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Synopsis
A general decomposition theorem that allows one to express uniquely arbitrary differential
polynomials in one independent and one dependent variable as a combination of conservative,
dissipative and higher order dissipative pieces is proved. The decomposition generalises the Rayleigh
dissipation law for linear equations.

1. Introduction

In classical mechanics, a conservative system of differential equations is repre-
sented by the Euler-Lagrange equations of some variational principle. Not every
differential equation can be represented as a conservative system; the Helmholtz
conditions [5, Theorem 5.68] give necessary and sufficient conditions for a
differential equation to be the Euler-Lagrange equation for some variational
problem. For equations which are not Euler-Lagrange equations, one is left with
the problem of seeing how "close" they are to Euler-Lagrange equations. A
precise measure of "closeness" should include an algorithmic way of determining
the "conservative part" of the equation, the remainder playing the role of
dissipation or frictional forces. In this paper we propose a general decomposition
for polynomial ordinary differential equations in one independent and one
dependent variable into conservative, dissipative and higher order dissipative
pieces. Subject to certain homogeneity requirements, the decomposition is
unique; in particular it determines a unique conservative component of such an
equation.

Consider the classical case of a linear ordinary differential equation A[M] = 0.
Here x is the independent and u = u(x) the dependent variable. The equation is
an Euler-Lagrange equation if and only if the defining differential operator A is
self-adjoint: A = A*. A general linear ordinary differential equation can always
be written uniquely in the form

A0[M] + DAx[w] = 0,
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298 Peter J. Olver and Chehrzad Shakiban

where both Ao and Aj are self-adjoint differential operators, and D denotes the
total derivative with respect to x. Consequently, there exist two quadratic
variational problems % = J L0[u] dx and i£x = J L^[u] dx, whose Euler-Lagrange
expressions

form the two components of the equation. (Here E denotes the Euler operator or
variational derivative.) Therefore the differential equation has the "dissipative
decomposition"

Qo + D<2i = 0, where Go and e x e im E. (1)

The Euler-Lagrange expressions Qo and Gi are uniquely determined, hence the
corresponding Lagrangians Lo and hx are uniquely determined up to a diver-
gence. In physical problems, ££Q can be identified with the Lagrangian for the
conservative (i.e. self-adjoint) component of the problem, while i£x is closely
related to the Rayleigh dissipation, and measures the rate of dissipation in the
system, [3, p. 24]; see Section 7. Thus any linear ordinary differential equation
can be uniquely decomposed into a conservative part, Qo, and a dissipative part,
Gi-

The goal of this paper is to investigate to what extent the conservative/
dissipative decomposition of a linear equation generalises to nonlinear ordinary
differential equations. In general, the representation (1) is no longer valid; for
instance, the simple equation

uu" + 2ul2 = 0

cannot be written in this form. However, for polynomial ordinary differential
equations, there is a natural generalisation of this decomposition which incorpor-
ates "higher order dissipation" terms.

The fundamental theorem to be proved is the following decomposition
theorem.

THEOREM 1. Let P be a homogeneous differential polynomial of degree n. Then
there exist unique differential polynomials Qj, O^j^N, with Qt = E(L;) for some
differential polynomial L;, such that P can be decomposed as

(2)
;=0 ;=0

For example, in the case of a quadratic differential equation P = 0, there are
three Lagrangians, Lo, Llt L2, each uniquely determined up to a divergence, and
the equation can be written uniquely in the form

P = Go + DQ, + D2Q2 = E[L0] + DE[Lt] + D2E[L2] = 0,

which is the proper generalisation of the Rayleigh form (1) for a linear ordinary
differential equation. For example, we find

MM" + 2M'2 = (-2MM" - M'2) + (3MM" + 3M'2) = E[MM'2] + D2E[JM3],
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Dissipative decomposition of ordinary differential equations 299

hence
Q0=~2uu"-u'2, Q1 = 0, Q2 = 3uu" + 3u'2,

= uu'2,

We interpret Qo = E[L0] as the conservative piece of the equation, with Lo the
associated Lagrangian, while Qx = E[LX] and Q2 = E[L2] represent "first and
second order dissipation", respectively. For this reason, we name (2) the
dissipative decomposition of a differential polynomial P. See Section 7 for a
further discussion of the role of the dissipative pieces. An important direction for
further research is to relate this decomposition to physical examples of dissipa-
tion, both positive and negative, in nonlinear ordinary differential equations
arising in applications.

Unfortunately, the method of proof of Theorem 1 is existential, relying on
combinatorial formulae for partitions, and we do not yet have a closed formula
for computing the functionals ££}. = J Lj[u] dx or Euler-Lagrange expressions
Qj = E[L;] directly from the differential equation P. However, in Section 6 we
will discuss a simple algorithm which will readily provide the decomposition. A
table of representative dissipative decompositions can also be found in this
section. Calculations were performed with the aid of the symbolic manipulation
language SMP on an Apollo workstation at the University of Minnesota.

2. Some differential algebra

We begin by deriving some simple formulae from the formal calculus of
variations of use later; the basic reference for these results is [5, Chaps 4 and 5].
We will work with a single dependent variable u and a single independent
variable x. We shall use the notation

for derivatives of u throughout the paper. Let sd = sd{u, x} denote the space of
differential polynomials in the dependent variable u and the independent variable
x. Thus, d consists of all polynomials in the variables uit and we shall allow
arbitrary smooth (C°°) functions of x as coefficients. We will also have occasion to
use the differential subalgebra si0 consisting of all constant coefficient differential
polynomials. By the degree of a differential polynomial we mean the degree in the
M,'S; for example the differential monomial x2uu\ has degree 4. The (total)
derivative operator on si is given by

where

Note that only finitely many terms in the sum for D are needed when applying it
to any specific differential polynomial.
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300 Peter J. Olver and Chehrzad Shakiban

LEMMA 2. If P e si is a differential polynomial, then DP = 0 if and only if P is a
constant. In particular, if P is a homogeneous differential polynomial of degree
n ^ 1, then DP = 0if and only ifP = 0.

Suppose
[u] = J L(x, u , u u . . . , un)

is a (polynomial) variational problem with Lagrangian Lesi. The extremals of 5£
satisfy the well-known Euler-Lagrange differential equation

E(L) = 0,

where E is the Euler operator or variational derivative with respect to u:

THEOREM 3 [5, Theorem 4.7]. Let Lesi be a differential polynomial. Then
E(L) = 0 if and only ifL = DP for some P e si.

Therefore, two Lagrangians are equivalent, meaning they give rise to the same
Euler-Lagrange equations, if and only if they differ by a total derivative:

E(L) = E(L) if and only if L = L + DP. (3)

The characterisation of null Lagrangians in Lemma 2 is the first stage in the
"variational complex". At the next stage, one solves the so-called inverse
problem of the calculus of variations which is to characterise all Euler-Lagrange
equations. See [5, Section 5.4].

DEFINITION 4. Let P e si be a differential polynomial. The Frechet derivative of
P is the differential operator

>'» where P, = dtP.
;=o

THEOREM 5 [5, Theorem 5.68]. A differential polynomial P e si is the Euler-
Lagrange expression for some Lagrangian Lesi, i.e. P = E(L), if and only if its
Frechet derivative is a self-adjoint differential operator:

DP = D*P. (4)

The condition (4) is sometimes referred to as the Helmholtz conditions. Finally,
we note a useful computational formula.

LEMMA 6. If Le si, then

E(E(L)) = 30E(L) = E(30L). (5)

Proof. Using Theorem 3, we see that

E(E(L)) = E ( J (-D)'3,L) = E(30L)

since by (3) all the other summands are annihilated by E. Moreover, it is easily
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Dissipative decomposition of ordinary differential equations 301

seen that the partial derivative d0 = d/du commutes with all the 3,'s and the total
derivative D, hence it also commutes with the Euler operator E, completing the
proof of (5).

3. Uniqueness of the decomposition

The proof of the decomposition theorem (Theorem 1) will be divided into two
stages. We first use the algebraic results from the previous section to prove that,
provided such a decomposition exists, it is unique. In Section 4 we prove the
existence of the decomposition for constant coefficient differential polynomials
using combinatorial techniques. Section 5 completes the proof for variable
coefficient differential polynomials. We begin with a simple version of the
uniqueness result, which holds for general differential functions (i.e. general
smooth functions of x, u and derivatives of «), not just polynomials, and has an
interesting application to the theory of biHamiltonian systems.

PROPOSITION 7. Suppose k>0 and L, M, are differential polynomials, or, more
generally, smooth differential functions. Let P = E(L), Q = E(M). Then

P = D*g (6)

if and only if k is even and P and Q are affine functions of the form

Q = E c,«2, +/(*), P = £c,H a + t+/«(*) , (7)
(=0 i=0

where each coefficient c, is a constant, and f is an arbitrary smooth function of x.

Proof. We use the Helmholtz conditions (4) characterising Euler-Lagrange
expressions. Taking the Fr6chet derivative of both sides of (6), we find that

Dp = D* • DQ.

Since both P and Q are Euler-Lagrange expressions, (4) implies that

D* • D e = Dp = Dp = (-1)*D£ • D* = ( - l )*D e • D*,

hence Q must satisfy the equation

D*-D e = (-1)*DG-D*. (8)

Suppose Q depends on u, u1} . . . , un, with Qn = 3nQ ¥=0. Expanding both sides
of (8), we see that

= QnD
n+k + (Qn_t + kDQn) • D"-*"1 + . . . ,

whereas

DQ D* = 2 QtD
i+k = QnB

n+k + Ga-iD"-1"*-1 + . . . .
;=o

Comparing the coefficients of Dn+k on both sides of (8), we deduce that k must be
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302 Peter J. Olver and Chehrzad Shakiban

even. Then the coefficient of D""1"*"1 shows that

k-DQn = 0,

hence Qn must be constant. Continuing to compare the coefficients of the lower
order powers of D, we find that all the derivatives Qt = dtQ must be constant,
hence Q must be of the form (7). This proves the proposition.

COROLLARY 8. Suppose j=tm and L, M esd. Then

D'E(L) = DmE(M)

if and only if k=j — m is even and P = E(L), Q = E(M) are of the form given by
(7).

This last result has a direct application to biHamiltonian systems, cf. [5, Section
7.3]:

COROLLARY 9. An evolution equation u, = K[u] in one spatial variable is a
biHamiltonian system with respect to two constant coefficient Hamiltonian opera-
tors D; and Dm, j , m odd, if and only if it takes the form (7) of a linear constant
coefficient equation plus a potential.

We can extend this result to more general constant coefficient Hamiltonian
operators; we leave it to the reader to state the relevant theorem.

Proceeding to the general uniqueness result of Theorem 1, we need to prove
the following:

PROPOSITION 10. Let Lo, . . . , Ln be homogeneous differential polynomials of
degree n + 1. Suppose

= 0. (9)

Then

E ( L , ) = 0, / = 0, . . . , / ! ,

and hence Lj = DPf for some Pjesd, O^j^n.

Proof. We work by induction on the degree n of the differential polynomials.
The case n = 1 is the classical case of a linear differential polynomial, and follows
directly from Proposition 7. Further, let uk denote the highest order derivative of
u which appears in the summands D;E(L;) in (9), and for each n we do a further
induction on k. The case k = 0 is completely trivial for all n since only the first
term in the sum can depend on u alone.

To prove the inductive step, let n ^ 2. Apply the Euler operator to (9), and use
(3) and (5). We find

0 = E ( 2 D'E(L,-)) = E(E(Lo)) = 30E(L0),
V=o /

hence E(L0) cannot depend on u, although it can still depend on derivatives w, for
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Dissipative decomposition of ordinary differential equations 303

i § i . Next we apply the operator d0 to (9), and use its commutativity properties:

0 = 9 0 (S D'E(L;-)) = 2 DJE(d0Lj)
V=o ' j=\

where

Lj = d0LJ+1, j = 0, . . . , n - 1.

The last expression in parentheses is a homogeneous differential polynomial of
degree n — 1 î  1, hence according to Lemma 2,

;=0

By the induction hypothesis (on n), this is possible if and only if

0 = E(L,) = 30E(L,+1), j = 0,...,n-l.

Therefore none of the Euler-Lagrange expressions E(L;) can depend on u, i.e.
they are all functions of ult u2, . . • , uk.

We now use a result proved in [4, Lemma 2.15] characterising Euler-Lagrange
expressions which only depend on derivatives of the dependent variable.

LEMMA 11. Suppose Q = EU(L) satisfies 90Q=0. Then there is an equivalent
Lagrangian L + DP such that Q = EM(L), and L also satisfies 30L = 0. Moreover,
if we make the substitution v = ux = du/dx, (hence vt = ui+1), then both Q and L
become functions of v and its derivatives, and

Q = D(EV(L)). (10)

Applying this result to our situation, we see that we can replace the
Lagrangians L; by equivalent Lagrangians L;, which are functions of v = u1; v1 =
u2, etc. Moreover, if we use (10), then (9) becomes

= 0,

where we are now viewing everything as a function of v. Again, by Lemma 2, this
implies that

; = 0

Furthermore, each summand D;E,,(L;) depends on v, vl} . . . , vk-ly and so we
are back in the same situation as before, but with the order of the highest
derivative reduced to k — 1. Therefore, we can use our induction hypothesis on k
to complete the proof.
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4. Counting dimensions - restricted partitions

We now turn to the existence of the dissipative decomposition for differential
polynomials. We begin by considering the simpler case of constant coefficient
differential polynomials, and so work with the slightly smaller differential algebra
Mo. By keeping track of degrees of homogeneity and orders of derivatives, we
can reduce the formula to a result on the direct sum decomposition of certain
finite-dimensional subspaces of the full space of differential polynomials. We can
then use combinatorial methods to count the dimensions of these subspaces, and
thereby prove our result.

Let 9 denote the set of all multi-indices of the form / = (i0, h, • • • , im), where
m^O is arbitrary (but finite), and where each integer entry is non-negative,
iv ^ 0, and the last entry is strictly positive, im > 0. We let u1 denote the
corresponding differential monomial

u1 = M 'o . uh . uh . . uimt

so there is a one-to-one correspondence between differential monomials, and
multi-indices / e 9. Given such a multi-index / = (i0, ilt . . . , im), define

2 / = io + ii + • • • + im, \I\ = h + 2/2 + . . . + mim.

Note that S / counts the degree of the monomial u1, while |/| counts the number
of derivatives appearing in it. For n, k > 0, let

Sfk = {Ie!f:\I\=k}, 9n = {Ie9:^I = n}, 9n
k = 9nn9k.

Note that 9k = 0 when k>n;v/e also set 9k = 5^ = 0 when k ̂  0. Furthermore,
let Mk (respectively sdn, Ml) be the subspace of s£0 spanned by all the monomials
u' where / e &"k (respectively Sf", yn

k). (For k ̂  0, we set sik = {0}.) Note that dn

is the space of all constant coefficient homogeneous differential polynomials of
degree n, while Mk is the space of all constant coefficient differential polynomials
in which exactly k derivatives of u appear in each monomial. The intersection
Mk = M" H s£k is easily seen to be a finite dimensional vector space over IR.
(Note, if yn

k = 0 , then s&n
k = {0}.) One of our principal objectives is to determine

a formula for the dimension of this vector space, which we denote by

Nn
k = d im sdn

k = c a rd Sf"k,

which is the same as the cardinality of the corresponding set of multi-indices &"£.
It is not difficult to identify this dimension with a standard combinatorial quantity.

LEMMA 12. The set 9"^ can be identified with the set of partitions of the integer k
into at most n parts, so Nk is the number of these (restricted) partitions.

See [1] for a survey of the theory of partitions, in which Nk>. the number of
partitions of k into at most n parts, is denoted by p(°°, n, k); cf. [1, Section 3.2].

We can now give a more precise statement of the main decomposition theorem
for the space Mn of homogeneous constant coefficient differential polynomials of
degree n. Rather than work with the entire infinite dimensional space sdn all at
once, it is easier to work with the subspaces M"k, so we need only prove the
following finite dimensional version.
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Dissipative decomposition of ordinary differential equations 305

THEOREM 13. Let P be a homogeneous differential polynomial in the space M"k.
Then there exist unique differential polynomials Q/€sik_j, 0 ^ / ^ n , with Qj =
E(Lj) for some differential polynomial Lj e sd%t} such that

Theorem 13 can be restated in terms of vector spaces as saying that the finite
dimensional vector space sin

k is the direct sum of the subspaces determined by the
operators D; • E, / = 0, . . . , n:

&l = 0 im D'E n sin
k. (11)

The uniqueness result of Proposition 10 shows that the right-hand side of (11) is
indeed a direct sum, so to prove Theorem 13 we need only check that the
dimensions of the subspaces on the right-hand side of (11) add up to the
dimension of the full space. In other words, we need only prove

n

Nn
k = dim Mn

k = 2 dim (im D'E D s£n
k). (12)

We begin with the following elementary observations:

LEMMA 14. For all n, k ^ l , and i ^ 0,
(a)
(b)
(c)

The easy proofs are omitted; in particular (c) follows from (a) and (b).
Combining Lemma 2 and Theorem 3 with this lemma, we see that for n = 1,

k ^ 0, the sequence

is exact, i.e. D is an injection, and imD = kerE. Therefore

dim E[.s?*] = dim $$1 — dim D [ J ^ ^ - I ]
 = dim s£k — dim s£"k-i,

in other words, we have the important formula

d i m E [ ^ ] = Nl — Nk^v (13)

The subspaces appearing in the desired identity (11) are just

im D ; E n sd% = T>'E[s£n
kt}],

and so have dimensions

dim {im D'E n si%) = dim {D'E[silt}]},

Therefore, formula (12) reduces to
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306 Peter J. Olver and Chehrzad Shakiban

since the summation collapses. Consequently, to prove Theorem 13, we need
only verify the following combinatorial lemma.

LEMMA 15. For all n, k>0

N"k = N"k
+1-Nn

k±Li. (14)

Proof. This is an elementary result from the theory of partitions, cf. [1,
formula (3.2.6)]. Define the injections

1 , h , ••• , « « ) ,

l 2 : &k-n-l~* •?! > i2\jo> 7l> • • • > jm) = (0 , jo, j \ , • • • , jm)-

Then the image of ix is {/e 5^+ 1: i o>0}, whereas the image of i2 is {I e
Sfk

+1: io = 0}. Thus S"l+X is the disjoint union of these two images, which have
respective cardinalities Nn

k and A^^-i-i- The lemma follows immediately.
For the reader's convenience, a short table of the dimensions Nn

k follows. For
instance, the dimension of the space M% is 7, and in this particular case, basis
elements are provided by

U2U6, MWiUs, UU2U4, UUJ, u\uA, U^UTUT,, U\,

corresponding to the multi-indices

(2, 0, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 1), (1, 0, 1, 0, 1),
(1, 0, 0, 2), (0, 2, 0, 1), (0, 1, 1, 1), (0, 0, 3),

which make up iP\.

TABLE 1
Dimensions Nn

k

k\n

0
1
2
3
4
5
6
7
8
9
10
11
12

1

1
1
1
1
1
1
1
1
1
1
1
1
1

2

1
1
2
2
3
3
4
4
5
5
6
6
7

3

1
1
2
3
4
5
7
8
10
12
14
16
19

4

1
1
2
3
5
6
9
11
15
18
23
27
34

5

1
1
2
3
5
7
10
13
18
23
30
37
47

6

1
1
2
3
5
7
11
14
20
26
35
44
58

5. Proof of the decomposition theorem

We now generalise the considerations of Section 4 for the constant coefficient
case to the full differential algebra M, and thereby complete the proof of
Theorem 1. According to Theorem 13, we know that if M e sdk is any constant
coefficient differential monomial of degree n, then there are uniquely determined
(up to divergence) differential polynomials L; e s&n

kt), ) = 1, . . . , n, such that

M = E[LQ] + DE[LJ + . . . + D"E[LW]. (15)
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Dissipative decomposition of ordinary differential equations 307

To prove the theorem for variable coefficient differential polynomials, then, it
suffices to show that we can effect a similar decomposition for any differential
monomial of the form f(x)M, where f(x) is an arbitrary smooth function of x.
We prove the result by induction on k, the number of derivatives of u appearing
inM.

The case k = 0 is trivial, since the only such monomial is M = u", and we have

Now, suppose we have proved the result for all differential monomials M e si",
O^j<k, and let m be a monomial in s£n

k, with dissipative decomposition (15).
Consider the expression

K = E[f(x)L0] + DE[/(x)L1] + . . . + D"E[f(x)Ln].

When we expand the Euler operators and total derivatives, we find that K is a
linear combination of derivatives of the function / of the form

£ ) K . - > (16)
; = 0

where each constant coefficient differential polynomial Rt is a linear combination
of the derivatives of the Lagrangians LJt and lies in the space .s/£_,. Furthermore,
the i = 0 summand in (16) is the same as/M, i.e. Ro = M, hence the difference

k

f(x)M -K = Zi f\x)Rh where Rt e sin
k^.

Now use the inductive hypothesis on k to write each term f(l){x)Rt in the form

fQ\x)Ri = £ D'E(4-),
;=0

for some L,y e si. Therefore

where
k

;=o

This completes the induction step, and hence the proof of Theorem 1.

6. An algorithm for finding the dissipative decomposition

According to the decomposition theorem, the number of the basis elements for
sd"k is equal to the number of basis elements for the direct sum

, , , " \ (17)
(7n-rL\ /*T\ T\^'W? f cj]n + \.\ rvs /T\ r\KT?/ ,^in + \\ ir <r I \ /
*• k — \) ^^ ^ "^V**"k—2/ ̂ •J' • • " ̂ ^ -̂̂  ^ \ * ^ 0 )y ^ = n. I

We can find a decomposition for all the basis elements of sin
k simultaneously,

by using the following algorithm. The first step is to find canonical basis elements
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308 Peter J. Olver and Chehrzad Shakiban

for the spaces E{dn
k
+l), E(sdn

k±\), etc. This task is made easier by use of the
following lemma.

LEMMA 16. A basis for E(sdk) is given by the differential polynomials E(u'),
where I = (i0, ilt . . . , im) ranges over all multi-indices in yk such that im ^ 2 .

In other words, to find a complete set of independent Euler-Lagrange
expressions, we need only look at Lagrangians in which the highest order
derivative in each monomial occurs at least quadratically. For example, a basis
for E(si%) <= -^8 is provided by the four differential polynomials

E(u2uf) = 2M2M8 + \duuxu-i + 24«M2M6 + 24w2w6 + 16MM3M5

+ 48U1U2M5 + 6uui + 16M1M3W4 + 12M|M4)

E(uiuj) = -2uju6 - 12u1u2u5 - 20MJM3M4 - 12H2W4 - \Au2u%,

E(MM2M|) = —2uu2u6 — 6uu3us — 6u1u2u5 —

| = \2u\uA + 24u2uj,

corresponding to the multi-indices (2, 0,0,0,2), (0,2,0, 2), (1, 0,1, 2), (0, 0,4).
The proof of Lemma 16 is a straightforward integration by parts.

Note that this lemma concurs with formula (13). Indeed, if we define the
injection

i: Sf^^Sfl, i(j0, j u . . . , / » ) = (Jo, A, . . . , jm - 1, 1),

then the image of i is {/ = (i0, i1} . . . ,im)e 9"l-+l: im = 1}, so &"l is the disjoint
union of the image of i and the subset of multi-indices indicated in the lemma.
Indeed, in the above example, dim E ^ g ) = 4, while from our table, Âg = 15,

Once we have determined canonical basis elements for the relevant subspaces
I-}) appearing in the decomposition formula (20), it is then a simple matter

to rewrite any constant coefficient differential polynomial P in Ml in terms of
these basis elements. Let r = N% = dim s&l, and let Mv, v = 1, . . . , r, denote the
canonical basis of $&n

k given by the monomials u1, leifn
k. Further, let P^,

ft = 1, . . . , r, denote the basis elements formed from the decomposition, i.e. the
differential polynomials D'E(uK), where the uK are the basis elements of silt)
given by Lemma 16. By inspection, we then determine the coefficient matrix
C = (c^v) for the basis P^ in terms of the monomial basis Mv, writing

r

v = l

The inverse matrix B = C"1 will then provide the dissipative decomposition of all
the basis monomials in sdn

k:

EXAMPLE 17. Find the Euler decomposition for the basis elements of

According to (17), we have

l 0
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Dissipative decomposition of ordinary differential equations 309

The monomial basis for s&\ is given by

Mi = uu2 and M2 = u\,

corresponding to the multi-indices (1,0,1) and (0, 2) in Sf%.
Next, note that the middle subspace E{d\) = {0}, since Nl = N\ = 1, cf. (13).

Canonical basis elements for the other two subspaces are

= -2uu2 - u\.
): P2 = D2E(u3) = D2(3M2) = 6uu2 + 6M2.

-2 -\\1-2 - 1 \
Therefore the coefficient matrix is C = I, with inverse

\ 6 6 /

We thus find the dissipative decomposition for the basis monomials of s&\ to be

uu2 = E(-MM2) + D 2 E ( - ^ M 3 ) , u\ = E(MM2) +

A table of constant coefficient dissipative decompositions for basis monomials for
n = 2, 3, 4, and A: ^ 5 appears at the end of this section. The computations were
performed using the symbolic manipulation language SMP.

For variable coefficient differential polynomials, one needs to implement the
algorithm described in the proof of Section 5.

EXAMPLE 18. Consider the differential polynomial

P=f(x)ul

where f(x) is an arbitrary smooth function of x. Using the decomposition of u\
given above, we find that P differs from the decomposition terms

by lower order terms:

P = E(fuuf) + D 2 EG/M 3 ) - 2f'uUl -f"u2.

We then decompose these lower order terms, again using the table:

f"u2 = E(lf"u3),

fuui = DEG/'«3) - \f"u2.

We conclude that this monomial has the decomposition

f{x)u\ = E(/MM2) + D E ( - ^ / ' M 3 ) + D2E(^/«3).

A similar computation shows that

f{x)uu2 = E(-fuui + If'u3) + D2E(-ifM
3).
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310 Peter J. Olver and Chehrzad Shakiban

TABLE 2
Dissipative decompositions: n = 2

k

0 u2 = u2

= E(i«3)

1 M«i = UU1

u\ = (-2uu2 - u\) + (2uu2 + 2u\)

= E(KM?) + D 2 E ( J M 3 )

3 uu3 =

4 uu4 = (2uu4 + 4uj«3 + 3u2) + (~«i«3 — u2) + ( -UM 4 — 3M]«3 - 2H2,)

= E(MMI) + DE(JII?) + D2E(i««?)
M1U3 = ( —2«M4 - 4«!M3 — 3 « | ) + ( —«!« 3 — W2.) + (2UU4 + 6«1M3 + 4« 2 )

= E(-uul) + DE(J«^) + D2E(-m*2)

u\ = (2uu4 + 4«i«3 + 3ul) + (2u1u3 + 2uj) + (-2uu4 - 6u,«3 - 4«2

= E(M«1) + D E ( - ^ M ? ) + D 2 E(M« 2 )

5 UU5 = ( —4«1M4 — 8 « 2 « 3 ) + (UU5 + 3MJU4 + 5 « 2 « 3 ) +

= E ( - 2 K I K ! ) + DE(|««1) + D 2 E(- J

MXM4 = (3«iM4 + 6U2«3) + (-2«!M4 -

"2«3 = (-«1«4 - 2M2«3) + («!«4 + 3«2U3)

6 ««6 = (2uu6 + 6«XM5 + 14M2M4 + 9M|

+ (—uu6 — 4«j«5 — 8«2«4 - 5

= E(-uuj + |«|) + DEC-u l
«!«5 = ( - 2 « M 6 — 6«]U5 - 13u2«4 — 8M2) + (—uxu5 — 3u2u4 — 2M3)

+ (2uu6 + 8ui«5 + 16u2u4 + Wuj)

= E(uu2
3 - lul) + D E ( - | M 1 « 1 ) + D2E(M«^)

u2«4 = (2UM6 + 6u1u5 + \\u2u4 + 6u2) + (2«!«5 + 6M2«4 + 4uf)

+ (-2lM6 - 8MJM5 - 16«2M4 - 10«3)

= E ( - K M | + |M3) + DECMXUZ) + D 2 E ( - M « 2 )

«1 = (—2uu6 — 6u1u5 - 10u2u4 — 5«3) + (—2

+ (2u«6 + 8«!M5 + 16«2M4 +

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500027785
Downloaded from https://www.cambridge.org/core. University of Minnesota Libraries, on 13 Apr 2020 at 19:35:28, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500027785
https://www.cambridge.org/core


TABLE 3
Dissipative decompositions: n = 3

2 U2U2 = ( 2 U 2
2 I) ( 2

= E(-W2M2) + D2E(-^u4)

uu\ = {-u2u2 - uul) + (u2u2 + 2uuf)

— 2M3) + (M2M3 + 6uu1u2 + 2M3)

= E(uu\) +

= E(-luu\) + DE( - |M 2 M 2 )

u\ = {-kuuxu2 - 2u\) + (-3u2u3 - 12M«IM2 - 3M3.) + (3M2M3 +

= E(uul) + D E ( | M 2 M 2 ) + D3E(Ju4)

4 M2M4 = (2M2M4 + 8«MiM3 + 6MM| + 11M2M2) + (-2«HiM3 - 2uu\ - 4u2u2)

+ (-u2u4 — 6uutu3 — 4MM2 — 7M2M2)

= E(u2ul - ij-M?) + DE(^MM?) + D 2 E(§M 2 M 2 )
2 - 3 M M 2 - 5 M 2 M 2 ) + (—uuxu3 — uu\ — 2u\u2)

JM3 + 4MU2 + 7M2M2)

= E ( - | M 2 M 2 + \u\) + BEikuu3,) + D 2 E ( - 1 « 2 M 2 )

HM| = (U2M4 + 4MUIM3 + 3MH| + 3K2M2) + (2uuxu3 + 2uu2 + 4u2u2)

+ (-u2u4 - 6uu1u} - 4MM2 -

= E{\u2u\ - ^«t)

5 M2M5 = ( - 1 0 M « I M 4 - 20MM2M3 - 20M2M3 - 30uxu
2

2) + (u2u3 + 2uxu
2

2)

+ (2uu1u4 + 6uu2u3 + 6M2M3 + 10MIM2)

+ (M2K5 + 8«M!M4 + 14MM2M3 + 13M2U3 + 18MIM2)

= E(-5MMIM|.) + D E ( - ^ « 4 ) + D 2 E( -3-MM

«MIU4 = (5MMIM4+ 10MM2M3 + 1 0 « 2 M 3 + 15UIM2)

+ (M2M5 + 6uu1u4+ 10MU2M3 + 9M?M3 +

+ (-2uu1u4 — 6MM2M3 — 6M2M3 — 10ui«|

+ (—u2u5 — 8uu1u4 — 14uu2u3 — 13M2M3 —

= E ( | M « I M | ) + D E ( | M 2 M 1 - \u§ + D2E(luul) + D 3 E ( | M 2 M 2 )

MM2M3 = (—MMIU4 — 2uu2u3 - 2M2M3 - 3 M ! « | ) + (—u2u3 - 2u1u2)

+ (MM1M4 + 3MM2M3 + 3M2M3 + 5MIM2)

= E ( - | u « l U | ) + D E ( ^ M J ) + D 2 E ( - | M M 3 )

M2tt3 = ( — AUU1U4 — 8UM2M3 — 8MJ« 3 — 12MiM2)

+ (-2M2U5 - \2uuxu4 - 2Quu2u3 - \lu\u3 - 24u^u
2
2)

+ (2u2u5 + 16M«IM4 + 28uu2u3 + 26M
2M3 + 36MIM^)

= E(-2MM 1 « D + DE(-M
2M?. + ̂ u4) + D 3E(-M 2M 2 )

= (2uulu4 + 4uu2u3 + 4u2u3 + 6M!«2)

+ (u2u5 + 6M«IM4 + 10MM2M3 + 9« 2 M 3 + Uu^l)

+ (—M2M5 - 8uMiH4 — 14MM2M3 — 13M2M3 — I8M1M2)

= E(MU1IID + DE(JM 2 M^ - J«4) + D3E(iM2M2)
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312 Peter J. Olver and Chehrzad Shakiban

TABLE 4
Dissipative decompositions: n = 4

k

0 M4 = M4

1 M3Ma = 1

2 M3M2 = ( 2 « 3 U 2 + 3M2M2) + (~M3M2 - 3M2M2)

= E(-M3M2) + D 2 E ( - > 5 )

U2U2 = (-§M3M2 - M
2M2) + (§M3M2 + 2M

2M2)

M3M3 = ( -9M 2 M 1 M 2 - 6UM3) + (U

= E(l«2«3) + D3E(2i5«5)
2u1u2 = (3u2u1u2+2uu\) + (}u3U

= E(-|n2«?) + DE(-i«3«2)

4 M3M4 = (2u3u4 + \2u2u1u3 + 9u2u2 + 36uu2u2 + 6M?)

+ (—M3M4 — 1 2 M 2 M J « 3 — 9 U 2 M | — 36MM2M2 - 6u?)

- 3u2u\ - \2uu\u2 - 2u\) + (-3u2M!U3 - 3u2u\ -

- \2uu\u2 - 2u\) + (1U3M4 + 8«2«!«3 + 6u2ul + 24uu2u2 + 4u?)

u2u\ = (|«3u4 + 4u2uxu3 + 3u2u\ + 4uu2u2) + (-5U3u4 - Uu^Uj - 8«2«2 -

- 28uu2u2 - 4u*) + (§«3w4 + 8«2UiU3 + 6«2«2 + 24«u2u2 + 4u\)

= E(lu2u2) + D 2 E ( | « 3 M 2 ) + D 4 E(^« 5 )

«u2u2 = (4uu2u2 + K4) + {3u2uiui + 3u2u\ + 12uu2u2 + 2M4) + (M3U4 + 9M2M1U3 +

+ 6U 2 M| + 2\uu\u2 + 3M4) + ( - K 3 M 4 - 12M2«IM3 - 9M2M| - 36MM2M2 - 6M4)

= E(-\uu$) + D E ( - | M 2 M ? ) + D 2 E ( - 2 - M 3 M 2 ) + D 4 E ( - ^ M 5 )

u\ = ( -12MU 2 M 2 - 3ut) + ( - 1 2 M 2
U I M 3 - 12M2M?. - 48M«2M2 - 8M4)

+ ( - 4 M 3 M 4 - 36u2u1u3 - 24u2u\ - 84uuju2 - 12K?)

+ (4K2M4 + 48M2MI«3 + 36M2M|+144MM2M2 + 24M?)

= E(KM?) + DE(2M 2 M^) + D 2 E ( 2 M 3 K 2 ) + D 4 E ( § M 5 )

M3M5 = ( - 1 5 M 2 « I M 4 - 30M2M2M3 - 60UM2M3 - 90uutul - 59M3M2)

+ (3MM2U3 + 6uu1ul + 6M3M2)

+ (3«2M!M4 + 9u2u2u3 + 18MM2M3 + 30M«!M2 + 20M3M2)

+ (M3M5 + 12M2MtM4 + 21M2M2M3 + 39MM2M3 + 54M«JM^ + 33M3M2)

= E ( - ¥ M 2
U I M 1 + 1M?) + DE(-JMM?) + D 2 E( - |M 2 M 3 ) + D3E(-^M3M2)

2 M2M!M4 + 1 0 M 2 U 2 M 3 + 20MM 2 M 3 + 30MMIM^ + f " i " 2 )

(iu3u5 + 6M2M,M4 + Wu2u2u3 + 18MM2M3 \ ?

( -2M 2 MJM 4 - 6M2M2M3 - 12MM2M3 -

( - § M 3 M 5 - 8M2UIM4 - 14M2M2M3 - 26MM2M3 - 36MM,M| - 22M3M2)

y2 - |M?) + HE{\u3u2
2 -

M 2 M 2 M 3 = (—u 2 u 1 u 4 — 2M 2 M 2 M 3 — 4uu2u3 —

+ (—2uu2u3 — 4MMJU 2 — 4 « 3 M 2 )
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Dissipative decomposition of ordinary differential equations 313

+ (u2u1u4 + 3u2«2«3 + 6uu2u3 +

l) + D2E(-iu2ul)
= (—2u2u1u4 — 4M

2 U 2 M 3 — 8u«i«3 — \2uu1u\ — \

+ (-|M3«5 - 6u
2u1u4 - Wu

2u2u3 - \luu\u3 - 24uu1uj - 14u
3u2)

+ (ju3u5 + 8M
2M,M4 + Uu

2u2u3 + 26uuju3 + 36«M!«2 + 22u\u2)

uu1u\ = (u
2u1u4 + 2u

2u2u3 + 4uu
2u3 + 6uutu2 + 3u

3u2)
+ (5«3«5 + 3«

2 M 1 M 4 + 5u
2u2u3 + 9uu

2u3 + Ybuuxii\
+ (-{-u3u5-4u

2u1u4-7u
2u2u3-13uulu3-

^ J J 2 ^ D E ( - \uu\ + i 3 l

7. Dissipation laws

Let us begin by reviewing the Rayleigh dissipation function for the simplest
classical mechanical system governed by a single linear, constant coefficient,
second order ordinary differential equation

P = auxx + bux + cu = 0.

(To maintain the notation used in the rest of the paper, we use x as the
independent variable, although in mechanics this is really the time t.) The second
and zeroth order terms form the conservative part of the system, and are derived
from the Lagrangian

Lo = -\au2
x + \cu2.

The energy of the system is given by the corresponding Hamiltonian

Ho = \au2
x + \cu2;

indeed to obtain the energy law, we multiply the equation by ux, leading to

uxP = DH0 + R = 0,

where

is the velocity-dependent Rayleigh dissipation function. In particular, if b > 0, the
above identity shows that the energy Ho is a decreasing function of x. Moreover,
the equation itself has the Rayleigh form

where EUx denotes the variational derivative of R with respect to the velocity
variable ux. However, if we use Lemma 11 (or by direct computation), we see
that if we replace ux by u, leading to the Lagrangian
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314 Peter J. Olver and Chehrzad Shakiban

then

E J / O = DEB(LO, (18)

and so the equation does have the dissipative decomposition

The identity (18) is the essential relation between the classical Rayleigh
dissipation function and the present dissipative decomposition for linear ordinary
differential equations.

The goal of this section is to obtain an analogue of the Rayleigh law for a
general dissipative decomposition (2). To maintain the analogy with classical
computations, we seek an identity of the form

UlP = DH + R, (19)

where H will play the role of the Hamiltonian or energy of the nonlinear system,
and R the role of the dissipation. Ideally, the dissipation function R should be
positive definite, so that the energy H will be a nonincreasing function of u. The
basic approach is to integrate the terms on the left-hand side of (19) by parts,
until we have a quadratic or higher degree polynomial in the highest order
derivatives of u which appear in the dissipation term R. The computations become
slightly complicated, and we carry them through only for second and third order
dissipation. The question of when the dissipation function is positive definite will
be left to a subsequent publication.

Define the evolutionary vector fields

•» = *«. = 2 «i.+A- (20)
1=0

In particular, v0 multiplies a differential polynomial by its degree, while Vj agrees
with the total derivative D when applied to constant coefficient differential
polynomials.

LEMMA 19. Let Lesd, and let n^O. Then

for some P es£.

Proof. The proof is an elementary integration by parts:

unE(L) = 2 ««(-D)'a,L = 2 (Dfun)3,L + DP.
1=0 *=0

= 2 un+AL + DP = vn(L) + DP.
i=0

COROLLARY 20. [2]. If Lesd0 is an x-independent Lagrangian, then

MxE(L) = DH (21)

for some H e si0, called the Hamiltonian associated with L.
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Dissipative decomposition of ordinary differential equations 315

The terminology comes from classical mechanics. Indeed, JC-independence of L
implies that the one-parameter group of translations in A: is a variational
symmetry group of L, and the Hamiltonian H is the conservation law resulting
from Noether's Theorem [5, Theorem 4.29].

COROLLARY 21. Let Lesd, and let n ^ 0. Then

MlD"E(L) = vK+1(L) + DP, (22)

for some P e M.

Proof. Just integrate the left-hand side by parts:

MlD"E(L) = ( - l ) X

for some Q e sd, and then use the lemma.
Now consider a differential polynomial P, with dissipative decomposition (2).

The goal is to see how "much" of the ordinary differential equation P = 0 is
conservative, and how much contributes to the dissipative behaviour of the
solutions. For simplicity, we treat the case when P e i 0 does not depend
explicitly on x. In this case, if there is only one term in the decomposition, i.e.

P = E(L0)

is an Euler-Lagrange equation, then Corollary 20 shows that the Hamiltonian H,
defined by

uxP = DH

is a constant of the motion, since clearly DH = 0 whenever u is a solution to the
equation P = 0. More generally, motivated by the conservative case, we multiply
P by «i, and try to make as many terms as possible total derivatives. According
to Corollary 21

(23)
7 = 1

for some Hes&0. (The / = 0 term has been incorporated into H using (21).)
However, the summation terms so far cannot play the role of the Rayleigh
dissipation function R since they are all linear functions of the highest order
derivatives, and so can never be positive definite. Thus the next step is to analyse
the terms in the summation more closely.

For example, consider the case of a two term dissipative decomposition, so

P = E(L0) + DE(L0.

(P is not necessarily linear.) According to (22),

uxP = -v2(Lx) + DH, (24)

and so we need to analyse

v2(L) = 2 u^diL, (25)
1=0
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316 Peter J- Olver and Chehrzad Shakiban

where L = Lxesdo. Note that if L depends on u0, ult . . . , un, then v2(L)
depends on u0, ux, . . . , un+2, and is linear in the highest order derivative un+2.
Thus v2(L) cannot play the role of the Rayleigh dissipation function since it can
never be positive definite. However, we can integrate each of the terms in the
summation in (25) by parts, leading to a quadratic function

CO , QT , no 00 52j

v2(L) = - 2 «,+iD — + DM = - 2 2 ul+1ul+l —— + DM (26)
,=o \dw,/ ,=o/=o dUidUj

for some Mes&0. Let Q(L) denote the double summation in (26), so that (24)
becomes

WjP = Q(L0 + DH,

where H = H — M. In particular, if u(x) is any solution to the ordinary
differential equation P = 0, then

Note that Q(LX) is a quadratic function of the highest order derivative un+1, and
hence we can identify the Rayleigh dissipation function in this case with Q(Li),
and, indeed, in the classical linear case, these do agree. More generally, we have
the interesting open problem of determining necessary or sufficient conditions on
the first order dissipative Lagrangian Ll in order that Q(Li) be positive definite.
We hope to return to this question in a future publication.

Similar manipulations can be applied to the higher order dissipative terms, but
the calculations become quite complicated. We state the second and third order
cases, and leave the more general computations to the interested reader.

LEMMA 22. Let Lesd. Then

MlD
2E(L) = v3(L) + DP = \ 2 2 S ui+luj+luk+l fL + DM (27)

2 ,=o ;=o k=o dnjdUjduk

for some P, M e M.

LEMMA 23. Let Lestf, and let n^O. Then
utD

3E(L) = v4(L) + DP
•i 00 CO 00 00 ^ 4 T

GO 00 Z$-7

-2I,ui+2uj+2—- + DM (28)
,=oy=o dUjdUj

for some P, M e M.

Note that second order dissipation leads to a cubic Rayleigh function (27),
whereas third order dissipation leads to a quartic plus quadratic Rayleigh function
(28). Thus we observe that in general, only the odd order dissipative terms can be
truly dissipative, in the sense of having any chance of being positive definite.
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