Canonical Anisotropic Elastic Moduli

PETER J. OLVER

Abstract. We discuss the determination of canonical elastic moduli in elasticity.
In the linear case, complete results are known for planar bodies and some preliminary
results on planar displacements of three-dimensional bodies are indicated. Applications to
conservation laws are also presented.

The detailed investigation of complex mathematical objects can often be simplified
through the use of specially adapted coordinate systems in which the object takes a simple
“canonical form”. Elementary examples include the Jordan canonical form of a square
matrix, Sylvester’s Theorem on the representation of a quadratic form as a sum of squares,
and Darboux’ Theorem on the canonical form of Hamiltonian structures. Use of a
canonical form invariably results in a great simplification of what might otherwise be
impossibly complicated calculations, and often provides extra geometric insight which
might be difficult to extract in a general coordinate frame.

In elasticity, the determination of canonical forms for elastic materials, either linear
or nonlinear, does not appear to have been investigated in the literature until recently. The
basic mathematical problem is to find a specially adapted coordinate system in which the
elastic material has as simple expression as possible. In this paper, I will review earlier
work, [1], [2], on canonical forms in linear planar elasticity. Very recent unpublished
extensions to planar displacements of a three dimensional body, the case described by the
Stroh formalism, [3], [4], discussed elsewhere in these proceedings, will be presented in
some detail, including some new results on materials with planes of symmetry. Also, a
few remarks on the possible use of canonical forms in nonlinear elasticity, currently under
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investigation, will be provided. Finally, the paper will review applications of the resulting
canonical forms to the classification of conservation laws (path-independent integrals), [5],
[6], which are of crucial importance in crack and dislocation theory.

Changes of Variables and Elasticity. The equations of hyper-elasticity
constitute a self-adjoint, strongly elliptic quasi-linear system of second-order partial
differential equations for the deformation (or, in the linear case, displacement) u = f(x),
where u = (ul,...,u e RY, and x = (X1,--,Xp) are the material coordinates in the elastic
body Q < RP. For planar elasticity, p=q =2, while p=q=3 for fully three-
dimensional elastic media. The Stroh formalism applies to a hybrid case, that of planar
displacements of three-dimensional bodies, where p =2, while q =3. The equilibrium
equations are the Euler-Lagrange equations for the stored energy functional

W] = jQW(x, Vu) dx . (1)

The physical conditions of frame indifference, strong ellipticity, etc., will restrict the class
of stored energy functions which are of relevance to elasticity, although our initial remarks
apply to quite general variational problems. The stored energy is not uniquely determined
by its Euler-Lagrange equations, since we can add any null Lagrangian or total divergence,
replacing W by W + Div P, although this will, in general, alter the natural boundary
conditions associated with the problem.

At a fixed material point x =a and a fixed value of deformation gradient Vu =F,
we define the symbol of the variational problem (1) to be the “biquadratic” polynomial
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Note especially that the symbol is unaffected by the addition of a null Lagrangian to W
owing to the general result, [7], that each first order null Lagrangian is a linear
combination, with coefficients depending on x, u, of the minors of the deformation
gradient Vu. The Legendre-Hadamard condition of strong ellipticity requires that the
symbol Q be positive definite in the sense that

Qa’F(x, u >0 whenever x#0 and uz0, 3)
forall ae Q, and F such that detF > 0.

Now, consider the effect of a general change of variables
X = @(x,u), u = y(x,u), 4)

on the variational problem (1). Physically, one might wish to restrict to transformations
which do not mix up the independent and dependent variables, but the following remarks
hold for the more general | class (4). According to the chain rule, the deformation gradient
transforms according to Vu = y(x, u, Vu), with components
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where ] is the p X p matrix of total derivatives
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A straightforward (but long) calculation proves that the symbol of the new stored energy
function is related to that of the old by the basic formula

Qzp(x w) = |det]] Q,r(@ Tx, Ku), (5)
where
oy Zp: i 9o
K. = — _— L (x,u, V) ——.
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The problem of determining canonical forms for nonlinear elasticity is extremely
complicated, and requires rather sophisticated mathematical machinery, of which the
powerful Cartan equivalence method, [8], seems particularly apt. In principle, through the
algorithmic determination of a complete set of invariants for the equivalence problem, the
Cartan method can provide explicit necessary and sufficient conditions for two stored
energy functions to be equivalent under a general nonlinear change of variables. The main
complication is that the intervening calculations can become extremely complicated, and
have only been pursued to completion in very simple cases. It can be shown that the first
of the invariants arising from the Cartan method is the symbol (2), and that we must
understand canonical forms of biquadratic polynomials in order to make further progress
on the general nonlinear problem. However, as we will soon see, the problem of canonical
forms for biquadratic polynomials under the change of variables (5) is essentially the same
as that of canonical forms for quadratic variational problems, i.e. the canonical form
problem of linear elasticity. In conclusion, one must fully understand the linear
equivalence problem before any assault can be made on the nonlinear problem.

In order to simplify the subsequent analysis, we will restrict to homogeneous
materials, whereby the stored energy function W(Vu) depends only on the deformation
gradient. In the linear case, W is a symmetric quadratic function
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of the displacement gradient, where the constants aji,» which satisfy ag, = ay s, are
called the variational moduli for the given problem. The equilibrium equations are
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For a general quadratic variational problem (6), the symbol Q is independent of the value
of the displacement gradient F, and also the material point a provided the body is



homogeneous. It can be found directly by replacing Vu in W by the rank one tensor
U®x=ux': |

Qx,u) = Wx®u) = 2 aijk[uiukxjx[, xe RP, ue RY, (8)
i,j, k, [
Since every quadrauc null Lagrang1an is a linear combination of the 2 x 2 Jacobian

determinants 9(u', u ky/ a(xJ X;), in the linear case, a homogeneous quadratic stored
energy function is uniquely détermined by its symbol up to a divergence.

The assumption of frame indifference in linear elasticity requires that the stored
energy function depends only on the strain tensor € =3 (Vu + VuT), so

W(VU) = Z Gij 81_) = Z Cl]k[ Eij Epr s (9)
i, ] i,j,k [
where ¢ = C[e] is the associated stress tensor, and the constants Cijk, are the elastic
moduli, which obey the symmetry restrictions

Ciike = Sjike = Sijrk - Cijkt = Ckrij - (10)
(Note that the variational moduli a;; , are certain linear combinations of the elastic
moduli.) The elastic moduli must afso satisfy certain inequalities stemming from the
Legendre-Hadamard strong ellipticity condition Q(x, u) > 0. The symmetry restrictions

(10) placed on the elastic moduli are easily seen to be equivalent to the condition that the
symbol Q be symmetric, i.e. Q(x, u) = Q(u, x).

In the case linear elasticity, we may restrict our attention to linear changes of
variables in both the material coordinates x and the displacement u:

X |— Ax, u |— Bu. (11)

Our fundamental problem, then, is to determine matrices A and B which will simplify the
elastic moduli Cijk/ (or variational moduli ik in the general case) as much as possible.
Stated in this form the question appears to be quite natural from a mathematical point of
view, even though it may not have an immediate physical motivation. Indeed, the linear
maps determined by the matrices A and B will not in general have any direct physical
interpretation, except in the special case of orthogonal transformations (rotations), when
they represent a physical change of frame. See Lekhnitskii, [9], and Ting, [10], for a
discussion of the problem of determining canonical forms and invariants for elastic moduli
under the more restrictive class of rotations. Of course, one difficulty with the admission
of general linear change of variables is that the boundary conditions are not necessarily
respected, since non-orthogonal coordinate changes can alter the normal direction for the
boundary; however, we will ignore this complication here.

Under the change of variables (11), the stored energy gets transformed according to
the usual change of variables formula for multiple integrals:

W — W(Vu) = WB VuA™) |detA] .



Thus, given a stored energy function W, the goal is to find matrices A and B such that,
up to a null Lagrangian, the new stored energy function W is as simple as possible; the
associated elastic (variational) moduli will then be termed canonical Since the minima of
the two variational problems % and 7/ are in one-to-one correspondence, from a
coordinate-free standpoint they are essentially the same problem. The symbol of the new
stored energy is related to that of the old by the earlier formula (5), with A, B being as 1n
(11). It helps to simplify matters by replacing the matrix A by the matrix \] |det A| AT
Thus we are led to the problem of determining canonical forms for biquadratic polynomlals
under the change of variables Q(x, u) —— Q(A x, B u). Also, as mentioned above, this
same problem must be properly understood before any significant progress on the
nonlinear case can be made.

Canonical Forms and Symbols. The number of canonical moduli can be
determined directly by a simple dimension count. A general b1quadratlc polynomial or
symbol Q(x,u) dependingon x € RP and ue RY has a total of —p (p+1qg(@+1)
1ndependent variational moduli. The possible changes of varlables (11) will involve
p + q arbitrary parameters, but the transformation just rescaling x (where A isa
multiple of the identity) has the same effect as that rescaling u, so there are p2 + q2 -1
independent parameters at our disposal. Thus, in general, we expect the canonical
quadratic variational problem to depend on

pp+lq@+1) -
T -p2—-q2+1

canonical moduli. For planar elasticity, p =q =2, so we will find just 2 canonical elastic
moduli. In three dimensions, we should obtain 19 canonical elastic moduli; however,
imposing the symmetry conditions (10) reduces the count to 12. In the case p=2,q9=3
covered by the Stroh formalism, we expect 6 independent canonical elastic moduli.
However, these naive dimension counts provide us with no indication of the precise
canonical forms a linear elastic stored energy function can take, and one must use much
more powerful algebraic tools in order to make progress on the determination of explicit
canonical forms for quadratic variational problems.

We now discuss the relevant algebraic properties of biquadratic symbols,
concentrating on the cases p=q=2 and p =2, q=3. (Note thatif either p=1 or
q =1, the symbol is an ordinary quadratic polynomial, whose canonical forms, determined
by Sylvester’s law of inertia, are well known, [11]. In particular, only the rank and
signature are invariants, and there are no canonical variational moduli in these special
cases.) First write the symbol in the matrix form

Qx,u) = uT AX) u, (12)

where, assuming strong ellipticity, A(x) is areal qx q symmetric positive definite matrix
of homogeneous quadratic polynomials of the variables x. Just as the analysis of ordinary
real polynomials requires an understanding of their complex roots, and so we may regard
x and u as complex vectors, and Q as a complex-valued biquadratic polynomial. By the
strong ellipticity assumption (which is a special case of nondegeneracy), for generic vectors
x € CP, the matrix A(x) has full rank. (In general, we define the rank of a homogeneous
quadratic polynomial P(u) = uT A u to be the rank of the associated symmetric matrix A;



in particular, P has full rank if and only if det A # 0.) It is useful to distinguish the
exceptional points where Q has less than maximal rank. Define the discriminant

Ay(x) = det A(x), (13)

which is a homogeneous polynomial of degree 2 q of the p complex variables x. A root
of A, is a nonzero vector O # X € CP satisfying A,(x) = 0. Since Ay(x) is
homogeneous, any complex scalar multiple A x of aroot X is also a root, so we will only
distinguish roots if they are not scalar multiples of each other. (Equivalently we view
A4(x) as a polynomial on the complex projective space CP9 1) The roots of the
discriminant play a crucial role in the classification of these biquadratic polynomials, and
hence of quadratic variational problems. Note that strong ellipticity implies that the
discriminant has no real roots, and so the roots always come in complex conjugate pairs.

Clearly, one can interchange the roles of x and u in the above discussion,
producing a corresponding discriminant Ay(u). Except in the symmetric elastic case with
p=q, these two polynomials are not the same (indeed, if p #q, they do not even depend
on the same variables), nor are their roots easily compared. Nevertheless, there are subtle
and remarkable relations between the roots of the two discriminants. For example, in the
planar case p =q =2, the discriminant A,(x) has simple roots if and only if Ay(u)
does. (However, it is not true that if A,(x) has a double root then Ay(u) has a double
root, although it does have a root of multiplicity at least two.)

We begin by outlining the known canonical forms in the case of planar elasticity, so
p = q = 2. The discriminant A,(x) is a homogeneous quartic polynomial of the two
variables x = (x, y), which has either two complex conjugate pairs of simple roots, or a
complex conjugate pair of double roots. In the former case, we can find a real linear
change of variables which moves the roots onto the imaginary axis, to (1,71, (1,1
i), for some T > 1. (The constant T is an invariant associated with the roots of the
quartic.) In the latter case, we move the roots to (1,*1i). Performing the same change of
variables on the other discriminant A,(u) (where, according to theory, the value of T is
necessarily the same), it can be proved, [1], that the symbol thereby reduces to one of
“strongly orthotropic” form

x2u2+y2V2+(x(y2u2+x2v2)+2[3xyuv, (14)
where the canonical moduli a, B satisfy the inequalities
o>0, =0, lo-1] >, (15)
in the case when the discriminant has simple roots, or

O<a<l, B=1-0, : (16)

in the case of double roots. The corresponding stored energy function is given by the
orthotropic Lagrangian

2+ oud + 2Bugvy 4 0Vy vy, (17)



where the parameters o and B represent the two canonical elastic moduli. In fact, the
Lagrangian (17) is, modulo a null Lagrangian, just a rescaled version of the standard stored
energy of a linear, planar orthotropic elastic material

_ 2 2 2
W = cqyqp Uy + Cpppp (g + V)" + 2C1 9 U Vy + Cogpp Vy -

Indeed, after adding the null Lagrangian €919 (U vy — Uy v,), a simple rescaling will
place this stored energy into the form (17), where

C1212 B = C1212 + 1122

o = —=&—1u8 | = .
V1111 €2222 N 1111 €2222

Note especially that the discriminant has a complex conjugate pair of double roots if and

only if the material is equivalent to an isotropic material, with o =L [ 2p + A),

B=(L+A)/(2u +A), where u and A are the classical Lamé moduli. Two isotropic

Lagrangians determine the same orthotropic Lagrangian if and only if they have the same

value for Poisson’s ratio. Moreover, the isotropic stored energies are distinguished by the
presence of a one-parameter symmetry group corresponding to the rotational invariance of
(17) when o + B = 1. The cases when the discriminant has simple roots, and the

Lagrangian has at most discrete symmetries, correspond to “truly” anisotropic materials.

Therefore, we have our first canonical form result in linear elasticity.

Theorem 1. Let W(Vu) be a homogeneous first order planar quadratic
Lagrangian which satisfies the Legendre-Hadamard strong ellipticity condition. Then W
is equivalent to a orthotropic Lagrangian (17), where the canonical elastic moduli 0. and B
satisfy the strong ellipticity inequalities o >0, |B| <o + 1. The corresponding Euler-
Lagrange equations are thus equivalent to the “orthotropic Navier equations”

uxx+0Lu),y+[3vxy = (), Buxy+owxx+vyy = 0. (18)

See [1] for the explicit formulas for the change of variables taking a given stored
energy function into its canonical orthotropic form. One can reduce a general strongly
elliptic orthotropic stored energy (17) to a unique strongly orthotropic Lagrangian
satisfying the more restrictive inequalities (15) or (16) using one or more of the three basic
discrete equivalences taking the moduli (o, ) to either

1 1 l+a- 2-20
(a'9 - B) 3 or . - ) or 3 .
o B 1+oa+p l+a+P
Therefore, except in a few “exceptional” cases, each orthotropic Lagrangian is equivalent to
seven different orthotropic Lagrangians. One further remark is that a complete set of
canonical forms for general quadratic variational problems in the case p =q = 2 are

known, [2]. To date, this is the only such classification which has appeared in the
literature.

Turning to the case of planar deformations of a three-dimensional material, i.e.
p =2, q=3, we are confronted with the problem of determining canonical forms for a
positive definite “bi-ternary quadratic”



Qx,y;u,v,w) >0, xy=0, @v,w)=0.

Such a symbol will be the planar restriction of a three-dimensional elastic stored energy
function W provided it satisfies

Q&, y;u,v,0) = Qu, v; X,y,0). (19)

The discriminant A (x) is a homogeneous sextic polynomial in (x,y), which, according
to the strong ellipticity assumption, has three complex conjugate pairs of roots (which may,
in special instances, coincide). It is not hard to show that this polynomial coincides with
Stroh’s sextic, [3], [4], under the identification of (x, y) with (1, A), where A is the
eigenvalue parameter, so the roots of our discriminant have the same eigenvalue
interpretation as in the Stroh formalism.

A stored energy function is called separable if there exist coordinates x, u such
that its symbol takes the form

Qx, y;u, v, w) = R(x,y; u,v) + s(x,y) w2

Note that in this case, the Euler-Lagrange equations separate into a linear system for u, v,
and a single separate second order elliptic equation for w, so that the problem essentially
reduces to a problem for purely planar elasticity. In particular, we can introduce canonical
coordinates whereby the planar part R is in canonical orthotropic form (14). If R is
isotropic, then the rotational symmetry group can be used to diagonalize the quadratic
polynomial s(x), but, in general, we are left with the 4 parameter class of separable
canonical forms

) 2 2 2 2 2
W o=l + ouy + 2[3uxvy +OVy vy Yy + 20w x Wy +EWp. (20)

(One of the parameters v, 8, € can be eliminated by rescaling w.) Thus, the equilibrium
equations reduce to the orthotropic Navier equations (18) together with a second order
elliptic equation for w, which can be easily transformed into Laplace’s equation, although
not without changing the orthotropic form of the planar part.

A particular example of a separable material is that obtained from a three-
dimensional elastic material which has the (x, y)-plane as a plane of symmetry, cf. [12].
In this case, all elastic moduli Ciik/ which contain the index 3 either one or three times
vanish, so that, restricting to planar deformations, we have (modulo null Lagrangians)

2
W = Wy(u,, Uy, Vyo vy) + Cy313 wX + 2Cy393 Wy Wy + Co3p3 Wy,

where W, is an arbitrary planar stored energy function. This is clearly separable; in
particular changing coordinates so that Wy, is in canonical orthotropic form we reduce W
to the canonical form (20). If W itself is orthotropic then cy393 =0, and, after rescaling,
W, is in canonical form already, so the equilibrium equations reduce to the orthotropic
Navier equations (18) plus a rescaled version of Laplace’s equation for w.

As an example of an inseparable stored energy function, consider a material which
has a reflectional symmetry with respect to a plane which is not the (x, y)-plane. Since the
symmetry plane intersects the (x, y)-plane in a line, we can introduce a change of



coordinates (x,y,z) — (ax+by,cx+dy,ex+fy+gz) which changes the given
plane into the (x, z)-plane. In the new coordinates, the stored energy function is

2 2 2

W = ¢y Uy + Ciop (uy + V)" + 2C1ppp Uy Vy + Coppp Vy
2 2
+ C1p03 (Uy + V) Wy + 2Cy3pp Wy Vy +Cy313 Wy + Cp33 Wy

The associated symbol has the form

px2u2 + qy2u2 + 2rxyuv + sx2v2 + ty2v

2

24

2,2

uw + byzuw +2cxyvw + dx“w” + ey2w2 .

+ax
Consequently, the discriminant
px2+qy2 rxy ax2+by2

A (x) = det Xy . sx2+ty2 CXy = R(Xz,yz),

ax2+by2 cCXy dx2+ey2
where R is a homogeneous cubic polynomial in x2, y2. Such sextics occupy a
distinguished role. According to Elliott, [13; p. 327, Ex. 21], a sextic polynomial s(x, y)
with no real roots can be written as a cubic in x2, y“ in some coordinate system if and
only if it factors

s(x, y) = qu(x, y) 4%, ¥) q3(x, ¥)
into a product of three quadratic polynomials
2
qj(x,y) = ajx2 + bjxy + Gy,
which form an involution, meaning
a; by ¢
(qq,9y,93) = det | Dy ¢ | = 0. (21)
a3 b3 C3
Such sextics can be characterized in the following explicit invariant theoretic manner.

Theorem 2. Let s(x,y) be a homogeneous sextic polynomial. Define the “skew
invariant” R associated with s with the help of the basic covariants

L= Syoxx Syyyy — 4 Sooxy Sxyyy + 3 Sixyy’

[ = iXXXX Syyyy - 4 iXXXy Snyy + 61Xny SXny - 4ixyyy SXXXy + 1yyyy SXXXX ’
m = i Ly = 2hy Dy + gy Dxxs

n =i, my, - 2iXy my, + iyy m,, ,

R=(([,mn),



cf. (21). (Note that i is a quartic polynomial, while £, m, n are quadratics, and R is a

constant.) Then R =0 if and only if there exists a linear transformatlon X=ax+by,

y =cx+dy, such thateither s is a cubic polynomial in %2 y or s is a product of
times a cubic polynomial in X, ¥.

Note that the second possibility is excluded by our assumption that the symbol have
only complex roots. As a consequence, we find the following explicit necessary condition
for materials which admit a plane of symmetry.

Theorem 3. A necessary condition that an elastic material with p=2,q =3, be
the planar restriction of a three-dimensional elastic material admitting a plane of symmetry
is that its sextic discriminant A (x) have vanishing skew invariant R =0.

(Note that the separable stored energies have sextics with purely imaginary roots,
which therefore also satisfy the involution criterion of Theorem 2.) I suspect that this
condition is both necessary and sufficient, but have been unable to prove it. The reader
should contrast the explicit (albeit complicated) nature of this criterion with the more
implicit (since it requires the solution to a simultaneous eigenvalue problem) criterion of
Cowin and Mehrabadi, [14], for fully three-dimensional materials to have planes of
symmetry. It would be very interesting to determine a three-dimensional analogue of this
theorem using the invariant theory of ternary sextics (which is however much less
developed than that of binary sextics).

Turning to the problem of finding an explicit canonical form for the case of planar
displacements of three-dimensional materials, according to our earlier dimension count, we
are required to determine a suitable six-parameter family of stored energy functions.
Moreover, the elasticity condition (19) imposes additional constraints on the physically
relevant forms. Nevertheless, we will be able to determine an “elastic” canonical form for
an arbitrary strongly elliptic quadratic variational problem with p =2, q = 3. (This implies
that only in the fully three-dimensional situation do the differences between elastic and
general quadratic variational problems materialize.)

Theorem 4. Any strongly elliptic quadratic variational problem in p =2
independent variables and q =3 dependent variables can be written in either the separable
canonical form

. 2 2 2 2 2
W = ug +0Luy+2{3u y+ocvx+vy+ywx+225wxwy+£wy. (22)
or in the canonical form
— 112 2 2 2
W—ux+opuy+2[3u vy t OV vyt
+yuw+8uyy+evw + Ovywy + pwy + OwWy . (23)

In particular, all non-elastic quadratic variational problem are equivalent to ones which
satisfy the elastic criterion (19).

The canonical form (23) really only depends on 6 independent moduli, since the
two-parameter family of rescalings (x,y, u, v, w) —— A x, Ay, A u, A v, p w) will
preserve the orthotropic moduli o, B of W, and so can be used to suitably normalize two
of the remaining six moduli.

10



Proof.

To proceed, we begin by focussing attention on a single complex conjugate pair of
roots of the discriminant A (x) (which, by the Fundamental Theorem of Algebra, always
exist). By a suitable real linear transformation, we can arrange that the roots are (1, £ 1).
We then write the symbol in the form

Qx,u) = (x+iy)?p) + (x—iy)? plw) + x+iy) x—1iy)s)

= G-y q) + 2xyr) + &2+y2) s(u), (24)

where p(u) = q(u) +ir(u) is a complex-valued, and q(u), r(u), s(u) are real-valued
homogeneous quadratic polynomials of the real variables u = (u, v, w); moreover,
according to our placement of the roots, rank p <2. We proceed by placing the complex
quadratic polynomial p into a suitable canonical form, and therefore need a complete list of
canonical forms for complex quadratic polynomials under real linear transformations. To
accomplish this, we begin by summarizing known results on the canonical forms for the
associated pencil of quadratic polynomials A q(u) + (L r(u) under linear transformations of
u and the parameters (A, ). These are a consequence of the general Kronecker-
Weierstrass theory of complex matrix pencils, [15], along with results of Muth, [16], on
the real case. See also Dickson, [17], for a statement of Kronecker’s Theorem on singular
pairs, and Gurevich, [11; pp. 258-259], for the real canonical forms of a pencil in two
variables. (Unfortunately, the complete general theorem’does not appear to have been
written down in one place, but must be pieced together from the above references.) The
case when one of the quadratic forms is positive definite is classical, and we know that the
other can then be diagonalized. However, things get much more complicated if this is not
the case.

Theorem 5 Any pencil A q(u, v, w) + pr(u, v, w) of real quadratic
polynomials on R3 can, by a real linear transformation of the coordinates (u, v, w) and
the parameters (A, L) be placed into one of the following thirteen canonical forms:

1. 0, 8. A@Ztvd + pw?,

2. M, 9. Au? 4+ pv?E L+ wl,
3. APty | 10. A@2-v2+wd +2puy,
4. 2u? +2puv, TS A@E+2vw) + 2R Ve

5. 7Lu2+uv2, 12. }k(u2+2vw)+2uuv,
6. X(uZ—v2)+2uuv, , 13. Auv + puw.

7. A2 +vitw?),

11



Corollary 6. Suppose p(u, v, w) is a complex-valued quadratic function on
R3, such that rank p <2. Then there is a real change of variables such that p is equal to
a complex multiple of one of the following five families of canonical forms:

. 0,

2. u?+ ov?, ce C,
3. w4+ ouv, . c e C\R,
4. u2—v2+0uv, ce C\R,

5. uwr—v® 4+ wla 2iuv,

6. uv +iuw.

We now apply Corollary 6 to (24). Note that if we replace p by o p, where o
is any complex number, this can be absorbed into the independent variables by replacing
Xx+iy by o (x +1y), which has the effect of scaling and rotating x. Itis not hard to
see that, by suitably redefining w, cases 1 -4 of Corollary 6 are found to give separable
symbols, which are completely classified above. Thus, only the complex eigenvalue case
5 and the singular case 6 give genuinely three-dimensional problems, i.e. problems that
do not decouple to a planar system plus a scalar equation. In the nondegenerate case 5,
the symbol takes the preliminary canonical form

(xz—'yz) (u2 v 4 w2) +4xyuv + (x2+y2) s(u),

where

2

s(u)=au2+buv +Ccv +duw +evw + fw2, (25)

Note that the given canonical form does indeed depend on six independent parameters;
however, it does not satisfy the elasticity constraint (19) unless b =0 and a =c. Thereis
an easy way to fix this. If d =e =0, then we are back to a separable symbol, which we
know how to treat; otherwise, we can assume without loss of generality that e # 0. Then
replacing w by w—(b/e) u and appropriately rescaling u and v produces a symbol of
the canonical form (23).

Turning to the singular case 6, the symbol now has the form

2

(x —yz)uw + 2xyuv + (x2+y2)s(u),

where s(u) is as above, cf. (25). If ¢ #0, then replacing w by w— (b/e)u and
appropriately rescaling u and v again produces a symbol of the canonical form (23).
However, if e =0, but f# 0, placing the symbol in the canonical form (23) is more
tricky. Apparently it can’t be done by looking just at the given pair of roots (1, £ 1) of the
discriminant. What can be proved, however, is first, that the discriminant necessarily has
(at least) a second distinct complex conjugate pair of roots, (i.e. (1,%1i) is not a triple
root), and second, at the other pair of roots, the corresponding complex polynomial p(u)
cannot be in the singular canonical form 6, and hence, by the previous method, the symbol
is either separable, or can be reduced to our canonical form (23). Thus, interestingly, the
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singular canonical form can appear at at most one complex Con]ugate pair of roots of the
discriminant. This completes the proof of Theorem 4.

Applications to Conservation Laws. In general, a conservation law for a
system of differential equations is a divergence expression

Div P=20

which vanishes on all solutions. In elastostatics, conservation laws provide path- (or
surface-) independent integrals, which can be used to great effect in the study of
singularities such as cracks or dislocations. In the nonlinear theory, Noether’s Theorem,
[18], relating symmetry groups of the stored energy functional to conservation laws of the
associated equilibrium equations, is used to great effect to derive the well known Eshelby
energy-momentum tensor and other related integrals, [18; Example 4.32]. Conservation
laws for linear isotropic elasticity, both two and three-dimensional, were completely
classified in [5]. One of my motivations for developing the theory of canonical elastic
moduli was my initial attempts to extend the results in the isotropic case to more general
anisotropic materials, and being frustrated by the complications of the determining
equations in the general coordinate system. Only after the introduction of the canonical
orthotropic form was completed was I able to extend these results to planar anisotropic
materials, [6]. In this section, I shall briefly summarize these results.

Any linear self-adjoint system of partial differential equations A[u] =0 always
possesses a reciprocity relation, which is a divergence identity of the general form

v:Alu] — u-A[v] = Div Plu, v], (26)

where P is some bilinear expression involving u and v. (P is not uniquely determined
since there are trivial reciprocity relations Div Py=0; see [6].) If v isa solution to the
system, then P[u, v] forms a conservation law of the system. For a linearly elastic
material (9), one explicit form of the Betti reciprocal theorem is

Plu,v] = v.-ofu] — u-olv], 27
where o[u] is the stress tensor associated with the displacement u.

Although isotropic and more general orthotropic materials have similar looking
Lagrangians, (17), the structure of their associated conservation laws is different, but
reminiscent of the differences between the Jordan canonical form of matrices with equal or
distinct eigenvalues.

Theorem 7. Let W [u] be a strongly elliptic quadratic planar variational
problem _

1. The Isotropic Case. If W is equivalent to an isotropic materlal then there
exists a complex linear combination z of the coordinates (x, y), a complex linear
combination ® of the displacement components (u, v), and two complex linear
combinations &, M of the components of the displacement gradient (u,, Uys Vi vy)
having the properties:

a) The two Euler-Lagrange equations can be written as a single complex differential
equation in form D, 1 = 0.
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b) Any conservation law is a real linear combination of
1) the Betti reciprocity relations,

i) the two families of complex conservation laws
Re[D,F]=0, and Ref{ D,[(E+2)Gy + Gl1} =0
where F(z,m) and G(z, 1) are arbitrary complex analytic functions,

iii) the extra conservation law
e{D,[on -izn®]} = 0.

2. The Anisotropic Case. If W is equivalent to a strongly orthotropic material, then
there exist two complex linear combinations z, w of the coordinates (x, y), and two
correspondmg complex linear combinations &, of the components of the displacement
gradient (u,, ,V ) with the properties:

a) The two Euler—Lagrange equations can be written as a single complex differential
equation in either of the two forms D, § =0, or D, 1 =0.

b) Any conservation law is a real linear combination of
i) the Betti reciprocity relations, and
ii) the two fémilies of complex conservation laws
Re[D,F] =0, and Re[D,G] =0,
where F(z, &) and G(w, 1) are arbitrary complex analytic functions.

Thus one has the striking result that in both isotropic and anisotropic planar
elasticity, there are three infinite families of conservation laws. One family is the well-
known Betti reciprocity relations. The other two are determined by two arbitrary analytic
functions of two complex variables. However, the detailed structure of these latter two
families is markedly different depending upon whether one is in the isotropic or truly
anisotropic (orthotropic) case. The two orthotropic families degenerate to a single isotropic
family, but a second family makes its appearance in the isotropic case. In addition, the
isotropic case is distinguished by the existence of one extra anomalous conservation law,
the significance of which is not at all clear. Applications of these families of conservation
laws to crack and dislocation problems remains uninvestigated.

The canonical form for the planar displacements of a three-dimensional linear elastic
material given in Theorem 4 is new, and has, as yet, not been applied to the determination
of conservation laws and path-independent integrals; this will be addressed in a future
publication.
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