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Abstract� This paper surveys recent results on the classi�cation of di�erential invari�
ants of transformation groups� and their applications to invariant di�erential equations and
variational problems�

Consider a group of transformations acting on a jet space coordinatized by the inde�
pendent variables� the dependent variables� and their derivatives� Scalar functions which
are not a�ected by the group transformations are known as di�erential invariants� Their
importance was emphasized by Sophus Lie� ���	� who showed that every invariant sys�
tem of di�erential equations� ���	� and every invariant variational problem� ���	� could
be directly expressed in terms of the di�erential invariants� As such they form the basic
building blocks of many physical theories� where one begins by postulating the invariance
of the equations� or the variational principle� under a prescribed symmetry group� Lie
also demonstrated� ���	� how di�erential invariants could be used to integrate invariant
ordinary di�erential equations� and succeeded in completely classifying all the di�erential
invariants for all possible �nite�dimensional Lie groups of point transformations in the
case of one independent and one dependent variable� Lie
s results were pursued by Tresse�
���	� and� much later� Ovsiannikov� ���	� In this paper� I will survey some recent results
extending the earlier classi�cation theorems� ���	� and then discuss recent applications to
the study of invariant evolution equations� which is of great interest in image processing
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and computer vision� cf� ���	� ���	� Space considerations preclude the inclusion of proofs
and signi�cant examples here�

I shall assume the reader is familiar with the fundamentals of the Lie theory of sym�
metry groups of di�erential equations� as discussed� for instance in my book� ��		� I shall
employ the same basic notation here� For simplicity� I shall deal with complex�valued
functions here� although most of the results are equally in the real case� Let G be an
r�dimensional local transformation group acting on the space M � X � U � C p � C q co�
ordinatized by p independent and q dependent variables� In the single dependent variable
case� q � �� we allow G to be a group of 
�rst order� contact transformations� 
B�acklund
s
Theorem� ��	� implies there are no other contact transformation groups�� Let G�n� denote
the associated prolonged group action on the jet space Jn� whose coordinates are denoted
by 
x� u�n��� The space of in�nitesimal generators of G � its Lie algebra� will be denoted
by g� with associated prolongation g�n��

In order to properly study the di�erential invariants of a transformation group� we
must understand the geometry of its prolongations� Let sn denote the maximal orbit
dimension of the prolonged action G�n�� so that G�n� acts 
semi��regularly on the open
subset V n � fz � Jn j dim g�n�jz � sng � Jn consisting of all points contained in orbits of
maximal dimension� We shall� in fact� assume that G�n� acts regularly on V n� although all
our results� suitably interpreted� are valid in the semi�regular case� The orbit dimensions
satisfy the elementary inequalities

sn�� � sn � sn�� � q

�
p� n� �

n

�
� 
��

In particular� they form a nondecreasing sequence

s� � s� � s� � � � � � r� 
��

that is bounded by the dimension of G and hence eventually stabilizes� sm � s for all
m su�ciently large� We will call s the stable orbit dimension� and the minimal order n
for which sn � s the order of stabilization of the group� The following result is due to
Ovsiannikov� ���	�

Theorem �� The stable orbit dimension of a transformation group G is equal to the

dimension of G if and only if G acts locally e�ectively�

Here �locally e�ectively� means that the only group element in some neighborhood of
the identity which acts trivially on M is the identity itself� If G does not act e�ectively�
we can replace it by the quotient group G�GM � where GM � fg j g � x � x for all x �Mg
is the global isotropy subgroup� which does act e�ectively on M in essentially the same
way as G itself� Consequently� there is no loss in generality in assuming that all our group
actions are 
locally� e�ective� and hence s � r � dimG in all cases�

As we shall see� the determination of the precise order of stabilization n is of great
signi�cance� A cautionary note� it is possible for the orbit dimension to �pseudo�stabilize��
meaning that sk � sk�� � sk�� for some k � n� However� the following result rules out a
pseudo�stabilization unless the prolonged orbits have rather high dimension�
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Theorem �� Suppose that� for some n � �� the maximal orbit dimensions of the pro�

longed group actions satisfy sn�� � sn � sn�� � q�n�� Then n is the order of stabilization

of G�

Corollary �� Suppose that the maximal orbit dimensions of the prolonged group

actions satisfy sk � sk�� and� also� sn � sn�� for some n � k� Then sm � sn for all

m � n�

Thus� there can be at most one such pseudo�stabilization� Corollary � provides a
signi�cant strengthening of Ovsiannikov
s stabilization theorem� ���� p� ���	� which states
that if sn � sn�� � sn��� then sm � sn for all m � n�

Example �� Let r � �� Let x� u � C � Consider the r�dimensional group generated
by the vector �elds �x� �u� x�u� � � � � x

r���u� x�x�
r���u�u� The maximal orbit dimensions
are given by s� � �� s� � �� � � � � sr�� � sr�� � r � �� sr�� � sr � � � � � r� Thus� the
orbit dimensions pseudo�stabilize at order r � �� and �nally stabilize at order r � �� In
particular� we see that a pseudo�stabilization can occur at arbitrarily high order� On the
other hand� as we shall see� this example is e�ectively the only known example where
pseudo�stabilization of orbit dimensions actually occurs�

In the scalar case� p � q � �� one can obtain very detailed information owing to Lie
s
complete classi�cation of all possible Lie groups of point and contact transformations act�
ing on a two�dimensional space� ���	� ��
	� see also ���	 for a modern treatment� and �
	 for
recent applications to quantum mechanics� The basic result is that any �nite�dimensional
transformation groupG acting on a two�dimensional complex manifold without �xed points

� dimensional orbits� is locally equivalent� under a point 
or contact� transformation� to
one of the groups appearing in Tables ��� at the end of the paper� The groups of point
transformations naturally fall into three classes � the primitive groups� for which there
is no invariant foliation� the imprimitive� transitive groups� and� �nally� the intransitive
groups� In addition� there are just three �nite�dimensional groups of contact transforma�
tions not contact�equivalent to any point transformation group� in Table �� I have listed
the characteristics Q
x� u� ux� of the in�nitesimal generators� the �rst order generators
themselves being recovered by the standard formula

v��� � � �Q

�p

�

�x
�

�
Q � p

�Q

�p

�
�

�u
�

�
�Q

�x
� p

�Q

�u

�
�

�p
� 
��

The complete classi�cation allows us to determine the stabilization order for every possible
transformation group in the plane� and� in addition� the complete system of di�erential
invariants� One remarkable consequence is that� in the scalar case� Example � provides
the only examples of transformation groups that pseudo�stabilize� 
Indeed� I do not know
of any multi�dimensional examples of pseudo�stabilization which are not straightforward
generalizations of this example��

Theorem �� Let M � X � U � C � C � Let G �� feg be an r�dimensional locally

e�ective group of point or contact transformations� Then the prolonged orbit dimensions

are given by one of the following three mutually exclusive possibilities�
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i� The Regular Case� sk � k � � for k � r � �� while sm � r for m � r � ��

ii� The Intransitive Case� sk � k � � for k � r � �� while sm � r for m � r � ��

iii� The Pseudo�stabilization Case� sk � k � � for k � r � �� sr�� � r � �� sm � r for

m � r� �� In this case� G is necessarily equivalent to the group action in Example ��

which is Case ��� for k � � in the Tables�

A di	erential invariant is a scalar function I� Jn 	 C which satis�es I
g�n��
x� u�n��� �
I
x� u�n�� for all g�n� � G�n�� and all 
x� u�n�� � Jn where the prolonged transformation
g�n� � 
x� u�n�� is de�ned� Di�erential invariants 
of connected groups� are most easily
determined using in�nitesimal methods�

Proposition 
� A function I� Jn 	 C is a di�erential invariant for a connected trans�

formation group G if and only if v�n�
I� � � for every prolonged in�nitesimal generator

v�n� � g�n��

According to Frobenius
 Theorem� there are� in general�

in � dimJn � sn � p� q

�
p� n

n

�
� sn 
��

functionally independent di�erential invariants of order at most n near any point z � V n�
Since each di�erential invariant of order less than n is included in this count� the integers
in form a non�decreasing sequence� i� � i� � i� � � � �� The di�erence jn � in � in�� will
count the number of strictly independent nth order di�erential invariants�

The basic method for constructing a complete system of di�erential invariants is to
use invariant di�erential operators� A di�erential operator is said to be G�invariant if it
maps di�erential invariants to higher order di�erential invariants� and thus� by iteration�
produces hierarchies of di�erential invariants of arbitrarily large order� For n su�ciently
large� we can guarantee the existence of su�ciently many such di�erential operators so as
to completely generate all the higher order independent di�erential invariants of the group
by successively di�erentiating lower order �fundamental� di�erential invariants�

The most direct way to construct the required invariant di�erential operators utilizes
di�erential forms and the contact structure on the jet space Jn� Recall �rst that a di�er�
ential form � on Jn is called a contact form if it is annihilated by all prolonged functions�
Every contact form on Jn is a linear combination of the basic contact one�forms

��J � du�J �
pX

i��

u�J�i dx
i� � � �� � � � � q� � � �J � n� 
��

where u�J � DJu
� denotes the J�th derivative of u�� Contact transformations 
including

prolonged point transformations� are distinguished by the fact that they map contact
forms to contact forms� A one�form � on Jn is called horizontal if it annihilates all vertical
tangent directions� equivalently it can be written as � �

Pp
i�� Pi
x� u

�n�� dxi�
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De�nition �� Let G be a transformation group� A di�erential form � on Jn is
called contact
invariant if and only if� for every g � G� we have 
g�n��
� � � � � for
some contact form � � �g � A contact
invariant coframe is a set of p linearly independent

horizontal contact�invariant one�forms f��� � � � � �pg on Jn�

Contact�invariant coframes are the jet space counterparts of the di�erential geometric
coframes that form the foundation of the Cartan equivalence method� ��	� ��	� Note that
if I is any di�erential invariant� its total di	erential DI �

Pp
i��DiI dx

i� which is just the
horizontal component of its ordinary di�erential dI� is a contact�invariant one�form� Thus�
knowledge of su�ciently many independent di�erential invariants allows us to construct
a contact�invariant coframe� 
However� in almost every case� such a coframe is not the
simplest or lowest order one�� If F 
x� u�m�� is any di�erential function� we can rewrite its
total di�erential in terms of the coframe�

DF �

pX
k��

DkF �k� 
��

The resulting coframe di	erential operators Dk provide the desired invariant di�erential
operators�

Proposition 	� Let D�� � � � �Dp be the coframe di�erential operators associated with

a contact�invariant coframe on Jn� If I
x� u�m�� is any di�erential invariant of order m�

then DkI is a di�erential invariant of order � maxfn�m� �g�

Theorem �� Suppose that G is a transformation group� and let n be its order

of stabilization� Then there exists a contact�invariant coframe ��� � � � � �p on Jn� with

corresponding invariant di�erential operators D�� � � � �Dp� and a system of fundamental
di�erential invariants J�� � � � � Jm� of order at most n��� such that� locally� every di�erential

invariant can be written as a function of these di�erential invariants and their derivatives

Dj�
� � � Dj�

J�� 	 � �� � � j� � p� 
 � �� � � � �m�

Except in the case of one independent variable� the precise numberm of fundamental
di�erential invariants required to construct the complete system of di�erential invariants
is not known� If p � �� then it can be proved� ���	� that the number of fundamental
di�erential invariants one needs is exactly q� the number of dependent variables� Let us
now specialize even further� to the scalar case p � q � �� Assuming G �� feg acts locally
e�ectively� Theorem � implies that there are precisely two fundamental di�erential invari�
ants� I
x� u�s�� and J
x� u�r��� having orders � � s � r � dimG respectively� Moreover�
there exists a contact�invariant horizontal form � � L
x� u�t�� dx having order t � n� the
stabilization order of G� the corresponding invariant di�erential operator is D � 
��L�Dx�
In the regular case� the lowest order di�erential invariant I
x� u�r���� has order exactly
r � �� and every other di�erential invariant 
including J� can be written in terms of I
and its derivatives DmI� In the intransitive case� the lowest order di�erential invariant
I
x� u� has order �� whereas in the pseudo�stabilization case� the lowest order di�erential
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invariant I
x� u�r���� has order r � �� In these two cases� the di�erential DI � DxI dx
provides a contact�invariant one�form� with corresponding di�erential operator D � d�dI�
every other di�erential invariant can be written in terms of I� J � and the di�erentiated
invariants DmJ � dmJ�dIm�

In ���	� Lie determined the di�erential invariants for each of the point transformation
groups appearing in Tables ���� Apparently� he did not publish the formulas for the di�er�
ential invariants of the three contact transformation groups� A complete list of di�erential
invariants and invariant one�forms for the point and contact transformation groups appears
in Table �� In this table� and below� we use the notation un � Dn

xu for the higher order
derivatives of the scalar function u� Of particular interest are certain subgroups of the
projective group SL
�� � Case ��� in Table �� The Euclidean group E
��� which is a real
form of the complex transformation group of Type ��� for k � �� � � �� the special a�ne
group SA
�� � SL
��nC � � Case ���� and the full a�ne group A
�� � GL
��nC � � Case ����
play a key role in di�erential geometric applications� discussed in detail in Guggenheimer�
���	� In these cases� the lowest order invariant one�form is the group�invariant arc length
element ds� and the lowest order di�erential invariant is the group�invariant curvature 	�
In particular� in the Euclidean case� ds �

p
� � u�x dx and 	 � uxx�
� � u�x�

���� Thus�
for the above metnioned groups� a complete system of di�erential invariants is provided
by the curvature and its derivatives with respect to arc length� dm	�dsm� Indeed� one is
tempted to de�ne� for any regular group of point or contact transformations in the plane�
the group�invariant arc length to be the lowest order contact�invariant one�form� which is
unique up to constant multiple� and the group�invariant curvature to be the lowest order
fundamental di�erential invariant� which is unique up to a function thereof�

We recall next how di�erential invariants are used to characterize systems of di�er�
ential equations and variational problems which admit a prescribed symmetry group� see
���	� ���	� ��		� ���	� The basic result holds for arbitrary numbers of independent and
dependent variables�

Theorem ��� Let G be a transformation group� and let I�� � � � � Ik� k � in� be a

complete system of functionally independent nth order di�erential invariants on an open

subset V n � Jn� A system of di�erential equations admits G as a symmetry group if and

only if� when restricted to the subset V n� it can be rewritten in terms of the di�erential

invariants�

��
x� u
�n�� � F�
I�
x� u

�n��� � � � � Ik
x� u
�n��� � �� 
 � �� � � � � l� 
��

Thus� the only invariant systems of di�erential equations of order n which are not
described by di�erential invariants are those contained in the singular subvariety

Sn � Jn n V n �
n
z � Jn

��� dimg�n�jz � sn

o
�

where the orbits of the prolonged action are not maximal� In particular� if G acts locally
e�ectively and n is at least the stabilization order of G� then Sn is just the subset of Jn
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where the prolonged in�nitesimal generators of G are linearly dependent� Any G�invariant
system of di�erential equations can then be decomposed into the union of a regular com�
ponent� which is a subset of V n and can be 
locally� characterized by the vanishing of a
system of di�erential invariants� as in Theorem ��� and a singular component� which is
a subset of Sn and hence is characterized by the linear dependence of the in�nitesimal
generators� together with 
possibly� additional conditions�

In the scalar case� the singular subvariety can be characterized using the method of
Lie determinants� cf� ���	� Let

v�r���� � ��
�

�x
�

r��X
k��

�k�
�

�uk
� 
 � �� � � � � r�

where uk � Dk
xu� be the prolonged in�nitesimal generators of the r�dimensional transfor�

mation group G� According to Theorem �� in the regular case the stabilization order is
r � �� hence the singular subvariety is given by the vanishing of the Lie determinant

det

���������
�� �� ��

� � � � �r���

�� �� ��
� � � � �r���

���
���

���
� � �

���
�r �r ��

r � � � �r��r

���������
� �� 
 �

which de�nes a single ordinary di�erential equation for u as a function of x� Equation

 � is the only G�invariant di�erential equation of order � r � �� In the anomalous cases

intransitive or pseudo�stabilization�� the Lie determinant 
 � vanishes identically� Since
the stabilization order is r� �� the singular subvariety is given as the subset of Jr�� where

the prolonged in�nitesimal generators v�r���� � � � � �v
�r���
r are linearly dependent� which can

be checked by forming an r� 
r��� matrix having the form 
 � but whose columns go up
to order r � �� and computing the determinant of a suitable maximal r � r minor� By a
slight abuse of terminology� we shall call this maximal minor the Lie determinant in this
case�

Theorem ��� Suppose G is an r�dimensional transformation group acting on M �
X � U � C � C � Then every invariant di�erential equation can either be written in

terms of the fundamental di�erential invariants or by the vanishing of the associated Lie

determinant�

Example ��� Consider the four parameter group generated by �x� x�x� �u� u�u�
which is Case ��! for k � �� The second prolongations of these vector �elds are �x�
x�x � ux�ux � �uxx�uxx � �u� and u�u � ux�ux � uxx�uxx� hence the Lie determinant is

det

�������
� � � �
x � �ux ��uxx
� � � �
� u ux uxx

������� � �uxuxx�
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Therefore� the singular invariant di�erential equations are ux � � and uxx � �� Every
other invariant di�erential equation can be written in terms of the fundamental di�erential
invariant I � uxuxxx�u

�
xx and its invariant derivatives DmI� where D � 
ux�uxx�Dx� For

example� the invariant third order equations are all of the form uxuxxx � cu�xx�

The full list of Lie determinants for all Lie groups of point and contact transformations
in the complex plane can also be found in Table �� In this table� we have omitted any
inessential constant factors�

Detailed results on the symmetry classi�cation of ordinary di�erential equations� and
their integation� follows immediately from the results in Table �� See Lie� ���	� for a full
range of applications� As an example� we deduce a general result on the characterization of
di�erential equations having maximal and submaximal symmetry groups� First� we need to
know when an ordinary di�erential equation admits a �nite�dimensional symmetry group�
The following theorem is due to Lie� see ���	� ��	� for a proof�

Theorem ��� The point transformation symmetry group of a normal system of

ordinary di�erential equations of order n � � is �nite�dimensional� The contact trans�

formation symmetry group of a normal ordinary di�erential equation of order n � � is a

�nite�dimensional�

Theorem ��� Let �
x� u�n�� � � be a nth order scalar ordinary di�erential equation�

i� If n � �� then � � � admits at most an eight�parameter symmetry group of point

transformations� Moreover� the symmetry group is eight�dimensional if and only if

� � � is equivalent to the linear equation uxx � �� with symmetry group of type 	�
�

ii� If n � �� then � � � admits at most an 
n � ���parameter symmetry group of point

transformations� Moreover� the symmetry group is 
n� ���dimensional if and only if

� � � is equivalent to the linear equation un � �� with symmetry group of type ��		�

for k � n�

iii� If n � �� then � � � admits at most a ten�parameter symmetry group of contact

transformations� Moreover� the symmetry group is ten�dimensional if and only if

� � � is equivalent to the linear equation uxxx � �� with symmetry group of type ��
�

iv� If n � �� then � � � admits at most an 
n����parameter symmetry group of contact

transformations� Moreover� the symmetry group is 
n� ���dimensional if and only if

� � � is equivalent to the linear equation un � ��

The ordinary di�erential equations with submaximal symmetry groups� meaning those
whose dimension is as large as possible without being maximal� are also of interest� In the
second order case� the submaximal point symmetry group has dimension at most �� the
invariant ordinary di�erential equations are

uxx �
�u�x
�u

� cu�� uxx � �uux � �u� � c
ux � u������

uxx � cu�����������x � uxx � ce�ux�

 



where c is a constant� the associated symmetry groups are� respectively� of types ���� ����
���� with k � �� � �� �� �

� � �� �� and �� � with k � �� cf� ���	� For n � �� the submaximal
point symmetry group has dimension �� the invariant di�erential equation is

�uxuxxx � �u�xx � �� 
!�

which has symmetry group SL
�� � SL
�� of type ���� For n � �� the submaximal point
or contact symmetry group has dimension �� the invariant di�erential equation is

!u�xxuxxxxx� ��uxxuxxxuxxxx � ��u�xxx � �� 
���

which has symmetry group SL
�� of type ���� The solutions u � f
x� of 
��� are all graphs
of conic sections� For n � �� the submaximal contact symmetry group has dimension ���
the invariant di�erential equation is

��u��u� � ��u��u	u
 � �!u��u
�
� � � �u�u

�
	u� � ���u		 � �� 
���

which has contact symmetry group SO
�� of type ���� In all other cases� the submaximal
symmetry group has dimension n��� The equation is equivalent to either a linear equation

which is not equivalent to un � ��� or

�uxxuxxxx� �u�xxx � �� or 
n� ��un��un � nu�n���

having respective symmetry groups of type ���� ���� or ����� for k � n� ��

As mentioned in the introduction� di�erential invariants are also used to characterize
all invariant variational problems associated with a given transformation group� Here�
by symmetry of a variational problem� we shall mean a standard variational symmetry�
without any divergence terms� cf� ��		� The following result originally appears in Lie� ���	�

Theorem ��� Let G be a transformation group� and assume that there exists a

contact�invariant horizontal p�form "� � L�
x� u
�n�� dx on Jn� A variational problem

admits G as a variational symmetry group if and only if it is of the form
R
I" �

R
IL� dx�

where I is an arbitrary di�erential invariant of G�

Any contact�invariant coframe ��� � � � � �p produces a contact�invariant p�form " �
�� � � � � � �p� Thus every G�invariant variational problem has the form

L�u	 �
Z
L
x� u�n�� dx �

Z
F
�
I�
x� u

�n��� � � � � Ik
x� u
�n��

�
�� � � � � � �p� 
���

where I�� � � � � Ik are a complete set of functionally independent di�erential invariants� In
the scalar case� then� the most general invariant variational problem has the form

R
I� �R

ILdx� in which I is an arbitrary di�erential invariant� and � � Ldx is the invariant
one�form� In our geometric interpretation� then� � � ds is the G�invariant element of arc
length� and I is and arbitrary function of the curvature and its derivatives with respect to
arc length�

Table � immediately provides a symmetry classi�cation of the scalar variational prob�
lems� generalizing results of Gonz#alez�L#opez� �		� for point transformation groups� Recall
�rst that� in the scalar case� a nth order Lagrangian L
x� u�n�� is called nonsingular if it
satis�es the nondegeneracy condition ��L
�un�

� �� ��

!



Theorem �
� A nonsingular �rst order Lagrangian admits a symmetry group of

dimension � �� A nonsingular nth order Lagrangian� n � �� admits a symmetry group of

dimension � n� ��

The maximally symmetric �rst order Lagrangians are all equivalent� under a complex�
valued transformation� to a constant multiple of one of the following�

u�x �
p
ux � u�� e�ux � 
���

having respective symmetry group of type ���� with k � �� ���� and �� � For n � �� one

family of maximally symmetric Lagrangians is given by L � u
���n���
n � having a symmetry

group of type ����� with k � n� There are� in addition� �ve �anomalous� maximally
symmetric Lagrangians�
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The symmetry groups are Cases ���� ���� ���� ���� ��� � the third and �fth being maximally
symmetric only for contact symmetry groups� Each of the anomalous Lagrangians de�nes
the invariant arc length functional for a particular geometric group� Interestingly� the
simple quadratic Lagrangian L � u�n� which has linear Euler�Lagrange equation� is not

maximally symmetric for n � � � it has only an 
n � ���dimensional symmetry group�
also of type ���� Thus� quadratic Lagrangians do not have the most symmetry� providing
an explicit counterexample to the �meta�theorem� that linear objects are the ones with the
highest degree of symmetry� 
It should be remarked� however� the quadratic Lagrangians
are maximally symmetric for divergence symmetries� �		��

These remarks motivate an interesting unsolved problem� Any symmetry of a varia�
tional problem is also a symmetry of its Euler�Lagrange equations 
although the converse is
not necessarily true�� Thus the Euler�Lagrange equation for each G�invariant Lagrangian
can be rewritten in terms of the di�erential invariants of G� However� I do not know a
general formula for calculating the invariant formulation of the Euler�Lagrange equations
directly from the invariant formula for the Lagrangian� although special cases do appear
in ��	� In the scalar case� the Euler�Lagrange equation for the G�invariant functional is ex�
pressed in terms of the G�invariant curvature and its derivatives with respect to arc length�
In simple cases 
Euclidean or special a�ne� the Euler�Lagrange equation is a multiple of
the curvature� and so the arc�length minimizing curves are those having zero curvature�
For more general cases 
including the full a�ne and projective groups� this is not true �
the curvature of the arc�length minimizing curves satis�es a certain interesting di�erential
equation� I do not understand what this implies about the underlying geometry�

��



Finally� I shall describe some recent applications to the symmetry classi�cation of
evolution equations� This task was begun by Sokolov� ���	� in his study of integrability
and solitons� The classi�cation has received added impetus from recent work� done in
collaboration with G� Sapiro and A� Tannenbaum� on applications to computer vision and
image processing� including connections with geometric curve�shortening $ows� see ���	�
���	� ���	� Let G be a transformation group acting on M � X � U � and consider a scalar
evolution equation

ut � K
x� u�n��� 
���

in which t is an additional independent variable 
the time�� and the right hand side depends
only on the spatial 
x� derivatives of u� The group action is extended to M � C � with G
acting trivially on t � C � An interesting remark is that the evolution equation 
��� admits
G as a symmetry group if and only if the contact form

�

K
�

�

K
x� u�n��

�
du�

pX
i��

ui dx
i

�
� 
���

is a G�invariant one�form on Jn� The following result provides a complete characterization
of all the G�invariant evolution equations� cf� ���	�

Theorem ��� Suppose L
x� u�n�� is a G�invariant Lagrangian with nonvanishing

Euler�Lagrange expression� E
L� �� �� Then every G�invariant evolution equation has the

form

ut �
L

E
L�
I� 
���

where I is an arbitrary di�erential invariant of G�

Remark� Theorem �� can be extended to several dependent variables� one requires
q� the number of dependent variables� distinct G�invariant Lagrangians L�� � � � � Lq� with

the property that their �Euler�Lagrange matrix� E �
�
E�
L��

�
is invertible� The most

general G�invariant evolution equation then has the form

ut � L�E
�� I� 
� �

where I is a column vector of di�erential invariants� 
Note that each L� � I�L� for some
di�erential invariant I�� so the L� in 
� � can be replaced by any other L� by suitably
modifying the invariant vector I��

The evolution equation 
��� provides the most general invariant evolution equation�
however� choosing I � const does not necessarily yield the simplest such invariant equation�
For symmetry groups of importance in image processing� there is an alternative way of
characterizing invariant evolution equations�

��



Theorem �	� Let G be a subgroup of the projective group SL
��� Let ds � Ldx
denote the G�invariant one�form of lowest order and 	 � I its fundamental di�erential

invariant� Then every G�invariant evolution equation has the form

ut �
uxx
L�

J� 
�!�

where J is an arbitrary di�erential invariant for G� and thus a function of 	 and its arc�

length derivatives dk	�dsk�

Note that� as a corollary of Theorems �� and � we �nd that� for subgroups G of
the projective group� the Euler�Lagrange expression associated with any G�invariant La�
grangian� including the G�invariant arc�length functional� has the form E
L� � JL��uxx
for some di�erential invariant J � For the similarity� special a�ne� a�ne� and full projective
groups� 
�!� with J constant is distinguished as the unique G�invariant evolution equa�
tion of lowest order� For the Euclidean group� the simplest nontrivial invariant evolution
equation is given by ut � c

p
� � u�x since� in this case� the curvature invariant 	 has order

�� so we can take J � c�	� In the Euclidean case� the $ow 
�!� de�nes the fundamental
curve shortening �ow � in which ones moves the curve in its normal direction by an amount
proportional to the curvature 	� This $ow has been of great interest in geometry� see par�
ticularly the foundational work of Gage and Hamilton� ��	� and Grayson� ��	� The special
a�ne version is also a second order di�usion equation� in which one moves in the normal
direction to the curve in proportion to 	��� � see ���	� ���	� ���	� for applications of these
$ows to image processing� Finally� if the group G is �volume�preserving�� meaning that
it leaves the 
p � ���form dx� � � � � � dxp � du invariant� then E
L� itself is a di�erential
invariant� and hence the simplest invariant evolution equation is ut � P � where P dx is the
lowest order invariant p�form� This case includes the Euclidean and special a�ne groups�
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Table �

Primitive Lie algebras of vector �elds in C �

Generators Dim Structure

���� �x� �u� x�x � u�u� u�x� x�u � sa
��

���� �x� �u� x�x� u�x� x�u� u�u � a
��

���� �x� �u� x�x� u�x� x�u� u�u� x
��x � xu�u� xu�x � u��u  sl
��

Table �

Transitive� imprimitive Lie algebras of vector �elds in C �

Generators Dim Structure

���� �x� x�x � u�u� x
��x � �xu�u � sl
��

���� �x� x�x � u�u� x
��x � 
�xu� ���u � sl
��

���� �x� x�x� u�u� x
��x � xu�u � gl
��

���� �x� x�x� x
��x� �u� u�u� u

��u � sl
��� sl
��

���� �x� ��
x��u� � � � � �k
x��u k � � C n C
k

���� �x� u�u� ��
x��u� � � � � �k
x��u k � � C
�
n C

k

���� �x� x�x � �u�u� �u� x�u� � � � � x
k���u k � � a
�� n C

k

�� � �x� x�x � 
ku� xk��u� �u� x�u� � � � � x
k���u k � � a
�� n C

k

��!� �x� x�x� u�u� �u� x�u� x
��u� � � � � x

k���u k � � 
a
���C � n C
k

����� �x� �x�x � 
k � ��u�u� x
��x � 
k � ��xu�u�

�u� x�u� x
��u� � � � � x

k���u k � � sl
�� n C
k

����� �x� x�x� x
��x � 
k � ��xu�u� u�u�

�u� x�u� x
��u� � � � � x

k���u k � � gl
�� n C
k

In Cases ��� and ���� the functions ��
x�� � � � � �k
x� satisfy a kth order constant coef�
�cient homogeneous linear ordinary di�erential equation D�u	 � ��

In Cases ��� � ���� we require k � �� Note� though� that if we set k � � in Case �����
and replace u by u�� we obtain Case ���� Similarly� if we set k � � in Case ����� we obtain
Case ���� Cases ��� and �� for k � � are equivalent to the Lie algebra f�x� ex�ug of type
���� Case ��! for k � � is equivalent to the Lie algebra f�x� �u� u�ug of type ����

��



Table �

Intransitive Lie algebras of vector �elds in C �

Generators Dim Structure

���� ��
x��u� � � � � �k
x��u k C
k

���� ��
x��u� � � � � �k
x�� u�u k � � C n C
k

���� �u� u�u� u
��u � sl
��

Table �

Lie algebras of contact transformations in C �

Generators Dim Structure

���� �� x� x�� ux� xux� u
�
x � sa
�� n C

���� �� x� x�� u� ux� xux� u
�
x � a
�� n C

���� �� x� x�� u� ux� xux� x
�ux � �xu�

u�x� �uux � xu�x� �xuux � �u� � x�u�x �� so
�� � sp
��

��



Table �

Di	erential invariants of transformation groups in C �

Fundamental Invariant Lie
di�erential invariant
s� one�form determinant

���� u
����
� R	 u

���
� dx u��

���� R
����
	 S� u���

p
R	 dx u��R	

���� S
����
� V� u��� S

���
� dx u�S

�
�

���� u�	
�uu� � �u��� udx u�

���� 
u� � u������
u� � �uu� � �u��
p
u� � u� dx u� � u�

���� Q
����
� S� u��

p
Q� dx uQ�

���� Q��� U� u���

p
Q� dx u�Q

�
�

���� W 
x���D�u	 dx W 
x�

���� Dx logD�u	 dx W 
x�D�u	
���a� u

���k�����
k uk�� k �� � u

����k���

k dx uk

���b� uk� u��k��uk�� k � � uk�� dx uk��

�� � uk��e
uk�k
 e�uk�k
 dx �

��!� u��k��ukuk�� u��k uk�� dx ukuk��

����� u
���k�����k���
k Qk�� u

���k���
k dx u�k

����� Q
����
k�� Sk�� u��k

p
Qk�� dx ukQk��

���� x� D�u	 dx W 
x�

���� x� Dx logD�u	 dx W 
x�D�u	
���� x� u��� Q� dx u��

��� u
����
�

eR� u
���
� dx u��

��� eR�����
eS
 u���

qeR� dx u��
eR�

��� T
����
� Z� u��� T

��	
� dx u�T

�
�

W 
x� denotes the Wronskian determinant of ��
x�� � � � � �k
x�� and D is a kth order linear
ordinary di�erential operator whose kernel is spanned by ��
x�� � � � � �k
x�� Furthermore�

Qk�� � 
k � ��ukuk�� � 
k � ��u�k��� R	 � �u�u	 � �u���

Sk�� � 
k � ���u�kuk�� � �
k � ��
k � ��ukuk��uk�� � �
k � ��
k � ��u�k���eR� � �u�u� � �u�	�
eS
 � !u��u
 � ��u�u	u� � ��u�	�

T� � ��u��u� � ��u��u	u
 � �!u��u
�
� � � �u�u

�
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DxQ��
�
�
� u�u�Q�DxQ� � 
�u�u� � u���Q

�
��

V� � u��
�
S�D

�
xS� ���


 
DxS��
�
�
� u�u�S�DxS� � �

� 
!u�u	 � �u���S
�
� �

Z� � u��
�
T�D

�
xT� � �

�

DxT��

�
�
� u�u	T�DxT� � 	

�

�u�u� � �u�	�T

�
� �

��


