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Abstract. It is not known whether there exist polynomials with plus and mi-
nus one coefficients that are almost constant on the unit circle (called ultraflat).
Extensive computations described in this paper strongly suggest such polyno-
mials do not exist, and lead to conjectures about the precise degree to which
flatness can be approached according to various criteria. The evidence shows
surprisingly rapid convergence to limiting behavior. Connections to problems
about the Golay merit factor, Barker sequences, Golay-Rudin-Shapiro polyno-
mials, and others are discussed. Some results are presented on extensions where
the coefficients are allowed to be roots of unity of orders larger than two. It is
pointed out that one conjecture of Littlewood about polynomials with plus and
minus one coefficients is true, while another is very likely to be false, as it is
inconsistent with another Littlewood conjecture that is supported by the data.

1 Introduction

There are many very appealing and easy to state problems about the behavior of poly-
nomials with restricted coefficients that have proved very hard. One that was raised in
pure mathematics context by Erdds [I1] and later extended and popularized by Littlewood
in several of his papers, such as [22], and in his book [23], concerns the degree to which
the absolute value of a polynomial can be almost constant when the argument runs over
the unit circle. This problem also arose in several engineering problems, cf. [32l35]. If the
coefficients are not constrained, this is of course trivial. But what if the coefficients are all
forced to be of absolute value 1, or, even more restrictively, equal £17
We define

n

U, ={F(z) = Zakzk, ap = £1} (1)

k=0
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and similarly V,, where we allow a; € C,|ag| = 1. A simple computation (trivial case of
Parseval’s identity) shows that for F'(z) € V,, (and therefore also for F(z) € U,),

1 27 ) 1 n 2 o n
17|z = 2—/ [F(e)Pd) = - / a;are’d0 =N JaP=n+1. (2
T Jo T jk=0"0 k=0

Hence if F(z) € V,, is ultraflat, its absolute value must be close to v/n + 1. This motivates
the definition, for F'(z) € V,,,

[F(2)| - |F(2)]
M(F) =mex 2= ) =min 7=
All graphs in this paper are of (Re(F(e?), Im(F(e))/v/n + 1 for 0 < # < 27 to obtain
comparisons that are independent of the degree of F(z).
W (F) is the minimal width of an annulus centered at the origin that contains the graph
of F(z)/v/n + 1. Ultraflat polynomials F'(z) of high degree would have M (F) ~ m(F) ~ 1
and W(F) ~ 0.

For random F'(z) taken from V,, or U,,

M(F) ~ \/logn (4)

as n — oo with probability tending to 1. An upper bound of this form was obtained by
Salem and Zygmund, and the asymptotic form for a special case by Halasz [I7] and in the
general form by Gersho et al. [I3]. (The last result allows for the a; to be drawn from
very general distributions, with the main requirement being that the a; be independent.
The a; do not even have to be identically distributed. That paper also shows that for
most F'(z), large values are taken on in at least logn regions.) By similar methods one can
show that m(F) — 0 for most F'(z). Thus ultraflat polynomials in either U,, or V,,, if they
exist, are relatively rare, which proves the first part of Littlewood’s conjecture (Cj3), [23],
p. 29. However, the second part of that conjecture, which predicts the number of such
polynomials is extremely small, namely O(n?), is almost surely false. If, for a large n, there
exists even one polynomial with M (F") bounded above, and m(F") bounded away from zero
(in both cases with bounds independent of n), as is predicted by Littlewood’s conjecture
(C1), and as is strongly suggested by the results of this paper, then Section [l shows there
have to be many such.

For a long time the prevailing opinion seemed to be that there were no ultraflat polyno-
mials in V,,. It came as a surprise to many, therefore, when in 1980 Kahane [19], building
on earlier work of Kérner [20] and other investigators, showed this was not correct, and
that for any € > 0, for sufficiently large n there are F(z) € V,, with W(F) < e. Ka-
hane’s method is not constructive, as it uses a randomization procedure to guarantee that
lax| = 1. Kahane’s construction was recently improved by Bombieri and Bourgain [2], who
obtained smaller error terms, and, even more important, obtained explicit constructions,
thus eliminating the non-constructive element.

This paper investigates the problem that the Kahane and also the Bombieri and Bour-
gain papers left open, namely what happens if we insist the coefficients be +1. Let

M, = min M(F), (5)

FeU,
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My = max m(F), (6)
W, = min W(F). (7)

Very little is known theoretically, although some very recent work [9] that is yet to be
verified claims to prove that ultraflat polynomials do not exist in U,,.

For n = 2% — 1, it is known that M, < /2, since the Golay-Rudin-Shapiro (GRS)
polynomials achieve this bound, cf. [3]. These polynomials are usually referred to in the
literature as the Rudin-Shapiro polynomials [30J33]. However, they were discovered inde-
pendently by Golay [I4], so it is appropriate to attach his name to them. For references
to some of the large literature on these remarkable polynomials, see, for example [3/6]. Tt
can be shown, using GRS polynomials, that M, is bounded as n ranges over all positive
integers. But that is just about all that is known rigorously. On the lower side, it is not
even known whether limsup,,_, . m,, > 0. (See Section [l )

Extreme values for all polynomials with degrees from 10 to 50

1.2 1.4

M, m, and W
1.0

Fig. 1. Values of M,,, m,, and W,, for 10 < n < 50. Scatter plot gives values of M} m,
and W for even n in that range.

This paper is based on exhaustive computational searches for extremal polynomials
in U,. The first part examined all F(z) € U, for n < 52. These computations extend
unpublished computations of the author in the late 1980s and smaller scale searches of
Robinson [28]. These searches lead to the conjecture that each of the following limits
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exists:
lim M, = M, (8)
n—oo
iz = m, )
lim W, = W. (10)
n—o0

The computations reported here suggest that M ~ 1.27, m ~ 0.64, and W =~ 0.79. These
conjectures imply that ultraflat polynomials in U,, do not exist, but that GRS polynomials
are far from optimal in terms of never being large. The conjecture that W exists and that
W < 1 implies there exist constants 0 < ¢; < ¢g so that for all high degrees N there are
polynomials F(z) € U,, with ¢; < m(F) < M(F) < ¢y, which is Littlewood’s conjecture
(Ch), [23], p. 29.

Fig. [l shows a graph of the values of M, m,,, and W,, for 10 < n < 50. The numerical
values for all n < 52 and the polynomials that achieve them (as well as a large collection of
other polynomials that come close to the record values) are available on the author’s home
page. Perhaps some patterns will be found in their coefficients that will help in explicit
constructions of high degree polynomials that are close to ultraflat.

It should be noted that the optimal polynomials are not isolated, as in most cases there
are many others that have similar values, see Section [3

Fig. M shows M,, converging rapidly, and m,, and W,, considerably more slowly. However,
given the low degrees involved, even the rate of convergence for m, and W, is rather
remarkable, see Section [3

The dots in Fig. [l represent the optimal values when we restrict consideration to the
very important class of skew-symmetric polynomials. When F(z) € U,,, M(F) and m(F)
are the same for F'(z) and for

z”F(l), —F(2), F(-=2). (11)

Therefore F(z) € U, can be grouped naturally into octuplets, which makes the search eas-
ier. Sometimes these octuplets collapse. The symmetric case, F'(z) = 2"F (%), leads to very
poor results for our problem. (This is easily observed with even low-degree polynomials,
and there are some rigorous results that show, for example, that symmetric polynomials
cannot be ultraflat. For the latest in this area, see [10].) However, when n is even, we usually
obtain excellent outcomes from the skew-symmetric polynomials, namely those with
-1
F(z) = :I:Z"F(7)

(where the sign has to be (—1)™?2). Those, as was first noticed by Golay in a slightly
different context, see Section [2, contain the optimal polynomials in a majority of known
cases. This is visible in Fig. [Il when the dot is right on the line. Even when a non-skew-
symmetric polynomial is better than any skew-symmetric ones, visible in Fig. [[l when the
dot is not right on the corresponding curve, the difference is usually slight. The largest
exception to this claim that has been found so far is for Wy, which stands out in Fig. [,
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Extreme values for skew—-symmetric polynomials, 10 <= n <= 100
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Fig. 2. Values of M, m;, and W} for even n, 10 < n < 100.

with Wyy = 0.8344, whereas the best result obtainable from skew-symmetric polynomials
requires an annulus of width 0.9528.

Fig. [l naturally suggests the conjecture that if we define M, m’ and W} in analogy
to M,, m,, and W, but limiting consideration to skew-symmetric polynomials of degree
n, then

) w1
nhllgo M =lim, oo M, = M,
n even

nlgglo my = lim, o my, =m,
n even

. v
il_)rgo W, =lim,_,oo W, = W.
n even

Since skew-symmetric polynomials have only n/2+1 free coefficients, as opposed to n+1
for general ones, searches can be carried out about twice as far, and so far have been taken
up to n = 104. The results for 10 < n < 100 are shown in Fig. Pl and the numerical values
for all even n < 104 are in the online tables, together with the corresponding polynomials,
and nearly-optimal polynomials. As with general F(z) € U,, convergence is fastest for
M, but now m; also appears to converge rapidly, and it is only W, that oscillates to a
substantial extent.

The conjectured values for the limits, M ~ 1.27, m & 0.64, and W =~ 0.79 were derived
from the computed values of M, m;, and W.
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2 Golay merit factor and Barker polynomials

Ultraflat polynomials have close connections to the much larger field of discrete sequences
and their correlation properties. (For some general information and references, see, for
example, the book [3]. For much more detail and extensive references, including numerous
applications, see [12/16].) Here we just cite some of the basic results about the Golay merit
factor and Barker polynomials. Much more can be found in the references just cited, as
well as on the Web pages of the Centre for Experimental and Constructive Mathematics at
Simon Fraser University, and the home pages for Michael Mossinghoff and Tamés Erdélyi,
for example.
For ag,...,a, =+1,and 0 < k < n, let

n—Fk

o= S 12

J=0

and for £ < 0 let ¢, = c_;. A Barker sequence aq, ..., a, is defined by the property that
the non-trivial ¢; are as small as possible, namely ¢, = 0,+£1 for 1 < k < n. The only
nontrivial Barker sequences that are known have n = 2, 3,4, 6, 10, and 12, and are of great
utility in communications and radar applications. It is conjectured that there are no more,
and it is known [21] that there are no other ones with lengths n < 4 - 10%.

To any sequence ay, .. .,a, = 1 we can associate the polynomial F'(z) € U,, with the
ay as coefficients. For this sequence and its polynomial, we define the Golay merit factor

_ (n41)?
2 Zzzl Ci‘

A Barker sequence has the denominator ~ n, and so G(F') ~ n. The largest known G(F)
comes from the Barker sequence with n = 12, and equals 169/12 = 14.08.. .. It is conjec-
tured that this is the largest merit factor among all sequences of all lengths. The second
largest is 12.1, coming from the Barker sequence with n = 10, and no other merit factors
exceeding 10 are known. Golay’s conjecture [I5] that the highest merit factors should ap-
proach 12.32 asymptotically is generally not accepted as likely to be correct. For the latest
computations of highest merit factors for all sequences with n < 65 and all skew-symmetric
sequences with n < 116, see [26].

If merit factors are bounded, then the ¢, are in absolute value on the order of \/n on
average. That is what random choices of a;, produces.

If the ay are chosen at random, then for large n, for most sequences G(F) ~ 1. GRS
polynomials have G(F') ~ 3, and the best currently known constructions give G(F) ~ 6.34
for large n [I8]. However, exhaustive computations for lengths up to 60, and heuristic
searches for greater n, frequently find sequences with G(F') > 9.

Getting back to polynomials, if F/(z) € Uy, F(z) = Y ;_, a;2z", then (all on |z| = 1)

G(F) (13)

n

F()F(2) = F)FC) = 3 ek,

z
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Barker polynomial of degree 12

Fig. 3. Real and imaginary parts of the Barker polynomial of degree 12 (scaled by 1/13)
as the argument runs over the unit circle, and circles of radii 0.5 and 1.5.

IFEIE=IFEFOB= " ¢
Hence ) )
G(F) g (n+1) (14)

N NFIE-IFIS

Ultraflat polynomials F(z) would have ||F||s ~ ||F|l2 ~ (1 4+ o(1))v/n+ 1 and so would
give G(F) — oo. The conjecture that G(F) is bounded therefore implies there are no
ultraflat polynomials of high degrees. (For more on connections between sequences and flat
polynomials, see also [3/4].)

Eq. (I4) shows that there is a relation between high merit factors and flatness. In some
cases, the correspondence is very close. The Barker polynomial of degree 10 has the smallest
M(F) (= 1.1464) of all polynomials that have been tested, and the Barker polynomial of
degree 12 (whose behavior on the unit circle is displayed in Fig. B]) has the largest m(F)
(= 0.8375) and the smallest W (F') (= 0.5493) that have been found.

The correlation between high Golay merit factors and flatness is not perfect, as can be
seen by the example of the skew-symmetric polynomials of degree 102. Fig. @l shows the
behavior on the unit circle of the polynomial in this set which has the smallest M (F)
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Extremal skew—symmetric polynomial of degree 102

[ -

Fig. 4. Real and imaginary parts of the skew-symmetric polynomial of degree 102 which
achieves M (F') = My, = 1.2633..., at 10,000 uniformly spread points over the unit circle,
scaled by /103, and a circle of radius 1.5.

(= 1.2633) among all skew-symmetric polynomials of degrees 84 < n < 104. It has
G(F) = 5.7973 (and m(F) = 0.0985). However, there is a skew-symmetric polyno-
mial F'(z) of degree 102 which achieves G(F) = 9.5577 (the highest value that has been
found in searches just for high merit factors among skew-symmetric sequences of that
length), but it has M(F) = 1.3689, m(F) = 0.5667. This polynomial does not produce
the best values for either m(F) or W (F') for degree 102.

3 Lack of isolation of extreme flat polynomials

In searches for high merit factors, it has been noted that for a given length, the sequence
with the highest merit factor is usually not just unique (aside from the obvious symmetries
given by (IIl)), but is isolated, in that the second largest merit factor is considerably
smaller. For example, in the searches for flat skew-symmetric polynomials of degree 102
of this paper, the highest merit factor found was 9.5577, and the second highest was only
8.1482. In contrast, the best values of M (F) are usually just a little smaller than second
best. As as example, M;,, = 1.2633, but aside from the polynomial shown in Fig. [ that
achieves this value and the other three polynomials in its symmetry class, there is another
skew-symmetric polynomial that has M(F) = 1.2647, and the 10-th smallest value of
M(F) is 1.2876. Similar observations hold for the extremal values of m(F) and W (F').
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For very large values of the degree n the existence of many polynomials with values
of M(F) close to M, is easy to show (and similarly for m,, and W,,). Since changing one
coefficient in F'(z) from +1 to —1 or vice versa changes the values of F(z) on the unit
circle by at most 2, and M (F’) scales the maximal value by dividing by v/n + 1, perturbing
a bounded number of coefficients of F'(z) does not affect M (F’) to a perceptible degree. In
fact, much more substantial perturbations leave M (F') almost constant for large degrees.
If we have a polynomial Fi(z) € U, and we take a random polynomial Fy(z) € U,,, then,
by @),

M(F, + 2"Fy) < M(Fy) + 2+/logmy/m/n (15)
for most choices of Fy(z). Hence if m = o(n/(logn)) as n — oo, we obtain close to 2™
polynomials F'(z) € U,,, that have M(F) just about the same as M (F}). So we should
expect M, to vary smoothly with n. A modification of the argument that led to () can
be used to show that one can also alter many coefficients of a given F'(z) € U, without
affecting M (F) significantly, so that there will be many polynomials in U, with M (F')
close to M,,.

One can obtain even stronger results by invoking the work of Spencer [34], who showed
that there are exponentially many F'(z) € U, with M (F) < C for large constants C'. This
shows that in the construction above one can take m = o(n), and not just m = o(n/(logn)).
Thus non-isolation of extremal polynomials is to be expected for high degrees. But the same
argument also shows that sequences that achieve maximal merit factors cannot be isolated
for large lengths. So why the difference in behavior for modest lengths? If we consider the
effect that the change of a single coefficient can make for n on the order of 100, intuitively
we might expect more isolation for extremal polynomials, and much more variation in M,
and M as n varies than is visible in Figures [[J and [ Even the values of W,, and W},
which show more variation, are surprisingly smooth.

Yet another puzzle is why M,, and M, converge so much faster than W,, and W.

4 More general coefficients

Kahane showed that ultraflat polynomials do exist with a, € C, |ax| = 1. The computations
of this paper strongly suggest such polynomials don’t exist if we require a; = £1, but that
there do exist constants 0 < 0 < C' (even with § = 0.5 and C' = 1.5) so that for all large n,
there exist F(z) € U, with

§<|F(2)|/v/ntl<C (16)

for z on the unit circle. Beck [I] has shown, through a non-constructive argument, that
there do exist polynomials satisfying (6] for some positive §, C' when the a;, are required
to satisfy a}% = 1. (Higher orders of roots of unity lead to similar results.) So it is natural
to conjecture that for each integer r > 2, if we require the a; to be r-th roots of unity, the
limits corresponding to M and m will exist, and will go to 1 as r — oo.

Some small scale computations for r = 3,4 do support the conjecture about existence
of the limits. They also show that for » = 3, it is harder to approach flatness than it is
for the » = 2 (1) case, and that r = 4 does not produce polynomials much flatter than

r = 2, at least for small degrees.
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5 Polynomials that are never too small

GRS polynomials show that M, is bounded. However, it is not known whether m,, is
bounded away from zero, even for a sparse sequence of degrees n. The best known results
come from a recursive construction of Carroll, Eustice, and Figiel [7]. If F(z) € U,, and
m(F) > a, then

F(z""YF(z) € Uz (17)

and for |z| =1,
|F(z""F(2)] > o (18)

Repeating this construction, we obtain a sequence of polynomials G(z) of degrees r =
(n+ 1) — 1 with m(G) > o, which gives

m, > (r+1)77, (19)

where
5= 5~ (loga)/(log(n + 1)), (20)

The smallest value of § that has been found among all the polynomials examined so far
comes from the Barker polynomial of degree 12, which has m(F) = 0.8375, a = 3.0196
and gives § = 0.069. (This example was already featured in [7].) It is disappointing that
even the skew-symmetric polynomials with m(F) = m? for n = 100, 102, and 104 do not
provide a better bound. If the conjecture about the limit of m,, being about 0.64 is valid,
and the limit is approached as smoothly as suggested by Fig. [l it will require an example
with the degree n on the order of 500 to improve on the Barker example of degree 12.
This provides yet another demonstration of the uniqueness and nice behavior of Barker
sequences.

Carroll, Eustice, and Figiel [7] have shown, using an interpolation procedure, that lower
bounds similar to () hold for all large degrees r, not just for r = 13F — 1.

6 Uniform distribution conjectures

B. Saffari and H. Montgomery developed conjectures about uniform distribution of GRS
polynomials, cf. [25]. These have been proved recently, see [8[29], so we now know that as
the degrees of GRS polynomials F'(z) grow, the values of F(z)/v/n+ 1 as z runs over the
unit circle approach the uniform distribution in the disk of radius v/2.

For the polynomials F'(z) that are conjectured here to exist with M(F) < 1.3, say,
the distribution of values cannot be uniform in this sense, as the Ly-norm of F(z)/v/n + 1
would be < 1. If we look at the distribution of values of the skew-symmetric polynomial of
degree n = 102 that has the smallest maximal value, pictured in Fig. 4l we see there the
expected concentration close to the unit circle.

If F(2)/v/n+ 1 were to have its values approximately uniformly distributed in an an-
nulus with radii » < R, the Ly-norm would be

(R* +1%)/2
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Extremal skew—symmetric polynomial of degree 94

[ -

Fig. 5. Real and imaginary parts of the polynomial of degree 94 that achieves W (F) = Wy,
at 2,000 points uniformly spread over the unit circle, scaled by /95, and circles of radii
0.5 and 1.5.

so for it to equal 1, we would need
r=+v2-R2 (21)

Fig. [ shows the behavior on the unit circle of the skew-symmetric polynomial F(z) of
degree 94 that has W(F) = 0.733... and thus fits in the smallest annulus of all skew-
symmetric polynomials of degrees 72 < n < 104. Whether that approximates a uniform
distribution is difficult to say. This polynomial has M (F') = 1.3162... and m(F") = 0.5830...,
so does not fit the formula ([2I)) too well, since substituting R = 1.3162 in that formula
produces r = 0.5173.... Thus we do not have much evidence to suggest whether uniform
distribution will prevail in the limit.

7 Algorithms

Computations were carried out with a simple program that examined all candidates (after
taking advantage of the symmetries of (II)). If we write F(2) = Fi(z) + Fz(2), where

15
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say, then the values of Fj(z) for all possible choices of Fj(z) were precomputed at a small
set of points on the upper half of the unit circle (typically 32 values). A candidate for
F5(z) was evaluated at those points (with cosine evaluations replaced by table lookups,
since only a small number of arguments were relevant), and choices of F(z) that produced
values of F'(z) that were either too small or too large were discarded. Thus the bulk of
the computation consisted of adding values from two tables. Those few candidates that
survived this simple winnowing process were then examined more carefully.

Considerably more efficient algorithms could be written, utilizing approaches similar to
those in [B2627]. Typically, because of (), a combination of particular Fj(z) and Fy(2)
gives a large value at at least one of a small number of judiciously chosen points z with
|z| = 1. In that case it is unnecessary to examine other combinations that differ from the
given one in a small number of coefficients. A similar argument applies to small values.

Computations were carried out primarily on a variety of student lab machines, each of
which typically had 4 cores in their Intel processors, which ran at about 3 GHz. Programs
were run at the lowest possible priority, so as not to interfere with student work. The small
memory requirements helped keep the programs’ operation unobtrusive. Total run time
was on the order of 30 years on a single core.

8 Completeness and correctness of results

The values of m(F), M(F), and W (F) for the polynomials in the tables are trustworthy.
They were computed for the candidates identified by the main program with an inefficient
but straightforward program. It used the trivial bounds on the first and second derivatives
of F'(z) to find the extremal values.

What is not completely certain is whether all extremal polynomials were found. Typi-
cally around 100 cores were doing the searches, sending the promising candidates to a file
over a local area network. This took several months in all, and there were some network
hitches that triggered warnings that led to repeats of some computations. There is a chance
that some network or storage system abnormalities may not have been detected, so that
some good polynomials may have been missed. This probability is slight, though, since
extremal polynomials are so rare.

9 Conclusions

The computations of this paper support the conjecture that ultraflat polynomials with 41
coefficients do not exist. However, it seems extremely likely that the Golay-Rudin-Shapiro
polynomials are far from best possible in terms of never being large.

It is to be hoped that the extremal polynomials produced by this project will be helpful
in finding some patterns that will lead to rigorous constructions.

The approach of the measures M,,, m,,, and W,, to their asymptotic values is surprisingly
rapid. It was also unexpected that there would be as many polynomials close to the extremal
ones.
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