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Abstract. This paper surveys recent results on the classification of differential invari-
ants of transformation groups, and their applications to invariant differential equations and
variational problems.

Consider a group of transformations acting on a jet space coordinatized by the inde-
pendent variables, the dependent variables, and their derivatives. Scalar functions which
are not affected by the group transformations are known as differential invariants. Their
importance was emphasized by Sophus Lie, [13], who showed that every invariant sys-
tem of differential equations, [14], and every invariant variational problem, [17], could
be directly expressed in terms of the differential invariants. As such they form the basic
building blocks of many physical theories, where one begins by postulating the invariance
of the equations, or the variational principle, under a prescribed symmetry group. Lie
also demonstrated, [14], how differential invariants could be used to integrate invariant
ordinary differential equations, and succeeded in completely classifying all the differential
invariants for all possible finite-dimensional Lie groups of point transformations in the
case of one independent and one dependent variable. Lie’s results were pursued by Tresse,
[25], and, much later, Ovsiannikov, [20]. In this paper, I will survey some recent results
extending the earlier classification theorems, [19], and then discuss recent applications to
the study of invariant evolution equations, which is of great interest in image processing
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and computer vision, cf. [21], [22]. Space considerations preclude the inclusion of proofs
and significant examples here.

I shall assume the reader is familiar with the fundamentals of the Lie theory of sym-
metry groups of differential equations, as discussed, for instance in my book, [18]. I shall
employ the same basic notation here. For simplicity, I shall deal with complex-valued
functions here, although most of the results are equally in the real case. Let G be an
r-dimensional local transformation group acting on the space M C X x U ~ C? x C? co-
ordinatized by p independent and ¢ dependent variables. In the single dependent variable
case, ¢ = 1, we allow G to be a group of (first order) contact transformations. (Backlund’s
Theorem, [2], implies there are no other contact transformation groups.) Let G denote
the associated prolonged group action on the jet space J”, whose coordinates are denoted
by (w,u(n)). The space of infinitesimal generators of G — its Lie algebra, will be denoted
by g, with associated prolongation g(™.

In order to properly study the differential invariants of a transformation group, we
must understand the geometry of its prolongations. Let s, denote the maximal orbit
dimension of the prolonged action G(™, so that G(") acts (semi-)regularly on the open
subset V™ = {z € J* | dimg\™|, = s, } C J" consisting of all points contained in orbits of
maximal dimension. We shall, in fact, assume that G("™) acts regularly on V", although all
our results, suitably interpreted, are valid in the semi-regular case. The orbit dimensions
satisfy the elementary inequalities

p+n—1
Sn—1 S $n S Sn—1 + q( n ) (1)
In particular, they form a nondecreasing sequence
89 L5y <8y <o <y (2)
that is bounded by the dimension of ¢ and hence eventually stabilizes: s,, = s for all

m sufficiently large. We will call s the stable orbit dimension, and the minimal order n
for which s,, = s the order of stabilization of the group. The following result is due to
Ovsiannikov, [20].

Theorem 1. The stable orbit dimension of a transformation group G is equal to the
dimension of G if and only if G acts locally effectively.

Here “locally effectively” means that the only group element in some neighborhood of
the identity which acts trivially on M is the identity itself. If G does not act effectively,
we can replace it by the quotient group G/G,;, where G, = {g|g-z =z for all ¢ € M}
is the global isotropy subgroup, which does act effectively on M in essentially the same
way as G itself. Consequently, there is no loss in generality in assuming that all our group
actions are (locally) effective, and hence s = r = dim G in all cases.

As we shall see, the determination of the precise order of stabilization n is of great
significance. A cautionary note: it is possible for the orbit dimension to “pseudo-stabilize”,
meaning that s; = s, , < s;,, for some k < n. However, the following result rules out a
pseudo-stabilization unless the prolonged orbits have rather high dimension.
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Theorem 2. Suppose that, for somen > 0, the maximal orbit dimensions of the pro-
longed group actions satisfy s,, | < s, =8, < ¢'™. Then n is the order of stabilization

of G.

Corollary 3. Suppose that the maximal orbit dimensions of the prolonged group
actions satisfy s; = s;., and, also, s, = s, ., for some n > k. Then s, = s, for all
m > n.

Thus, there can be at most one such pseudo-stabilization. Corollary 3 provides a
significant strengthening of Ovsiannikov’s stabilization theorem, [20; p. 313], which states
that if s, =5, ., =5,.,,then s =35, for all m > n.

Example 4. Let » > 3. Let z,u € C. Consider the r-dimensional group generated
by the vector fields 8,,98,,20,,...,2"7*9,,28,+(r—2)ud,. The maximal orbit dimensions

2z Y

are given by s, =1, s, =2,...,8, =8, ,=7r—1,s _, =s_ = --- =r. Thus, the
orbit dimensions pseudo-stabilize at order » — 3, and finally stabilize at order » — 1. In
particular, we see that a pseudo-stabilization can occur at arbitrarily high order. On the
other hand, as we shall see, this example is effectively the only known example where

pseudo-stabilization of orbit dimensions actually occurs.

In the scalar case, p = ¢ = 1, one can obtain very detailed information owing to Lie’s
complete classification of all possible Lie groups of point and contact transformations act-
ing on a two-dimensional space, [12], [16]; see also [24] for a modern treatment, and [6] for
recent applications to quantum mechanics. The basic result is that any finite-dimensional
transformation group G acting on a two-dimensional complex manifold without fixed points
(0 dimensional orbits) is locally equivalent, under a point (or contact) transformation, to
one of the groups appearing in Tables 1-4 at the end of the paper. The groups of point
transformations naturally fall into three classes — the primitive groups, for which there
is no invariant foliation, the imprimitive, transitive groups, and, finally, the intransitive
groups. In addition, there are just three finite-dimensional groups of contact transforma-
tions not contact-equivalent to any point transformation group; in Table 4, I have listed
the characteristics Q(z,u,u,) of the infinitesimal generators, the first order generators
themselves being recovered by the standard formula

V(l):_a_Q2+(Q_pa_Q>2_|_<8_Q+p8_Q>E. (3)

Op Oz Op ) Ou Oz Ou ) Op

The complete classification allows us to determine the stabilization order for every possible
transformation group in the plane, and, in addition, the complete system of differential
invariants. One remarkable consequence is that, in the scalar case, Example 4 provides
the only examples of transformation groups that pseudo-stabilize. (Indeed, I do not know
of any multi-dimensional examples of pseudo-stabilization which are not straightforward
generalizations of this example!)

Theorem 5. Let M C X x U ~ C x C. Let G # {e} be an r-dimensional locally
effective group of point or contact transformations. Then the prolonged orbit dimensions
are given by one of the following three mutually exclusive possibilities:
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i. The Regular Case: s, =k + 2 for k <r —2, while s,, =7 form > r — 2.
ii. The Intransitive Case: s, =k + 1 for k <r —1, whiles, =7 form >r — 1.

iii. The Pseudo-stabilization Case: s, = k+ 1 fork <r-3,s._, =r—1,s =7 for
m > r — 1. In this case, G is necessarily equivalent to the group action in Example 4,
which is Case 2.7 for k = « in the Tables.

A differential invariant is a scalar function I: J* — C which satisfies I(g(™-(z,u(™)) =
I(z,u™) for all ¢ € @™, and all (z,u'™) € J® where the prolonged transformation
g™ - (z,u™) is defined. Differential invariants (of connected groups) are most easily
determined using infinitesimal methods.

Proposition 6. A function I:J™ — C is a differential invariant for a connected trans-

formation group G if and only if V(n)(I) = 0 for every prolonged infinitesimal generator
(n) (n)
vim ¢ g(m),

According to Frobenius’ Theorem, there are, in general,
in:dimJn—sn:p+q(p+n>—sn (4)
n

functionally independent differential invariants of order at most n near any point z € V™.
Since each differential invariant of order less than n is included in this count, the integers
¢,, form a non-decreasing sequence: ¢, < ¢; <, < --.. The difference j,, =1, — ¢, _; will
count the number of strictly independent nt! order differential invariants.

The basic method for constructing a complete system of differential invariants is to
use invariant differential operators. A differential operator is said to be G-invariant if it
maps differential invariants to higher order differential invariants, and thus, by iteration,
produces hierarchies of differential invariants of arbitrarily large order. For n sufficiently
large, we can guarantee the existence of sufficiently many such differential operators so as
to completely generate all the higher order independent differential invariants of the group
by successively differentiating lower order “fundamental” differential invariants.

The most direct way to construct the required invariant differential operators utilizes
differential forms and the contact structure on the jet space J”. Recall first that a differ-
ential form ® on J” is called a contact form if it is annihilated by all prolonged functions.
Every contact form on J” is a linear combination of the basic contact one-forms

p
05 = du§— Y uG,da’,  a=1,...,q, 0<#J<n, (5)

=1

where ©§ = D ;u® denotes the J-th derivative of u®. Contact transformations (including
prolonged point transformations) are distinguished by the fact that they map contact
forms to contact forms. A one-form w on J™ is called horizontal if it annihilates all vertical
tangent directions; equivalently it can be written as w = Y Pi(w,u(n)) dz?.

=1
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Definition 7. Let G be a transformation group. A differential form w on J" is
called contact-invariant if and only if, for every ¢ € G, we have (g(n))*w = w + 0 for
some contact form § =6, . A contact-invariant coframe is a set of p linearly independent

horizontal contact-invariant one-forms {w?,...,w?} on J".

Contact-invariant coframes are the jet space counterparts of the differential geometric
coframes that form the foundation of the Cartan equivalence method, [3], [5]. Note that
if I is any differential invariant, its total differential DI =>2_ D,I dz’, which is just the
horizontal component of its ordinary differential dI, is a contact-invariant one-form. Thus,
knowledge of sufficiently many independent differential invariants allows us to construct
a contact-invariant coframe. (However, in almost every case, such a coframe is not the
simplest or lowest order one.) If F(w,u(m)) is any differential function, we can rewrite its
total differential in terms of the coframe,

p
DF =) DFw". (6)
k=1

The resulting coframe differential operators D, provide the desired invariant differential
operators.

Proposition 8. Let D,,...,D, be the coframe differential operators associated with

a contact-invariant coframe on J". If I(w,u(m)) is any differential invariant of order m,
then D, I is a differential invariant of order < max{n,m + 1}.

Theorem 9. Suppose that G is a transformation group, and let n be its order

1

of stabilization. Then there exists a contact-invariant coframe w-,...,w? on J", with

corresponding invariant diflerential operators D,,...,D,,, and a system of fundamental
differential invariants J,,...,J , of order at most n+2, such that, locally, every differential
invariant can be written as a function of these differential invariants and their derivatives
Dj1 "'Dj,,,']w k>0,1 SJM <p,v=1,...,m.

Except in the case of one independent variable, the precise number m of fundamental
differential invariants required to construct the complete system of differential invariants
is not known. If p = 1, then it can be proved, [19], that the number of fundamental
differential invariants one needs is exactly ¢, the number of dependent variables. Let us
now specialize even further, to the scalar case p = ¢ = 1. Assuming G # {e} acts locally
effectively, Theorem 5 implies that there are precisely two fundamental differential invari-
ants, I(z,u(®) and J(z,u("), having orders 0 < s < r = dim G respectively. Moreover,
there exists a contact-invariant horizontal form w = L(w,u(t)) de having order t < n, the
stabilization order of G; the corresponding invariant differential operatoris D = (1/L)D,.
In the regular case, the lowest order differential invariant [ (w,u(’"_l)) has order exactly
r — 1, and every other differential invariant (including J) can be written in terms of I
and its derivatives D™ I. In the intransitive case, the lowest order differential invariant
I(z,u) has order 0, whereas in the pseudo-stabilization case, the lowest order differential
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invariant I(w,u(’"_2)) has order » — 2. In these two cases, the differential DI = D_Idz
provides a contact-invariant one-form, with corresponding differential operator D = d/dI;
every other differential invariant can be written in terms of I, J, and the differentiated

invariants D™J = d™J/dI"™.

In [14], Lie determined the differential invariants for each of the point transformation
groups appearing in Tables 1-3. Apparently, he did not publish the formulas for the differ-
ential invariants of the three contact transformation groups. A complete list of differential
invariants and invariant one-forms for the point and contact transformation groups appears
in Table 5. In this table, and below, we use the notation u, = D} u for the higher order
derivatives of the scalar function u. Of particular interest are certain subgroups of the
projective group SL(3) — Case 1.3 in Table 1. The Euclidean group E(2), which is a real
form of the complex transformation group of Type 2.7 for k = 1, a = 0, the special afline
group SA(2) = SL(2) x C?, Case 1.1, and the full affine group A(2) = GL(2) x C?, Case 1.2,
play a key role in differential geometric applications, discussed in detail in Guggenheimer,
[10]. In these cases, the lowest order invariant one-form is the group-invariant arc length
element ds, and the lowest order differential invariant is the group-invariant curvature «.
In particular, in the Euclidean case, ds = 1/1+ u2dz and & = u,, /(1 + u2)%/2. Thus,
for the above metnioned groups, a complete system of differential invariants is provided
by the curvature and its derivatives with respect to arc length, d"x/ds™. Indeed, one is
tempted to define, for any regular group of point or contact transformations in the plane,
the group-invariant arc length to be the lowest order contact-invariant one-form, which is
unique up to constant multiple, and the group-invariant curvature to be the lowest order
fundamental differential invariant, which is unique up to a function thereof.

We recall next how differential invariants are used to characterize systems of differ-
ential equations and variational problems which admit a prescribed symmetry group; see
[13], [17], [18], [20]. The basic result holds for arbitrary numbers of independent and
dependent variables.

Theorem 10. Let G be a transformation group, and let I,...,I,, k =1, be a
complete system of functionally independent ntt order differential invariants on an open
subset V™ C J"*. A system of differential equations admits G as a symmetry group if and
only if, when restricted to the subset V", it can be rewritten in terms of the differential
invariants:

A (z,u'™) = F (I,(z,u'™),..., L (z,u'™)) =0, v=1,...,L (7)

Thus, the only invariant systems of differential equations of order n which are not
described by differential invariants are those contained in the singular subvariety

st=y\vr={ze

dimg(n)|z < sn} ,

where the orbits of the prolonged action are not maximal. In particular, if G acts locally
effectively and n is at least the stabilization order of G, then S§™ is just the subset of J”
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where the prolonged infinitesimal generators of G are linearly dependent. Any G-invariant
system of differential equations can then be decomposed into the union of a regular com-
ponent, which is a subset of V™ and can be (locally) characterized by the vanishing of a
system of differential invariants, as in Theorem 10, and a singular component, which is
a subset of S™ and hence is characterized by the linear dependence of the infinitesimal
generators, together with (possibly) additional conditions.

In the scalar case, the singular subvariety can be characterized using the method of
Lie determinants, cf. [14]. Let

o g DN 0y
s * ox — " Ou, ey

where u,, = D*u, be the prolonged infinitesimal generators of the r-dimensional transfor-
mation group GG. According to Theorem 5, in the regular case the stabilization order is
r — 2, hence the singular subvariety is given by the vanishing of the Lie determinant

& e 901 90’1"_1
52 Yo Po ... 90;_

det | . ) ) : =0, (8)
[

which defines a single ordinary differential equation for u as a function of z. Equation
(8) is the only G-invariant differential equation of order < r — 2. In the anomalous cases
(intransitive or pseudo-stabilization), the Lie determinant (8) vanishes identically. Since
the stabilization order is » — 1, the singular subvariety is given as the subset of J"~! where

the prolonged infinitesimal generators Vgr_l), e ,ngr_l)

are linearly dependent, which can
be checked by forming an r x (r + 1) matrix having the form (8) but whose columns go up
to order r — 1, and computing the determinant of a suitable maximal r X r minor. By a
slight abuse of terminology, we shall call this maximal minor the Lie determinant in this

case.

Theorem 11. Suppose G is an r-dimensional transformation group acting on M C
X xU ~ C x C. Then every invariant differential equation can either be written in
terms of the fundamental differential invariants or by the vanishing of the associated Lie
determinant.

Example 12. Consider the four parameter group generated by 9 ,20,,9,,u0,,

T? T u?

which is Case 2.9 for £ = 1. The second prolongations of these vector fields are 9,

z9, —u,0, —2u,0, ,0,, andud,+u,0, +u,,0, ,hencethe Lie determinant is

1 0 0 0
z 0 —u, —2u, |

det 0 1 0 0 —U, U,
0 v wu, U,



Therefore, the singular invariant differential equations are v, = 0 and »,, = 0. Every
other invariant differential equation can be written in terms of the fundamental differential
invariant [ = w_u___ /u?_ and its invariant derivatives D™I, where D = (u_/u,,)D,. For
example, the invariant third order equations are all of the form v u,_ = cu?_.

The full list of Lie determinants for all Lie groups of point and contact transformations
in the complex plane can also be found in Table 5. In this table, we have omitted any

inessential constant factors.

Detailed results on the symmetry classification of ordinary differential equations, and
their integation, follows immediately from the results in Table 5. See Lie, [14], for a full
range of applications. As an example, we deduce a general result on the characterization of
differential equations having maximal and submaximal symmetry groups. First, we need to
know when an ordinary differential equation admits a finite-dimensional symmetry group.
The following theorem is due to Lie; see [15], [7], for a proof.

Theorem 13. The point transformation symmetry group of a normal system of
ordinary differential equations of order n > 2 is finite-dimensional. The contact trans-
formation symmetry group of a normal ordinary differential equation of order n > 3 is a
finite-dimensional.

Theorem 14. Let A(z, u(n)) = 0 be a ntt order scalar ordinary differential equation.

i. If n = 2, then A = 0 admits at most an eight-parameter symmetry group of point
transformations. Moreover, the symmetry group is eight-dimensional if and only if
A = 0 is equivalent to the linear equation u,, = 0, with symmetry group of type 1.3.

ii. If n > 3, then A = 0 admits at most an (n + 4)-parameter symmetry group of point
transformations. Moreover, the symmetry group is (n + 4)-dimensional if and only if
A = 0 is equivalent to the linear equation u,, = 0, with symmetry group of type 2.11,
for k = n.

iii. If n = 3, then A = 0 admits at most a ten-parameter symmetry group of contact
transformations. Moreover, the symmetry group is ten-dimensional if and only if
A = 0 is equivalent to the linear equation u,,, = 0, with symmetry group of type 4.3.

iv. If n > 4, then A = 0 admits at most an (n + 4)-parameter symmetry group of contact
transformations. Moreover, the symmetry group is (n + 4)-dimensional if and only if
A = 0 is equivalent to the linear equation u, = 0.

The ordinary differential equations with submaximal symmetry groups, meaning those
whose dimension is as large as possible without being maximal, are also of interest. In the
second order case, the submaximal point symmetry group has dimension at most 3; the
invariant ordinary differential equations are

B 3u?

z 3 o 3 2\3/2

Uy, = 5 + cu”, U,, = 6uu, —4u” + c(u, —u’)°’*,
_ . (a-2) /(1) P
u,, = Cu, , u,, =ce ",



where ¢ is a constant; the associated symmetry groups are, respectively, of types 2.1, 2.2,
2.7, with k =1, a £ 0, %,1,2, and 2.8, with £ = 1, ¢f. [11]. For n = 3, the submaximal
point symmetry group has dimension 6; the invariant differential equation is

2u,u,,, —3u>, =0, (9)

T

which has symmetry group SL(2) x SL(2) of type 2.4. For n = 5, the submaximal point
or contact symmetry group has dimension 6; the invariant differential equation is

9u>_u —45u_u, u  +40ud =0, (10)

T "Xl T "X T TrT

which has symmetry group SL(3) of type 1.3. The solutions u = f(z) of (10) are all graphs
of conic sections. For n = 7, the submaximal contact symmetry group has dimension 10;
the invariant differential equation is

10udu, — T0uiu,ug — 49uul + 280usulu, — 175u; = 0. (11)

which has contact symmetry group SO(5) of type 4.3. In all other cases, the submaximal
symmetry group has dimension n+2. The equation is equivalent to either a linear equation
(which is not equivalent to u,, = 0), or

2 _ 2
3uzzuzzzz - 5uzzz - 07 or (7’1, - 1)un—2un —nu,_ 4,

having respective symmetry groups of type 2.6, 1.2, or 2.11, for k = n — 2.

As mentioned in the introduction, differential invariants are also used to characterize
all invariant variational problems associated with a given transformation group. Here,
by symmetry of a variational problem, we shall mean a standard variational symmetry,
without any divergence terms, cf. [18]. The following result originally appears in Lie, [17].

Theorem 15. Let G be a transformation group, and assume that there exists a
contact-invariant horizontal p-form Q, = Lo(w,u(n))dw on J". A variational problem
admits G as a variational symmetry group if and only if it is of the form [ IQ = [ IL, dz,
where I is an arbitrary differential invariant of G.

1

Any contact-invariant coframe w-,...,w? produces a contact-invariant p-form =

w! A -+ AwP. Thus every G-invariant variational problem has the form

Llu] = /L(w,u(n))dw = /F(Il(w,u(n)),...,Ik(w,u(n))) WA A WP, (12)

where I,,...,I, are a complete set of functionally independent differential invariants. In
the scalar case, then, the most general invariant variational problem has the form [ Jw =
JILdz, in which I is an arbitrary differential invariant, and w = Ldz is the invariant
one-form. In our geometric interpretation, then, w = ds is the G-invariant element of arc
length, and [ is and arbitrary function of the curvature and its derivatives with respect to
arc length.

Table 5 immediately provides a symmetry classification of the scalar variational prob-
lems, generalizing results of Gonzdlez—Ldpez, [8], for point transformation groups. Recall
first that, in the scalar case, a ntt order Lagrangian L(w,u(n)) is called nonsingular if it
satisfies the nondegeneracy condition 82 L(du,,)? # 0.
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Theorem 16. A nonsingular first order Lagrangian admits a symmetry group of
dimension < 3. A nonsingular ntt order Lagrangian, n > 2, admits a symmetry group of
dimension < n 4+ 3.

The maximally symmetric first order Lagrangians are all equivalent, under a complex-
valued transformation, to a constant multiple of one of the following,
(13)

u:n7 T ’

having respective symmetry group of type 2.7, with £ = 1, 2.2, and 2.8. For n > 2, one
family of maximally symmetric Lagrangians is given by L = ui/ (n+1), having a symmetry
group of type 2.10, with & = n. There are, in addition, five “anomalous” maximally
symmetric Lagrangians:

_ 2

3 3/
uzz’ ’ u([;([;;[;)

uz
uzz

{/10u§u7 — 70u§u4u6 — 49u§u§ + 280u3uiu5 — 175ui
’11,3 )

The symmetry groups are Cases 1.1, 2.4, 4.1, 1.3, 4.3 — the third and fifth being maximally
symmetric only for contact symmetry groups. Each of the anomalous Lagrangians defines
the invariant arc length functional for a particular geometric group. Interestingly, the
simple quadratic Lagrangian L = u?, which has linear Euler-Lagrange equation, is not
maximally symmetric for n > 2 — it has only an (n + 2)-dimensional symmetry group,
also of type 2.7. Thus, quadratic Lagrangians do not have the most symmetry, providing
an explicit counterexample to the “meta-theorem” that linear objects are the ones with the
highest degree of symmetry. (It should be remarked, however, the quadratic Lagrangians
are maximally symmetric for divergence symmetries, [8].)

These remarks motivate an interesting unsolved problem. Any symmetry of a varia-
tional problem is also a symmetry of its Euler-Lagrange equations (although the converse is
not necessarily true). Thus the Euler-Lagrange equation for each G-invariant Lagrangian
can be rewritten in terms of the differential invariants of G. However, I do not know a
general formula for calculating the invariant formulation of the Euler-Lagrange equations
directly from the invariant formula for the Lagrangian, although special cases do appear
in [1]. In the scalar case, the Euler-Lagrange equation for the G-invariant functional is ex-
pressed in terms of the G-invariant curvature and its derivatives with respect to arc length.
In simple cases (Euclidean or special affine) the Euler-Lagrange equation is a multiple of
the curvature, and so the arc-length minimizing curves are those having zero curvature.
For more general cases (including the full affine and projective groups) this is not true —
the curvature of the arc-length minimizing curves satisfies a certain interesting differential
equation. I do not understand what this implies about the underlying geometry.
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Finally, I shall describe some recent applications to the symmetry classification of
evolution equations. This task was begun by Sokolov, [24], in his study of integrability
and solitons. The classification has received added impetus from recent work, done in
collaboration with G. Sapiro and A. Tannenbaum, on applications to computer vision and
image processing, including connections with geometric curve-shortening flows; see [23],
[21], [22]. Let G be a transformation group acting on M C X x U, and consider a scalar
evolution equation

Uy = K(w,u(n)), (15)

in which ¢ is an additional independent variable (the time), and the right hand side depends
only on the spatial (z) derivatives of u. The group action is extended to M x C, with G
acting trivially on ¢ € C. An interesting remark is that the evolution equation (15) admits
G as a symmetry group if and only if the contact form

6 1 P ,
ot N ude 16

is a G-invariant one-form on J™. The following result provides a complete characterization
of all the G-invariant evolution equations, cf. [22].

Theorem 17. Suppose L(z,u'™) is a G-invariant Lagrangian with nonvanishing
Euler-Lagrange expression, E(L) # 0. Then every G-invariant evolution equation has the
form

Uy = Ty I7 (17)
where I is an arbitrary differential invariant of G.

Remark: Theorem 17 can be extended to several dependent variables: one requires
g, the number of dependent variables, distinct G-invariant Lagrangians L,,..., L, , with
the property that their “Euler-Lagrange matrix” E = (Ea(Lﬁ)) is invertible. The most
general G-invariant evolution equation then has the form

u, =L, E7'I, (18)

where I is a column vector of differential invariants. (Note that each Lg =1I4L, for some
differential invariant I, so the L, in (18) can be replaced by any other Lg by suitably
modifying the invariant vector I.)

The evolution equation (17) provides the most general invariant evolution equation;
however, choosing I = const does not necessarily yield the simplest such invariant equation.
For symmetry groups of importance in image processing, there is an alternative way of
characterizing invariant evolution equations.
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Theorem 18. Let G be a subgroup of the projective group SL(3). Let ds = Ldz
denote the G-invariant one-form of lowest order and k = I its fundamental differential
invariant. Then every G-invariant evolution equation has the form

u
’Ll,t = Iil;; J, (19)
where J is an arbitrary differential invariant for G, and thus a function of k and its arc-
length derivatives d*x/ds".

Note that, as a corollary of Theorems 17 and 18 we find that, for subgroups G of
the projective group, the Euler-Lagrange expression associated with any G-invariant La-
grangian, including the G-invariant arc-length functional, has the form E(L) = JL*/u,,
for some differential invariant J. For the similarity, special affine, affine, and full projective
groups, (19) with J constant is distinguished as the unique G-invariant evolution equa-
tion of lowest order. For the Euclidean group, the simplest nontrivial invariant evolution
equation is given by u, = c4/1 + u2 since, in this case, the curvature invariant x has order
2, so we can take J = ¢/k. In the Euclidean case, the flow (19) defines the fundamental
curve shortening flow, in which ones moves the curve in its normal direction by an amount
proportional to the curvature k. This flow has been of great interest in geometry; see par-
ticularly the foundational work of Gage and Hamilton, [4], and Grayson, [9]. The special
afline version is also a second order diffusion equation, in which one moves in the normal
direction to the curve in proportion to x/3 — see [23], [21], [22], for applications of these
flows to image processing. Finally, if the group G is “volume-preserving”, meaning that
it leaves the (p + 1)-form dz! A --- A dz? A du invariant, then E(L) itself is a differential
invariant, and hence the simplest invariant evolution equation is v, = P, where P dz is the
lowest order invariant p-form. This case includes the Euclidean and special affine groups.
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1.1.
1.2.
1.3.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.

2.11.

In Cases 2.5 and 2.6, the functions n,(z),..
ficient homogeneous linear ordinary differential equation D]u] = 0.

Table 1

Primitive Lie algebras of vector fields in C2

Generators

a,,0

T Tu?

a,,0

T? w?

a,,0

T? w?

zd, —ud,,ud,,zd,
z0,,u0,,z0,,u0,

Table 2

zd,,ud,,20,,ud,, 28, + zud,,zud, +u*d,

Dim

Structure

sa(2)

a(2)
sl(3)

Transitive, imprimitive Lie algebras of vector fields in C?

Generators

9,20, —ud,,z>8, — 2zud,
9,20, —ud,,z*d, — (2zu + 1)9,
9,,20,,ud,, x>0, — zud,
d,,20,,2%8,,0,,ud,,u>d,
9,,m1(2)0y5 - - -, (2)0,
9,,ud,,n,(2)d,,...,n,(x)0,

9,28, + aud,,d,,20,,...,£* 719,
d,,20, + (ku +2")d,,8,,29,,...,2"719,
a,,z8,,ud,,8,,20, ,2*8,,...,£" 719,
9,,2z0, + (k — 1)ud,,z*8, + (k — 1)zud,,
d,,28,,2%8,,...,2" 19,

d,,20,,2>0, + (k — 1)zud,,ud,,

2 k—1
9,,20,,z°0,,...,z" "0,

kE+1
k+2
k+2
k+2
k+3

k+3

k+4

Structure

(a(1) e C) x C*
5((2) x CF

al(2) x CF

.»M(z) satisfy a k! order constant coef-

In Cases 2.5 — 2.11 we require k > 1. Note, though, that if we set £ = 0 in Case 2.10,
and replace u by u?, we obtain Case 2.1. Similarly, if we set £ = 0 in Case 2.11, we obtain
Case 2.3. Cases 2.7 and 2.8 for k = 0 are equivalent to the Lie algebra {9,,e"9,} of type
2.5. Case 2.9 for k = 0 is equivalent to the Lie algebra {9,,9,,u0,} of type 2.6.
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Table 3

Intransitive Lie algebras of vector fields in C?

Generators Dim Structure
3.1. n(2)0,,...,n,(x)0, k CF
3.2. n(2)0,,...,n,(z),ud, kE+1 Cx C*
3.3. 9,,ud,,u%d, 3 s((2)
Table 4

Lie algebras of contact transformations in C?

Generators Dim Structure
4.1. lyz,2*,u,,zu,,u’ 6 sa(2) x C
4.2. 1,z,2%,u,u,,zu,,u’ 7 a(2) x C

2 2
43. l,z,z°,u,u,,zu,,z"u, — 2zu,

u?, 2uu, — zul, druu, — 4u® — o’u? 10 50(5) ~ sp(4)
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Table 5

Differential invariants of transformation groups in C?

Fundamental Invariant Lie
differential invariant(s) one-form determinant
1.1. u2_8/3R4 u;/?’ dz ug
1.2, R;*%s, u; /R, dx u2R,
1.3, Sy, uy 1S da Uy S
2.1. u_4(2uu2 — 3u%) u dx u?
2.2. (u, — u2)_3/2 (u, — 6uu, + 4u3) Vu, —u?de u; — u?
2.3. 2_3/253 ut/Q, dz uQ,
2.4. Q;°U, ult/Q, d u, Q2
2.5. W (z) ' D[u] dz W(z)
2.6. D, log Dlu] dz W (z)D[u]
2.7a. ugca_k)_l_luk_i_l k # u,:(a_k)_l dz Uy,
2.7b. Up,s u,;iluk+2 k=« Uy, de Up g
2.8. uk_i_leu’“/k! e us/R dg 1
2.9. u,;f_lukuk_i_Q ulzluk_i_l dz UpUp g
2.10. u,:2(k+3)/(k+1)Qk+2 ui/(k—i_l) dz ul
—3/2 _

2.11. Qk—i—é Skta up 'V Qg d U@t
3.1. z, Dlu] dz W(z)
3.2. z, D, logDlu] dz W (z)D[u]
3.3. z, u1_2Q3 dz u’
4.1 u;8/3§5 u;/?’ dz ug
4.2 §;3/2§6 u?’_lw/ﬁs dz ugﬁs
4.3 T.°/% 7, wy T de u, T2

W (z) denotes the Wronskian determinant of n,(),...,n,(z), and D is a kth order linear

ordinary

differential operator whose kernel is spanned by n,(z),...,n,(z). Furthermore,

Qriz = (b + Dugupyy — (B +2)uiy;, Ry = 3uyu, — 5us,

Sprs = (B + 1)2'“%“1@4-3 —3(k + 1)(k + 3)upup g uyp, +2(k +2)(k + 3)'“:114-1,
Es = 3uguy — 5ui, §6 = 9u§u6 —4duzu, uy + 40ui,
T, = 10u§u7 — 70u§u4u6 — 49u§u§ + 280u3uiu5 — 175ui,
Us = u% [Q3D3Q3 - %(D$Q3)2] + U, Q3 D, Q5 — (2uguy — ug)Q§7
Vi = ug [SsDiss - _%(Dzss)ﬂ + uyug S5 D, S5 — %(9'“2“4 - 7“3)5527
Zy = uz|T; D;T; — §(D,T;)°] + wgu, T, D, Ty — 5(Tuguy — 5u3)T7.
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