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The following question was raised.

Suppose G is a Lie group acting on R™. Let S C R"™ be a submanifold with differential
invariant algebra generated by I,,. Suppose we know S C N where N C R" is a submanifold
of higher dimension. What can we say about the differential invariants of S?

Let’s restrict attention to curves C' C R™, although the methods should work in
general. To avoid having to deal with the reparametrization invariance, let’s assume
the curve is (locally) given by the graph of a function C = {u = f(x)} where (z,u) =
(x,ul,...,u""1) are the coordinates on R™.

Now let’s assume we have constructed a moving frame for the jets of curves. This is
a situation where it helps to think of the moving frame normalizations or choice of cross-
section as placing the submanifold (curve) C' into normal form C' = ¢ - C, as discussed
in [4]. In other words, we use group transformation to normalize certain coefficients in
the Taylor expansion of the curve. The unnormalized Taylor coefficients are then the
differential invariants, and their general formulas can be obtained using the “all-powerful”
recurrence formulae, [1,4].

Now suppose the larger submanifold N containing C' is given implicitly by a system
of equations

F,(z,u)=0. (1)
Normalizing C' as above using the group transformation g specified by the moving frame
effectively “unnormalizes” N to produce the transformed submanifold N = g- N, which is
given by a system of equations of the form

F(g,2,u) =0, (2)
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that the normal form of the curve must satisfy since C c N. (Here it is important that
we not substitute the moving frame formulas for g just yet. In fact, in the example, we
don’t even need to know them, and this procedure will work in general.) Now we can
successively differentiate (2) to obtain a series of equations in the jet space that the jets of
the curve must satisfy; for example at order 1 we have

OF, = OF, ,

L+ Zu, =0, (3)
ox ‘ ou’

=1

and so on for the higher order derivatives (jets). Substituting the normal form (or nor-
malized jet) of the curve into these produces a system of equations involving the group
parameters g and the differential invariants appearing in the normalized Taylor expan-
sion. Eliminating the group parameters g from these equations produces a set of equations
relating the differential invariants of the curve C', which thus answers the original question.

Example 1. Let’s see how this works in the case of a curve C' C R? contained in a
sphere of radius r under the standard action of the (special) Euclidean group SE(3). We
will use the notation and moving frame computations in [4; Example 3.1]. The classical
moving frame, [3], relies on the normalization equations

x =0, u =0, v =0, u, =0, v, =0, v, =0, (4)

x

which define a valid cross-section provided u,, # 0, i.e., we are not at an inflection point.
Transforming the curve into produces the resulting normal form Taylor expansions

_ 1 2 1 3 1 3
U=35RKRT"+ R T°+ -0, vV=gFRTX + ,

where additional higher order terms can be found in [4].

The transformed curve C is contained in the transformed sphere S of radius r. Since C
passes though the origin # = u = v = 0, which is the order 0 moving frame normalization
obtained by translation, the same is true of S, which thus satisfies an equation of the form

(x—a)>+ (u—0)*+(v—c)*=r% where a®+0b*>+c? =12 (5)

Observe that there are only three parameters a, b, ¢ here, which could be interpreted as the
translation parameters for g € SE(3). This is because a sphere has a three-dimensional
rotational isotropy group SO(3) C SE(3). Indeed, for more general submanifolds, one
would have to figure out how the Euclidean group element acts on it, and there could be
as many as 6 independent Euclidean group parameters for a general submanifold. Now we
successively differentiate (5):

r—a+ (u—>b)u, +(v—c)v, =0,
1+(u—b)um+ui+(v—c)vm+vi:O, (6)
(u—"b)u,,, +3u,u,, +(v—c)v,,, +3v,0,, =0,

xrxrx

and so on, although owing to the isotropy of the sphere, this suffices for our purposes. (For
more general submanifolds, one would need to prolong to higher order in order to generate
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enough equations so as to eliminate all the group parameters that appear.) Substituting
the moving frame normalizations into (6), we find

—a =0, 1—-br =0, —br, —ckT =0.

The second equation implies k # 0. The third equation then implies that if 7 = 0, then
ks = 0. If this holds at all points on the curve, it must be a plane curve, which implies
that it must be a circle. In this case the z coordinate of the center of the sphere, namely
¢, is arbitrary, and its radius is bounded from below by r = vk=2 + ¢2 > 1/k. Otherwise,
we can solve for

1
a =0, b=—, c:—zs. (7)
K R2T
Substituting back into (5) produces
24,22
9 Ky +R'T 1
S ¥

which serves to define the radius r of the sphere S in terms of the curvature and torsion
of the curve C' C S, thus reproducing the formula in [3; Problem 9, p. 161]. Further note
that (7) gives a formula for the center of the normalized sphere in terms of the differential
invariants. The inequality » > 1/x implies that the radius of the sphere must be greater
than or equal to that of the osculating sphere at each point on the curve. Vice versa, the
curvature at each point must be greater than or equal to the reciprocal of the radius of
the sphere.

On the other hand, we can regard (8) as imposing a constraint on the signature curve
S = {(k,7,K,) } when the curve is contained in a sphere of radius r. Conversely, if (8)

is satisfied at all points in the curve, then the curve is contained in a sphere of radius 7.
(Proof?)

Remark: Formulae (7-8) also determine the normalized osculating sphere for a more
general curve. One can then adapt the formulas at a general point by using the fact that
the moving frame vectors, consisting of the unit tangent t, unit normal n and unit binormal
b =t x n — for the normalized curve are the standard basis vectors e, e,, e; and use
equivariance to write the result in terms of the moving frame vectors at the original point
on the curve. Thus, the osculating sphere at a point z € C' has radius r given by (8) and

center 1
K
c= —n——7bDb 9
Z+mn k2T )

reproducing the formula in [2; Corollary 8.13].

The procedure illustrated in this example will clearly work in general. It would be
worth going through additional examples, including higher dimensional sub-submanifolds.
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