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ABSTRACT. Results of extensive computations of moments of the Riemann
zeta function on the critical line are presented. Calculated values are compared
with predictions motivated by random matrix theory. The results can help in
deciding between those and competing predictions. It is shown that for high
moments and at large heights, the variability of moment values over adjacent
intervals is substantial, even when those intervals are long, as long as a block
containing 10° zeros near zero number 1023. More than anything else, the
variability illustrates the limits of what one can learn about the zeta function
from numerical evidence.

It is shown the rate of decline of extreme values of the moments is modelled
relatively well by power laws. Also, some long range correlations in the values
of the second moment, as well as asymptotic oscillations in the values of the
shifted fourth moment, are found.

The computations described here relied on several representations of the
zeta function. The numerical comparison of their effectiveness that is presented
is of independent interest, for future large scale computations.

1. INTRODUCTION

Absolute moments of the Riemann zeta function on the critical line have been the
subject of intense theoretical investigations by Hardy, Littlewood, Selberg, Titch-
marsh, and many others. It has long been conjectured that the 2k** moment of
|C(1/2 + it)| should grow like ¢y (log t)’“2 for some constant ¢; > 0. Conrey and
Ghosh [CG1] reformulated this long-standing conjecture in a precise form: for a
fixed integer k > 0, and as T — oo,

T
(1.1) l/ (/2 +it)[** dt ~ alk)g(k) (log T)*"
T Jo k2!
where a(k) is a certain, generally understood, “arithmetic factor,” and g(k) is
an integer. Keating and Snaith [KS] suggested there might be relations between
random matrix theory (RMT) and moments of the zeta function, which led them
to a precise conjecture for g(k).
More generally, it is expected the 2k moment of |¢(1/2 + it)| should grow like
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(1.2) 1/T|§(1/2+it)2kdt 1/TP log - | dt
‘ T/, T ), F\%%or)

where P (z) is a polynomial of degree k? with leading coefficient a(k)g(k)/k?!,
which is the same leading coefficient as in (1.1). Recently, Conrey, Farmer, Keating,
Rubinstein, and Snaith [CFKRS1] gave a conjectural recipe, compatible with the
Keating-Snaith prediction for g(k), to compute lower order coefficients of P (z);!
see Section 2.

The purpose of this article is to present the results of numerical computations
of integral moments of |((1/2 + it)| at relatively large heights. The main goal is to
enable comparison with RMT, and other more complete predictions for moments
of the zeta function on the critical line. These predictions are used to get insights
that go beyond what can be derived even with the Riemann hypothesis.

RMT has produced a variety of (so far still uproven) conjectures for the zeta
function. Many of these conjectures have been either inspired by, or reinforced by,
numerical evidence. In general, the agreement between numerical data and RMT
predictions has been very good. But it is also known there are some quantities,
such as the number variance in the distribution of spacings between zeta zeros, that
depend explicitly on primes. Therefore, for some ranges of the spacing parameter,
these quantities do not follow RMT predictions exactly.

Similarly, there are suggestions that the behavior of high moments of the zeta
function may involve arithmetical factors such as a(k) in conjecture (1.1), and so
might not follow the RMT predictions completely. We provide numerical data that
might be used in the future to shed light on this issue. And even today, the statistics
we present on the variation in the moments values over various intervals might be
informative in judging the extent to which RMT provides an adequate explanation
for observed behavior.

We computed the moments of [((1/2 + it)| for a set of 15 billion zeros near
t = 1022, and for sets of one billion zeros each near t = 10'? and ¢t = 10'°. We also
computed the moments near ¢ = 10”. These zero samples were used because they
were the main ones available from prior computations by the second author.

A relatively large sample size (such as a billion zeros) is useful in our study
because it helps lessen the effects of sampling errors. This is an important consid-
eration when investigating the zeta function because some aspects of its asymptotic
behavior are reached very slowly (while others are reached extremely rapidly). In
addition, tracking data from different heights (such as 10*°, 10!, and 10?2) can
help us understand how the zeta function approaches its asymptotic behavior.

Ideally one would like to compute the moments over a complete initial interval:

T
(1.3) %/O 1C(1/2 + it) |2+ dt

However, that could not be done for large values of T. Since we are interested in
asymptotic behavior of the zeta function, we calculated numerically

ISee also Diaconu, Goldfeld, and Hoffstein [DGH].
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1 T+H
(1.4) 7/ IC(1/2 + it)[** at,
H Jr
for various choices of k, T, and H by evaluating the integral directly. Section 5
presents the details. We compare the empirical value of (1.4) against

1 T+H t
— Py (log— | dt
il (e ) a

where the coefficients of Py (z) are as given in [CFKRS1] and [CFKRS2].

We find that for high moments of |((1/2+it)|, and near values of T such as 10?2,
the variability over adjacent intervals is substantial, even when those intervals are
long, as long as a block containing 10° zeros; see Table 10. Moreover, the variability
increases rapidly with height, a tendency that is observed even for low T ~ 108 (see
the comments following Table 7).

The leading term prediction (1.1) does not match well the moment values at the
heights where we carried our computations. This is not surprising. As k increases,
the leading coefficient a(k)g(k)/k?! becomes extremely small (see Table 1), whereas
actual moments of the zeta function do grow moderately rapidly. Therefore, one
cannot hope to get a good approximation for the actual 2k*"* moment from the
leading term on its own unless T is large enough to enable the leading power
(logT)** to compensate for the small size of the leading coefficient a(k)g(k)/k2!.
In particular, for high moments (relative to T'), the contribution of lower order
terms is likely to dominate.

(1.5)

TABLE 1. a(k) and g(k)/(k?)! as given by (2.1) and (2.2) respectively for
the first few integers k. Numerical values are truncated.

k a(k) g(k)/(k2)!

1 1 1

2 || 6.0792 x 101 | 8.3333 x 10—2
3 || 4.9321 x 1072 | 1.1574 x 10~ %
4 || 2.1468 x 10~% | 1.1482 x 109
5 || 3.1326 x 1078 | 4.5202 x 1017
6 || 1.1415 x 10713 | 4.4937 x 10—27
7 || 8.4291 x 10—21 | 7.8100 x 1040
8 || 1.0751 x 10—2° | 1.7402 x 10~5°°

By contrast, the full moment conjecture of Conrey, Farmer, Keating, Rubinstein,
and Snaith [CFKRS1], which gives predictions for lower order terms of Py (z), and
hence takes their contributions into account, is significantly better at matching the
values of zeta moments that we computed. For example, using a block of 10° zeros
near T = 10'°, and for moments as high as the 12! moment, the ratio of (1.4) to
(1.5) differs from the expected 1 by less than 4%; see Table 8.

As remarked earlier, though, our computations do suggest there are tremendous
oscillations in the remainder terms of the moment conjectures for high moments.
For example, we find two almost consecutive intervals near 7" = 10?2, containing
10° zeros each, such that the 12** moment in one interval is about 16 times the
12" moment in the other; see Table 10. Such variability is unlikely to come from
any reasonable conjecture for Py (logt/(27)). The reason is that if zeta moments
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are modeled by such polynomials, then perturbing H in (1.5) is unlikely to pro-
duce significant enough changes for the value of the integral to change by by large
multiplicative factors, as seen in our data, since P(logt/2m) varies quite slowly as
function of ¢.

To further highlight the difficulties and limitations to be expected in any numer-
ical study of high moments, consider Table 12. It is based on computations over
an interval containing 1.5 million blocks, where each block spans 10* zeros near
T = 10%2. We find there that more than 50% of the value of the 12t moment
comes from just the 5 blocks that contribute the most. Interestingly, the size of the
nt" largest contribution to the 2k*® moment among such blocks is approximated
rather well (except for the first few n) by a law like

k/5

(1.6) n** largest block contribution ~ n~ X (contribution of the largest block).

Approximation (1.6) persists for a long range of n; see Figure 1.

To help understand the observed variability in the moment data, recall that
according to a central limit theorem due to Selberg [S], the real and imaginary
parts of log((1/2 + it)/+\/(1/2)loglogt converge in distribution to independent
standard Gaussians. In particular, the distribution of [((1/2 + it)| tends to log-
normal. So from the outset, we expect the variability in the values of (1.4) to
increase significantly with 7" and k. To iron out such variability, we would like to
take H in integral (1.4) relatively large, say H ~ T (or H ~ T'/? might suffice).
Since this is quite impractical when T = 1022 say, we typically took H significantly
smaller than 7. For example, near both 7' = 10'® and T = 10?2, the largest we
could take H was =~ 10%. But then attempts to deduce asymptotics for integral
(1.4) from those for integral (1.3) encounter a problem, which we illustrate in the
case of the second moment, known to satisfy

T T
(1.7) /O (G2 4+ i) db = Tog o +T(2y ~ 1) + By(T),

where Ey(T) = O(T?35/198+¢): see [12]. (This result does not depend on the assump-
tion of the Riemann hypothesis.) Based on (1.7), one might suspect

1 T+H
ﬁ/ IC(1/2 + it)|* dt
T
T+H T+H T T
= 1 — —log — +(2v—1 1).
7 los - H0g2ﬂ+(v ) +o(1)

However, in order for (1.8) to be valid, we need

(1.8)

(1.9)

Relation (1.9) is certainly true if H > T'/2 say, but not necessarily true if H is
substantially smaller. Since in our data the largest we can take H is often far below
T'/2, the agreement with prediction depends on whether over short intervals the
remainder term Ej(t) varies slowly enough for something like (1.9) to hold. Of
course, a similar statement applies to the remainder terms Ej(t) corresponding to
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higher moments. Therefore, in summary, the variability of the moment data is a
function of the following:

e is the height T large enough for asymptotics to apply?

e are the number and size of samples large enough to be representative of a
log-normal variable?

e given k, are there significant oscillations in the remainder term Fy(T")?

Numerical data show some long-range correlations (on the scale of a few thousand
zeros) for the second moment; see Figure 2. However, we do not find similar
evidence for such correlations in the case of higher moments. To further examine
the correlations in the second moment, we numerically investigate the shifted fourth
moment. There, Késters [Ko] proved a kernel law for shifts on the scale of mean
spacing of zeros. For larger shifts, we observe a departure from this law, and the
onset of asymptotic oscillations; see Figures 3 and 4.

In the course of performing our moment computations, various local models
of the zeta function (i.e. models to numerically approximate |((1/2 + it)| over
short intervals) were analyzed. The results of those analyses are of independent
interest, for guidance in selection of numerical methods for other calculations that
might be done in the future with the zeta function. An attractive local model
that was tested is due to Gonek, Hughes, and Keating [GHK]. Another model,
which numerically works quite well, is to approximate |((1/2 + it)| by a suitably
normalized polynomial that vanishes at the zeta zeros near t. We denote this model
by HP (Hadamard product). Numerical computations suggest the approximation
HP converges linearly in the number of zeros used. (We consequently found an
elementary proof of this.)

The paper is organized as follows. In Section 2, we provide a further discus-
sion of some known results and conjectures for the moments of |((1/2 + it)|. In
Section 3 we document the datasets used in our study, and calculate the various
moment predictions for them. Section 4 contains the results of our numerical com-
putations of the 2"¢ to 12" even moments. In Section 5, we outline the numerical
methods employed, which include point-wise approximations to zeta (the main one
being the Odlyzko-Schénhage algorithm), the choice of the integration technique,
and implementation details. In Section 6, we numerically verify the accuracy of
some local (short-range) point-wise approximations of zeta that were used in our
computations. The results of these computations are of independent interest.

2. RESULTS AND CONJECTURES FOR ZETA MOMENTS

Number-theoretic methods were not able to predict, in general, the value of the
factor g(k), which occurs in asymptotic (1.1). In contrast, a general prediction for
the arithmetic factor a(k) was established explicitly as

(2.1) ak) =] <(1 ~1/p)* (Z di(ﬁ”)z&"‘)) ,
m=0

p

where dj is the k-fold divisor function. We remark the size of a(k) is mostly
determined by the contributions of the first O(k?) primes.

Although g(k) is not critical to determining the growth rate of ¢(1/2 + it), it is
important in comparing empirical data to conjectures due to the extra precision
it provides. A conjecture for the value of g(k) was first provided by Keating and
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Snaith [KS]. Motivated by recent progress in developing (conjectural, numerical,
and heuristic) connections between RMT and the zeta function, they suggested
there might be a relation between the moments of the characteristic polynomials of
unitary matrices and the moments of the zeta function. This led them to conjecture:

22) 1:[ (G + k

Specifically, Keating and Snaith considered Zx(A,#0), the characteristic poly-
nomial (in e?) of an N x N unitary matrix A. They used Selberg’s formula to
calculate the expected moments of |Zy (A, )|, where the expectation is taken with
respect to the normalized Haar measure on the group of N x N unitary matrices.
They found for integer values of k > 0 that

2
(2.3) En|Zy(A,0)2F = H 3+ 2k

The right side of formula (2.3) is a polynomial in N of degree k2, with leading
coefficient given by the right side of (2.2). (The full result of [KS] is more general
as it can be continued to the half-plane R(k) > —1/2.)

The absence of the arithmetic factor a(k) from formula (2.3) hints the moments of
zeta might split as the product of two parts, one that is universal and is due to RMT
fluctuations (on the scale of mean spacing), and another that is specific to zeta and
corresponds to the contributions of small primes; see [BK] and [GHK]. A similar
phenomenon appears in some statistics of zeta zeros, such as zero correlations and
number-variance of zero spacings.

It appears, however, that RMT is only able to predict the universal part of
merely the leading term asymptotic for zeta moments. For example, Ivié [I1] and,
separately, Conrey [C], determined explicitly the coefficients of the fully proven
fourth moment polynomial Py(z). Their results lead to

1 [T T\* T7\?
— / C(1/2 +it)|* dt ~ 0.050660 [ log — | + 0.496227 ( log —
T Jo 2m 2m

2.4 T\ 2 T
24 + 0.937279 (log ) + 1.35334 (log )
21 2

— 0.040924 + E(T)/T,

where numerical values are obtained via truncation. By comparison, the straight-
forward RMT-based prediction for the fourth moment is determined by a quantity
like

N (s +4
2.5 Ex|Zn(A,0)* ,
(2. a(2) Ex|Zn( 1:1 o
where a(2) = 0.607927... . If expression (2.5) correctly predicts lower order terms

for the fourth moment, then it should yield something similar to right side of (2.4),
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but it does not. Because if we make the identification N — log T'/(27), as suggested
by [KS], then expression (2.5) produces the following polynomial instead:

7\* 7\? T\?
0.050660 ( log — + 0.405284 | log — 4 1.16519 { log —
2 2T 27

(2.6) ,
+ 1.41849 (log 27r> + 0.607927 .

So, the leading terms in polynomials (2.4) and (2.6) agree, but lower order terms
do not. This discrepancy indicates RMT does not model zeta moments well enough
to enable correct prediction of lower asymptotic terms. But in numerical studies of
zeta moments, it is useful to go beyond the leading coefficient, to have predictions
for lower order coefficients in the moment polynomial Py (z) in conjecture (1.2).

This is one of the reasons the recent work of Conrey, Farmer, Keating, Rubin-
stein, and Snaith [CFKRS1] [CFKRS2] has been useful to our numerical investiga-
tion. They gave a conjecture for Px(x) which agrees with the known cases k = 1
and k = 2, as well as with the RMT prediction (1.1). Their conjecture is moreover
supported by empirical data at low heights (near T' = 2 x 10%). Importantly, they
computed the coeffcients of Pj(x) for the first few integers k, which enabled us to
calculate predictions for moments beyond the fourth one.

3. PRELIMINARIES

We sample consecutive blocks of zeros B,,. The blocks B,, are of equal size, and
are located in a neighborhood of the height T. We denote the size of a block B,
by |B,|, and choose |B,| = |Bp+1]| for all relevant n. We consider many ratios of
the form

[, 16(1/2 +it)|* dt
fB Pk (logi) dt ’

where, by an abuse of notation, the symbolism || B, is short for integrating over the
interval spanned by block B,. So if a,, and 3, denote the ordinates of the first

(3.1)

and last zeros in block B,,, respectively, then [ B, = fa . We expect the average of
many ratios of the form (3.1) to approach 1. Notice if T is large, and the length of
the interval spanned by block B,, is small compared to T', then the denominator in
ratio (3.1) is largely a function of 7" multiplied by the length of the interval spanned
by Bj.

In our computations, we aggregated the moment data for each 1,000 consecutive
zeros. (Thus blocks did not have the same lengths. However, since zeros are
spaced quite regularly, the differences in lengths of blocks with the same number
of zeros at the same height were minor.) The block sizes used in our computations
range anywhere from 103 to 109 consecutive zeros (data for a block size of 10%, for
instance, was obtained by averaging the aggregated data for 10 successive blocks
of 1,000 zeros each); see Section 5 for details. Most of our computations were
performed in the vicinity of the 10%3-rd zero, which is near ¢t = 1.3 x 1022,

To investigate the behavior of the remainder term FEj(t) in the full moment
conjecture [CFKRS1], we numerically examine the quantity
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s, 1€(1/2 +at)]* dt B (Bn) — Ex(an)
) 1 u =1
(3.2) °8 ( an Py, (log 2£) dt g1+ ff: Py (log 2£) dt ’

where «, and (3, denote the ordinates of the first and last zeros of block B,,
respectively.

Table 2 contains the exact coordinates of the sets for which we computed mo-
ments. Except for set S8, all these zeros were computed by the second author at
AT&T Labs—Research in the late 1990s, in an extension of the earlier computations
described in [O1], and will be documented in the book [HO]. Some output files
from those computations were corrupted by buggy archiving software during their
transfer from AT&T. Although we managed to clean up many of these files, some
data was lost irretrievably. As a result, there were a few instances where we have
missing blocks of anywhere between 1,000 to 4,000 consecutive zeros. In such cases,
we skipped the missing blocks.

TABLE 2. The datasets

Set | Approximate span | First and last zeros, respectively

A23 5 billion zeros 1.30664344087953251142539323425414 x 1022
1.30664344087959822199974045053551 x 1022
B23 11 billion zeros 1.30664344087935097997293481220857 x 1022
1.30664344087949333176034585636412 x 1022
020 1 billion zeros 1.52024401160089830109496959179 x 1019
1.52024401161628795187223388010 x 101°
716 1 billion zeros 2.5132741232472002749333722 x 101°
2.5132743103949376298283407 x 1015

S8 100 million zeros 14.1347251417347

42653549.7609516

Table 3 contains the moment values predicted by the leading term (1.1) at T' =
1022, Predictions start to grow more slowly at the 14" moment and they completely
collapse by the 28" moment. But by the asymptotic relation (1.7), we have

(3.3) ;/T C(1/2 4 it)2dt > 1.
0

for T > Ty, where Ty > 0 is some absolute number. It follows by induction and
Jensen’s inequality that for £k > 1 and T' > T}

1 [T 1 [T
(3.4) 1< T/o C(1/2 + it) P dt < T/o C(1/2 + it)|*M 2 dt .

Therefore, the 2k*" moments should increase with k for T > Tp. In view of Table 3,
the height 7" must then be larger than 10?2 in order to reach the leading term
asymptotic of certainly the 18" moment, and most likely the 14** and higher
moments. This is the reason we chose to cut off our computation at the 12"
moment.

Table 4 contains the full moment predictions (1.5) for the various sets listed in
Table 2, where the coefficients of the polynomial Py (z) in (1.5) are as computed
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TABLE 3. The expected moments as given by the right side of (1.1) for T
equal to the ordinate of the first zero in set A23.

Moment Value
2 5.09 x10%
4 3.40 x10°
6 1.31 x1010
8 5.04 x1014
10 6.67 x1018
12 1.44 x1022
14 2.86 x10%4
16 3.27 x102%°
18 1.44 %1025
20 1.74 x1023
22 4.29 x1019
24 1.64 x1014
26 7.61 x109
28 3.50 x10~3

TABLE 4. The expected 2k*® moment (truncated here after three digits)
as given by integral (1.5), where the coefficients of Py(z) are as computed
in [CFKRS1] and [CFKRS2]. For each set, the integral is evaluated by setting
T to the ordinate of the first zero, and T'+ H to the ordinate of the last zero.
The first and last zeros of each set are specified in Table 2.

Set 2k =2 2k =4 2k =6 2k =8 2k = 10 2k = 12

A23 | 5.02 x 10T | 3.82 x 10° | 3.30 x 1010 | 1.04 x 1016 | 7.32 x 1021 | 8.89 x 1027
B23 | 5.02 x 10! | 3.82 x 10° | 3.30 x 1010 | 1.04 x 1016 | 7.32 x 102! | 8.89 x 1027
020 | 4.34 x 10 | 2.20 x 10% | 1.03 x 1010 | 1.54 x 101° | 4.66 x 1020 | 2.26 x 1026
Z16 | 3.47 x 101 | 9.41 x 10% | 1.77 x 10° | 8.77 x 1013 | 7.63 x 108 | 9.70 x 1023
S8 | 1.58 x 10! | 5.28 x 103 | 5.58 x 10¢ | 9.87 x 10° | 2.33 x 1013 | 6.67 x 1016

TABLE 5. The expected 2k*® moment (truncated here after three digits)
when the polynomial Py (z) in (1.5) is replaced by its leading term only, which
has coefficient a(k)g(k)/k?!. For each set, the integral is evaluated by setting
T to the ordinate of the first zero, and T'+ H to the ordinate of the last zero.
The first and last zeros of each set are specified in Table 2.

Set 2k =2 2k =4 2k =6 2k = 8 2k = 10 2k = 12

A23 | 4.90 x 10T | 2.94 x 10° | 9.44 x 10° | 2.80 x 1017 | 2.66 x 1018 | 3.84 x 102!
B23 | 4.90 x 10t | 2.94 x 10° | 9.44 x 10° | 2.80 x 1014 | 2.66 x 1018 | 3.84 x 102!
020 | 4.23 x 10! | 1.62 x 105 | 2.49 x 10° | 2.61 x 1013 | 6.56 x 1016 | 1.85 x 101°
Z16 | 3.36 x 101 | 6.47 x 10% | 3.13 x 10% | 6.57 x 1011 | 2.07 x 1014 | 4.66 x 1015

in [CFKRS1] and [CFKRS2]. Table 5 contains the moment predictions when the

polynomial Px(z) in (1.5) is exchanged for its leading term only.

The predictions (1.5) for the sets A23, B23, 020, Z16, and S8, are calculated
by evaluating the integral (1.5) for the exact coordinates given in Table 2. Notice
when T is large, predictions are insensitive to the precise choice of H as long as H
is not too large, say H < T'/2. This will be the case for most samples from those

sets.

Finally, we point out the following notational convention in the next section.

The heading of many of the tables in Section 4 will have the format
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X samples Y

This means the values listed in the table are based on X (usually consecutive)
blocks, where each block consists of Y consecutive zeros. For simplicity, the block
size Y is often written in abbreviated form; e.g. if Y is 1M, this means each block
consists of a million consecutive zeros. Similarly, 1B means each block consists of a
billion consecutive zeros, and so on. We frequently refer to values of the moments
over blocks simply as samples.

4. NUMERICAL RESULTS

At the heights used in our study, there are substantial disparities between the full
moment predictions (1.5) and the leading term prediction (obtained by replacing
Py (x) in (1.5) by its leading terms only). So, a relatively a good agreement with
one conjecture implies lack of agreement with the other. For this reason, let us
focus our attention on the full moment prediction (1.5), which is believed to be
more accurate.

Conrey, Farmer, Keating, Rubinstein, and Snaith [CFKRS1] (see also [CFKRS2])
considered ratios of the form

S 1¢(1/2 +it) |2 at
Ji Py (log o) dt

for T near 10°. They found a very good agreement between the data and the full
moment predictions at that height. We remark the predictions for high moments
near T' = 10°, and also near T = 107,10%%,10', 10?2 (heights used in our experi-
ments), are not really determined by the leading term asymptotic, but by the lower
order terms in the full moment conjecture. This is because lower order terms still
contribute the most even for 7" as large as 10?2, which is the largest height studied
here.

We first discuss the moment data at low heights near 107. This is set S8 in
Table 2, which consists of the first 10® zeros. To aid in the analysis, let us define
the following subsets:

(4.1)

TABLE 6. Some subsets in S8.

Set | Initial zero | Final zero | Size of the set

s1 | 10,000,000 | 10,100,000 | 10° zeros

s2 | 90,000,000 | 90,100,000 | 10° zeros

s3 | 10,000,000 | 11,000,000 | 108 zeros

s4 | 90,000,000 | 91,000,000 | 10 zeros

s5 | 10,000,000 | 20,000,000 | 107 zeros

s6 | 90,000,000 | 99,980,000 | 0.9998 x 107 zeros

Table 7 lists the value of the ratio (3.1) for each of the subsets defined in Table 6.
For example, the first entry in Table 7, which corresponds to 2k = 2 and subset s1,
was calculated using the formula:

S, Q2 +in)de [T (/2 + i) dt
fsl Py (log 5=) dt C [Th07+0% py (log &) dt

Y107

(4.2)
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TABLE 7. Ratio of empirical moment to full moment prediction for the zero
subsets defined in Table 6. For each subset, the full moment prediction is
calculated by setting T' = Yrnitial zero> @0d T+ H = Ypinal zero in integral (1.5).

2k sl s2 s3 s4 sb s6

2 1.000 | 1.001 || 1.000 | 1.000 || 1.000 | 1.000
0.996 | 1.007 || 1.000 | 1.000 || 1.001 | 1.000
6 0.975 | 0.999 || 0.997 | 0.996 || 1.001 | 1.000
8 0.943 | 0.981 || 0.992 | 0.983 || 1.001 | 0.999
10 || 0.909 | 0.962 || 0.989 | 0.962 || 1.001 | 1.000
12 || 0.875 | 0.940 || 0.987 | 0.931 || 1.000 | 1.004

W~

Table 7 indicates a fairly good agreement with the full moment prediction (1.5).
However, even at these modest heights, we see evidence for substantial variability
in the moment data. For instance, we can find blocks of 10° zeros each such that
the 12*" moment is half what is predicted by (1.5) (e.g. block [Ysx 107, V5x1074+105])-
Also, the variability in the moment data seems to increase with height. For example,
when we sample 100 consecutive blocks of 10° zeros each near zero numbers 21
million and 91 million, the standard deviation of the 12!* moment, divided by the
full moment prediction (1.5), increases from about 0.994 to about 2.385, which
seems substantial considering the statistics discussed here change on a lograithmic
scale.

We next consider the situation higher up on the critical line. Table 8 contains
statistical summaries for moment values from set Z16, which is a set of 10° zeros
near the 10'6-th zero. For example, the first five columns of Table 8 were calculated
as follows. We subdivided set Z16, which consists of about 10° zeros near zero
number 1016, into 10° blocks B,,, where each block has 10® consecutive zeros (as
mentioned earlier, we aggregated the moment data for each 1000 consecutive zeros,
so the smallest block size we can work with is 1000; see Section 5 for details). Next,
for each k € {1,...,6}, we computed the quantities

o k
(4.3) I, ::m/a IC(1/2+dt)[**dt,  nell1,10,

where 3, and «,, are the ordinates of the first and last zeros of block B,, respectively

(the blocks are chosen so the last zero of B,, is the first zero of B,,y1). Lastly, for
each 1 < j <1000 we calculated

1 51000
1000 En:1+(j—l)1000 I,

H
L P(t) dt

(4.4) xj =

where T and T'+ H are chosen equal to the ordinates of the first and last zeros of
the set Z16, which is where the blocks B,, reside. Notice the denominator in (4.4)
remains practically constant for H small compared to T, and so it is essentially the
same as writing

1 B1000; t
(4.5) / Py (log ) dt,
$1000; = Q14+1000G-1) Jar 11000051 27
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where a4 1000(j—1) 18 the ordinate of the first zero of By 1000(j—1), and B1000; is the
ordinate of the last zero of Biggg;. This procedure yields 1000 numerical values (i.e.
sample points) {z;,1 < j < 1000}, where each x; now corresponds to a block of 1
million zeros. The first five columns of Table 8 contain the mean, minimum, and
maximum of these values, as well as their standard deviation about the empirical
mean. The other columns in the table were calculated similarly, but using larger
block sizes (10M, and 100M, respectively).

TABLE 8. Ratio of empirical moment to full moment prediction for samples
from Z16. The full moment prediction is given in Table 4. The columns Min,
Max, Mean, and SD refer to the min, max, mean, and the standard deviation
of the ratios about their empirical mean.

2k | Mean || Z16: 1000 samples 1M || Z16: 100 samples 10M || Z16: 10 samples 100M

Min Max SD Min Max SD Min Max SD
2 | 1.000 (| 0.987 | 1.009 | 0.003 0.999 | 1.002 | 0.001 1.000 | 1.000 | 0.000
4 | 1.000 || 0.831 | 1.602 | 0.077 || 0.969 | 1.048 | 0.017 || 0.996 | 1.006 | 0.003
6 | 1.003 || 0.494 | 8.687 | 0.530 0.805 | 1.796 | 0.143 0.966 | 1.079 | 0.035
8 | 1.019 || 0.178 | 37.68 | 1.837 || 0.532 | 4.914 | 0.555 0.882 | 1.262 | 0.143
10 | 1.039 || 0.046 | 101.0 | 4.202 0.277 | 11.57 | 1.327 || 0.709 | 1.800 | 0.354
12 | 1.035 || 0.009 | 190.4 | 7.182 0.116 | 20.67 | 2.301 0.484 | 2.553 | 0.628

In view of Table 8, we see the standard deviation of samples generally declines
like 1/+/|B|, where |B| is the block size. This indicates the moment values over
such long blocks (millions of zeros each) act statistically independently. Also, the
range spanned by the values of high moments (i.e. the interval [Min, Max]), appears
to decline linearly with |B|. This observation is likely due to the sparsity of blocks
with large contributions. For example, if the block size is increased from 1M to
10M say, then since blocks with large contributions are rare, and since they usually
do not occur near each other (at least as far as our data is concerned), then the
range [Min, Max] should shrink to something like [Min, Max/10], as observed.

Although Table 8 points to a reasonable agreement with the full moment predic-
tion (1.5) near T = 10'%, the agreement worsens at larger heights. This is especially
true for high moments, roughly the 8¢ and higher moments. For instance, consider
Table 9, which is based on a set of 1.5 x 10'° zeros in the vicinity of the 1023-rd
zero. There, the 12t moment is about half what is expected.

TABLE 9. Ratio of empirical moment to full moment prediction for samples
from A23 U B23 (full moment prediction is given in Table 4). The columns
Min, Max, Mean, and SD refer to the min, max, mean, and the the standard
deviation of the ratios about their empirical mean.

2k | Mean || A23 U B23: 15,000 samples 1M || A23 U B23: 1500 samples 10M
Min Max SD Min Max SD
2 | 1.000 0.978 1.045 0.007 0.993 1.008 0.002
4 | 1.000 0.642 8.472 0.270 0.859 1.895 0.082
6 | 0.990 0.172 121.4 2.289 0.468 13.38 0.735
8 | 0.935 0.021 556.1 8.179 0.142 56.51 2.623
10 | 0.791 0.001 1184 15.52 0.025 118.8 4.945
12 | 0.574 0.000 1486 18.27 0.003 148.7 5.799

Table 10 provides a summary of all our moment data. It shows that at large
heights (e.g. near T' = 10%2), even a block size of 10? zeros is not enough to control
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the variability in the moment data over adjacent blocks. An extreme example is
that of the adjacent blocks b5 and b6, where the 12" moment is multiplied by more
than a factor of 16 from one block to the next.

TABLE 10. Ratio: empirical moment/full moment prediction, for subsets
from S8, Z16, 020, A23 and B23. Each subset consists of 10° consecutive
zeros except for s8, which consists of about 4 x 107 zeros (specifically, zeros
60M to 99.98M in S8). Subsets ax and bz are of increasing height, and are
approximately consecutive except for some small gaps. The column T is the
approximate height at which the subset starts, and column H is the approxi-
mate length of the interval spanned by the subset.

Sample || 2k =2 |2k =4 | 2k=6 | 2k =8 | 2k =10 | 2k =12 T H
s8 1.000 | 1.000 | 1.000 | 1.001 1.002 1.004 107 | 107
216 1.000 | 1.000 | 1.003 | 1.019 1.039 1.035 1015 | 108
020 1.000 | 1.000 | 1.003 | 0.982 0.873 0.667 1019 | 108
bl 1.000 | 0.997 | 0.941 | 0.731 0.419 0.176 1022 | 108
b2 1.000 | 1.006 | 1.067 | 1.183 1.166 0.908 1022 | 108
b3 1.000 | 1.002 | 0.989 | 0.864 0.587 0.297 1022 | 108
b4 1.000 | 0.994 | 0.931 | 0.740 0.454 0.208 1022 | 108
b5 1.000 | 0.991 | 0.895 | 0.632 0.324 0.123 1022 | 108
b6 1.000 1.008 1.127 1.543 2.011 2.011 1022 | 108
b7 1.000 | 0.991 | 0.932 | 0.772 0.517 0.269 1022 | 108
b8 1.000 | 0.999 | 0.974 | 0.836 0.570 0.303 1022 | 108
b9 1.000 | 1.003 | 0.980 | 0.835 0.568 0.306 1022 | 108
b10 1.000 | 0.988 | 0.903 | 0.685 0.399 0.174 1022 | 108
al 1.000 | 0.995 | 0.922 | 0.684 0.374 0.151 1022 | 108
a2 1.000 | 1.002 | 1.005 | 0.976 0.820 0.542 1022 | 108
a3 1.000 | 1.005 | 1.108 | 1.449 1.820 1.823 1022 | 108
a4 1.000 | 1.006 | 1.061 1.185 1.213 1.003 1022 | 108
ab 1.000 | 1.007 | 1.019 | 0.911 0.626 0.321 1022 | 108

Since high moments are determined by a few samples with large contributions,
it is useful to measure the impact of such samples more accurately. So, consider
Table 11, which is a “moments of the moments” table calculated near zero number

10%3.

TABLE 11. Moments of the ratios empirical moment /predicted moment af-
ter being normalized to have mean 0 and variance 1 (predicted moment is
given in Table 4). The columns p = 3, p = 4,...etc refer to the third moment,
fourth moment,...etc, of the quantity empirical moment/predicted moment.

2k A23 U B23: 150,000 samples 100,000
p=3|p=4 | p=5 p==6 p=7 p=2_8
2 | 1.051 | 7.251 | 42.41 411.7 4664 58750
4 | 20.61 | 1042 69580 5135000 396100000 31280000000
6 | 83.86 | 10960 | 1599000 243800000 37990000000 6000000000000
8 | 146.6 | 26920 | 5264000 1059000000 | 216300000000 | 44580000000000
10 | 185.6 | 39590 | 8836000 2014000000 | 464100000000 | 107700000000000
12 | 209.5 | 48560 | 11660000 | 2845000000 | 700300000000 | 173400000000000

In Table 11, there is a notable slowdown in the growth rate with & of the “mo-
ments of the moments.” This slowdown is directly related to the frequency and
precise size of large block contributions. To get a better sense of the distribution
of such contributions, let us consider Table 12. It lists the sum of the n largest
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block contributions to each moment for several n. To explain how the table was
constructed, take the entry corresponding to 2k = 2 and n = 1,2,...,5 for ex-
ample. It was calculated by first computing {z;,1 < j < 1.5 x 10%}, where each
x; is a ratio of the form (empirical second moment/predicted second moment) ob-
tained using a block of 10* zeros from A23 U B23. We then sorted the sequence
{z;,1 < j < 1.5 x 10°} in descending order. That resulted in another sequence
{yj,1 < j < 1.5 x 10°}; so, y; correpsonds to the largest contribution among all
blocks. The entries corresponding to 2k = 2 were then calculated as

Z?:l Yj

1.5x108 7
j=1 Yj

(4.6) 100 x n=1234,5.

TABLE 12. For each k, samples of 10,000 zeros each are sorted according
to their contribution to the 2k moment in decreasing order. For each k, the
column lists the percentage contribution of the first n sorted samples to the
sum of all samples (1.5 million samples in total).

n A23 U B23: 1.5M samples 10,000
2k=2 | 2k=4 | 2k=6 | 2k=8 | 2k=10 | 2k =12
1 0.0 0.1 0.8 4.0 10.0 17.2
2 0.0 0.1 1.6 7.6 18.9 32.4
3 0.0 0.1 2.1 9.9 24.2 40.6
4 0.0 0.2 2.6 11.8 28.0 46.1
5 0.0 0.2 3.0 13.4 31.4 50.8
From Table 12, we see that near zero number 1023, more than 50% of the value of

the 12" moment is determined by the 5 largest contributing samples out of a total
of 1.5 million samples. In comparison, the contribution of the analogous samples
in the case of the 2" moment is negligible. This statistic illustrates the difficulty
of sufficiently controlling high moments in experiments.

To further understand extreme values of the moments, we consider the function

(4.7) fn) = fum) =22 =1,
Y1

which records the n'” largest block contribution as a fraction of the largest block
contribution, where each block spans 10% zeros. It is worth mentioning that the
largest contribution among such blocks found in our computations is 148,569 times
the expectation according to Table 4. Figure 1 is a graph of fi(n) for 1 <n <50,
and 2k = 4, 8, or 12. The figure is based on the full set of 15 billion zeros near
T = 10?2 (sets A23 and B23).

Apart from a small initial segment, the lines in Figure 1 parallel rather closely the
power law p(n) := pp(n) = n=*/5. Moreover, we obtain a similar graph if instead
we use the set of 10° zeros near T = 105 available to us (i.e. set Z16). Figure 1
would arise if the n*" largest value of |(1/2+1t)| in the interval of integration were
about n~1/19 times the largest value. The log-normal distribution law suggests that
asymptotically this should hold with the 1/10 replaced by

1 [loglogT
4. A
(48) 2 log M
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where M is the number of blocks.

n”th largest block contribution
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As evidenced by the data so far, the empirical moments vary substantially, even
when calculated using long blocks of zeros. So, it might be interesting to consider

(4.9)

| <an 1C(1/2 + it)|? dt>
og .

an Py, (log &) dt

In other words, we consider log(empirical moment/predicted moment), which is

equal to
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Ly (ﬁn) — Ey (O‘n)
ff: Py (log &) dt

where a,, and (,, denote the ordinates of the first and last zeros of block B,, respec-
tively. The distribution of this quantity could shed some light on the remainder
term in the full moment conjecture. Table 13 contains statistical summaries for
(4.10) using several zero sets. The numbers do not vary much from sample to sam-
ple. In particular, the various summary statistics change relatively little across the
lower tables, which come from approximately the same height. Also, Table 14 sug-
gests that if we sample (4.10) over many blocks B,,, then normalize the samples to
have mean 0 and variance 1, then the moments of the normalized samples generally
start decreasing when 2k > 6. It is not clear why there is such a trend, or whether
it will persist.

(4.10) log {1+

TABLE 13. log(empirical moment /predicted moment), where predicted mo-
ment is given in Table 4. The columns Min, Max, Mean, and SD refer to the
min log ratio, max log ratio, mean log ratio, and the standard deviation of the
logs of ratios about their empirical mean. The set from B23 corresponds to b2

in Table 10.
2k Z16: 10,000 samples 100,000 020: 10,000 samples 100,0000
Min Max | Mean SD Min Max | Mean SD
2 -0.048 | 0.069 | 0.000 | 0.013 -0.066 | 0.155 | 0.000 0.021
4 -0.598 | 2.054 | -0.031 | 0.230 -0.757 | 2.938 | -0.076 0.345
6 -1.871 | 4.400 | -0.326 | 0.671 -2.468 | 5.298 | -0.657 0.886
8 -3.644 | 5.925 | -1.046 | 1.126 -4.943 | 6.599 | -1.899 1.411

10 || -5.749 | 6.917 | -2.134 | 1.560 -7.931 | 7.232 | -3.666 1.907
12 || -8.142 | 7.552 | -3.508 | 1.976 -11.30 | 7.410 | -5.826 2.385

2k B23: 10,000 samples 100,000 A23, B23: 150,000 samples 100,000
Min Max | Mean SD Min Max | Mean SD

2 || -0.083 | 0.291 | 0.000 | 0.028 || -0.092 | 0.360 | 0.000 0.028
4 -0.949 | 3.938 | -0.121 | 0.423 -1.067 | 4.343 | -0.120 0.418
6 || -3.005 | 6.506 | -0.937 | 1.016 || -3.258 | 7.098 | -0.933 1.008
8 -5.977 | 7.847 | -2.580 | 1.578 -6.335 | 8.623 | -2.573 1.568
10 || -9.586 | 8.419 | -4.860 | 2.109 || -10.030 | 9.379 | -4.849 2.096
12 || -13.82 | 8.462 | -7.613 | 2.623 || -14.330 | 9.606 | -7.597 2.607

Finally, we consider the correlations of the 2k** moment. To quantify such

correlations, we computed the autocovariances ¢,, of the 2k* moment. These are
defined as

1 _ _
(4.11) Cm = EZ(me — ) (2, — T),
r=1
where
Br o 1 E
(4.12) Ty = /a IC(1/2+it))*dt, z= szr,
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TABLE 14. Moments of log(empirical moment/predicted moment) normal-
ized to have mean 0 and variance 1 (predicted moment given in Table 4). The
columns 3rd, 4th,...etc refer to the third moment, fourth moment,...etc, of the
quantity log(empirical moment/ predicted moment).

2k Z16: 10,000 samples 100,000

p=3 p=4 p=>5 p=6 p=7 p=8
2 0.271 | 3.338 | 3.490 | 22.64 | 51.80 | 264.8
4 | 1.553 | 8.237 | 39.06 | 238.3 | 1581 | 11380
6 | 1.306 | 6.020 | 21.40 | 99.97 | 489.3 | 2610
8 1.083 | 4.916 | 14.52 | 60.60 | 253.2 1172
10 | 0.954 | 4.424 | 11.68 | 46.68 | 178.9 | 774.5
12 | 0.875 | 4.170 | 10.23 | 40.21 | 146.1 | 611.1
2k A23 U B23: 150,000 samples 100,000

p=3|p=4|p=5|p=6|p=T7|p=38
2 0.862 | 5.855 | 25.53 | 200.2 | 1783 | 18240
4 | 1.737 | 8.773 | 42.40 | 255.8 | 1709 | 12560
6 1.286 | 5.747 | 19.83 | 89.95 | 430.8 2270
8 | 1.075 | 4.826 | 14.21 | 59.10 | 248.7 | 1167
10 | 0.966 | 4.445 | 11.99 | 48.34 | 190.6 | 850.4
12 | 0.902 | 4.251 | 10.84 | 43.22 | 164.0 | 712.7

and «, and (3, are the ordinates of the first and last zeros of block B,. We used
blocks of 103 zeros each, and a total of 10° consecutive such blocks (so in definition
(4.11), we have R = 10%). Figure 2 contains graphs of ¢,,/co for m = 1,2,.. .40,
2k = 2, and near heights 7' = 107 (set s8), T = 105 (set z16), T = 10'° (set 020),
and T = 10%? (sets b23-6 and b23-10).

Figure 2 has several interesting features. Although the autocovariances are over-
whelmingly positive at low heights (set s8), they become mostly negative at large
heights (e.g. set b23-10). Additionally, the amount of variation in the autocovari-
ances ¢, is substantially more for the first few m at all heights considered.

We plotted c,,/co for two different sets near T = 10?2 (sets b23-6 and b23-
10). The two plots look almost identical, which suggests the autocovariances are
significant. To better quantify this, we plotted the autocovariances of set b23-10
with the blocks randomly permuted (set “b23-10 randomized”). Quite visibly, the
autocovriances of the randomized set are much smaller than those of the original
ordered set. This points to some long range correlations in the values of the second
moment.

As for higher moments, the autocovariances do not appear to be significant.
When 2k = 4, they are hardly distinguishable from those of a randomized set, and
when 2k = 6, 8,10, 12, they become completely indistiguishable.

The apparent significance of the autocovariances in the case of the second mo-
ment prompted us to consider the following shifted fourth moment:

1 T+H
(4.13) M(T,H;a) := o / IC(1/2 +it) 2 |C(1/2 + it +ia) > dt .
T
If the values of |((1/2 + it)| and |((1/2 + it + i«)| are statistically independent of
each other, which is plausible for large «, then one expects the integral in (4.13) to
split, so it is approximated by
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FIGURE 2. Correlations of the second moment.
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(4.14)

1 T+H N ) ) 9 B
E/T IC(L/24it) 2 [C(1)2 + it + i) dt ~

T+H T+H
<11—I/T |<(1/2+z‘t)|2dt> (;I/T |§(1/2+it+ia)|2dt> ,

and the latter is directly related to the autocovariances. Kosters [Ko] and Chandee [Ch]
investigated the function M (T, T; «) as well as other more general shifted moments.
Kosters” work immediately implies if alog7 = O(1) (as T — o0), and if

D 4sin’(a log T/2)
(4.15) K(T;a) = (a logT)2 <1 B (a logT)? > ’

then
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FIGURE 3. Shifted fourth moment M (T, H;«)/M(T, H;0), black
dots (drawn for o a multiple of 0.03), versus the kernel K (T «)
defined in (4.15), dashed line. T ~ 10?2, H ~ 6.5 x 10°.
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where right side is defined for o = 0 by taking a limit. It is plausible that relation
(4.16) would continue to hold if the left side is replaced by

M(T,H;a) [y 1CQ/2 + i) [C(1/2 + it +ia)|? dt

(.17) M(T,H;0) Jr e 2 v at)|tat

when H is much smaller than 7" but not too small. This is supported to some extent
by Figure 3 since it shows a reasonable agreement between (4.17) and the kernel
(4.15) for 0 < a < 1.5, T ~ 102, and H =~ 6.5x 10°. However, for 0.4 < «, Figure 3
reveals substantial deviations from the kernel model. Figure 4 shows that, starting
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around « = 1.5, there is a clear departure from the kernel model, and the onset
of asymptotic oscillations (of amplitude < 0.018). Furthermore, the oscillations
remain significant for large a (large relative to logT'); for example, we computed
M (T, H;100) = 0.011447 and M (T, H;1000) = 0.004035. Presumably, these long-
range oscillations are induced by prime sums present in the lower order terms of
relation (4.16).

FIGURE 4. Shifted fourth moment M (T, H; «)/M(T, H;0), black
dots (drawn for a a multiple of 0.5), versus the kernel K(T;«)
defined in (4.15), dashed line. T ~ 10?2, H ~ 6.5 x 10°.
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5. NUMERICAL METHODS

We calculated the integral moments of |((1/2+it)| by evaluating integrals similar
to (1.4) near T = 10?2 and at lower heights. The computational method involved
two main choices. First, we chose methods to compute |((1/2 4+ it)| for large ¢.
Second, we chose a suitable integration method to handle integrals like (1.4).

5.1. Point-wise approximations. One method to evaluate ((1/2+it) is the
Euler-Maclaurin summation. This method is derived from the summation by parts
formula, and it can evaluate the zeta function on the critical line with great accu-
racy. But it requires t'1t°+(1) elementary operations on numbers of O (logt) bits to
compute ¢(1/24it) to within +¢" for a single value of ¢ even if we do not demand
high accuracy. This is prohibitive when ¢ is near 1022, as in our experiments. Note
that asymptotic constants are taken as t — oo, and the notations o, () and O,()
mean asymptotic constants depend on the parameter s only.

A much more efficient method to numerically approximate ((1/2 + it) is the
Riemann-Siegel formula, which was invented by Riemann and rediscovered by Siegel
during the latter’s study of Riemann’s notes. The Riemann-Siegel formula can be
used to compute ¢(1/2 + it) to within =" for large ¢ using t'/2°=(1) operations
on numbers of Oy (logt) bits.
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The running times stated above are for computing single values of the zeta func-
tion. For computations that involve many evaluations of ((1/2 +it) in a restricted
interval, the Odlyzko-Schénhage [OS] algorithm (OS) offers significant savings.

Theorem 5.1 (The Odlyzko-Schénhage algorithm (OS)). Given ¢ > 0, € > 0, and
a € [0,1/2] there exists an effectively computable ¢; = c1(c,a,€) > 0 so that one
can compute Z(t) for any value of t > 0 in the range T <t < T +T* with accuracy
T~ using < c1t¢ operations on numbers of < ¢y logt bits provided a precomputation
involving < ¢;TY/?¢ operations and < c; T bits of storage is done beforehand.

For example, choosing a = 1/2 in Theorem 5.1, one can compute Z(t) at n =~
T'/2 points in the range (T, T++/T) using n' ¢ operations, which is nearly optimal.
By comparison, the Riemann-Siegel formula requires n?*¢ operations to achieve the
same task, and the Euler-Maclaurin formula requires n37¢ operations.

Our approach to computing values of the zeta function was to use the results of
the precomputations of the OS algorithm that had been carried out by the second
author at AT&T Labs - Research.

Although computations using the OS method, as well as the other methods men-
tioned previously, can be made completely rigorous, if one uses multiple-precision
arithmetic, this is almost never done in practice because of the time cost. Instead,
the validity of the final results depends on the assumption that there is quasi ran-
dom cancellation of round-off errors, plus some additional checks. For a discussion,
see [HO, 01, 02].

In addition to OS, we used another method to compute |((1/2 4 it)|. It appears
to be valid over short ranges and is numerically analyzed in detail is Section 6.
Briefly though, suppose in some zero interval I, := (Y5, ¥n+1) one knows the value
of [€(1/2 + i(yn + Yn+1)/2) as well as the location of the m zeros below and m
zeros above 7,. Then one can approximate |((1/2 + it)| for ¢t € I,, by a polynomial
that assumes the value [((1/2 4+ i((vn + Yn+1)/2) at (v + Ynt1)/2 and vanishes
at those 2m neighboring zeros. Let us denote this approximation by HP since it
is essentially a truncated Hadamard product. Numerical experiments, which are
discussed in Section 5, suggest the quality of HP improves linearly with m, which
is the number of zeros used (the improvement is in the sense of L*-error).

In general, HP approximations are not very accurate. For example, with m = 2°
and for t ~ 10?2, HP has an L> error of about 6 x 1072, On the other hand, HP
is faster than OS. If used judiciously (see Section 5.3 for a detailed explanation), it
can reduce the running time of our computations while not affecting the expected
accuracy of the moment data.

5.2. Integration Methods. Our goal is to calculate the 2nd to 12th even mo-
ments of |¢(1/2+it)|.? To control for oscillations, each integration interval has two
consecutive zeros of Z(t) as its endpoints; i.e., is of the form I, = (v, Ynt1)-

We experimented with several integration methods. We settled on Romberg
integration as our choice. The main advantages of Romberg integration are its
simplicity, fast convergence, and a natural posteriori error estimate.

20ur computations were slightly more comprehensive because they included the —0.5 to 12
moments in increments of 1/2. But only the even moments are discussed in this paper.
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5.3. Numerical Implementation. We first discuss implementation details in the
vicinity of zero number 10?3 (i.e. sets A23 and B23). Numerical tests on overlap-
ping intervals showed the distribution of the L*-error of the OS approximation
of |¢(1/2 + 4t)| is normally distributed with mean ~ 0 and standard deviation
~ 5 x 1079, so the OS approximation is typically accurate to within +5 x 107°.
In order to determine the integration intervals, we used the zero sets previously
compiled by the second author. Numerical tests on overlapping zero sets showed
the L>-error in the location of zeros hovered around 5 x 10~8.

Our initial goal was to obtain enough accuracy to enable comparisons between
the empirical moments and predicition (1.1). For each zero interval, we attempted
to compute the 2k** moment so that

5.1) Absolute posteriori error <1072 x Average zero gap at height T’
’ x Expected 2k" moment according to (1.1).

Note the average zero gap near height T = 1022 is about 0.128. We aggregated
the moment data for each 1,000 zeros. Thus, we expect the aggregate error in our
computed values of the 2k** moment divided by the length of integration interval
to satisfy

(5.2) Aggregate posteriori error < 10~2 x Expected 2kt" moment according to (1.1).

In particular, upon dividing the empirical moment by prediction (1.1), the ratio will
typically have 3 significant decimal digits. For the values of k we are considering
though, the leading term predictions (1.1) are less in size than the full moment
predictions (1.5). Since the latter are conjectured to be more accurate, then upon
dividing empirical moments by the full moment prediction (1.5), the ratio should
have more digits of accuracy (especially for high moments). That is, we expect the
ratio (empirical moment (1.4)/predicted moment (1.5)) to be correct to within

(5.3) 1103 x Expected 2k** moment according to (1.1)

Expected 2k moment according to (1.5)

Once we decided on this accuracy standard, the following were chosen accord-
ingly: the number of zeros to use in HP, and a criterion to determine whether HP or
OS is more appropriate. After some numerical tests, which are described in Section
4, we decided to fix the number of zeros supplied to HP at 1000 zeros, or 500 zeros
on each side of each interval. With this choice, HP is about 5 times faster than
0S, it has an L>-error of about 6 x 1072 and a typical error (i.e. square root of
L2-error) of about 1074,

Given the unimodal shape of [((1/2 + it)| on each integration interval I, =
(Yn, Yn+1), it is reasonable to try to approximate max:cy, |[((1/2 + it)| by C :=
|C(1/2 + itg)|, where tg is the midpoint of I,. So, a rough upper bound for the
contribution of I,, to the 2k** moment is C?*. In particular, if C' is small enough,
then HP can be safely used; i.e. without affecting the accuracy standard. Numerical
experiments suggested that given our choices so far, we could set the C-threshold
for using HP at C' < 7.0. Note that the contribution of such intervals is mostly
negligible for the 4" and higher moments at all heights considered.

To test the accuracy and efficiency of our implementation, we set it to work in
regions where |((1/2 + it)| assumes large values. Based on this, we chose an upper
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bound of 2048 iterations for Romberg integration. The integration programs used
double arithmetic. This allows for about 15 ~ 16 significant digits, which is more
than sufficient for our purposes.

In sum, our choices of parameters resulted in the following: the program used
HP to integrate over 88% of the intervals, the posteriori error typically surpassed
the accuracy standard, and the program consumed an average of 12 OS function
evaluations per interval®. For lower sets O20 and Z16, the parameter choices were
decided similarly. As for set S8, which consists of the first 10® zeta zeros, we relied
exclusively on the Riemann-Siegel formula to compute the moments. Lastly, as a
check of the validity of the integration programs, we successfully reproduced mo-
ment data computed by Michael Rubinstein for ¢ ~ 105. We implemented the code
in FORTRAN 90, and ran it onSGI machines at the Minnesota Supercomputing
Institute.

6. NUMERICAL TESTS OF LOCAL MODELS OF THE ZETA FUNCTION

In addition to HP, which is the polynomial approximation discussed in Section
5, there is another attractive formula to approximate ¢(1/2+it) over a zero interval
I, = (Vn, Yn+1) which is due to Gonek, Hughes, and Keating [GHK]. The method
expresses ((1/2 + it) as the product of two parts: one that resembles a truncated
Euler product, and another that resembles a truncated Hadamard product. For this
reason, we will abbreviate the [GHK] formula as EHP (Euler-Hadamard product).
The approximation EHP does not require the value of ¢(1/2 + it) at the midpoint
of the zero interval I,,. Instead, it incorporates the contribution of the primes in
a natural way. The approximation arises from a smoothed approximate functional
equation for the logarithmic derivative of zeta.

EHP requires the Euler and Hadamard products to be both suitably smoothed.
We implemented smoothing for the Euler product, but not for the Hadamard prod-
uct. It was pointed out to the authors, however, that it is difficult to eliminate
smoothing from the Hadamard product in EHP with realistic error bounds [H].
This suggests smoothing the Hadamard product is critical to the accuracy. Never-
theless, implementing such smoothing would cause EHP to be too slow in practice.
Thus, in considering whether to use EHP in our moment calculations, we only
tested it with an unsmoothed Hadarmard product, which is also how it was briefly
tested in [GHK]. We found its accuracy of EHP to be comparable to HP, but the
latter was significantly faster due to its simplicity (the convergence of HP is linear
in the number of zeros used).

6.1. Definitions. Gonek et al. have obtained the following formula for the Rie-
mann zeta function:

(6.1) 6(6) = Px(s)2x(s) [1+0 (('ff;;),{)} ,

where s =0 +it, 0 >0, |t| > 2, X > 2, K any fixed positive integer, and

(62) PX(S) = exp ( Z Mv(elogn/ logX)) ,

nslogn
n<X g

3We counted an HP evaluation as 1/5 OS evaluation.
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P
where u(z) is a nonnegative C> function of mass 1 with support on [~/ ¢],
o(t) = [Fu(x)de, U(s) = [;° u(z)Ei(slogz)dx, p denotes a nontrivial zeros of
the zeta function, and Ei(z) = [ " e " /wdw is the exponential integral. The
O-notation constants depend on v and K only.

A literal implementation of (6.1) is not efficient because it is expensive to com-
pute U(s). For this reason, we use an unsmoothed, truncated version of (6.3); in
particular, we replace u(x) in the definition of U(s) by a delta function at e. We
assume the Riemann hypothesis, and for ¢ € (v, Ynt1) we define

n+m
(6.4) Z¢™(1/2 +it) == exp < - Z Ey (i(t — ;) logX))> .

j=n—m+1

As for Px(1/2+it), we did apply smoothing to it because smoothing there is not
computationally expensive. Specifically, we first define the following non-negative
C* function:

)

T @2
i) { A B (e

then define the smoothing kernel

(6.5) u(z) = Xg(Xlog(z/e) +1)/x.

Figur 5 is a plot of u(z) when X = 6. Put together then, for ¢ € (v,, vn+1) we have

FIGURE 5. The kernel u(z) with X = 6
14
12
10

N B O ©
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CL/2 4 it)| = [Px(1/2 + i) Z™(1/2 + it)] + Ry ()

(6.6) = exp ( Z wv(elogn/ IOgX)>

= Vvnlogn

n+m
X exp ( Z Ci(|t — ] 10gX)> + Ry (),

Jj=n—m+1

where Ci(z) = [ cos(t)/tdt is the cosine integral, and Ry, (t) is the remainder
function. We remark the numerics showed little sensitivity to the exact choice of
u(z) in (6.6).

Let us denote the approximation |Px(1/2 + it)Z¢™(1/2 + it)| in (6.6) by EHP
since it is an Euler-Hadamard product. Note the approximation depends on two
parameters: X and m, which control the number of primes and zeros used in Px
and Z"™ respectively.

In addition to EHP, we considered the following approximation of |{(1/2 + it)]:
let

n+m
") =I[ Il
j=n—m-+1

then, for ¢t € (vn, Yn41), we define

. nm C(1/2 +in,
(67) /24 it) = @y U2 E I )y,

Q™™ (1)

where 7, = (Yn+1 + Yn)/2, and Rg ,(t) is the remainder function. In Section 3,
we denoted the approximation Q™™ () Zgn/%niw by HP as it is a truncated Euler

product. We expect it to be a good approximation of |¢(1/2 + it)| because locally,
away from the pole at 1, the zeta function may be treated as a polynomial with the
non-trivial zeros as its roots.

6.2. The function |Px(1/2 + it)|. Formula (6.1) incorporates arithmetic contri-
butions to the zeta function via Px. We test whether Px can be expected to have
a tangible impact on numerical results by measuring its variation about its mean.
Figure 6 is a plot of |Px(1/2 +4T)| near

(6.8) T = 1.306643440879589721233593307594 x 10%
which is in the vicinity of the 1023-rd zero.
The figure shows |Px(1/2 4+ it)| varies substantially. Furthermore, we calculated

the variance of |Px (1/2 + it)| in an interval of the form (7,7 + H); that is,

(6.9)
H H
%/0 1P (1/2+i(T + )] - Px|” dt, K;:%/ﬂ Py (1/2+ (T +1)|d.
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FIGURE 6. |Px(1/2+4(T +1t))| for X = 6 (solid), 50.92 (short dashes), and
1000 (long dashes). The interval (T, T + 5) covers about 40 zeros.
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We chose H = 128, which approximately the length of the stretch covered by 1,000
zeros near height 7. Table 15 is a lists the variance for several values of X. It
shows in particular both the mean and the variance of Px increase with X.

TABLE 15. Variation of |Px (1/2 + (T +t)| for t € (0,128).

Value of X 6 50.92 1000
Mean 1.36 1.67 1.93
Variance 1.33 4.88 9.68

6.3. Approximations of |((1/2+ it)|. Our experiments relied on a set of 30,000
consecutive zeros near zero number 10%3. We denote this set by W. The first zero in
set W is at the height T specified in (6.8). This is the first zero above Gram point
number 1023 + 18,767,166, 306. Figures 7 and 8 are plots of the approximation
EHP, which was defined in (6.6), for several choices of X and m together with a
plot of |{(1/2 + it)| (calculated using the OS algorithm). The figures show that
agreement is fair given the basic nature of the input supplied to EHP.

FIGURE 7. |¢(1/2 + (T + t))| (solid) and EHP (dashed) with X = 6 and
m = 25 over the interval covering zeros numbered 865 to 885 in the set W.
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FIGURE 8. [¢(1/2 +i(To + t))| (solid) and EHP (dashed) with X = 50.92
and m = 16 over the interval covering zeros numbered 865 to 885 in the set

w.
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6.4. Numerical experiments. For each interval (y,,vn+1) in the set W, we cal-
culated the values of |((1/2+1t)| at {(n) equally spaced points t,, 4 inside (Vpn, Yn+1),
where [(n) = 2[10%’%;7" +1]+1, and A, is the average spacing of the zeros near
zero ordinate ~,. Notice I(n) is always odd, so |((1/2 + i(Vn+1 + Yn)/2)|, which
is the value at the midpoint, is always included. The values of ((1/2 + it) were
computed using the OS algorithm. We carried out 29 experiments, each involving
1,000 consecutive zeros; that is, in experiment v, we used either HP or EHP to
approximate |((1/2 + it)| over the interval

(6.10) [To—1,T0), Ty = YN+500-+1000v; v=1,...,29,

where N = 1023 is the first zero in set W. In each experiment, we let the index m,
which occurs in Z"™ and Q™™, take on the values 2% for v = 1,...,8, and we let
X take on the values 2, 6, 50.92, 1000, 2000, and 4000. Lastlyi, we calculated the
L*>-error of the point-wise approximations; that is, if we let Z*(1/2+it) denote one
of the approximations HP or EHP, then the L>°-error in experiment v is defined by

(6.11) , max IC(1/2 4 itjq) — Z*(1/2 4 it;.q)] -

jmr D
Figure 9 is a scatter plot of the L*-errors obtained with m = 64 and X = 1000.
The line y = = (dashed) is included for visual aid. The plot suggests that with the
current choices of parameters X and m, HP is generally a better approximation
than EHP.

We carried out similar experiments to better understand the effect of modifying
the parameter X, which essentially controls the importance of the arithmetic part
Px relative to the polynomial part Zx. That is, as X decreases, Px becomes less
important and we approach HP. So, consider Table 16.*

The L*-errors in Table 16 seem to reach a minimum when X hits an interme-
diary region (X ~ 1000). But that minimum is 2.82, which is significantly worse

4Due to computer time constraints, we did not average the L error over the same number of
experiments for all X. For X = 50.92,1000 and 2000, we averaged the L*° error with m = 256
using the results from all of the 29 experiments. However, for X = 4000, the average is based on
data obtained from 15 experiments only.
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FIGURE 9. The L error of HP (horizontal axes) vs. EHP (vertical axes)
with m = 256 and X = 1000 for all 29 experiments. The dashed line is y = .

0.1 0.2 0.3 0.4 0.5

TABLE 16. The average L>®-error of EHP with m = 256 over all 29 experiments.

Value of X 6 50.92 1000 2000 4000
Average L*-error 6.84 3.81 2.82 3.11 3.00

than HP whose average is 0.13 with m = 256. Also, the standard deviation of the
errors is roughly 1 for the values of X listed in Table 16, whereas it is 0.07 for HP.
In a sense, the kind of comparison we have carried out so far may be ill-defined,
because by construction HP is exact at (v, + Yn+1)/2, whereas EHP is not nec-
essarily so. If EHP is normalized so that it is exact at the midpoint, the results
improve significantly. Let us call this approximation “normalized EHP.” Table 17
contains the average L*°-errors of that approximation over all experiments.

TABLE 17. The average L>-error of normalized EHP with m = 256 over
all 29 experiments.

Value of X 2 2.71828 2.9 6 50.92 1000
Average L>®-error 0.52 0.16 0.30 0.11 0.50 1.03

The standard deviations of the L*-errors with X = 2,2.71828,2.9, and 6 are
0.16,0.06,0.13, and 0.05 respectively. Furthermore, the L*°-error for normalized
EHP appears to hit a local minimum when X = 6 (i.e. the arithmetic part Px uses
only the primes 2, 3, and 5). Table 18 contains the history of convergence of the
L*°-errors.

TABLE 18. History of Convergence of the L>-error. Results based on ex-
periment 1 (i.e. zeros numbered 500 to 1500 in set W).

m HP normalized EHP with X = 50 | normalized EHP with X =6
2 16.0327267 10.3965279 13.2324066

4 8.6654952 7.3793465 4.9913900

8 4.9345427 3.3031051 1.9168742

16 2.0833875 3.8302768 2.7077135

32 1.0230760 2.1464398 1.2456626

64 0.5268745 1.6312318 0.5550487

128 | 0.2601180 0.9890934 0.3347868

256 | 0.1308390 0.4652148 0.0544018
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Finally, we considered the convergence rates of normalized EHP for various values
of X. The convergence rate is defined by

(6.12)

logE, —logE,_
C, = og 0g 1

log(1/2) ’

Table 19 indicates the convergence rate of normalized EHP is not smooth. It
has considerably fluctuating, sometimes negative, orders of convergence. On the
other hand, HP converges more smoothly at a linear rate. Figure 10 is a visual
representation of this. We note the amount of time required to compute EHP was

significantly more than HP. Most of the additional time went into evaluating the
cosine Integral .

where ), is the average L°°-error with m = 2.

TABLE 19. Order of Convergence of the L>®-error. Results based on exper-

iment 1.
Cy HP normalized EHP with X = 50 | normalized EHP with X =6
Coy | 0.888 0.495 1.407
C3 | 0.812 1.160 1.381
Cy | 1.244 -0.214 -0.498
Cs | 1.026 0.836 1.120
Cg | 0.957 0.396 1.166
C7 | 1.018 0.722 0.729
Cg | 0.991 1.088 2.622

FIGURE 10. The vertical axes is the log of the average L>-errors over all
29 experiments of HP (solid), normalized EHP with X = 6 (long dashes), and
EHP with X = 1000 (short dashes). The horizontal axes is logm/ log 2, where
m = 2,4,8,...,256. The convergence rate is &~ —slope X

1
log 2
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