Figure 1: Graph of S for a random walk of 106 steps.
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weight that is approximately 1/r (at least for » > logn, say), and so the average weight
assigned to m (and also all its neighbors) is about
Sm=> 17 Pr(My, — Sy =71-1) . (6.3)
r=1
However, by Lemma 5,

S~ <i)1/2/0°o(u+1)—1exp(—u2/(2m))du

Tm

~ (2rm)"?logm as m— o . (6.4)

Hence the total weight assigned to all the points 1,2,...,n, averaged over all the walks in W,
is
n
~ > S (27~ ') ?logn as n — oo . (6.5)
m=1
We note that even on a local scale this linear search algorithm on average loses a factor
of 2 compared to algorithms that can backtrack to the position of the previous probe. This
occurs since it can go forward only by M,, — S, + 1, and not by almost 2(M,, — S5,,,), which is
how far it can go on average and still obtain a valid bound. What is most significant, though,
is that this algorithm is slower by a factor of logn than the algorithm of Theorem 2, which
uses global information.
Simulations suggest that the ratio of the average running time of Algorithm K to the
asymptotic value in (1.5) converges to 1 slowly, approximately at the rate 1 + O((logn)™1).
The standard deviation of the running time of Algorithm K seems to be not much smaller

than the mean.
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d,p > 0 requires O(1) probes as n — oo. All that is necessary is to probe S; at k = [en],
|2en], ..., for a small € > 0 and select the maximum of these Sy as the estimate of M,,. The
probability that |Sgy; — Sk| > 6n'/2 for a fixed k and 0 < j < en is < exp(—c'6%/¢) for a
constant ¢’ > 0 (independent of 4, s, and n). Hence the estimate we obtain will be off by more
than én'/? with probability O(e~! exp(—c'6%/€)) as n — oo. Therefore for ¢ sufficiently small,
this probability of error will be < p.

The number of probes, [1/¢], in the scheme outlined above is on the order of —§~21og p.
With more effort (using several stages, as in Sections 3 and 4) this number can be lowered
substantially.

To obtain the exact complexity of the optimal algorithm for the full range of values of ¢

1/2 with error

and p is likely to be hard. We just note that one can estimate M, to within én
probability O(n™'%) (or any inverse polynomial bound) at a cost of O(logn). This follows
easily from the estimate for the probability of W (see (3.16)). If a walk is in W, then probing
at a sequence of points k = K,2K, ... where K = |en(logn)~!| will yield an estimate that is

1/2

guaranteed to be within én'/“. Using a more elaborate probing strategy, one can again lower

the O(logn) cost.

6. Linear search

In this section we sketch a proof of Theorem 4. Since the methods are almost the same as

those used in proving Theorem 2, but simpler, we do not present full details.

Lemma 4. For any integer ¢ > 0,

k+2¢+1 n o
kETL(Il:]Od 2) 2
k>—q
Proof. This result follows immediately from Lemma 2. [ |

Lemma 5. We have uniformly in q, 0 < ¢ < n3/5, that
9 1/2
Pr(M, — 5, =¢q)~ (—) exp(—¢*/(2n)) as n— oo . (6.2)
™

Proof. This result follows from Lemmas 1 and 4. [ |
We now prove Theorem 4. If the searcher’s most recent question was about 5,,, then she
knows M,,, and therefore her next question will be about §,, where r = m + M,, — 5., + 1.

Therefore, if the walk is in the class W (defined in Section 3), than the point m gets assigned
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To make the above argument rigorous, it is only necessary to prove quantitative estimates of
how much §,, — S+ varies when M,, — 5,, is small. This is not difficult, but somewhat

tedious, so we do not do it here.
5. Approximate maxima

Suppose we wish to determine M, to within an additive factor of h > 1. The worst case
running time is then roughly proportional to n/h. If we probe at 2h,4h,6h, ..., the maximal
value we obtain will be within h of M,. On the other hand, if there were some strategy that
always determined M, to within A by using fewer than ~ n(2h +4)~! probes as n — oo, then
this strategy would have some intervals of > 2h 4+ 2 points entirely unprobed, even when faced
with an adversary that gave answers consistent with the random walk Sy = 0, Sopy1 = 1.
Hence this strategy would not prove that M, < h + 2, which is a contradiction. With a bit
more effort one can obtain better bounds.

The worst case cost of determining M,, to within h grows like n/h, and so large savings
are available for big h, compared to the cost of determining M,, exactly. On the other hand,

1/2 35 n — oo. This

the average cost of determining M,, to within A for small A is still ~ ¢gn
is clearly an upper bound, since by determining M,, exactly we determine it to within h. To
see that this is a lower bound, we examine the proof of the lower bound of Theorem 2. It
can be seen there that almost all the probes in a minimal proof of M, are in regions where
M, — S, is on the order of n'/2. Therefore the freedom to lengthen the interval between
consecutive probes by an additive factor of about 2h is of negligible importance for h small,
h = o(n'/?). We conclude therefore that to determine M, to within i for any h = o(n'/?) still
costs > (co 4 0(1))n'/? as n — oo (on average).

Suppose we wish to determine M, to within an additive factor of 6n!/2? for some § > 0.

1/2

The worst case and average case costs are still on the order of n'/* if we insist on obtaining

the correct answer. What happens, though, if we allow a nonzero probability p of error? If

p > erfc(621/2) = 27r_1/2/ ) exp(—t?)dt , (5.1)
§21/2

then the cost is 0, for large n. The reason is that erfc(621/2) is asymptotic to the probability

that M,, > 26n'/2. Hence the searcher can declare énl/2 to be her estimate of M., and she

1/2

will be wrong by more than én'/* with probability < p.

1/2

More generally, to determine M,, to within én'/* with error probability < p for any fixed
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However, by Corollary 1, the expected number of k that satisfy (4.11) is
<12V " logn (4.12)

Therefore the expected value of b, is < c14log n, and so the expected cost of one algorithm is
O((logn)?*), which proves Theorem 3.
It is easy to prove a lower bound of the form ¢;5logn for the average cost of any algorithm

10 If there were an algorithm that

that determines M, correctly with probability > 1 — n~
did this at average cost < elogn, then with probability > 1/2, there would be a gap be-
tween consecutive positions that are probed that was > n(2elogn)~!. Lemma 3 implies that
max | S%| < 2n1/2 with probability > 9/10, so we would have that the probability that both
max | S| < 2n'/? and that there is an interval that is not probed of length > n(2elogn)~?
is > 2/5. But the probability that |S,,+x — S| > 1022 for m and m + k both inside that

interval can be easily shown to be
> exp(—cigelogn) , (4.13)

which contradicts our basic assumption for € small enough. This proves the ci5logn lower
bound.

We now sketch how to prove a lower bound of the form ¢17(log n)?. This would be a bound
for any proof. The idea is similar to that of the proof of Theorem 2. Consider probes near
m. Typically, |9, — Smtr| will be on the order of k2. How far can consecutive probes be

—107 If we probe S,

situated so as to ensure that a mistake is not made with probability > n
and S, 4, where k = €(M,, — S,,)?, then the probability of an excursion in that interval that
exceeds M,, — 5, is roughly

exp(—cige!) . (4.14)

Therefore we must have € < ¢jg(log n)~!. Hence we can expect that a minimal proof will have

expected cost
nl/e

logn
>0 Y —2LE(D,) . (4.15)

9=1
Since Corollary 1 can be shown to be sharp for ¢ < nl/3, this gives expected cost of any proof

of

nl/3

> cq Z ¢ tlogn > ca2(log n)2 . (4.16)
9=1
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each j such that 72V=" is in one of the b, blocks. This gives us 2b, blocks of length 2V—"-1

each. Suppose these blocks are
B ={p2V " i 0<i< 2N ) h=1,...,20, . (4.2)

Let
M! =max{Sy: k=277, 1<h<2b}. (4.3)

We select Bj to be among the b,y blocks of stage r + 1 if
M} — S, gx—ros < 266207702 (log )12 (4.4)
Note that if B} satisfies (4.4), then
M, — Sk < (34 2Y%)eg2W=7=1/2(10g n)!/? (4.5)
holds for every k € Bj. If any k satisfies
0< M, — Sy < 2N/ %(log n)'/? | (4.6)

then it satisfies (4.1), and so is in one of the b, blocks B of stage r, and therefore in one of the
b, 41 blocks B} of stage r + 1.

The algorithm terminates at stage R, where R is the smallest integer such that
62N "R/ 2(Jog n)t/2 > oN-R (4.7)
At that point we probe every point k in any of the b blocks of stage R, which costs
< b2V = O(brlogn) . (4.8)

The total cost of the algorithm is

R-1
Z b, + O(brlogn) . (4.9)

r=0
(If we run into a walk that is provably not in W, we probe every k, and this costs O(n™?)
on average.) We now need to bound the expected values of b,. By (4.5) (applied with r — 1
instead of ) we see that there are

> b 2N (4.10)

values of k such that

M, — Sy, < 5¢62™ ) (log n)/? (4.11)
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where

cio= [ ay | 1 exjf;é/_@;‘;)l)/‘fw / " exp(—ye? /(2 - 20))da (3.53)

The integral on z in (3.53) can be expressed in terms of the erf function [15], but it is not clear
whether there is a simple closed form expression for ¢13 (and consequently for the constant ¢

of Theorem 1).

The sum
1 iV: 1 n—8N
Up=2) —— B(n,m,q) (3.54)
2 q=0 g+ 1 m=8N
is estimated similarly, and we find that
Ug~2r1"1'J, as n— oo, (3.55)
where
< dg [ du 9/ 2 2
Iy = /0 PRI MR VTP—YE /0 exp(—2v°/u — ¢°/(2n — 2u))dv . (3.56)

The changes of variables v = ¢2/2, u = nw, and ¢ = nl/2y show that J, = n/2. Collecting

all our estimates yields the claim of the Proposition. [ |
4. Exact maxima with nonzero error probabilities

In this section we consider the problem of computing the exact value of M,,, but this time
we allow the answer to be wrong with probability < n~!°. The algorithm will produce a value
that equals M, whenever the walk is in the class W defined in Section 3. (We can replace n~1°
by n™% for any constant a, but the estimates derived in Section 2 make it convenient not to
choose a too large.)

For simplicity of exposition, we will assume that n = 2V — 1 for some integer N > 1.
Modifications required for other n are minor. The algorithm of Theorem 3 consists of < N
stages. In stage 7, 0 < 7 < N, there will be b, disjoint blocks of 2= consecutive integers each
such that if B is one of those blocks, B = {jQN_T +1:0<1< 2N_T} for some j. Further, if
the walk is in W, and

0 < M, — S < 2™V 2(log n)/? (4.1)

holds for some k, where cg is the constant of (3.15) that defines W, then k is in one of the b,
blocks B. We will also know Sy, for the smallest k& (= j2V=") in the block B. Initially we start

with 7 = 0, by = 1. To go from stage r to stage r 4+ 1, we probe §j for k = j2N=" 4 2N="=1 for
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Similar bounds apply to the sum of B(n,m,q) over 0 < m < 8N and the corresponding sums
of A(n,m,q) and B(n,m,q) over n — 8N < m < n. We conclude that

n—8N

N
Z Z (n,m,q)+ B(n,m,q))+ O(n'/*(logn)) . (3.44)
q=0 m=8N

MlH

In the range 0 < g < N, 8N <m < n— 8N, we apply Lemma 1 to the individual terms in
the definitions (3.6) and(3.7) of A(n,m,q) and B(n,m,q). We find that

n—8N
Uy = = S A(n,m,q)
q +1 m=8N
n—8N q
1 Z —1/2( )_1/2 Z exp(—qz/(QTn,) — jz/(Q'n — Qm)) (3.45)
q t1 m=8N J=0

as n — 00. The Euler-Maclaurin summation formula next shows that

Us~7r"', as n— oo, (3.46)
where
Y dg n du q 9 9
I, _/0 1) u)1/2/0 exp(—¢?/(2u) — v*/(2n — 2u))do . (3.47)
To simplify the expression for I,,, we first substitute v = gz, then u = nw, and finally ¢ = n'/2y.
We find that
o0 1 Lexp(—y?/(2w))dw [?
_1/2 _ P~y / 22709
I,=n /0 (1 pSvE 1) dy/o (1= )T ), exp(—y~“z”/(2 — 2w))dz . (3.48)
Since
P de 3.49
/0 wl/2(1 — w)l/z T (3.49)
and
2
exp (—g—w) <exp(—y?/2) for 0<w<1, (3.50)
we have
o exp(—y*/(2w))dw [? 2.2
/0 + . / 1/2( )72 /0 exp(—y“z”/(2 - 2w))dz
> exp(—y*/2)dy _ -1/2
Therefore
I, = c13n*/? + O(logn) , (3.52)
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Proof. By the definition (3.10) of D, and (3.18) of V,,, we have

(3.1
i (3.37)

o1&
V=3
By Proposition 1 and Eq. (3.11),
1 o0 n
V= 52 Z (n,m,q)+ B(n,m,q)) . (3.38)
= m—O

On the right-hand side of Eq. (3.38), all terms with ¢ > n vanish. Further, if ¢ > N, where
again N is given by (3.19), then for any m,

z—m({#p < o (3.39)

P IR n=20 3.40
({—J) < (3.40)

and so
1

N n
V, = 52 Z (n,m,q)+ B(n,m,q))+O0(n"1?) . (3.41)
q=0 m—O
We next show that the terms in the sum in (3.41) with either very small or very large m
are negligible. We can deduce from Lemma 1 that
( T ) < g2 (r+ 1)V exp(—ek?/(r + 1)) (3.42)
5]+ %
holds for all » > 0 and all integers k, for some positive constants c¢g and €. Hence for 6 = ¢/5,

and n large,

N 1 8N
Z 1 Z A(nv‘qu)
g=0 q+ m=0
N 1 8N q
< ¢k Z — (m+1)""%(n —m+ 1)7/? Zexp(—éqQ/(m +1) = 65%/n)
=1t =0
q= m= J=
N q
< cgn~ 1/22 ZEQXP (=6¢*/(m + 1) = 65%/n)
q:O 0] 0
N
< c1on 1/22 q-l- Z n'/% exp(—6¢° /(m + 1))
g=0
8N N
—CIOZZ exp( —6¢? /(m+1))
m=0 0 + 1
9=
< e Z (m+ 1)_1/2 < 612n1/4(10g 'n)l/Q . (3.43)
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by Corollary 1. Thus this case also contributes a negligible amount to the running time of the
algorithm. When (3.27) is not satisfied, but the walk is in W, the step size k defined by (3.28)
satisfies

kE=2(M, — S,)(140(n"1/19)). (3.31)

We now define the concept of a weight of a point. If m and m + k are the two successive points
that are probed, and m < h < m + k, we say that wt(h), the weight of h, is 1/k. The total

weight wt(w) of a walk w is
n—1

wt(w) = Z wit(h) . (3.32)

h=0

We see that wi(w) is just the number of probes of w. For w € W, (3.31) and the condition
(3.15) imply that wt(h) < 1if M, — Sj, < 3n'/%, and

wi(h) = (2(M,, — S, + 1)) (1 + O(n1/10) (3.33)
otherwise. Hence
wi(w) = (14 0(n~1/19)) S(Q(Mn — S+ 1)+ 0(n'?) (3.34)
h=0

for a walk w € W. This proves that the average running time of the algorithm is < (1+40(1))V,
as n — 00.

To prove the lower bound of Theorem 2, we again use the concept of a weight of a point.
Suppose the pairs (0,0), (m1, S, )s- - -, (Myr, Sy, ) form a minimal proof of M,,. An integer h,
0 < h < n, is assigned weight wi(h) = (m;y1 — m;)~1if m; < h < miyq, 0 < i <r. Then

n—1

r=">Y wi(h) . (3.35)

h=0
The same analysis was used for the upper bound proof of Theorem 2 shows that for walks
w € W, Eq. (3.34) holds. This shows that the average cost of a minimal proofis > (1+0(1))V,,
as n — oo.

To conclude the proof of Theorem 2, we need to estimate V.

Proposition 2. We have

Vi, ~ con1/2

as n— oo, (3.36)

where ¢q is given by (1.2).
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2
NZHk :0<k<m, (3.24) holds}|

9 Q
< N2 E(Dy)

9=0
< 2% N7'Q? = O(2"logn) . (3.25)

Since W satisfies (3.16), the expected number of r, 0 < r < n/N, that satisfy (3.21) is O(logn).
(Walks outside W contribute O(n-n71%) = O(n=?).) Therefore the expected cost of the second
phase is O(n'/*(logn)?).

Suppose now that the second phase of the algorithm is complete. The third and final phase
is to scan the walk from left to right. At any given time T' = 0, 1,2, ..., we will have an integer

m such that we will know S,,, and an estimate M# of M, that will satisfy
M, — CGnl/S(log n)1/2 <M#F<M, . (3.26)

We will have proved rigorously that M,, < M#. At time 7 = 0 we start with m = 0,
M# = M*. Suppose we are at time 1. If

M#* 5, <!/, (3.27)

then we probe S,,41. If Spy1 > M# (which means S,,41 = M# 4+ 1), we increase M# by 1.

If (3.27) is not satisfied, we probe 9,4k, where
k=2M#*—S5,)—10cs(M#* — 8,,)/*(log n)"/? . (3.28)

(If m + k > n, we probe n, obviously.) If S,,4x — S, does not satisfy (3.15), then our walk is
not in W, and we abort this approach and probe every position. If the walk is in W, though,
then (3.15) is satisfied, and since M# — S, > n1/®, we obtain a rigorous proof that S, < M#
for m < h < m + k. Therefore at the next time T + 1 we use the same value M# but replace
m by m + k.

The algorithm described above clearly finds the exact value of M,. What is its average
cost? The average cost of the first two phases has already been shown to be O(n'/%/(logn)).

In the third phase, how often do we encounter condition (3.27)? If (3.27) is satisfied, then
M, — 8, <201/ (3.29)

since (3.23) is valid. Therefore the expected number of times (3.27) occurs is

[2n1/]
< Y E(D,) =00 (3.30)
g=0
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The cost of this phase is ~ n1/2(log n)~!, and is the same for all walks. If during this or any

of the other phases we find any m and k that violate (3.15), we conclude that the walk we

are examining is not in W, and so we probe all positions 1,2, ..., n. Since this has probability

< n710 of occurring, it contributes a negligible amount to the cost of the algorithm. The

description of the algorithm that follows assumes we do not find any violations of (3.15).
Next we let

M' = max(So, Sn, San, - --) - (3.20)

Then M’ < M, and if the walk is in W, then M, < M’ + 06*n1/4 logn. That estimate is not

adequate for our purposes, and so we use a second phase. If for some r = 0,1, ..., we have
S,n > M' — cgnt/? logn , (3.21)
then we probe
S’/’N:I:jmv ] = 1727"'7 [IV/W?:‘ 5 (322)

where m = Lnl/ﬂ. Note that if we are in W, then any k with S, = M,, must satisfy |k —rN| <
N for some r for which (3.21) holds. Since the second phase probes at intervals of < n4 it

we let M* be the maximum of all the S found in either the first or the second phase, then
M, — CGnl/S(log 'n)l/Q < M*< M, (3.23)

holds, provided our walk is in W.

We next estimate the cost of the second phase. To do this we need to know the average
number of points rN, 0 < r < n/N, that satisfy (3.21). If a walk is in W and (3.21) holds,
then

Sy > M' = 2¢cen/*logn

for all k£ with |k — rN| < N, and therefore also
S. > M, — 3cgnt/? logn . (3.24)

Let w denote a walk of n steps, and F(w) the number of r, 0 < r < n/N, that satisfy (3.21).
To each r counted by F(w), we can associate | N/2| values of k such that |k —rN| < N/2 and
such that (3.24) holds. These sets of | N/2| values of k associated to different 7 are disjoint.

Therefore for Q = |3cgn'/*logn], we have

Y Fw) < Y %Hk: 0<k<n, (3.24)holds)]

weW weWw *
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will next probe 9,,4,, where r is a little less than 2(B — S,,,). If she is dealing with a walk in
W, S;4+r will be close to S, and this will establish (whether the walk is in W or not) that
Sk < B for m <k <m+ r. To make this procedure efficient, it is necessary to obtain a good
estimate of M,,. This is done in two preliminary stages, which are guaranteed to determine
M,, to within a small error if the walk is indeed in W.

The running time of the algorithm can be estimated (heuristically, at least) from the
discussion above. For a walk with S,, = 500, S,,1n = 550, h = 3 - 10%, M, > 1500, we will
need < h/(2- (1500 — 650)) = h/1700 probes to establish S, < 1500 for m < k < m + h,
provided each probe yields a value S < 650. In general, if we have a good estimate of M,, and
are dealing with a random walk in W, we need one probe of some 5, with r near k for every

2(M,, — Si) positions. Therefore we expect a total of about
zn: 1
b1 2(1Wn — S+ 1)

(3.17)

probes for a walk in W. Since walks not in W are rare, we expect the algorithm to have

average running time of (1 + o(1))V,,, where

V,=E (Z A _1Sk n 1)) , (3.18)

k=1

That is what we will prove. At the end of this section we will provide an asymptotic estimate
of V,.

Before we present the precise description of the algorithm and a rigorous analysis of its
running time, we explain how the lower bound of Theorem 2 is obtained. Consider again the
case where we know that h = 3-10%, S, = 500, S,,,4 = 550, but this time assume further that
we know exactly that M, = 1510 and that 400 < 5 < 650 for m < k < m + h. In that case to
prove that Sy < 1510 for m < k < m + h, we need to provide > (h — 2220)/(2(1510 — 400)) =
(h — 2220)/2220 values of S (and possibly more, if many of the values of S are larger than
400). In general, for a walk in W, near k we need to provide a value approximately every
2(M,, — Sk ) positions. Therefore for a walk in W the number of values of k for which Sj has to
be revealed is close to the quantity in (3.17). Since walks outside W have probability < n=10,
the number of values of Si that have to be revealed is likely to be > (1 + o(1))V,,. A rigorous
proof of this follows from the analysis of the proof of the upper bound of Theorem 2.

We now describe the algorithm. The first phase consists of probing Sy, San, S3n, ...,
where

N = |[n'?logn] . (3.19)

11



|

It is easy to obtain sharper results than those of Corollary 1. For example, it can be shown

that E(Dy) < (1+ o(1))(4g + 2) as n — oo, uniformly in ¢. (A similar result is presented as

Theorem 13.22 in [17], but it is proved there only for individual high excursions of the infinite
random walk.)

We now proceed to the heart of the proof of Theorem 2. We define W = W(n) to be the

set of random walks of n steps such that
|Smak — S| < cokM?(logn)'/? (3.15)

for all k,m > 0 with &£ + m < n. If we choose c¢g large enough, then Lemma 1 shows that

condition (3.15) fails for any fixed k& and m with probability < n™1%, and so
Pr(W)>1-n"19. (3.16)

Both the upper and lower bounds of Theorem 2 are based on the observation that walks
not in W do not appreciably affect the running times of algorithms, since they are rare, while
walks in W are well behaved and are easy to analyze. We demonstrate with a simple example.
Suppose that m = 10°, A = 3 - 10%, and the searcher knows that S,, = 500, S,, 4+, = 550,
and that 1500 < M,. If the searcher thinks that the walk is in W, and (3.15) gives her
St < 650 for m < k < m 4+ h, then she can probe S,,11850 as the next step. If it turns
out that S,,4+1850 < 650, as expected, then there will be no need to probe S for any &k with
m < k < m + 1850, as all such k& will have to satisfy Sx < 1500. Of course, it might turn
out that the searcher’s assumption that the walk is in W is wrong, and she might find that
Smy1ss0 = 702, for example. In that case the strategy will be to probe each of 51,...,5,.
Since the cost of a complete search is n probes, and such searches will only need to be done
for walks not in W, which have probability < n~!°, their contribution to the expected cost
of the algorithm will be < n~™%, which is negligible. Note that the searcher does not obtain
a proof that the walk she is investigating is in W. For example, if 5,,41850 = 650, it might
happen that S,,+1000 = 1500, which proves the walk is not in W, but this is not discovered
by the searcher, since she never probes S,,4+1000- The point is that the algorithm does prove
rigorously that 5 < 1500 for m < k < m 4+ 1850, and that the additional probes of S} for
m < k < m + 1850 arise only for walks not in W, which are rare. In general, if at a certain

stage of the algorithm the searcher knows that M, > B, and she knows the value of 5,,, she

10



Proof. We decompose the n-step random walk into two random walks, consisting of the initial
m and final n —m steps, respectively. Since these two walks are independent, we have, for any
integers h and k such that h = m(mod 2), £ > 0, that
Pr(M,=Fk and S,,=h) = Pr(M, =k and S,, =h) - Pr(M,_,, <k —h)
+ Pr(M,, <k and S, =h)-Pr(M,_,, =k—h).
(3.8)
We now substitute the formulas from Lemmas 2 and 3 and sum on those h and k that satisfy

h=k—gq, h=m(mod 2), k > 0. For example,

E Pr(M,, <h+q and S, =h)-Pr(M,_,, =q)

h
h=m(mod 2)
h>—gq
= Pr(M,_,, = q) Z {Pr(Sy, =h)—Pr(M,, >h+q and S, =h)}
hEm(I’Il]Od 2)
h>—gq

(55) 3 G- ()

h=m(mod 2)

h>—q
= B(n,m,q) . (3.9)
A similar computation yields A(n,m,¢) and thereby the claim of the Proposition. [ |
We define

Then D, is a random variable, and

E(D,) = f: Pr(M, — S =q) . (3.11)

m=0

Corollary 1. There is a constant c3 > 0 such that for every ¢ > 0,
E(D,) <es(g+1) . (3.12)

Proof. By Lemma 1, we have

’ ’ cq(r —1/29r .
()< (7)< o

for every r,j > 0. Therefore Proposition 1 and Eq. (3.11) yield

n

E(D,) < es(204+1) 3 ((m+ D(n—m + 1) < ea(g + 1) . (3.14)

m=0



Lemma 2. Ifk = n(mod 2), k <7, then

PT(JWn =r and S, = k) = {(n+z~—k> - (n+2rr’:bl—2—k) } 27"
2 2

2r—k+1 n
= 2 — 27" 3.2
n+2T_k+2(n+22T—k) ’ ( )

Pr(M, <r and S,=%k) = {(nﬁk) — (n+2:j_2_k)}2_” . (3.3)
T2 2

Proof. These formulas follow from Lemma 1 in Section 7 of Chapter I1I of [7]. (Note that the

two inequality signs in that Lemma should be reversed.) [ |

Lemma 3. For any integer r > 0,

Pr(M, =r1)= ( o )2—n . (3.4)
[“7*]
Proof. This follows from Theorem 1 of Section 7 of chapter III in [7]. It also follows from
Lemma 2. [ |

The main results we need are about the distribution of M, — 5,, for 0 < m < n. In
particular, we need to prove that random walks do not spend much time close to their maxima.
There are some results of this type in the literature (see Chapter 13 of [17]), but they apply
directly only to individual excursions of a random walk. There is a beautiful result of Csaki
(Theorem 13.23 of [17]) which gives the exact distribution of the number of times a random

walk is at its maximum, but the method of proof does not seem to extend to give the more

general result we need.

Proposition 1. If0 < m <n, ¢ > 0, then
Pr(M, — S, =q) = A(n,m,q)+ B(n,m,q) , (3.5)

where

g

A = 2 (i) (1 ) 0)
()5 () -

(We use the standard convention that (3) =0 if b <0 orb > a.)

By
-~ ©

L~}

B(n,m,q)



3. Average running time for exact maximum

It is easy to prove a lower bound for the average running time of the form ¢;n!/2 for some

2

small constant ¢; > 0. A typical random walk has M, of order n'/2. If the searcher probes

1/2 consecutive

many fewer than n'/2 of the Sy, there will be a stretch of many more than n
positions that she will know nothing about. Therefore she will not be able to conclude that
there is no large 5% in that unexplored region of the random walk. It takes some work to make
this argument rigorous, but it is not hard to do. We will not do this, since we will prove the
more precise result of Theorem 2.

The proof of Theorem 2 is conceptually easy. The main idea that is exploited is that
usual pictures of random walks, such as that of Fig. 1, are misleading. Since M, is almost
always of order n'/2, graphs of §; have scales on the horizontal and vertical axes that differ
by a multiplicative factor of n'/2. This makes the random walk look much wilder than it is.
Instead, almost all random walks have only gentle rises and falls. (There are theorems, such
as that of Strassen [17], which make this statement precise for infinite walks.) For example, in
the random walk of Fig. 1, m];cLX |Sk — Sk+1000] = 134. This means that a few probes suffice to
obtain a good approximation to M,. The average value of S} is 0 for any k, and the average
value of M, is ~ (271/7r)1/2 as n — oo. Hence the typical gap between consecutive positions
that have to be probed is of order n!/2, which yields the bound of Theorem 2. Of course,
this argument is a rough heuristic only, since there are various statistical dependencies and
different types of averages that are involved. However, a rigorous argument can be derived,
and will be given in the rest of this section.

We first state some auxiliary results.

Lemma 1. If|k —n/2| < n/4, then

n 1/2
(Ln/?J +k) B (37) 2% exp(=2k/n+ O(1/n + [k[* /) (3.1)

Proof. This follows from Stirling’s formula [15]. It is easiest to first derive this estimate for k =
0 by using the standard Stirling approximation, and then estimate the ratio <Ln/;J+k) / <Ln72J)' [ |

We also need some basic facts about maxima of random walks. There is a wealth of
information on this topic in [17, 19]. However, all we will need and some basic formulas that
can be found in Section 7 of Chapter III of [7], for example. They are easy to derive using the

reflection principle.



Sk41 and Skyo. If Skys = Sk + 1, it suffices to probe Sk4o, whereas if Siy3 = S — 1, we only
need to probe Sk41. Thus in all cases at most two of the three positions Sky1, Sk42, Sk+3 need
to be probed.

To prove the lower bound of Theorem 1, consider an oracle that gives answers consistent

with

S1 = S5 =8 = = Sy = 1,
Sy = Si= S¢ = - = Sy = 0.

In order for the searcher to determine that M, > 1, she has to determine the value of some
S9r_1. On the other hand, to make sure that M,, < 2, she has to know that Sy, = 0 for all k.
Therefore she has to ask > |n/2| 4+ 1 questions.

We now prove the upper bound of Theorem 1. The first step is to prove this bound for
odd n by induction. If n» = 1, then a single probe about 57 suflices, and so the bound is
true for this case. Suppose we have shown that My;_1 can be determined with & probes. To
determine Myg4q with k + 1 probes, we start by asking for the value of Syp4q. If Sopy1 < —1,
then we do not need to check the value of S, and therefore only need to find the maximum
of So,51,...,5%_1, which by the induction hypothesis can be done with < k probes. If

Sok+1 > 1, then we do not need to ask about 54, as

M,, = max(S3, 93, ..., 5%k+1) - (2.1)
Now
max(S52, 53, ..., 92%+1) = S2k+1 + max(S), 51, ..., 556_1) , (2.2)
where
So=0, Si=X{+---+X;, 1<j<2%k-1, (2.3)
and X! = —Xggyo—i. (This corresponds to reversing the walk, so it starts at Sgry1, and

dropping the initial two steps.) Since we know Syi41 from the initial probe, we reduce to
finding the maximum of a walk of 2k — 1 steps, which by induction can be done with k£ probes.
Thus in all cases k + 1 probes suffice if n = 2k + 1 is odd.

If n = 2k is even, we ask for Sy, and then determine My,_q with [(n —1)/2| +1 =k
probes. This gives us My in the required total of K+ 1 = |n/2| 4+ 1 probes.



Another application of the results of this paper answers a query posted to TheoryNet
by M. Kolountzakis [14]. Kolountzakis was considering the comparative efficiency of local
sequential searches versus ones that use global information. He ran extensive simulations of
the following algorithm, which we will call Algorithm K. The searcher starts at m = 0, and
knows Mg = Sg = 0. If at some time the searcher has just probed 5., and knows M,,, she
then probes Sy, 4%, where &k = M,, — S, + 1. (Thus she goes as far to the right as possible
without danger that she will miss some S}, with Sy > M,,.) Kolountzakis noticed that the cost
of Algorithm K was much higher than that of algorithms that were not restrained to move
in this local linear way, and he asked for an estimate of this cost. In Section 6 we answer his

question.

Theorem 4. The average cost of Algorithm K 1is
~ (21 )Y logn  as m — oo . (1.5)

Thus Theorem 4 shows that the local linear search of Algorithm K is worse by a factor of
about logn than the optimal global search. The proof of Theorem 4 follows easily from the

auxiliary results developed to prove Theorem 2.

2. Worst case bounds

In this section we prove Theorem 1. We first note, though, that Theorem 1 assumes that
the searcher can probe any of the S in any order. If we consider on-line algorithms, in which
no 5; with j < k can be probed once S}, has been probed, then the worst case search requires
n probes. To see this, consider an adversary that responds to the searcher’s probes by saying
that Sy = Sp_1 + 1 if 51,59,...,5,_1 have all been probed, and the searcher asks about 5p.
However, if S1,..., Sk—1 have been probed, but the searcher’s next question is about S, for
some r > 1, the adversary will from that point on give answers consistent with Sx_14925 = Sk—1,
Sk42s = Sk—g for s > 1. The searcher will be unable to determine M, without knowing Sj.

When we allow the searcher to backtrack only a bounded number of steps (i.e., to ask for
Sk—; only for j < B once S has been probed), the worst case running time decreases to ~ cgn
as n — oo, where ¢g — 1/2 as B — oo, but ¢g > 1/2 for all B. We do not present the full
details (which involve steps similar to those used below), except for showing that if B = 2, at
most 2n/3 + 2 probes are needed. If we have determined max S; for 0 < j < k, and we have

probed S%, then as the next step we probe Siys. If Sky3 = S £ 3, there is no need to probe



adjacent samples than ours. It does not offer the scope that our model has for comparing the
effects of allowing errors, or of searching for approximate maxima.

The random walk model we use can be thought of as a paradigm of trying to find the
maximum of a largely unknown function. The limitation of the random walk increments to
+1 can model bounds on the derivative of the function. If the function is difficult to compute,
then the cost of the algorithm will be dominated by function evaluations, and so charging
only for probes might be realistic. Such functions arise in a variety of contexts, such as the
one listed below, or those given in [9]. In most situations the function to be maximized will
have a continuous argument. That problem can be modeled by our results when M, is to be
determined approximately. (See Section 5.) What our estimates show is that often substantial
savings are possible if one chooses an appropriate search strategy, first probing at a sparse and
well-separated set of points, and then exploring in greater detail those regions that cannot be
ruled out as being of no interest.

In some search problems it is sufflicient to find the approximate maximum with high prob-
ability. However, the main results of this paper are aimed at the problem of determining the
exact maximum. A basic reason for this is that the tools developed for the exact maximum
search make it easy to prove other results. Another reason for this emphasis on exact results
came from work on trigonometric polynomials with either 0,1 or £1 coeflicients. Polynomials
of this type that have some special properties (such as never being large, never being small, or
being almost constant in absolute magnitude) have long been of interest in acoustics, analysis,
spectroscopy, communications, and other fields (see [16, 18] for references). While there are
some theoretical results, the best polynomials for moderate degrees are found by exhaustive
searches over the full set of candidates. Since the number of polynomials to be examined grows
exponentially in the degree, fast algorithms are needed. Function evaluations are slow, so it
is important to minimize them. In the searches reported in [16], the algorithm was based on
ideas similar to those of this paper. Polynomials examined there are primarily of the form

m
f(8) = Zak exp(ikf) , ap=%1. (1.4)

k=0
The values | f(6)], 0 < 8 < 27, do not behave like the profile of a random walk S, 53,..., 5,
but they are strongly correlated for nearby values of 6, and the strategy of initially probing at
a sparse set of points worked well. While the model of this paper does not apply directly to

the problems explored in [16], it helps to explain and justify the method of that work.



The reason that the searcher only has to examine about n'/2 of the Sy is that if she knows
that S, = Z for some h, and after probing the k-th position she finds that S < Z, then she
can conclude that

Sitr < Z for —(Z—-5,)<r<Z-5;.

Thus there is no need to examine Siy, for |r| < Z — S if we are only interested in M,,. What
we are exploiting here is the strong correlation between neighboring values of Si. (It is also
this correlation that makes the problem nontrivial.) Using properties of random walks, it is
shown in Section 3 that probing at a sparse set of points is almost certain to produce a value
of Z that is not far from M,,. On the other hand, most of the other probes will produce values
of §; considerably smaller than Z, so the searcher can safely discard most of the range and
use a simple search procedure on the small remaining set.

Theorems 1 and 2 deal with determining the exact value of M,,, and determining it correctly,
with no error allowed. If we ask only for a value M/ such that |M! — M,| < h, h =1,2,...
then (see Section 5) the worst case cost is close to n/(2h). On the other hand, for h = o(n'/?)
as n — 0o, the average cost is still ~ ¢gn!/2.

The costs change if we allow the answers to be wrong. For example (see Section 5), if we
ask for a value M/ such that |M! — M, | < n'/? holds with probability > 0.9544, then the cost
is 0, as no Sy need to be probed. (The searcher gives the value M/ = n'/2, and this has the
desired probability of being correct.) In general, the cost of obtaining a value M/ such that
|M! — M,| < en'/? holds with probability > 1 — & is O(1) for all fixed ¢, 6 > 0.

The costs are still different if we ask for the exact value of M,,, but do allow for a nonzero

probability of error. In Section 4 we prove the following result.

Theorem 3. There is an algorithm thal produces a value M/ al average cost < ca(logn)? for

a certain constant cg > 0 such that Prob(M! # M,) < n~10.

The O((log n)?) upper bound of Theorem 3 is best possible. A proof is outlined in Section 4.
The literature on searching is immense, and we list just some of the recent references
[1,2,4,5,6,8,9,10, 11, 12, 13, 20, 21, 22]. None of the models used in those works is close
to ours, though. The nearest is probably the model of Hajek [9], which considers a stationary
Gaussian random process (X; : ¢ € Z) with mean 0 and E(X;X;) = al"=/|, where 0 < a < 1.
Hajek shows that to determine the maximum of Xy,..., X, with positive probability takes

on the order of n(loglogn)™! probes. Hajek’s model assumes much less correlation between



is told at the beginning that S = 0 for all even k, she still has to probe all the S for k odd
if she is to be sure that M, = 0, as any odd k£ that had not been probed could have 5 = 1.
Therefore for some walks it is necessary to probe > [n/2] of the S;. Somewhat surprisingly,
the [n/2] bound is close to best possible, so that even without being given any values of S
beforehand, it is possible to determine M,, with ~ n/2 probes as n — oo. The following result

is proved in Section 2.

Theorem 1. Any algorithm that determines M,, exactly has cost > |n/2] + 1 for some walks.

There is an algorithm that determines M, exactly at cost < |n/2| 4+ 1 for every walk.

The main result of this paper is the asymptotic estimation of the average cost of determining
M, if all symmetric random walks of length n are equally likely. The average cost turns out to
be of order n'/2. Somewhat surprisingly, one can achieve an average cost that is asymptotic to
the average cost of the minimal proof of M,,. By a proof we mean a set of pairs (k, S;) which
allow the searcher to deduce what M,, is. For example, if we consider the walk with S, = —k
for 1 < k < n, then revealing any single pair (k, Si) for £ > n/2 proves rigorously that M, = 0.

Hence for this walk, the cost of a minimal proof of M,, is 1. In general, if 51,..., 5, are known,

it is easy (polynomial time) to find a minimal proof.

Theorem 2. There exists a positive constant ¢y and an algorithm that determines M, after
examining on average < (co+ o(1))n'/? of the Sy, as n — oo. Any proof of the exact value of

1/2

M,, on average costs > (co 4 o(1))n'/* as n — .

The constant c¢g is given explicitly by

c = _1/ / exp(—y°/( Qw))l)/czlw/o exp(—y*z?/(2 — 2w))dx

w1/2 1-—

21/29- 1/2/ —1dy/ w2 exp (_g) erf <W> dw, (1.2)

where erf(z) is the error function [15]. Numerical integration shows that

co=1.1061... . (1.3)

A lower bound of the form cln1/2

for some small constant ¢; > 0 is easy to obtain, and
is sketched in Section 3. The upper bound and the exact lower bound of Theorem 2 are
considerably more complicated, and are presented in Section 3. The algorithm of Theorem 2

can be easily parallelized.
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1. Introduction

Let Sk be the position after £ steps of a symmetric random walk on the integers, starting
at the origin, so that S, = X7 + Xo 4 --- 4+ X, So = 0, where the X; are independent and
identically distributed with Prob(X; = 1) = Prob(X; = —1) = 1/2. We consider the problem
of determining

M, = S 1.1
oax Sk (1.1)

while minimizing the number of values of 5}, that are examined. More precisely, we consider the
Sk, 1 < k < n, as being stored someplace, and a searcher who is given the task of determining
M,,. She can ask for the exact values of any of the 5%, is charged a unit cost for each Sy that
she asks for, but can do an arbitrary amount of computation with the values that have been
revealed.

The problem of determining M,, does not arise directly in any application. However, it can
be used to model a variety of search problems, as will be mentioned later. By considering the
well-defined problem above, we can apply results about random walks to determine rigorously
how the cost varies depending on the search problem that is chosen. One obtains different
results depending on whether one considers worst case or average case results. Allowing even
a small probability of error in the answer also has a dramatic effect on the cost of the best
algorithms. For example, an estimate of M,, that is guaranteed to be correct to within some

/4 say) is much costlier to obtain than a value for M, that is exact

additive factor (such as n
almost always, but with a small probability (n=>, say) is wrong.

Under some circumstances the searcher can determine M, cheaply. For example, if she
asks for 5, and is told that 5, = £n, then the search can be concluded, since the only way
this can happen is if Xy = Xy = .- = X,, = 5,/n = £1, and so M,, = n if §;, = n and
M, =0if 5, = —n. Thus for the random walks with these outcomes a single probe suflices to

determine M,,. On the other hand, if the random walk moves back between 0 and —1, so that

Sy = —1 for k odd, S = 0 for k even, the cost of proving M,, = 0is high. Even if the searcher
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ABSTRACT

This paper examines the efficiency of various strategies for searching in an unknown envi-
ronment. The model is that of the simple random walk, which can be taken as a representation
of a function with a bounded derivative that is difficult to compute. Let Xi, Xo,... be inde-
pendent and identically distributed with Prob(X; = 1) = Prob (X; = —1) =1/2, and let
S = X1+ Xo+ -+ Xg. Thus Si is the position of a symmetric random walk on the line
after k steps. The number of the S that have to be examined to determine their maximum
M, = max{Sq,...,5,}is ~ n/2 as n — oo, but that is a worst case result. Any algorithm that
determines M, with certainty must examine at least (co + o(1))n'/? of the Sy, on average for a
certain constant ¢ > 0, if all random walks with n steps are considered equally likely. There
is also an algorithm that on average examines only (co+ o(1))n'/? of the S, to determine M,,.
Different results are obtained when one allows a nonzero probability of error, or else asks only
for an estimate of M,. It is also shown that a global search (one that can ask for any value
S at any time) for the exact maximum is faster by a factor of log n (when comparing average

running times) than a linear sequential one that can skip through some values but cannot go

back.

Abstract of preliminary results appeared in Adv. Appl. Prob. 24 (1992), 768. Extended
abstract of this paper was published on pp. 336-345 of Proc. 26-th ACM Symp. Theory
Comp., 1994.



