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1. Introduction.

The transvectants are the most important computational tool in the classical invariant
theory of binary forms, [1,9,15,22, 34]. The transvection of two covariants yields a
new covariant; moreover, starting with the ground form, every polynomial covariant and
invariant can be constructed by successive transvection. They constituted the essential
tool in Gordan’s celebrated constructive proof of the finiteness theorem for the covariants
of binary forms, [15]. Even Hilbert’s monumental generalizations — the Hilbert Basis
Theorem and Hilbert Syzygy Theorem — were firmly rooted in the classical transvection
processes, [22]. In the symbolic calculus of classical invariant theory, the transvectants
are based on a fundamental differential operator, known as Cayley’s omega process; a key
step in our analysis is establishing a formula for the omega and transvectant processes in
the projective variable.

In the theory of modular forms, Rankin, [36], and H. Cohen, [10], discovered a set
of bracket operations that map modular forms to modular forms. Zagier, [48], noticed
the similarity between the Rankin—Cohen brackets of modular forms and transvectants
of binary forms, and wondered if there was any direct connection. In [33,34], the first
author noted that if one regards the degree of a binary form as minus the weight of a
modular form, then, in fact, the two processes are identical! In particular, the invariance
of the Rankin—Cohen brackets under discrete subgroups of the projective group is an
immediate consequence of the invariance of transvectants under the full group SL(2,C).
This observation serves to motivate the introduction of a “duality” between binary forms
(homogeneous polynomials, or, better, their projective counterparts) and modular forms,
where the degree n of the former is minus the weight w of the latter: n = —w. (We are
using “duality” in a very loose sense here.)

The purpose of this paper is to develop this connection in some depth. The key result
is that the two theories of modular and binary forms have a common limiting theory as
n = —w — o0o. The underlying transformation group of the limiting theory is a three-
dimensional Heisenberg group. This limiting procedure is made precise on the Lie algebra
(infinitesimal) level, realizing the solvable Heisenberg algebra as a contraction, [47], of the
semisimple unimodular algebra sl(2,C). Complicated identities in the transvectant and
Rankin—Cohen bracket algebras reduce to much simpler identities in the Heisenberg limit.
Moreover, an explicit procedure, in the form of a quantum deformation, for returning to
the classical versions is presented.

Our constructions were originally motivated by the normal form theory for ordinary
differential equations, [37,39,40]. Given a nilpotent matrix N, which represents the
linear part of a dynamical system, we seek to embed it in an sl(2,R) algebra, whose basis
elements B, C, N satisfy the standard commutation relations

[B,N]=C, [N,C]=N, [B,C]=-B.

The normal forms for the nonlinear part of the dynamical system are identified as elements
of ker B. In the continuum limit, the nilpotent operator becomes the (non-nilpotent) total
derivative operator D = D,_. The infinitesimal action of the projective group on binary
or modular forms of degree n = —w leads to an embedding of the total derivative into an
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s[(2) algebra with commutation relations
(D,c™]=2D,  [D,BM]=_cm, [ Bm] =2 gm.
n n

The normal forms or elements of ker B™ can be identified as classical covariants, or, in
the modular forms picture, as elements of the algebra generated by iterated Rankin—Cohen
brackets. In the n — oo limit, the s[(2) algebra reduces to a Heisenberg algebra:

(B, D]=cC, [C,B]=[C,D]=0.

The kernel of the limiting operator B is particularly easy to describe, and so connecting
the classical theory with the limiting theory is of great interest.

The classical covariants and invariants of a binary form are all expressed as differen-
tial polynomials in the base form, and hence are (relative) differential invariants for the
underlying projective transformation group, [33]. In accordance with a classical algebraic
result due to Gordan, all of these can be constructed by successive transvection starting
with the ground form. We prove that the space of differential invariants can be identified
with the kernel of the operator B(™). Moreover, we exhibit an explicit rational basis for this
space consisting of the simplest quadratic and cubic transvectants, thereby generalizing a
classical result of Stroh, [43], and Hilbert, [22], that these transvectants form a rational
basis for the covariants of a binary form of arbitrary degree. (The striking simplicity of
this result is in direct contrast with the intractable — at least in high degree — problem of
finding an explicit polynomial basis for the invariants and/or covariants of a binary form.)

In the Heisenberg limit, the transvectants or Rankin-Cohen brackets reduce to the
bilinear Hirota operators that originally arose in the study of integrable systems such as
the Korteweg—de Vries and Kadomtsev—Petviashvili hierarchies, [23, 24,26, 31]. The lim-
iting differential invariants are simply the logarithmic derivatives D¥ logu, for k > 2, of
the ground form wu. Indeed, this observation underlies Sato’s approach to the solution of
integrable systems based on the logarithmic derivatives of the tau function, which can
itself be viewed as a modular form, [45]. Since the classical projective theories are identi-
fied as deformations of the simpler, Heisenberg theory, one can view the transvectants as
(quantum?) deformations of the Hirota operators. Furthermore, the differential invariants
of the Heisenberg limit can be interpreted as “perpetuants”, [44,43, 29], which, in the
classical theory, are identified as the covariants of binary forms of “infinite” degree.

The symbolic form of the transvectant processes in terms of the Cayley omega process
leads to the introduction of the associative star product on a two-dimensional phase space.
The anti-symmetrization of the star product is known as the Moyal bracket, and was intro-
duced as a quantum mechanical deformation of the classical Poisson bracket, [30, 46, 3].
The projective version of the star product and Moyal brackets introduces an associative
algebra — and hence Lie algebra — structure on the spaces of classical covariants and of
modular forms, where it is known as the Eholzer product, [12, 11]. In the Heisenberg limit,
the star and Eholzer products reduce to a very simple form, that has deep connections
with the remarkable “exp—log formula” in the Hirota formalism, [26].

Since one can write down elementary explicit formulae, the limiting Heisenberg theory
avoids many of the algebraic complications in the more classical polynomial/modular form
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theories. In the penultimate section, we provide an explicit procedure for returning from
the Heisenberg theory to the classical level. This observation should have important impli-
cations, both theoretical and practical, for simplifying the complicated classical algebraic
manipulations through the simpler Heisenberg theory.

In the final section, motivated by developments in quantum many-particle systems the-
ory, [17], we introduce the notion of a coherent state for both the Heisenberg and projective
differential invariants. This leads to a multilinear extension of the transvectant/Rankin—
Cohen brackets that solves the problem of generalizing the Hirota operators to the multi-
linear case in a natural manner. We conclude with some open questions and interesting
directions to pursue.

2. Transvectants.

The most important method for computing invariants and covariants of binary forms
are the transvectants, discovered by Aronhold, [1], Clebsch, [9], and Gordan, [15]. See
[34] for additional details.

Definition 2.1. The mth order transvectant of a pair of analytic functions Q(z,y),
R(z,y) is the function

©. R><’">=Z(—1>”(m) omQ_ 0"k (2.1

— i ) Oxm—iQyt Oxtoy™

Particular examples are the product

(@ R =QR,
the Jacobian determinant
1) _
and the polarized Hessian covariant
2) _
@, R)? =Q,,R,, —2Q,,R,, +Q,R,, (2.2)

Remark: In the classical literature, additional degree-dependent numerical factors are
often incorporated into the transvectants. These will be suppressed here.

The mth transvectant (Q, R)(™) is symmetric or skew-symmetric under interchange
of Q and R depending on whether m is even or odd:

@ R)™ = (-1)™ (R, @)™. (2:3)
In particular, any odd transvectantof a form with itself automatically vanishes.
A function Q(z,y) is homogeneous of degree n = d(Q) if

Q(Az, Ay) = A" Q(=,y).

In classical invariant theory, one restricts attention to homogeneous polynomials
" /n
Q) =3 (7 )asr (2.4)
i=0
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but our results apply equally well to general smooth/analytic functions. If @ and R are
homogeneous of respective degrees d(Q),d(R), then (Q, R)("™) is also homogeneous, of
degree

d(Q, R)™ = d(Q) + d(R) — 2m. (2.5)
A basic result is the covariance of transvectants under the linear action

T=ar+Pfy, TY=yr+dy, ad-py=1, (2.6)

of SL(2) = SL(2,C) on C?. The linear transformation maps the function Q(z,y) to the
function Q(Z,7), defined so that

Q(fa y) = Q(OZ.TJ + By, yr + (Sy) = Q(CIT, y)' (27)

Theorem 2.2. If Q, R are mapped to QQ, R under a linear transformation (2.6) in
SL(2), then their mth transvectant (Q, R)(™ is mapped to (Q, R)(™).

Remark: Allowing linear transformations of non-unit determinant introduces deter-
minantal scaling factors into the transformation rules for the transvectants, cf. [34].

Given a homogeneous function of degree n = d(Q), we let

u(z) = Q(z,1) (2.8)

denote its inhomogeneous counterpart of degree n = d(u). We can view u: CP! — C as a
function on the associated projective space (or, more correctly, a section of the nth power
of universal line bundle over CP', [18]). Note that one can reconstruct

T

Qe =vu(Z).  n=dw, (2.9

Y

The degree d(u) of an inhomogeneous function u(z) cannot be obtained from the local
coordinate formula, but depends on the relation (2.9) to the homogeneous representative.

The induced action of a linear transformation (2.6) on the projective coordinate is
governed by linear fractional transformations

ar + (0

T =

The transformation rule corresponding to (2.7),

n=d(u), (2.11)

ue) = (o )" a(o) = -+ 0 (227,

YT+ 6
is a simple consequence of the basic correspondence (2.9). The factor (yp + §)" is called
the multiplier, and (2.11) defines the fundamental multiplier representation of SL(2) of
degree n, cf. [33].

The planar transvectant formulae (2.1) will produce a projective transvectant formula
for the inhomogeneous representatives of homogeneous forms, cf. [19, 34, 35].
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Theorem 2.3. The mth transvectant of functions u(z) and v(x) is

(u, )™ = m! (<) (AW =) (W) =8Y proy . pey, ,
=) 212
The degree of (u, v)(™) is

d (u, v)™ = d(u) + d(v) — 2m. (2.13)

Moreover, if u,v are mapped to W, v, as given by (2.11), under a linear fractional transfor-
mation, then their mt® transvectant (u, v){™) is mapped to (@, 7)™).

Remark: For more general, non-integral values of k, we define the binomial coefficient

c>:kw—1yuw-r+n

T 7!

as

Once the formula (2.12) is established, the other statements are immediate corollaries
of Theorem 2.2.

3. Modular Forms and the Rankin—Cohen Bracket.

_ Let us recall the classical definition of automorphic and modular forms, [27,42]. Let
H = HU {oo} denote the union of the upper half plane H C C and the point at infinity.

Definition 3.1. A function u(z) defined for z € H is called an automorphic function
of weight k = w(f) if it satisfies

(aa:-l—ﬁ
u
YT+ 0

) = (yz + 6)F u(z), (3.1)

v o
then v is called a modular function of weight k. An automorphic or modular function that
is everywhere holomorphic on H is called an automorphic or modular form. If in addition

u(oo) = 0, then u is called a cusp form.

for all A = (a ’8) € I', where I' C SL(2,C) is a discrete subgroup. If I' = SL(2,7Z),

A particular example is the Fisenstein series

Gul)= Y  — L sem (3.2)

(0,0)#(m,n)€Z2 (mz + nw)

which is a modular form of weight 2k for every integer 2 < k € Z. Its value at oo is given

by
2((2k)

Gop(00) = Tk (3.3)

where ((s) is the Riemann zeta function. Here w € R is a fixed real constant, usually set
equal to w = 1, although the choice w = 7 has the advantage of avoiding many factors of
7 in the resulting formulae. It is customary to let

92(2) = 60Gy(z),  g5(z) = 140 Gg(x). (3.4)



Comparing (3.1) with (2.11), we see that we can identify an automorphic form with
a function of degree
du) = —w(u) = —k (3.5)

which is invariant under the appropriate discrete subgroup I' C SL(2). Thus, we should
view modular and automorphic forms as homogeneous functions of negative degree, where-
as binary forms are homogeneous functions of positive degree. This “duality” between
modular and binary forms seems to be very important, and the two theories exhibit many
parallelisms, not entirely understood. In this paper, we propose the Heisenberg represen-
tation as the connecting link between these two theories, bridging the gap from positive
to negative degree via forms of “infinite degree”.

The following definition originates in papers of Rankin, [36], and H. Cohen, [10]. See
also [11, 48], as well as [7,12] for extensions to functions of several variables.

Definition 3.2. The mtt Rankin—Cohen bracket between automorphic forms v and
v is defined by the formula

wol= X o (M (MO mry o). s

S T
r+s=m

A basic result, first noted in [33; p. 102] and [34; p. 92], is that the Rankin—Cohen
bracket is, in fact, just the classical transvectant, provided one identifies the weight of the
form with minus its degree, cf. (3.5). This observation provides an elementary answer to a
question of Zagier, [48], who states that the connection between transvectants and Rankin-
Cohen brackets is an open problem. A more sophisticated treatment of this connection
appears in a recent preprint by Choie, Mourrain, and Solé, [8].

Proposition 3.3. If u,v are functions of respective degrees and weights d(u) =
—w(u), d(v) = —w(v), then their m* Rankin—Cohen bracket (3.6) is, up to a factor, equal
to their m*h transvectant (2.12):

(u, )™ = m! [u, v],,.

Proof: This reduces to a simple binomial coefficient identity:

- - — k-1 -1
(k 7‘) (l s) _(—1)m (m k ) (m l >’
s r s r
which is valid for r + s = m. Q.E.D.

Theorem 3.4. If u,v are automorphic functions of respective weights w(u),w(v),
then their m*h Rankin—Cohen bracket [u, v|,, is an automorphic function of weight

w([u, v],) =wu) +w(v) + 2m. (3.7)

Proof: The invariance of the bracket under linear fractional transformations in the
subgroup I' is an immediate consequence of its transformation rules under the projective
action of SL(2), as detailed in Theorem 2.3. The weight formula (3.7) is a consequence of

(2.13), (3.5). Q.E.D.



Remark: This is a very simple proof, based on the omega processes and homogeniza-
tion as discussed below, of the invariance properties of the Rankin—Cohen brackets. In
[11; p. 26], the “easiest proof” relies on a much more sophisticated lifting from modular
forms to “Jacobi-like forms” due to Kuznetsov and Cohen.

Remark: The connection with classical transvectants demonstrates that the result
holds for any — not only discrete — subgroup of SL(2).

Theorem 3.5. Ifu,v are automorphic forms, so is [u, v|,,. In particular, the even
brackets [u, u ]y, of a modular form with itself define cusp forms.

Proof: The analyticity of (u, v)(™ on H is immediate; the proof of analyticity at oo,
and the vanishing result, can be found in [36, 10, 48]. Q.E.D.

For example, if
u(z) = gy(z) = 60 G (2)

is the Eisenstein series (3.4), then

71_4

[99, 9]0 = WA, where A =g3—27g3 (3.8)

is the modular discriminant. Since g, and g5 are modular forms of weight 4 and 6 respec-
tively, Theorem 3.5 implies that A is a cusp form of weight 12. One can check the fact
that A(oco) = 0 directly using the well-known values

120 4wt 280 8w’
92(00) = FC(‘Q = a7 93(00) = e (6) = 276
Similarly, one can prove that
(92, 93], =0

and .
251
[937 93]2 = —m g2 A.

4. Infinitesimal Generators.

The linear action of SL(2) on C? induces the projective action

(2, ) (jﬁi? (’ij—(s)")’ A:(: ?)ESL@), (4.1)

on C2. The case of integral n > 0 governs the classical invariant theory of binary forms of
degree n, while the case of integral n = —w < 0 (and restriction to a discrete subgroup)
governs automorphic and modular forms of weight w. In this section, we discuss the
infinitesimal version of this basic projective action, and show how it leads immediately to
the limiting case n — oo of a Heisenberg group action.

The infinitesimal generators of the projective action (4.1) are

v_ =0, vo=20, + guau, v, =20, + nzud,, (4.2)
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as described in [33; (5.15)] (although the signs are wrong there).
We are particularly interested in the limiting case n — oo, and so we replace the
standard infinitesimal generators (4.2) by the alternative basis

2
W(_n):v_:a, (n)——vo——xa +ud,,
(4.3)
n 1
()——v+——:c 0, +zud,.
n
These have the modified s[(2) commutation relations
n n n n n n n n 2 n
W owi =S W W WP = wg?, W W = w49
In the limit n — oo, the sl(2) Lie algebra generators (4.3) degenerate to
w_ =0, Wy =u0,, W, =zud,. (4.5)

(We drop the oo superscript to simplify the notation.) These vector fields form a Heisenberg
algebra, with commutation relations

[w_,w,]| =0, [w_,w_]=w,, [w,,w,] =0. (4.6)
The corresponding Heisenberg group action is
(z,u) — (x 4+ A, (v + §)u).

The unimodular Lie algebras (4.4) can thus be regarded as a Lie algebra deformation of
the Heisenberg algebra (4.6).

Let pr v denote the usual prolongation, [33], of the vector field v to the (infinite) jet
space J°, whose coordinates are the variables z, u and their derivatives

ukzD’;u, k=1,2,....

The prolonged vector fields corresponding to (4.3) are easily computed:

n n 1
w(™ = 0 pr w((, " = xaw +c™), pr WS_) = Exg 8, +zC™ +BM, (4.7)

where
> 2i 0 = (Gi—1)\ . 0
(n) _ 12 Y (n) _ 1Y 7 L
C Z ( n) u, du, B Z ( - ) ;4 du, (4.8)
=0 =1
In the limit n — oo, these reduce to
2 1
prw_= 0, prwozﬁxﬁm%—c, prw+:E$28w—|—mC+B, (4.9)
where
(o] o0 ) 8
C= ; Ui G B = ; i G (4.10)

are the limiting operators.



Remark: One can replace the infinitesimal generators (4.7) by their evolutionary forms

2 1
w® = _p Wé"):—ngJrc("), WT):—5x2D+xC(”)+B(”% (4.11)

where
> 0
D= ] — 4.12
; Ujt1 du, ( )
is the z-independent part of the total derivative
D,=0,+D.

It is well known, [33], that the evolutionary forms satisfy the same commutation relations
(4.4), so

(WO W = 2w, (W w =wir, W wir = -~ wi,

Substituting (4.11), and using the fact that D,C(™), B do not involve z differentiation,
we conclude that

2 2
[D,c™] = - D, [D,B™]=—cm, [c™ BM™M] = - B (4.13)

Therefore, D,C(™), B form an s[(2) algebra, while at n = oo they reduce to the Heisenberg
commutation relations

(D,c]=0, [D,B]=-C,  [C,B]=o0. (4.14)

This provides a one-parameter family of realizations of the normal form construction that
embeds the total derivative operator D in an sl(2) algebra, or, in the limiting case, a
Heisenberg algebra.

Remark: Since C™, B(") do not involve z, we can replace D by D, without affecting
the commutation relations (4.13) or (4.14). However, since we will only deal with constant
coefficient differential polynomials, this will not make any difference in our analysis.

Remark: Truncating the operators (4.12) and (4.8) or (4.10) at some finite order m
by setting u;, = 0 for k > m is effectively the same as restricting their action to the space
of polynomials of degree < m. This induces a family of finite-dimensional representa-
tions of s[(2) on the C(™) eigenspaces — the spaces of homogeneous differential polyno-
mials F'(u,uq,...,u,,) of a fixed degree. In the limit, we obtain the corresponding finite-
dimensional representations of the Heisenberg algebra. As we shall see, the transvectants
provide natural maps between the tensor products of these eigenspace representations.

5. Differential Invariants.

As detailed in [33], transvectants can be characterized as relative differential invariants
for the prolonged group action of SL(2) on J°. Let u(x) be a function of degree n = d(u),
meaning that it transforms according to the degree n projective action (2.11) of SL(2).
A differential polynomial is a smooth polynomial function Flu] = F(z,u,u,...,u,,) de-
pending on finitely many derivatives of u. The order m of F' is the highest order derivative
it depends on.
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Definition 5.1. A relative differential invariant of weight k = w(R) for the transfor-
mation group (4.1) is a differential function R[u] that satisfies the infinitesimal invariance
conditions

prv_(R)=0, pr vo(R) = $knR, pr v, (R) = knzR. (5.1)

The extra factor of n = d(u) is for later convenience. It does not appear in [33] and
so our definition of weight is slightly different, but appropriate for taking the Heisenberg
limit n — oo. In particular, R = u is a relative differential invariant of weight w(u) = 1,
independent of n. In general, the degree and weight of a relative differential invariant are
related by

w(R) =nd(R) = d(u) d(R). (5.2)

Since

w(RS) =w(R) + w(9),

absolute differential invariants, i.e., those of weight 0, can be found by taking the ratio
of appropriate powers of relative differential invariants. In particular, if R is any relative
differential invariant of weight k& = w(R), then u~*R is an absolute differential invariant.

Warning: The weight of a relative differential invariant has nothing to do with the
weight of a modular form.

A key result is that the transvectant of two relative differential invariants is a relative
differential invariant; see [33, 34| for proofs.

Theorem 5.2. If R and S are relative differential invariants of respective weights
k =w(R) and |l = w(S), then their m*h transvectant

s —m S o ("IN omws 6

S
r+s=m

2
is a relative differential invariant of weight k + 1 — B w(R) + w(S) — % .
n

Using our rescaled generators (4.3), the conditions (5.1) for relative invariance become

pr w(™ (R) =0, pr W(()n) (R) = kR, pr ng) (R) = kzR,

where £ = w(R). This characterization of relative differential invariant carries over to
the Heisenberg limit n — oo. Substituting the formulae (4.7), (4.9), we see that the
infinitesimal invariance condition becomes

o,R=0, C™{R)=kR, B™(R)=0.

Therefore, every relative differential invariant is independent of z and lies in the kernel
of the operator B™. A key result is that the converse is valid: for any n, including
n = oo the kernel of B is the space of relative differential invariants. Therefore, the
differential invariants of the projective or Heisenberg groups can be identified as normal
forms for differential polynomials with respect to the total derivative operator. To avoid
technicalities, we restrict the action to the space of differential polynomials — the case of
rational differential functions being an easy consequence.
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Theorem 5.3. Every differential polynomial R[u] which satisfies B™ (R) = 0 is a
linear combination of relative differential invariants of various weights.

To prepare for the proof of this result, and to produce a polynomial basis for the
relative differential invariants and hence ker B, we first modify the transvectant formulae
so as to be able to pass to the n — oo limit. Given relative differential invariants R and S
of respective weights k and [, let us define the classical transvectant

(R, 5) = SV (g, g)om

o N = DN (5.4)
:r;m (_1)T(T> 1;[ (k—;) J];[ (l—%) DIR-D:S.

In the case n < 0 these are rescaled versions of the Rankin-Cohen brackets. In the limit
n — 00, this reduces to the limiting Heisenberg transvectant

r

(B, S)= 3 (1) (m) k" D'R- D:S.. (5.5)
r+s=m
Since C(R) = k R and C(S) =1 S are eigenfunctions of the scaling operator, we can rewrite
(5.5) in the more suggestive form

7

(B S)= 3 (1) (m> (D'C*R) - (D*C"S) = (C AD)™RS. (5.6)

r4+s=m
Assuming Theorem 5.3, we immediately conclude the following:
Corollary 5.4. If R, S € ker B™), then 7™ (R, S) € ker B™.

Starting with u, which is a relative differential invariant of weight 1, we can produce
the quadratic relative differential invariants

= D) = BmL28 (63

of even order 2k and weight 2 — 4k/n. The simplest of these, when 2k = 2, is the classical
Hessian covariant, and the rest are higher order even transvectants of the form with itself.
The fundamental odd order relative differential invariants are

A ] = 7 (1) = 6Py + e (5.8)

of odd order 2k 4+ 1 and weight 3 — (4k + 2)/n. Since u is a relative differential invariant,
Corollary 5.4 implies that all the 7,(:) are relative differential invariants and hence belong
to ker B("), This result holds for any n, including the Heisenberg limit n = oo.

In order to characterize the space ker B("™), we generalize an algebraic result due to
Stroh, [43], and Hilbert, [22; p. 64], that establishes a rational basis for the covariants
of binary forms; see also [34; p. 124]. We show that, modulo division by some power of
u, every relative differential invariant can be written as a polynomial in v along with the
fundamental quadratic and cubic relative differential invariants (5.7), (5.8). This provides
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a basis for the algebra of transvectants of a binary form, or, equivalently, the algebra of a
modular form generated by its Rankin—Cohen brackets. Theorem 5.3 is then an immediate
consequence of this basic result.

Theorem 5.5. A differential polynomial P of order m belongs to ker B(™) if and only
if, when multiplied by a power of u, it can be written as a polynomial in the fundamental
relative differential invariants (5.7), (5.8):

uN Plu] = H(u, 'yén), IO
Each homogeneous summand of H is a relative differential invariant.
Proof: Each differential monomial
uk = yFoylr ..y (5.9)
is uniquely specified by a multi-index
K = (ky,ky,... k) = (kg kqy---k,,0,0,...) € N,

where only finitely many terms are non-zero and we can suppress all trailing zeros. Let us
introduce the reverse lexicographic ordering on multi-indices, so that J < K if and only if

Jn=Fk, for all n >, but Ji < k;.

This induces an ordering of differential monomials (5.9). The leading term of a differential
polynomial is the last nonzero monomial in the reverse lexicographic ordering. In particu-
lar, the leading terms in our fundamental relative differential invariants are those indicated
in the formulae (5.7), (5.8).

Lemma 5.6. If P € ker B, then the leading term in P does not contain u;.
Proof: Let u be the leading term in P. If k; > 0, then the leading term in B(™)[P]
is obtained from applying the first summand » 0, in B to uX, and is
BM (uK) = kyukottyf=tyke . oyka o

All other terms in B(™) (uX) come earlier in the lexicographic ordering. Thus, the resulting
differential polynomial vanishes if and only if its leading term vanishes, which requires
k, =0. Q.E.D.

Lemma 5.6 implies that the leading term in P € ker B(™) has the form
P:ukou’é&...ufnm +... .
Consider the transvectant monomial
Q= (") (™) - (v = gl

where

k=ky+2kq+ky+ 2%k, +---.
Let k* = min{ k,,, k }. Then the differential polynomial

~

uk_k*P—uko_k*Q € ker B

and has a lower order leading term. A simple induction completes the proof. Q.E.D.
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Corollary 5.7. The space ker B(™) is a Poisson algebra with multiplication R - S =
7$™(R, S) and Lie bracket [R,S] = ™ (R, S).

It is worth noting an alternative construction of a generating basis for the relative
differential invariants, cf. [33; Theorem 5.19].

Proposition 5.8. Every relative differential invariant of the projective action (4.1)
is a homogeneous function of u, the Hessian covariant wén) = 7'2(") (u,u), and the successive
Jacobians 11)797) = Tl(n) (u, 11)7(:11) form = 3,4,5,....

In the limiting case, n = oo, the simple change of variables

u=-e"

changes the infinitesimal generators (4.5) into
w_ = 0, w, = 0, w, =1z0,, (5.10)
which generate the elementary Heisenberg group action
(z,u) — (z+ A, v+yz+9).
The vector fields (5.10) have very simple prolongation:
prw_ = 0,, prw, = 0,, prw, =z0,+ 0,, (5.11)
and hence one can immediately write down all the differential invariants.

Proposition 5.9. Every absolute differential invariant for the Heisenberg algebra
(5.10) is given by a function F(v,,vs,...v,,) depending on the second and higher order
derivatives of v.

Therefore, in the new coordinates, the fundamental Heisenberg differential invariants
are just the derivatives v,,vs,.... In terms of the original variable u = e”, these produce
the fundamental absolute rational differential invariants

A (u) = DFlogu, k> 2. (5.12)

The appearance of the second logarithmic derivative of u in Ay, = D2 logu is striking, and
reminds one of the powerful 7 function approach for finding explicit solutions to soliton
equations, [26]. Indeed, Takhtajan, [45], shows how modular forms can be interpreted as
7 functions.

Proposition 5.10. FEvery relative differential invariant for the Heisenberg algebra
(4.5) is given by a suitably homogeneous function of the basic differential polynomial
invariants

Y, =u" D' logu, m=2,3,4,.... (5.13)

Since u has weight 1, each ,,, has weight m. Furthermore, since

D u™ =u™D_+mu™ tu

I
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we find that the invariants (5.13) are obtained by successive transvection with wu:
wm—i—l = UD:E’lpm - muzwm =7 (u7 wm) (514)

Note that the 1), are the Heisenberg limits, n — oo, of the successive transvectants 107(17 ),
and so Proposition 5.10 is the limiting version of Proposition 5.8.
Combining Theorem 5.5 and Proposition 5.10 we see that there are universal formulae

Vo = Pr(u, %2, -5 Tm) (5.15)

relating the two sets of relative differential invariants. The first few of the universal poly-
nomials are

'@bz = Y9, ng =3,
Py = uly, — 6(7y)%, P = uys — 127573,
Pe = utvg — 30Uy, + 120(7,)%, ¥y = utyy — 30uPyyys — 30u Y5y, + 360(v,) s

The following general formulae for the P, will be proved below.

Theorem 5.11. Lett be a formal parameter. Equating the powers of t in the formal
series identity

o 2m 2m
E Vom, —(; —log (1 +2 E Ny ;T)'> (5.16)
m=1 : :

gives the even degree universal polynomials 1,,, = P2m[u]. The corresponding odd degree
universal polynomials v,,, ., = P, . [u] are obtained from the series identity

0 t2m
%0 o Zl W a1 (g
= = 5.17
Tnz_l 1/)2m,—}—1 (2m)| [ - t2m ( )
= 1+2 Z u Yom W
m=1 :

Remark: The formula for the odd order case is obtained by applying the derivation

Fr— 7'1(") (u, F)

to both sides of (5.16), and using (5.8), (5.14). One can obtain P,,, ,, directly by applying
the formal derivation
I'= Z Yon+1 5

87 - (5.18)

to P.

2m>»

so that Py, = I'(Py,,).

Remark: We may define the Heisenberg representation on the monomials generated
by D and C as follows.

B.DFCc™ =kD*temt,  c¢.DFem =DFcmt, D.DFC™ =DFIC™
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This allows us to induce a representation on the space of (pseudo-)differential operators

> pkmpkem,
k

For instance,
D . k0 pk _ Fl(k’O)D’“ 1 Fk0)ph+1,

This allows us to extend the definition of the transvectants/Rankin-Cohen brackets 7,, to
operators, cf. [11]. For example,

7o(u, D) = uD? — 2u,; DC + u,C? € ker B.

Application of the Poincaré—Birkhoff-Witt ordering allows us to extend this construction
to the finite n representations of s[(2).

6. The Omega Process.

The classical approach to transvectants is based on an important invariant differential
operator originally introduced by Cayley, known as the omega process. The following
summarizes basic constructions in the symbolic method from classical invariant theory, as
detailed in [34].

We consider the joint action of GL(2,C) on Cartesian product spaces C2 x --- x C2,
whose variables are labeled (symbolically) by Greek letters: (z,,,9,), (Zg,Yg), (T, 9,); - -
Given a function P(z,y), we define P, = P(z,,y,). For example,

P,QsR, represents the product P(z4,9,) Q(7g,ys) R(x,Y,)-

Equating the arguments in such a product will be viewed as a trace operation; for instance

tr (PaQﬂR'y) = P(xcm ya) Q(q’.,ﬁ7 yﬁ) R(x'y’ y’y) O = P(xﬁ y) Q('T’.7 y) R(x7 y)
Y=ya—ys—y,
(6.1)
Definition 6.1. The second order differential operator
9 9
0z, 0y 02 %
Q 5=detQ _,=det = — 6.2
af AL € i i axaayﬂ 3$ﬂ3ya (6.2)
Ozz  0Oyg

is known as the omega process with respect to the variables (z,,y,) and (z4,ygs).

The omega process is clearly invariant under the simultaneous transformation of the
variables (z,,y,) and (z4,y3) by an element of SL(2). Therefore, the invariance of the
transvectants comes from the following basic construction.
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Lemma 6.2. The mtt order transvectant of a pair of smooth functions Q(x,y),
R(z,y) is the function

(@, R)™ = tr (p)™ [Q(a, ¥a) Rlzg,9p) |- (6.3)

The homogeneous transvectants (2.1) appear in the definition of the Moyal bracket,
which arises in quantum mechanics as the essentially unique deformation of the classical
Poisson bracket

{PvQ} = (Pa Q)(l) = Pwa _Pwa
on the two-dimensional phase space X = R2, [30, 46, 3, 34].

Definition 6.3. Let ¢t be a scalar parameter. The star product of the functions
Q(z,y) and R(z,y) is the formal series

QriR=tr [ (019, QuRy | = 3 T (@ B, (6.4)

m=0

~

The covariance properties of the transvectants imply that the star product is invariant
under the projective group SL(2). The star product is the essentially unique deformation
of the multiplicative product (P,Q) — P - Q.

Proposition 6.4. The star product is associative:
Pxy (Q*,R) = (P*,Q)*, R. (6.5)

Proof: We use the fact that the omega process operators mutually commute:

Py (Qxy B) = tr | exp[t Qs+ Quy + )] PaQgR, |,
which clearly equals (P %, Q) x, R, as well as R, (P, Q), Q *, (R*, P), etc. Q.E.D.

Remark: Associativity of the star product leads to many interesting transvectant iden-
tities, [34], which can alternatively be viewed as identities in the algebra of Rankin—Cohen
brackets, cf. [48].

Since even transvectants are symmetric while odd ones are skew-symmetric, we have
Px,Q=Q *(—t) P. The Moyal bracket is the “odd” part of the star product?

Px,Q—-Qx*,P o sinht Q4
2t t

[PQl= FP.Qp; (6.6)

which, by the associativity of the star product, automatically satisfies the Jacobi identity
and provides a quantum deformation of the Poisson bracket:

[P, QT ={P,Q}+0(t.

t Some authors replace t by v/—1t, converting the hyperbolic sinh to a trigonometric sine.
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Let us now pass to the projective version. Recall Euler’s formula

0Q  0Q

for a homogeneous function of degree d = d(QQ). The omega process reduces to

~ 0 0 0 0
Q.= g —2. 2192 (g -2 &
B o, ( A 8xﬁ> Ozg ( a %o (9a:a)

0 0 02 (6.8)
2~ da @‘*‘(%—%)

= dﬂaa _da 8,8+ (.'L'a _./L'ﬂ) 3aﬁ

0z,0x4

when applied to the product @, Rg = Q(z,,¥,) R(zs,y5) of homogeneous functions of
respective degrees

dy = d(Q,) =d(Q),  dg=d(Rp) = d(R).

The projective omega process (6.8) can now be directly applied to the inhomogeneous
representatives,

u, = u(z,) = Q(z,,1), vg =v(zg) = R(z4,1).

However, it is important to note that €1, 5 decreases the degree of each factor Q, Rz by
one. Therefore, powers of the omega process do not translate into powers of its projective
version, since the degrees will vary from factor to factor. For example, in order to com-
pute projective formula (2.12) for the mth transvectant, we must use the noncommutative
“falling factorial” or “Pochhammer product”, [34; p. 101], of the omega operator (6.8),

(u, v)™ = tr ([dﬁ—(m—l)}aa— [da—(m—l)]aﬁ—i-(a:a—xﬁ)aaﬁ)
([dg—(m—2)]0,—[dg—(m—2)] 04 (z, —x5) g )--- (6.9)
(dg0y —dy 0+ (x4 — 25) Dyp ) UV

The projective star product and Moyal bracket are constructed from these operations, and
have the same properties. In the modular form case, n < 0, the projective star product
for t = 1 is known as the Eholzer product, [11,12], and induces a Lie algebra structure
on the Rankin—Cohen bracket algebra. It would be interesting to see how the alternative
associative products derived in [11; p. 29] fit into this picture.

In order to take the Heisenberg limit n — oo, we need to replace the degree by the
weight, as in (5.2), and divide each omega process by the factor n. The resulting differential
operator

o _, 9 0 [ Ta=Ty O

= — _ 6.10
af = “p oz, “a 0z n  0xr,0rg’ (6.10)

is applied to a product R,Sj; of relative differential invariants of respective weights w, =
w(R,) =w(R), wg = w(Sg) = w(S). Again, owing to the change in weighting, one cannot
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use ordinary powers to compute transvectants. In particular, the mth order transvectant
(5.4) between two functions u, v of unit weight equals

0 (wv) = tr [ (1= 221) (9, — 9y) + 22722 9,5
(6.11)

[ (1= 22) (9, = 09) + 2552 05 | -+ | 00 — 05 + 22552 0, | v

In the Heisenberg limit n — oo, this reduces to an ordinary mtt power

m

T (U, 0) =t (D, —8ﬂ)m Uy Vg = (%—mu(m—i—t) v(x —t)

=D"(u-v). (6.12)
t=0
The symbol D, denotes the Hirota bilinear operator, [23, 25, 26], that first arose in the
classification of integrable systems. In this manner, we may interpret the Hirota operator
D, as the Heisenberg limit of the projective omega process (6.10). See also [2, 34] for

xT
connections between transvectants and the Hirota formalism.

The star product (6.4) can be carried over to the projective version. In the limit
n — oo it reduces to a Heisenberg star product

R+ S = Rz +w(S)t) S(z — w(R)t) = exp[t (CAD)]R- S, (6.13)

cf. (5.6). In particular,
u *(too)u =u(z+t)u(z—1t). (6.14)

(The projective star product, valid for finite n, involves a formal g-exponential type series.)
The Hirota operators (6.12) naturally appear in the power series expansion of the star
product (6.14). Using the “exp-log formula” of Jimbo and Miwa, [26; (3.5)], we can
express the Heisenberg star product (6.14) in the remarkable form

(00) . —_

u? u? B u(z)?

D2m log u(z )) .

(6.15)
We now apply (6.15) to prove Theorem 5.11. Consider the particular transvectants

(2

2k
Topltd = § o, 0) = 5 (%-i) u(e,) uley)

axﬂ

The right hand side in the series identity (5.16) can be rewritten in the form

]2m 8 2m B
m) (833 8a:ﬁ> u(@) u(xﬂ) -

k
= —tr log Z [t ulz x (83: 9 ) u(zy) u(mﬁ) — logu(x).

6$B

1
—trl 1
5 tr log
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The summation is the Heisenberg star product (6.14) of u with itself but with ¢ replaced
by tu(zx), i.e.,

2 [tu(z)]* 0 0 ; 00
P (axa‘am> ) ag) = ur(y u = ule -+ tu() ule — tu(@)),

the second equality following from (6.14). Therefore, (6.16) equals

1 u(x u(z)) u(x — tu(x 1 [ w(z)]F + [—tu(z)]k ok
! g U <u>(>x)g tu(z)) 5<Z [t u(=)] ;{t()} wlogu(x))_ (@)

i t2m ( )2 82m ( ) i t2m
= u(z)™™ ——logu(z) = Yo »
= (2m)! Oz = (2m)!

(6.17)
is a consequence of the exp—log formula (6.15) with ¢ replaced by ¢ u(z). Q.E.D.

7. The Heisenberg—Projective Connection.

We are now in a position to make precise our contention that the Heisenberg represen-
tation embodies the more complicated projective classical invariant theory and modular
form theories, not just as a limiting procedure, but in a direct correspondence.

First, the First Fundamental Theorem of classical invariant theory implies that we
can write every invariant as a linear combination of partial transvectants

tr QA (QaQﬁ"'Qs)ﬂ where A= ((041,,81),(042,,82),...,(0lm,,8m)) (71)

is an ordered collection of pairs chosen from the symbolic letters «, 3, ..., appearing in
the product in (7.1), and
m
QA - H Qauﬁu (7.2)
v=1

is the corresponding product of omega processes. Note that 2, is, in fact, symmetric in
the pairs of indices, and anti-symmetric under a single interchange (o, 3,) — (8,,,,).
In the projective version, we divide by n™ in order to take the Heisenberg limit. Given A
as in (7.1), we define

ap =#{a, =0 | v>Ek}, by=#{B, =B | v>Ek}.
Then the projective counterpart of of the differential invariant (7.1) is
tr le) (ugug--u, ), (7.3)
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where

(n) _ _b_1 0 (M 0 T, —Tg 0?
2o’ = [(1 n) Oox ( n> 0z, * n 0z, 0z

b 9] a,y 0 T~ T 0?
1_22 (1% a 7B 4
[ < n) oz, ( n) Oz, * n 0z,,0Tg, ] (74)
o 0 N T, —Tg 0?
or, — Oxg n  Or, Org |’

Remarkably, this is still symmetric under interchanges of the indices in A. Moreover, after
we multiply out, any terms involving any x4 — z., will vanish upon taking the trace, and
so can be ignored. In the limit n — oo, this reduces to the product

(c0) i 0 B 0
i)

v=1

of Hirota operators.

Thus, to change projective SL(2) invariants into Heisenberg invariants, we merely take
the limit n — oo, after dividing through by the appropriate power of n. Conversely, given
a Heisenberg invariant, we rewrite it as a sum of partial transvectants

R=tr QE:O) (ugy---u,), (7.6)

and then replace the Hirota product QE:O) by the projective omega product Q‘(,f) to obtain
the corresponding projective invariant.

Remark: To obtain the Hirota formula (7.6) for a Heisenberg invariant, first write
each monomial as a trace. Then symmetrize over all permutations of the symbolic indices
that leave the product monomial unchanged. Finally, replace each derivative 0, by the
corresponding Hirota operator 87 — d,,. For example, the Hessian invariant uu, — u? first
becomes

tr (82 — 8aﬂ) UyUg

Since both factors are the same u, we symmetrize to produce
2 2 2 2
1tr (02 + 05 — 28aﬁ) UyUg = 1tr (9, — Bﬁ) Uy Ug = D2 (u-u),

The final factorization being either done by inspection, or, more systematically, by replac-
ing 9, — 0, 95 — 95 — J,. To form the projective version, we replace

(O =) = (1= 1) (B0 = 8p) + 22522 0,5 ) (00 — B+ 22572 0,5 ) =
=(1-12-2(1-1 0,5+ 01 -2)2+ (2, — ) Z

the remainder term (z, — z4) Z vanishes upon setting x, = x5 and so can be ignored.
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Remark: It would be very useful to have a general combinatorial formula for the
terms in the Pochhammer product (7.4) which do not involve the differences x5 — ., and
so survive the trace operation.

8. Coherent States.

Suppose A € ker B is a (linear combination of) relative differential invariants. In
analogy with string theory, [17], we say that a differential function f is a coherent state
if Bf = Af. Clearly a coherent state cannot be a polynomial unless A = 0. Denoting
the space of coherent states with eigenvalue A by V,, we see that V, -V, =V, ,. This
enables us to construct elements in ker B from coherent states, since V, -V_, C V; = ker B.
Observe that for f € Vy, e#Bf € V .

Coherent states can be constructed as series in a formal parameter . Suppose A is
constant or a function of C (e.g. in the g-Heisenberg case take A = ¢©), so that [B,\] =
[D, A] = 0. Define the operator T¢ mapping im C into itself by

oo

Ti(9) =) ty;/\!n (%)ng- (8.1)

n=0

Proposition 8.1. Given ) as above, one has
BT: =TiB+t\T}. (8.2)
Proof: We compute

b = AT (DT Rt (D"
BT}‘_BZ n! \C _Z n!BE

n=0 n=0
L rAn (D)"‘l X gmAn (D)”
() (R)
= (n—=1)\C = n! \C
e8] —1\n—1 n—1 e 9] n
AT D t"\" (D
=tA — = — ) B
> amle) +X5(e)
n=1 n=1
=tATs + T} B. Q.E.D.
Corollary 8.2. Given a positive integer n € N, let \,..., A, be constants or func-
tions of C, such that Y ., A, = 0. Then
Vrtw(f0®"'®fn): zT'L:O T;\l(fz)a f07""fn€imca (8'3)

defines a multilinear map v%: Q" ,imC — Q% ,imC, intertwining with the Heisenberg
representation.

Corollary 8.3. Given a positive integer n € N, let X\, ..., A,, be constants or func-
tions of C, such that Y . A, = 0. Then

“Z(fo""’fn):H T)i(fz)v for- o fr € ker B, (8.4)
i=0
defines a multilinear map pl: ®7_,ker B — ker B.
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We now express the n + 1 functions Ag, ..., A, in terms of n functions c,,...,c,,; €
ker B in such a way that the sum of the \,’s is automatically zero. When this is done,
one defines the transvectants =,, ,  as the coefficients of the monomials in ¢,,...c,,,
and labels them by the powers of these formal parameters. For example, the coefficient

of c2c, will be called Ty,1- Due to the independence of the monomials in ¢, the general-

ized transvectants Tig,ovings 18D into ker B, where the indices ij indicate the term with
iz, pintl
Cs Crt1 -

There are many ways to do this. In the symmetric case we make the following choice.
We take

1 n
A= & — E( N
1 67/ n+17‘=0£z

Let now ¢, = Y o, PLS k=2,...,n4+ 1. One can now express the A, in terms of the
c¢,- These in turn can be considered as symbolic expressions which will give us elements
in ker B when whenever one computes a polynomial of the ¢;. For example,

cy =M+ AT = (§ — 56+ 51))2 + (& -5+ 51))2 =3(& - 51)27

and this is related to 3 (u®uy + uy ®u) — uq ®u;, which reduces to the Hessian uu, —u? in
the symmetric case. In the cubic case,

ey =Ap+ A+ A5
= (G- 3E+&a+&)" + (G- 36+a+8) + (& - e +6+&)’
= 5 €0616a — 36061 — 36060 — 3606t — 36063 — 36360 —
— 366G +H3E A58
This reduces, when we desymbolize, to

3_4,3 2,2
C3U” = 3 Uy — 2UU Uy + 5 U Ug.

We now compute ,uzl), (u,u,u), ignoring all terms that are not cubic in .

2

A2 A3
)= T, (0T}, T3, () =TT (u A + o, + g
1=0

= c3( gu’uy — guuuy + 3u7)

We find that 7 ; (u,u, u) = %u2u3 — Tuuquy + %u‘;’ The fact that the symbolic expression
cg gives rise to the same transvectant is not too surprising when one considers that the
coherent state method carefully labels each differentiation with the appropriate symbol A;.
The connection, however, is not quite straightforward since the condition that the sum of
the A,’s should vanish does not appear in the symbolic method. It might be worth while
to pursue this further since it may lead to effective computation methods for covariants.

In the nonsymmetric case we proceed as follows. Since we have n+1 parameters and 1
relation among them, we would like to find n parameters in which things can be expressed,
in order to insure that the monomials in these new parameters are linearly independent.
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Let w € C be a primitive (n + 1)st root of unity: w™™ = 1,wP # 1 forany 0 < p < n + 1.

Put
n+1

— ij S
A = E we;, 1=20,...,n, for CoyvesCpy € ker B,
Jj=2

to obtain T/{i (f;) € Vir,» 1 =0,...,n. Then pt (fos---5 f,) € ker B. For n = 1 reduces to
the star product f,*;., f,. Note that

n n n+l n+1
Z)‘i = ZZwijcj = Zné(j)cj =0
i=0 i=0 j=2 j=2

as it should be. We can view the A; as Discrete Fourier Transforms of the c;, where we
take ¢; = 0 from the start. In the symmetric case the reader may want to verify that when
we now apply the Inverse Discrete Fourier Transform to the c;, we obtain the formulae
employed in our analysis of the symmetric case. Let us write out the formal expansion
when w=-1, fy=R, f, =5:

R 5= = { 353 () m p{ S ELE(D) s

r=0

" (8.5)
=) t"'%,(R,S),
m=0
where _ D *
) .1
7 (R,S)= Tg;m(—n o (C) R (C) S. (8.6)
Note that if R, S are homogeneous, so C(R) = kR, C(S) =15, then
. 1
7. (R, S) = )" T (R,S)

is simply a multiple of the Heisenberg transvectant (5.5). The fact that the coherent state
procedure gives a multilinear generalization suggests that 7,, is the more natural definition
for the transvectant.

In the multilinear case one obtains analogous formulae which are labeled by monomials
in ¢y,...,¢,, ;- This procedure basically solves the problem of generalizing the Hirota
operator, [23,24] to the multilinear case in a natural way, cf. [16,20,21]. It is rather
surprising that the coherent state method, which relies on the fact that C commutes with
the whole algebra, can be used to compute classical covariants. But it does provide a very
nice illustration of the power of the methods covered in this paper. In [38] analogous
results for the ¢g-Heisenberg representation are derived.
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9. Conclusions and Further Directions.

We have covered a number of subjects which are all related by two facts:

(a) The Heisenberg algebra plays a role.

(b) They are of importance in modern physical theories.

Although it is too early to claim any deep connection between these two facts, the
thread seems to be interesting and leading to nontrivial results. As objects of possible
further research we mention:

(1) Applications to integrable systems. These include further developments of modular
forms and their brackets as tau functions for soliton equations, would be well worth
pursuing. While it is perfectly possible to apply the multilinear Hirota operators
to integrable equations, so far this does not seem to simplify matters in any way.
In particular one would like a normal form result, in which integrability would be
a divisibility condition in terms of the c;,.

(2) Transvectants. In [32], these were shown to be particular cases of general multi-
linear and multidimensional differential operators called “hyperjacobians”, which
are based on Cayley’s old, pre-transvectant theory of hyperdeterminants, [4, 5],
and have interesting formulations as higher dimensional determinants, [13,14]. A
detailed investigation into the connections with our multilinear generalizations of
the Hirota operators would be worth pursuing.

(3) Application of multilinear generalizations of the Hirota operators, and their projec-
tive analogues.

(4) Connections with combinatorics. In [41], Schimming and Strampp connect differen-
tial polynomials arising in the Sato approach to soliton equations with the combi-
natorial Bell polynomials. The further development of these connections and their
analogues for modular forms has significant potential.

(5) Intertwining operators. The coherent state method suggests that it might be natural
to look at the tensor products and formulate the problem in terms of intertwining
operators.

(6) Application of the g-Heisenberg analysis to quantum groups, [6]. A very interest-
ing generalization of classical invariant theory and the transvectant calculus to
quantum groups appears in the recent paper of [28]. Our methods, which in
themselves realize the classical theory as a deformation of the Heisenberg theory,
should be particularly relevant. The paper [38] extends results in this paper to
the g-Heisenberg representation.

Acknowledgments: Thanks to Patrick Solé for correspondence on the connections be-
tween transvectants and Rankin-Cohen brackets and Jing Ping Wang for comments.
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