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Abstract. Every linear planar anisotropic elastic material is equivalent, under a linear change 
of coordinates, to an orthotropic material. Consequently, up to linear changes of variables, 
there are just two "canonical" planar elastic moduli which determine the properties of any 
linearly elastic material. Extensions to three-dimensional elasticity and applications are 
indicated. 

P r e f a c e  

The detailed investigaton of  complex mathematical objects can often be 
considerably simplified through the use of specially adapted coordinate 
systems in which the object takes a simple "canonical form".  Elementary 
examples include the Jordan canonical form of  a square matrix, and 
Sylvester's Theorem on the representation of a quadratic form as a sum of 
squares. Use of  a canonical form results in a great simplification of  com- 
plicated calculations and often provides extra geometric insight which might 
otherwise be difficult to extract. 

In elasticity, the determination of  canonical forms for elastic materials, 
either linear or nonlinear, does not appear to have been investigated in the 
literature before. The basic mathematical problem is to determine a coordi- 
nate system in which the elastic material has as simple expression as possible. 
Restricting our attention to linear (hyper)-elasticity, the natural question is 
to ask for a linear change of  coordinates in both the material coordinates x 
and the displacement u: 

x ~  A x ,  u ~ Bu,  

which will simplify the general elastic moduli c~m as much as possible. Stated 
in this form, the question appears to be very natural from a mathematical 
point of  view, even though it does not have an obvious physical motivation. 
(This may account for the lack of  interest in this question in the standard 
elasticity literature.) Lekhnitskii, [6; Chapter 1], perhaps motivated by the 
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changes of frame in finite elasticity, discusses the effect of a general pair of 
rotations on the elastic moduli, but I am unaware of any discussion of the 
effect of more general linear changes of variables. 

In the case of planar elasticity, an elementary dimension count (cf. 
Section 2) shows that one should expect the standard 6 independent elastic 
moduli to reduce to just 2 canonical elastic moduli. Indeed, the main result 
of this paper verifies this intuitive result by explicitly showing how a general 
anisotropic planar elastic material can be reduced to an orthotropic elastic 
material by a suitably clever change of coordinates. One immediate conse- 
quence of this result is that many of the complicated computations involving 
anisotropic materials considerably simplify once they are placed into ortho- 
tropic form. For example, the complete determination of conservation laws 
for planar anisotropic elasticity, [11], relies heavily on these results. Thus, 
although admitting general linear changes of variables lacks a good physical 
motivation, the mathematical simplification in the equations more than 
justifies the method. (One possible physical interpretation - which is not 
suggested too seriously - is that the change of variables amounts to viewing 
the elastic body through some kind of weird "prismatic lens" which distorts 
the body according to the desired linear transformation.) 

1. Summary of results 

The equation of linear hyper-elasticity constitute a self-adjoint, strongly 
elliptic linear system of second-order partial differential equations for the 
displacement u = f(x). Here the independent variables x = (Xl, . . . , Xp) 
are the material coordinates in the elastic body ~, which is a domain in ~P, 
and the dependent variables u = (u ~, . . . , u F) determine the displacement. 
In the planar case p = 2, while p = 3 for fully three-dimensional elastic 
media. The equations themselves are the Euler-Lagrange equations for a 
variational integral of  the form 

~[u] : f~ m(Vu) dx. (1) 

Under the assumption of material homogeneity, the stored energy function 
W(Vu) is a symmetric quadratic function of the deformation gradient Vu, 

p Ou i ~u ~ 
W(Vu) = Z aiJk, , (2) 

~,j,k.t=l Oxj Oxt 

where the constants aijk~ are called the variational moduli of the problem. 
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Without loss of generality we can assume that they have the symmetry 
a~jkt = akt~j, the construction resting on the underlying assumption of hyper- 
elasticity. The corresponding Euler-Lagrange equations are a self-adjoint 
linear, second order system of partial differential equations: 

P 0 2 U k 

aijkl - -  O, i = 1, . . . , p .  
j.k,t=~ ~XjOXt  

Frame indifference requires that the stored energy function be s y m m e t r i c ,  

meaning that it can be written in terms of the strain tensor e = l(Vu + Vur). 
We have 

W(Vu) = ~ cim'e~j'ek,, (3) 

where the constants c~jk~ are the e l a s t i c  m o d u l i  which describe the physical 
properties of the elastic material of  which the body is composed; the vari- 
ational moduli a~jkz are certain specific linear combinations of the elastic 
moduli. The symmetry of the strain tensor implies that we can assume that 
the elastic moduli obey the symmetry restrictions 

cijkt = Ok l  = C~jtk, Cijkl = Ckl~i. (4) 

Thus in planar elasticity there are 6 independent elastic moduli, while in 
three dimensions 21 independent moduli are required in general. Additional 
symmetry restrictions stemming from the constitutive properties of the 
elastic material may place additional constraints on the moduli. 

Furthermore, the elastic moduli must satisfy certain inequalities stem- 
ming from the Legendre-Hadamard strong ellipticity condition. This states 
that the quadratic stored energy function W(Vu) must be positive definite 
whenever the deformation gradient Vu is a rank one tensor. Following [10], 
we define the s y m b o l  of the quadratic variational problem (1) to be the 
biquadratic polynomial 

Q(a,b) = W ( a ® b )  

obtained by replacing Vu by the rank one tensor a ® b, where a, b are 
vectors in R p . At the slight risk of confusion, it is convenient to replace the 
symbols a, b by x, u, which are still vectors in R p, and write Q(x, u) for the 
symbol of ~ .  For a general quadratic Lagrangian of the form (2), the 
symbol takes the form 

Q(x, u) = ~ aijklXjXluiu k. 
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The Legendre-Hadamard condition requires that the symbol Q be positive 
definite in the sense that 

Q(x,u) > 0 whenever x ¢ 0 and u ¢ 0. (5) 

We will always assume that our quadratic variational problem (1) satisfies 
this condition throughout this paper. (See [10] for a treatment of more 
general quadratic variational problems.) 

The symmetry restrictions (4) placed on the elastic moduli are easily seen 
to be equivalent to the restriction that the symbol Q be symmetric, i.e., 

Q(x, u) = Q(u, x) (6) 

for all x, u e EP. Some of our constructions wil!use this symmetry assump- 
tion, but the basic method does not really depend upon our starting with a 
symmetric symbol. 

Before discussing changes of variables, we note that in any variational 
problem, one can always add any null Lagrangian or total divergence to 
the integrand without affecting the Euler-Lagrange equations, cf. [9; 
Theorem 4.7]. (However, this can affect the associated natural boundary 
conditions, cf. [4; page 211].) Thus two stored energy functions W and ff¢ 
determine the same variational problem and, consequently, the same Euler- 
Lagrange equations if and only if 

ffV = W + N, 

where N = Div P is a total divergence. For example, in the planar quadratic 
case we can add in any constant multiple of the Jacobian determinant 

u vy - UyVx = DAuv , )  + D y ( - u v x )  

to the stored energy W(ux, Uy, v x, vy) without affecting the Euler-Lagrange 
equations. Thus, the Lagrangians uxvy and UyVx and l[uxVy + UyVx] all have 
exactly the same Euler-Lagrange equations. In fact, there is a general 
theorem, [2], that says that all such quadratic null Lagrangians are given as 
linear combinations of suitable Jacobian determinants. An easy lemma 
states that two quadratic Lagrangians have the same symbol if and only if 
they differ by such a quadratic null Lagrangian, cf. [10]. 

Since the process of minimization does not depend on any particular 
coordinate system in use, it makes eminent sense to try to simplify the stored 
energy function, and hence the associated Euler-Lagrange equations, as 
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much as possible through the introduction of "adapted" coordinates. Since 
we are restricting our attention to quadratic variational problems, we will 
only allow linear changes of variables 

x = A~, u = Bfi, (7) 

in which A and B are arbitrary nonsingular p x p matrices. In terms of the 
new variables i ,  fi, the variational problem has an analogous form 

~//~[u] : In l~(fi)d:~, 

where the new stored energy function ffZhas the same form (2), but with new 
variational moduli ai~. The minima of the two variational problems ~ and 

are in one-to-one correspondence under the change of variables (7), so 
from a coordinate-free standpoint, they are essentially the same problem. 
Thus the goal is to find a particular linear change of variables (7) which will 
simplify the moduli as much as possible, leading to a simple canonical form 
for the variational problem, and, hence, the canonical moduli of the title. 

Combining the previous two paragraphs, we will define a general notion 
of equivalence of two quadratic Lagrangians to mean that the correspond- 
ing variational problems are mapped to each other by some linear change 
of variables (7). In other words, W and i f /a re  equivalent if there exist 
nonsingular matrices A, B and a null Lagrangian N such that 

ffz(Vfi) = {W(Vu) + N(Vu)}ldet AI, where x = A~, u = /53. 

Thus, given a stored energy function W, the goal is to find matrices A and 
B and a null Lagrangian N such that the resulting stored energy function l~ 
is as simple as possible. 

When we have a series of such changes of variables, it is often helpful at 
each stage to drop the tildes and re-express everything in terms of x and u 
rather than ~ and ft. Thus, it will be helpful to adopt the following "sub- 
stitutional" notation for changes of variables. We write (7) in the form 

x ~  A~, u ~ Bfi. 

Thus a function f (x ,  u) gets transformed into the function 

f(~,  fi) = f(Af~, Bfi). 
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Now we can omit the tildes and write the change of variables as 

x ---} A x ,  u -~ Bu,  (8) 

and our function f (x ,  u) gets transformed into the function 

f (x ,  u) = f ( A x ,  Bu). 

The transformation (8) can thus be read "substitute Ax for x and Bu for u 
where-ever they occur". 

EXAMPLF~. An orthotropic elastic material is one that has three orthogonal 
planes of  reflected symmetry, cf. [5; page 159]. In two dimensions, it is 
characterized by the conditions 

Cl112 ~ C1222 ~ 0 

on the elastic moduli. Thus the stored energy function takes the form 

2 2 
e l l l l U x  + c1212(Hy --~ V x )  2 -~- 2Cl122HxTJy -Jr- c2222Vy , 

where we write (x, y) for x = (Xl, x2) and (u, v) for u = (u ~ , u2). When we 
expand, as remarked above we can replace the term UxVy by uyv x, leading to 

the semi-diagonal Lagrangian 

2 2 (9) pu2x + qu~ + 2rU~Vy + sv x + try, 

where 

p = c1111 , q = c1212 , F ~ c1212 _t_ Cl122,  s = c1212 , t = c2222. 

In particular, the strong ellipticity implies that p, q, s, and t are all positive. 
We can thus further simplify any semi-diagonal Lagrangian (9) by rescal- 

ing both x and u: 

x ~ ' x ,  y ~ , f f - ~ ' y ,  u ~  u, v ~  "v. 

The net effect is a Lagrangian depending on only two parameters, 

2 ~U2y 2~uxvy ~v 2 2 (10) u~ + + + + Vy, 
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r 
= , and f l -  x/~" 

We will call (10) an orthotropic Lagrangian, and the parameters a and fl the 
corresponding canonical elastic moduli for such an orthtropic elastic 
medium. Thus we have shown that, up to rescaling, there is just a two- 
parameter family of planar orthotropic elastic media. 

In particular, the Lagrangian for linear isotropic elasticity rescales to the 
special case in which the canonical elastic moduli are related by the equation 

c~ + fl -- 1. (11) 

Indeed, under the above scaling, we find that 

# # + 2  
0{ - -  • - -  

2# + 2' 2# + 2'  

where p and 2 are the classical Lam6 moduli, [5; page 161]. Two isotropic 
Lagrangians determine the same orthotropic Lagrangian if and only if their 
Lam6 moduli are proportional: 2/p = ~.//~, or, equivalently, they have the 
same value for Poisson's ratio v = )~/(~ + 2) = ~ = 2/(/~ + 2). Thus there 
is, up to rescaling, just a one-parameter family of inequivalent isotropic 
Lagrangians. 

The main result of this paper is that the orthotropic Lagrangians actually 
provide a complete list of canonical forms for planar elastic media. In other 
words, every planar linear elastic medium is equivalent under a linear 
change of variables to an orthotropic elastic medium. 

THEOREM 1. Let W(Vu) be a first order planar quadratic Lagrangian which 
satisfies the Legendre-Hadamard strong ellipticity condition. Then W is 
equivalent to a orthotropic Lagrangian (10), where the canonical elastic 
moduli ~ and fl are constants, satisfying the strong ellipticity inequalities 

c~ > 0, Ifi[ < ~ + 1. (12) 

The corresponding Euler-Lagrange equations are thus equivalent, under a 
linear change of variables, to a "generalized" system of Navier's equations 

Uxx + auyy + flvxy -- O, fiuxy + avxx + vyy = O. (13) 
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In other words, for planar elasticity, once we allow arbitrary linear 
changes of variable, there are in reality only two independent elastic moduli. 
The inequality constraints (12) are readily seen to be equivalent to the 
Legendre-Hadamard condition (5). Consequently, while the general planar 
elastic problem in a general coordinate system has 6 independent elastic 
moduli cij~t, Theorem 1 shows that if we choose a special adapted coordinate 
system, there are in reality only two independent moduli. 

Now that we are allowing general linear changes of variables, there is the 
additional possibility that different orthotropic Lagrangians are themselves 
equivalent under some linear change of variables. In fact, it turns out that, 
except for the "exceptional" isotropic case, each orthotropic Lagrangian is 
equivalent to seven other orthotropic Lagrangians. 

THEOREM 2. Let W and lYd be different orthotropic Lagrangians with moduli 
c~, fl and ~, fi respectively. Then W is equivalent to i f / i f  and only if their moduli 
are related by one of the following pairs of equations: 

i)& = a, fi = - f i ,  

ii) fi = 1, ~ fl 
g 

iii) ~ 1 /~ _ /3 
cX ~x 

l + ~ - f l  2 - 2 c ~  
i v )  - = 

l + ~ + f l '  1 + ~ + f l '  

l + ~ - f l  2 e - 2  
v )  - - 

1 + ~  + f l '  1 + ~ + f l '  

l + ~ + f l  2 - 2 ~  
vi) & - fl - 

1 + ~ - ~ '  I + ~ - B '  

l + e + f l  2 a - 2  
vi0 a - fi - 

1 + ~ - f i '  1 + ~ - f l '  

Note that transformations i), iv) and v) leave an isotropic Lagrangian 
unchanged, but ii), iii), vi) and vii) change it into a different orthotropic 
Lagrangian with 

- fl = 1. (14) 
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In future, we will consider both (11) and (14) as isotropic Lagrangians. Their 
structure is somewhat exceptional. (See especially [10].) 

in particular, excluding isotropic Lagrangians, in the strongly elliptic case 
one can always use one of the above transformations to make the canonical 
elastic moduli ~ and fl satisfy the additional restrictions 

0 < ~ ~ 1, 0 ~ f l  ~ 1 - a .  (15) 

In fact we will see that any strongly elliptic Lagrangian is equivalent to a 
unique orthotropic Lagrangian whose moduli satisfy (15). Isotropic 
materials will also satisfy (11). 

An important feature of this result on canonical forms for elastic moduli 
is that the construction of the linear transformation (8) which places a 
general strongly elliptic Lagrangian into canonical form is completely 
explicit. Indeed, Theorem 6 will provide an elementary constructive 
procedure for determining the explicit form of the transformation, and 
hence of the canonical elastic moduli e, ft. 

The proofs of these results presented here are basically simplified versions 
of the general procedure for finding canonical forms of arbitrary quadratic 
Lagrangians in the plane, a problem solved completely in [10], but where we 
exploit the underlying strong ellipticity assumption to full advantage. 

The motivation for the study of these problems was the author's continu- 
ing studies on conservation laws in linear elasticity, [7], and, more specific- 
ally, attempts to extend the results on linear isotropic elasticity to the 
anisotropic case [8]. It was found that, without some kind of elementary 
canonical form, the intervening computations for symmetries and conser- 
vation laws are just too complicated to effectively analyze. A complete 
classification of the conservation laws of planar anisotropic elasticity based 
on the result of the present paper can be found in [11]. Further applications 
to the simplification of the equations of anisotropic elasticity, and the 
complex variable methods associated with the Airy stress function, [5], in 
planar elasticity are also direct consequences of the main theorem, and will 
be explored in detail elsewhere. 

2. Counting canonical elastic moduli 

Before we implement the rigorous proof of Theorem 1, it is useful to take 
a more "hand-waving" view of the subject, which at least will give us a 
reason to suspect that such a result should be true, even if it does not provide 
much in the way of rigorous proof. Besides providing a motivation for the 
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two-dimensional result, the following counting methods readily extend to 
three dimensions, and tell us how many canonical elastic moduli we can 
reasonably expect there, even though it gives us no idea of what the canonical 
forms for three-dimensional strongly elliptic Lagrangians are, or how to 
construct the corresponding canonical elastic moduli. 

The basic idea is to effect a dimension count comparing the number of 
independent elastic moduli with the number of available degrees of freedom 
in the allowable changes of variables. Let us consider a quadratic variational 
problem (1), in which both x and u are in NP. For a general Lagrangian, as 
in (2) there are 1p2(p2 4- 1) independent variational moduli aim since we can 
always impose the symmetry condition aij~ = aktij without loss of generality. 
However, as mentioned in section 1, we can also add in any quadratic null 
Lagrangian N to W without affecting the Euler-Lagrange equations. The 
most general such null Lagrangian is a linear combination of the 2 x 2 
Jacobian determinants 

~u i 0u ~ c~u i c~u ~ 
. . . . .  

c~xj c~xt Oxt c~x~ 

Again, in NP, it is not hard to see that there are lp2(p _ 1)2 independent 
quadratic Jacobian determinants, so there are in reality only 1p2(p2 + 1) - 
¼pZ(p _ 1)2 = ¼pZ(p + 1)2 independent coefficients in the form of W. (This 
is also, of course, the dimension of the space of symbols Q(x, u) when x and 
u are in ~P.) 

Now, in the general change of variables 

x - ~ A x ,  u - ~ B u  (16) 

there are p2 different entries in each p x p matrix A and B, and so we have 
2p 2 different parameters at hand. However, the particular scaling 

X --~ /].X, U --)" ~(2-p)/2U, /]. > 0 

leaves the variational problem unchanged, and so we have one less indepen- 
dent parameter with which to effect nontrivial changes in W. Assuming that 
the remaining 2p 2 - 1 parameters all act "independently" (an assumption 
that does hold generically, but might fail at particular Lagrangians, e.g., 
isotropic Lagrangians) we can expect to eliminate 2p 2 - 1 independent 
moduli in the Lagrangian by a suitable change of variables. Thus we have 
a total of 

p4 + 2p3 __ 7p2 + 4 
¼p2(p + 1)2 _ (2p2 _ 1) = 

4 
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remaining moduli,  and this should provide the number  of  canonical moduli  
a;ik; for a general quadratic variational problem in R p . We summarize the 
results in tabular  form for p = 1 , . . .  , 4: 

Dimension # Moduli # Parameters # Canonical moduli 
1 1 1 0 
2 9 7 2 
3 36 17 19 
4 100 31 69 
p ¼pZ(p + 1)2 21) 2 - 1 ¼(p4 + 2p3 _ 7p2 + 4) 

This can be contrasted with the situation discussed by Lekhnitskii, [6], in 

which the matrices A and B in the change of  variables (16) are restricted to 
be or thogonal  matrices. Now there are only p ( p  - 1) independent par- 

ameters than can be used to effect changes in W, and we find the following 
alternative table for  "or thogonal-canonical  moduli":  

Dimension # Moduli # Parameters # Canonical moduil 

1 1 0 1 
2 9 2 7 
3 36 6 30 
4 100 12 88 
p ¼p2(p q_ 1)2 p2 _ p ¼(p4 + 2p3 _ 3p2 -I- 4p) 

In the elastic case, the Lagrangian satisfies the additional symmetry 
restriction (6), and so there are only ~ p ( p  + 1)(p 2 + p + 2) independent  
elastic moduli  c~m. (To see this, note that there are ½p(p + 1) different 
strain components  e;;, and the Lagrangian is a general quadrat ic  polynomial  
(3) in these components .)  On the other hand, we can no longer perform an 
arbi t rary linear change of  variables (16) as this would destroy the symmetry 
of  the Lagrangian. Thus we are restricted to changes of  variables of  the form 

x - - . A x ,  u ~ 2 " A - ~ u ,  2 ~ R  (17) 

which do preserve this symmetry. There are then only p2 independent par- 
ameters (as above, one scaling is trivial), and so, for the symmetric case, we 
have the alternative table: 

Dimension # Moduli # Parameters # Canonical moduli 

1 1 1 0 
2 6 4 2 
3 21 9 12 
4 55 16 39 
p lp(p + 1)(p2 + p + 2) p2 ~p(p - -  l)(p 2 q- 3p -- 2) 
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Note that in two dimensions, the number of canonical moduli is the 
same whether or not we impose the additional symmetry condition (6) 
on the symbol. This is borne out by the general result of Theorem 1 
that every strongly elliptic variational problem is equivalent to an ortho- 
tropic, and hence symmetric, one. This is not the case in three dimen- 
sions, where there are 19 canonical moduli for a general quadratic Lagran- 
gian, but only 12 in the symmetric case. Also, we see that the generalization 
of Theorem 1 to three-dimensional elasticity cannot be true, since there 
is only a nine-parameter family of  orthotropic elastic media, [5: p. 159], 
even before possible rescalings are taken into account. This is borne out 
by results of Cowin and Mehrabadi, [3], on three-dimensional linear 
elasticity, in which they determine additional restrictions on the elastic 
moduli for the material to admi t  one (or more) planes of reflectional 
symmetry. 

Again, we can contrast this with the canonical moduli found when the 
matrix A in (17) is restricted to be orthogonal. In this case, there are only 
l p ( p  _ 1) parameters available, and we find the following table: 

Dimension # Moduli # Parameters # Canonical moduli 
1 1 0 1 
2 6 1 5 
3 21 3 18 
4 55 6 49 

p lp(p + 1)(p2 + p + 2) 1(p2 _ p) ~(p4 + 2p3 _ p2 + 6p) 

Note especially the increasing discrepancy between the number of canoni- 
cal elastic moduli in the two cases as the dimensions of the space gets 
larger. 

These results strongly indicate, but by no means prove, the validity of 
Theorem 1, that there is a two-parameter family of canonical quadratic 
Lagrangians, with every other strongly elliptic Lagrangian equivalent to at 
least one canonical Lagrangian. Similarly, in three dimensions, one suspects 
the existence of a twelve-parameter family of canonical quadratic Lagran- 
glans, with the property that every strongly elliptic quadratic Lagrangian is 
equivalent to one of these. However, this naive dimension count gives no 
idea of  the form that such canonical Lagrangians should take, nor how to 
actually prove a rigorous result to that effect. Indeed, there must be a note 
of caution in interpreting these dimension counts, since it is not true that 
every planar quadratic Lagrangian is equivalent to an orthotropic one once 
we drop the strong ellipticity assumption; see [10]. 
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3. A proof of Theorem 1 

In this section we prove the assertion of Theorem 1 that every planar elastic 
material is equivalent under a linear change of variables to an orthotropic 
material. Although the proof  is constructive, the resulting change of vari- 
ables is not the most efficacious to use in practice, and in Section 4 we give 
a "streamlined" version of the change of variables which can be easily 
implemented in practice. For some reason, it appears that we need to know 
the truth of Theorem 1 before we can be sure that the streamlined version 
really works, which is why we require two sections for the discussion. The 
method of proof is a simplified version of the general calculations appearing 
in [10]. 

For a general planar quadratic variational problem, the symbol has the 
form 

Q(x, u) = alx2u 2 -+- a2xyu 2 + a3y2u 2 + a4xZuv + asxyuv + a 6 y 2 u v  

+ avx2v 2 + a 8 x y v  2 q- a9y2v 2, (18) 

where the coefficients ai are just a simpler notation for the variational moduli 
a~m. If we assume strong ellipiticity, then Q must be positive definite as a 
function of x = (x, y) and u = (u, v), which will place certain restrictions 
on allowable moduli al, • . • , ag. In the symmetric (elastic) case (6), we have 
the additional restrictions 

a2 = a 4 ,  a3 = a 7 ,  a6 = a8, 

although these are not required for the subsequent argument. 
Although x and u play essentially interchangeable roles in the discussion we 

single out one of them, say x, and write Q as a quadratic polynomial in x, 

Q(x, u) = A(u)x 2 + 2B(u)xy + C(u)y 2, (19) 

where the coefficients A, B, C are homogeneous quadratic polynomials in u, 
e.g. ,  

A(u) : al  u2 q- a4~tv q- a7 v2. 

A symbol is called semi-diagonal if the coefficients 

a 2 = a 4 = a 6 = a 8 = 0 
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all vanish, and so Q has the form 

Q(x, u) = px2u 2 @ qy2bl2 ~- 2rxyuv + SX2V 2 + ty2v 2, (20) 

which is just the symboi for the semi-diagonal Lagrangian (9). In the 
example, it was shown how any semi-diagonal Lagrangian could be rescaled 
to an orthotropic Lagrangian, and the same rescaling obviously works for 
the corresponding symbols. Thus .the goal is to show that any strongly 
elliptic symbol is equivalent to a semi-diagonal symbol. (Without the strong 
ellipticity, this not true, and there are indefinite biquadratic symbols which 
are not equivalent to any semi-diagonal form, cf. [10].) 

Before starting, note that if we are given a linear change of variables 

x ~ A x ,  u ~ B u ,  (21) 

then, by the change of variables formula for multiple integrals, the symbol 
of the new stored energy is related to that of the old by the formula 

Q(x, u) = Idet AI" Q(A-lx,  Bu). (22) 

Since we will be working exclusively with symbols in this section, it helps to 
simplify matters by replacing the matrix A by the matrix Ix/~-A] • A -I . 
Thus the change of variables (21) will be assumed to have the simpler effect 
of changing the symbol to 

Q(x, u) = Q(Ax, Bu). (23) 

(Of course, once we derive the proper change of variables, we must remem- 
ber to translate (23) back to the proper Lagrangian picture (22).) 

The basic invariant of a quadratic polynomial is its discriminant, which, 
for (19), is the function 

Ax(u) = B(u) 2 - A(u)" C(u), (24) 

which is a homogeneous quartic polynomial in u. (There is also a discrimi- 
nant A.(x), but we only need consider one of these two polynomials; in the 
symmetric case they are the same polynomial.) A root of Ax (u) is a (possibly 
complex) nonzero solution u 0 = (u 0, %) to the quartic equation Ax(u) = 0. 
However, since Ax(u) is homogeneous, any complex scalar multiple ),u0 
of a root u 0 is also a root, so we will only distinguish roots if they are 
not scalar multiples of each other. Thus, by the Fundamental Theorem of 
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Algebra, counting multiplicities, Ax has precisely four complex roots, which 
we denote by u~, u2, u3, u4. 

Now, the discriminant of  a quadratic polynomial vanishes if and only if 
the polynomial is a perfect square; therefore, for each root uj,of A~, the 
corresponding (complex) quadratic polynomial Qj(x) = Q(x, uj) must be a 
perfect square: 

Qj(x) = + (bjx + cjy) 2. (25) 

Note that since each root uj is only defined up to a scalar multiple, the same 
is true for the perfect square Qj. We assume throughout that some consistent 
choice of these scalar multiples has been made. (See below.) 

At this point, we invoke the strong ellipticity condition (5) to conclude 
that Ax(u) can only have complex roots. Indeed, if u: were a real root, then 
there would be a nonzero real root xj of the perfect square Qj, and hence 
(xj, uj) would be a nonzero real root of the symbol Q, which would violate 
the positivity assumption (5). Furthermore, by reality, the four complex 
roots come in complex conjugate pairs, so we can assume that u2 = u-~, and 
I14 ~ U 3 . 

Let us take one pair of complex conjugate roots u2 = u~ of Ax. Since the 
symbol Q is real, the corresponding polynomials Q~ and Q2, cf. (25), are also 
complex conjugates 

Q2(i) = Ql(x). 

By multiplying by a suitable complex scalar, we can arrange that the root Ul 
takes the form u~ = (1, 7 + i3), where 3 ¢ 0 as otherwise the root would be 
real. We use the real transformation 

(u, v) - ,  (u, 7u + 6v) 

to take this root to fil = (1, i), and its conjugate to fi2 = (1, - i ) .  
At this juncture, there are two distinct cases. In the first, we find that the two 

perfect squares Q~ and Q2 corresponding to our two roots are genuinely 
complex polynomials. In other words, 

Ql(x,y) = -4 [ (a  + ib)x + (c + id)y] 2, 

where the complex numbers a + ib and c + idare not real multiples of each 
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other, and Q2 is the complex conjugate square. By replacing 

(x, y) --+ (ax + cy, bx ÷ dy), 

we can transform QI into the elementary square - 4(x + iy) 2 and hence Q2 

to its conjugate - 4 ( x  - iy)  2. Thus, the net effect of these two transfor- 
mations is to place the symbol in the form 

Q = (x - iy)2(u - iv) 2 + {o(x - iy) 2 + ~(x - iy)(x + iy) + ~(x + iy) 2} 

× (u - iv)(u + iv) + (x + iy)2(U "-}- iv) 2, 

where 0 is complex and a is real. Now, simultaneously rotating (x, y) 
through an angle 0 and (u, v) through angle - 0  (which is the same as 
multiplying x + iy by e i° and u + iv by e -i°) leaves Q in the same form, and 
only has the effect of multiplying 0 by e 2~°. Thus we can choose the angle 0 
so that 0 is real, and Q takes the semi-diagonal form (20) where 

p = 20 + ~ + 2 ,  q = - 2 0  + a - 2 ,  r = - 8 ,  

s = 20 + ~ - 2 ,  t = - 2 0  + a +  2. 

Thus such a symbol Q is equivalent to an orthotropic symbol. 
In the second case, the two perfect squares Q1 and Q2 are complex 

conjugate multiples of the same real square. In other words, 

Q1 = 4(a + ib)Z(cx + dy) 2, Q2 = 4(a - ib)Z(cx + dy) 2, 

where a, b, c, d are real. By the strong ellipticity, neither Q1 n o r  Q2 is zero, 
so we can replace x by cx + dy to transform them into multiples of the 
elementary square x 2. In the new coordinates Q has the form 

Q = x 2 { ( a  - ib )2(u  - iv) 2 + (a + ib)2(u  + iv) 2} 

+ (~X 2 -~- a x y  ~- "~y2)(b/ - -  iV)(U + iv ) ,  

for certain real constants ~, 6, {. If we replace (u, v) by 1/(a 2 + b 2) x 
(au + by, - b u  + av), then the symbol becomes 

Q = x2{(u  - -  iv) 2 + (u + iv) 2 } + (Ox 2 -~ f f x y  -~- g, y2)(bl - -  iv)(u + iv) 

= X2(b/2 __ ,./.)2) _~_ (OX 2 _1_ (Txy "~- Ty2)(U 2 -~- V2), 
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where ~, ~r, ~ are respectively equal to ~, 6, ~ divided by a 2 + b 2. Now by 
strong ellipticity ~ ¢ 0, so we can translate 

( x , y ) - ,  x , - ~ x + y  , 

which has the effect of changing Q into the semidiagonal form 

Q = x:(u:  - v 2) + (cox: + ~y:)(u: + v:) ,  

where co = ~ - o - 2 / 2 - ~ .  Thus, in either case, the symbol is equivalent to a 
semi-diagonal symbol; this completes the demonstration that any strongly 
elliptic symbol is equivalent to an orthotropic symbol, and hence the proof 
of Theorem 1. 

4. Constructing the change of variables 

Now that we know the validity of Theorem 1, we can provide a more 
practical implementation of the change of variables which is required to 
reduce a general planar elastic Lagrangian to one in orthotropic form. 
Rather than working with the "homogeneous roots" ul, u2, u3, u4 of the 
x-discriminant Ax(u), we will use their corresponding complex represen: 
tatives Zl, z2, z3, z4, e.g. if ul = (u~, v~), then z~ = v~/u~. (In particular, a 
root with ul = 0 would correspond to zl = co; however, this possibility is 
ruled out by strong ellipticity.) Note that the roots zj come in complex 
conjugate pairs: z2 = z~, z4 = z3. If u --* Au, u = (u, v), is a linear change 
of variables, then A acts on the complex variable z = v /u  via a linear 
fractional transformation, [1, §3.3], 

(a ;) dz + c where A = (26) 
Z ~ b z + a  c 

Finally, if we assume that the symbol Q satisfies the symmetry condition (6), 
then the u-discriminant A,(x) is the same quartic polynomial, and has 
precisely the same complex roots. 

LEMMA 3. Let  z 2 = z~, z4 = ~ be non-real complex  conjugate numbers.  Then 

there is a unique real number  ~ >~ 1 and a linear f rac t ional  transformation 

given by a real  ma t r i x  A which transforms zl , z2, z3, z 4 to the complex  numbers  
zi, - zi, z - I  i, - z -1 i. Moreover ,  i f  .d is any other such matr ix ,  then .~ = K A ,  
where either 
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i) if v ~ 1, then K is a scalar multiple of  one of  the following four element- 
ary matrices: 

[: o] E: o] Eo :] E o :1 
ii) if  
a matrix of  the form 

[:cos  
sin ~b c~ cos q~ 

(27) 

= 1, then K is a scalar multiple of  an orthogonal 2 x 2 matrix, i.e., 

(28) 

Proof First of  all, it is easy to translate the first pair of  roots to be + i; if 
z 1 = a + ib, then the real translation matrix 

E: :] 
will accomplish this. The new roots will be denoted by z~, j = 1, . . . , 4, 
where zj = azj + b. In particular z'~ = i (and, of  course, since T is real, 
z; = - i  remains its complex conjugate). Next  we perform a second linear 
t ransformation which fixes z'~ = i, but  moves the second pair of  roots z;, z; 
onto the imaginary axis. It is not  difficult to see that a real linear fractional 
t ransformation (26) fixes the complex number  i if and only if its matrix is a 
muJtip!e of  a rotat ion matrix; thus we can take 

r ] cosq~ - s i n q 5  

R L sin 4~ cos ~b 

where the multiple has been taken to be 1 without  loss of  generality. N o w  
if z ; =  p + iq, and p ¢ 0 (otherwise z; would already be on the imaginary 
axis) then the above rotation matrix R will move z3 to a point on the 
imaginary axis provided q~ solves the equation 

p2 + q2 _ 1 
cot 2q~ - (29) 

2p 

Thus, by composing the linear fractional t ransformation determined by T 
with that determined by R we have a linear fractional t ransformation with 
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matrix T .  R, which moves all four roots onto the imaginary axis. The new 
H M H H t t  roots are labelled zj, with z~, z2 being + i, while z3, z4 are some other 

complex conjugate pair of  purely imaginary numbers + cri, where, without 
loss of generality, ~ > 0. It is then a simple matter to use the scaling 
determined by the matrix 

to move the roots to the desired positions ___zi, +_z-li, where ~ = o - - 1 / 2 .  

Thus the composition 

A = T ' R ' S  (30) 

of the above three linear transformations has the desired effect. Even more 
explicitly, if we multiply out (30) and use polar coordinates a = r • cos 0, 
b = r ' s i n 0 f o r z ~  = a + ib = r ' e  ~°, then we find that 

I z cos q5 - s i n  q5 -] 
A = J (31) 

r r c o s ( 0  - 4)) r s i n ( 0 -  40 

is the desired matrix. 
The angle q~, defined by (29), has a nice geometrical interpretation. 

Indeed, if we apply the complex linear fractional transformation 

z - i  
W - -  

z + i '  

to the roots z~, a simple calculation shows that - 2q5 is just the argument of 
the image 

w; 
z; - i 

z ; + i  
- -  O " e - 2 i O .  

Using the fact that linear fractional transformations take circles to circles, 
[1; Theorem 14, p. 80], we conclude that -2q~ is the angle between the 
imaginary axis and the circle passing through the four points i, - i ,  z; and 
z;, or, in terms of the original roots, the circle passing through the four roots 
zl, z2, z3 and z4. See Fig. 1. 

The only other quantity in the formula (31) for our linear transformation 
which does not yet have a geometrical interpretation is the quantity r. If we 
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z 1 (j 
Fig. 1. 

use the fact, [1; Theorem 12, p. 78], that the cross-ratio 

( z l  - z 3 ) ( z 2  - z 4 )  

( z l  - z 2 ) ( z 3  - z4) 

is preserved under any linear fractional t ransformation (26), we see that z 
must be a solution of  the equation 

(zi - v-li)  • ( - z i  + ~- ' i )  (zl - z3)" (z2 - z4) 

2~i. 2-c-'i (z 1 - -  Z 2 ) "  (Z 3 - -  Z 4 ) '  

Simplifying, we find that  if z, = a + ib, z 3 = c + id, (and z 2 and z4 are the 
complex conjugates), then 

~ / ( a -  c) 2 + (b - d)  2 + ~ / ( a -  c) 2 + (b + d) 2 sl + s2 

 .s4' 

where sl, s2, s3, s4 are the lengths o f  the four indicated line segments in 
Fig. 2. 

Once we have transformed the roots to _+vi, +'c-~i, the "uniqueness" 
part of  the lemma is proved by direct determination of  which 2 x 2 matrices 
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zt ~ z  3 

s3 s 4 

z2 

Fig. 2. 

K correspond to linear fractional transformations which preserve the set of 
points St = { +_ ri, + ~-~i}. It is straightforward to verify that a linear 
fractional transformation with matrix K takes the set S~ to the set S~ if and 
only if z -- ~, and either, for -c ¢ 1, K is one of the four matrices (27), or 
for ~ = 1, K is a multiple of an orthogonal matrix, (28); the details are left 
to the reader. This completes the proof of Lemma 3. 

An important point is that, once the roots Zl, z2, z3, z4 of the discriminant 
Ax(u ) are known, the construction of the linear transformation (31) which 
maps them to +_ ri, +_ r - l i  is completely explicit. 

LEMMA 4. Let Q(x, u) be a strongly elliptic planar biquadratic symbol. I f  the 
two discriminants Ax(u ) and A,(x) have the same roots _+ ~i, __+~-1i as an 
orthotropic symbol, then Q is a scalar multiple of  an orthotropic symbol. 

(In other words, the only positive definite symbols with the same roots as 
an orthotropic symbol are the orthotropic symbols.) 

Proof. Suppose Q has the given discriminant roots S~ = { +_ zi, + z- 1 i}. We 
know by Theorem 1 that there is a linear change of variables x ~ Ax, 
u ~ B u  which changes Q into an orthotropic symbol, which must have roots 
S~ = { + ~i, _+ ~-1i} for some ~. Thus the matrices A and B must map the 
set of roots S~ to the set S~. However, according to the proof of Lemma 3, 
this is possible if and only if z = ~ and A and B have either the form (27) 
in the case of simple roots (z ~ 1; the orthotropic case) or the form (28) in 
the case of double roots (r = 1; the isotropic case). Moreover, the inverses 
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A-1 and B 1, which map the orthotropic symbol back to Q, have the same 
form. However, it is easy to see that these particular linear transformations 
map an orthotropic symbol to a scalar multiple of some other orthotropic 
symbol. Thus Q itself must be an orthotropic symbol, and the lemma is 
proved. 

We can now give an easy, explicit method for transforming an arbitrary 
strongly elliptic symbol into an orthotropic symbol. 

THEOREM 5. Let Q(x, u) be a strongly elliptic planar biquadratic symbol. Let 
A be a linear transformation which maps the roots of  the discriminant Ax(u) 
to + zi, + z -1 i and B be a linear transformation which maps the roots of A.(x) 
to the same values + ~i, +_ ~-1i. (The fact that ~ is the same for both discrimi- 
nants is a consequence of  the fact that Q is equivalent to an orthotropic symbol, 
or, more fundamentally, o f  the fact  proved in [12] that the cross-ratios of  the 
four roots o f  both discriminants are the same.) Then the linear transformation 
x ~ Ax, u ~ Bu changes Q into a multiple of  an orthotropic symbol, andso, 
by possibly one further rescaling x ~ 2x, into an orthotropic symbol. In 
particular, i f  Q is symmetric, then A = B, and we can construct a symmetric 
change of  variables x ~ A~u, u ~ Au, where A is a suitable multiple of  A, 
which changes Q into an orthotropic symbol. 

This theorem is a simple consequence of the previous two lemmas. The 
"explicitness' of  the construction of the matrices A and B is subject only to 
the solution of the two quartic polynomial equations Ax(u ) = 0 and 
A°(x) = 0. In the symmetric case, these are, of  course, the same equation. 

Returning to the Lagrangian picture, and keeping (22) in mind, we see 
that we have proved the following explicit result concerning the determi- 
nation of the canonical orthotropic form of a symmetric strongly elliptic 

Lagrangian: 

THEOREM 6. Let W(Vu) be a symmetric quadratic planar stored energy func- 
tion, so W is a quadratic polynomial in the strain tensor, (3). Let Q(x, u) be 
the symbol of  W, and let z~, z 2, z3, z4 be the complex roots o f  the discriminant 
Ax(u ) of  Q, cf. (19), (24). Let A be the matrix determined by (31), and let 
B = A -~ . Then the linear transformation 

x ~  B ' x ,  u - ~  A "u, 

will convert W into a scalar multiple of  an orthotropic stored energy func- 
tion. Moreover, W is equivalent to an isotropic stored energy function if  
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and only i f  the roots z l , z2, z 3, z 4 form a pair o f  double complex conjugate 
roo t s .  

We can easily determine the explict formulas for the canonical elastic 
moduli e and/3. Let Q(x, y; u, v) = Q(x, u) be the symbol, and let a, b, c, 
d denote the entries of the matrix (31), as in (26). The coefficient of u~ in the 
new Lagrangian under the prescribed change of variables is easily seen to be 
Q(a, c, a, c), hence rescaling to get a truly orthotropic Lagrangian, we find 
that 

Q(a, c, b, d) 

Q(a, c, a, c) ' 

Q(a, d, a, d) + 2Q(a, d, b, c) + Q(b, c, b, c) 
2Q(a, c, a, c) 

Finally, we prove Theorem 2. It is not difficult to see that if Q is a positive 
definite orthotropic symbol, then one of three possibilities hold: 

1) The roots zl, z2, z3, z 4 are simple, and lie on the imaginary axis. This 
is the type of orthotropic symbol derived in the proof  of  Theorem 5. 

2) The roots zl, z2, z3, z 4 are simple, and lie on the unit circle [zl = 1. 
These are the orthotropic symbols whose moduli do not satisfy 
inequality (15). 

3) There are a complex conjugate pair of double roots at _+ i. These are 
the isotropic symbols. 

Thus, to prove Theorem 2, we need only deal with case 2. Here the 
elementary linear fractional transformation 

z - 1  
Z - r -+  - -  

z + l  

transforms the unit circle to the imaginary axis. The corresponding trans- 
formation in the physical variables is 

(x, y)  --, (x  + y,  x - y) ,  (u, v)  --, (u + v; u - v). (32) 

It is easy to check that this has the effect of changing the canonical elastic 
moduli ~ and/3 into moduli fi and/~ determined by case iv) of Theorem 2. 
(Vice versa, if the roots start out on the imaginary axis, then (32) transforms 
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them onto the unit circle.) Once the roots zj are on the imaginary axis, 
Lemma 3 gives all possible transformations which preserve the orthotropic 
form of the symbol. Applying these to either ~,/3 or to the ~, ~ obtained from 
(32), produces all the remaining possibilities i)-vii). Note especially that in 
the isotropic case, the rotations (28) leave the moduli unchanged, and 
thereby give a one-parameter symmetry group of an isotropic material 
which has no anisotropic counterpart. (The existence of an extra one- 
parameter symmetry group is yet another way of recognizing an isotropic 
material.) 
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