

Then Alg(.A) is a polynomial algebra generated by the characteristic functions
of the isomorphism classes of connected structures in A.

The conditions of the theorem are satisfied when A is the class of all graphs;
we take “connected” to have its usual meaning, “involvement” to mean “span-
ning subgraph”, and “composition” to be “disjoint union”. A more unusual
example involves the words considered in Section 2. As there, a word is “con-
nected” if it is a Lyndon word (smaller than any proper cyclic shift of itself);
“involvement” is lexicographic order, reversed; and “composition” is concatena-
tion in lexicographically decreasing order. Now the hypotheses of the Theorem
are satisfied. The algebra Alg(A) is the shuffle algebra, which occurs in the
theory of free Lie algebras (see Reutenauer [16]), and which was shown to be a
polynomial algebra by Radford [13].
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