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Abstract 

In this paper the basic results involved in the application of  NOETHER'S theorem 
relating symmetry groups and conservation laws to the variational problems 
of  homogeneous elastostatics are outlined. General methods and conditions 
for the existence of variational and generalized symmetries are presented. Appli- 
cations will be considered in subsequent papers in this series. 

1. Introduction 

This is the first in a series of papers devoted to applying NOETHER'S general 
theorem relating symmetry groups and conservation laws to the variational 
problems of linear and nonlinear elasticity. Although NOETHER'S theorem has 
been available for over sixty years, and despite the well-acknowledged importance 
of  group theory in elasticity, this series of papers are, to the best of  my know- 
ledge, the first systematic implementation of the full power of NOETHER'S theorem 
in this field. Indeed, not until the work of GidNTHER, [14], and KNOWLES 8,C 
STERNBERG, [16], was even a limited variant of NOETHER'S theorem applied to 
elasticity. (This situation is, however, not unique to elasticity, as recent work on 
new conservation laws in fluid mechanics, [3], has made clear.) The full historical 
reasons behind the singular delay in adequately applying this powerful theorem 
to even the most basic systems arising in mathematical physics and engineering 
are not at all clear, and would make an extremely interesting study in the history 
of  mathematics in this century. To this day, it is fair to say that NOETHER'S theo- 
rem remains the most quoted, but most under-utilized result in all of  the literature 
of  mathematical physics. 

This state of  affairs becomes even more incredible when one realizes that 
the basic techniques are completely constructive and amenable to straight-for- 
ward computational methods. (These are mechanical enough that one can easily 
envisage implementing them on a symbol manipulating program.) For any 
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system of differential equations (or even free boundary problems, [3]) the Lie- 
Ovsiannikov theory provides the general computational framework for the 
complete classification of all continuous geometrical (or Lie) symmetry groups 
i .e. those realized as physical transformations on the space representing the in- 
dependent and dependent variables of the system. (For basic references, see 
[5, 22, 25].) For systems arising from variational principles, NOETHER'S theorem 
provides a means for associating a conservation law to each one-parameter 
variational symmetry group. These groups, which are included among all the 
symmetries of the Euler-Lagrange equations, are characterized by their leaving 
the variational integral itself invariant over arbitrary subdomains. It is this first 
version of NOETnER'S theorem that GONTHER and Kr~OWLES & STERNBERG employed 
in their analysis. 

In 1922, BESSEL-HAGEN, [4], showed how to generalize NOETHER'S theorem 
to give essentially a one-to-one correspondence between generalized variational 
symmetries and conservation laws. There are two main directions of generaliza- 
tion. First, enlarge the class of symmetries to include transformations depending 
on the derivatives of the dependent variables, as well as the independent and 
dependent variables themselves--the generalized symmetries. (These can no 
longer be realized as geometrical transformations on any finite dimensional 
space.) More recently, these generalized symmetries have resurfaced in the theory 
of "soliton" equations, [19, 12], where they also go under the unfortunate misno- 
mer of "Lie-B~icklund transformations", [1]. BESSEL-HAGEN'S second generaliza- 
tion was to expand the class of variational symmetries to include those (generaliz- 
ed) symmetry groups which infinitesimally leave the Lagrangian in the variational 
integral invariant only up to a divergence. Besides [4], a complete discussion of 
this result can be found in [1] and [22]. 

KNOWLES & STERNBERG did not use either of BESSEL-HAGEN'S generalizations, 
so their claims of completeness in the classification of conservation laws cannot 
be correct. This will be borne out in subsequent papers in this series, where new 
conservation laws will be found. Their methods, however, have persisted in later 
discussions; cf. [6, 10]. In a recent paper EDELEN, [7], makes the same criticism 
of their work. One of the main purposes of this series is to implement EDELEN'S 
problem of providing "a detailed classification of all invariance transformations 
and conservation laws" both for linear and nonlinear elasticity. 

In elasticity, besides more general applications to global existence and con- 
servative properties of solutions, conservation laws are of especial interest for 
problems in propagation of cracks in elastic media, [2, 26], dislocation theory, 
[9, 17] and scattering of waves in elastic media. Future papers in this series will 
treat the various applications of the conservation laws found. For the present, 
we concentrate on the variational problems arising in hyperelastostatics of homo- 
geneous materials, although nonhomogeneities may be readily addressed by the 
same methods. In this context, ESHELBY'S energy-momentum tensor, [9], corres- 
ponding to translational invariance, was the first significant example of a conser- 
vation law. Extensions of our results to problems in elastodynamics, along the 
lines discussed in FLETCHER, [11], will be undertaken in a later paper. 

In this first paper, the basics of symmetry group theory and NOETHER'S theo- 
rem are outlined in a form amenable to applications in elasticity. The basic 
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symmetry conditions for homogeneous variational problems of the form 

f W(Ou) dx 

are discussed, and some simplifications in the steps required to compute symme- 
tries and conservation laws indicated. This material can be regarded as the 
necessary preliminary analysis required before proceeding to the specific examples 
to be discussed in subsequent papers. Some of  these results appear in the Procee- 
dings of the NATO Advanced Study Institute on Systems of Nonlinear Partial 
Differential Equations held in Oxford, England, July, 1982. It is a pleasure to 
thank JOHN BALL for originally sparking my interest in the applications of  these 
general results to elasticity. 

2. Noether's Theorem 

In this section we outline the general form of NOETHER'S theorem, [4], [18] 
relating symmetry groups of a variational problem to conservation laws of the 
associated Euler-Lagrange equations. Since the results are in slightly abbreviated 
form, we refer the reader to [1, 22] for more details. 

A. Symmet ry  Groups o f  Differential Equations 

Let x = ( x  1 . . . . .  x p) E R  p be the independent and u = ( u  a . . . . .  u q) E R  q 
the dependent variables. (In three-dimensional elasticity p : q = 3 and x is 
the material coordinate, u = f ( x )  the deformation.) Consider a system of partial 
differential equations 

A(x,  u, Ou . . . .  , ~"u) = 0, (2.1) 

where c~kU represents the k th order partial derivatives of u with respect to x, 
denoted 

= e uleU'...  Wk, s = (J, . . . . .  Jk), 1 <= L <= P. 

A geometrical or Lie symmetry  group G is a connected local group of point 
transformations of R p •  o: 

g: (x, u ) ~  (~, ~) = (A(x, u), B(x, u)). 

The transformations g act on solutions u ----f(x) of (2.1) by transforming their 
graphs, thus 

g: u = f ( x )  ~ fi = f(~c), 

which is defined implicitly (locally) by the equation 

B ( x , f ( x ) )  = f ( A ( x , f ( x ) ) ) .  

By definition, G is a symmetry group of the system (2.1) if fi = f ( ~ )  is a solution 
whenever u = f ( x )  is for all g E G. 
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LIE made the fundamental discovery that the symmetry group of a given 
system of differential equations can be effectively computed by infinitesimal 
techniques. The infinitesimal generators of a group are vector fields 

= ~ ~ (x ,  u) Ox-----z 6- ~., ~,(x, u)~u-Tu i . (2.2) 
c* i 

The one-parameter subgroups can be recovered by integrating v': 

dx ~' dd  

de = U', de ~i, 

where e is the group parameter. 
Since G transforms functions u = f ( x ) ,  it also simultaneously transforms 

their derivatives. This defines the prolonged group action pr G. Although this 
action is extremely complicated to write down explicitly (even for fairly simple 
groups), the infinitesimal generators, which are vector fields of the form 

pr v" : 7 6- Y~ ~[  ~u~' (2.3) 
i , J  

have a relatively simple expression: 

Theorem 2.1 ([1, 22, 25]). The coefficients q~{ of  pr b" are given by 

Uj,  c~ 
c~ 

where 

(2.4) 

- ~ u s .  ( 2 . 5 )  

i Oui/Ox ~, u i cnuis/c~x% and D s denotes the total In these formulae us = j,~ = 
derivative 

D s =  DjlDA ... D&, 

where Dj is the total derivative with respect to x j. 

Theorem 2.2. The group G is a symmetry group of  (2.1) i f  and only i f  

pr b'(A) = 0 whenever A = 0 

for all infinitesimal generators ~ of  G. 

(2.6) 

(There are two technical conditions on (2.1) for this theorem to be true as 
stated. One is that the gradient of A with respect to all the variables x ~, u) never 
vanishes on the set A = 0; this is easy to verify and holds in almost every system 
of physical interest. The other is an existence result that the only restrictions on 
derivatives of solutions of the system are those following directly from the system 
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itself and its derivatives. This is harder, but will be assumed in the subsequent 
exposition. See the appendix in [23] for a detailed discussion.) 

In practice, (2.6) yields a large number of  elementary differential equations 
that must be satisfied by the coefficient functions ~ ,  ~0~ of any infinitesimal generator 
b ~ of a symmetry group of (2.1). The general solution of this system, which can in 
most cases be found explicitly, constitutes the most general infinitesimal symmetry 
of (2.1). See [5, 22, 25] for examples of the calculation of symmetry groups by 
this technique. 

B. Generalized Symmetries 

This generalization of the notion of symmetry group arises by permitting 
the coefficient functions ~ ,  ~0 i of the vector field b ~, (2.2), to depend also on the 
derivatives u) of u. The prolongation formulae (2.3-5) and infinitesimal symmetry 
condition (2.6) remain as before (although now (2.6) holds whenever d = 0 
and all derivatives D s A = 0.) There is no longer a nice geometrical interpretation 
of the group transformations themselves. 

To understand generalized symmetries better, first change b ~ into the standard 
form: 

= ~ ~oi~-~Tu~, (2.7) 

where ~o~ is defined by (2.5). Note that by (2.4), the prolongation of h has the simple 
form 

pr ~ = ~] DS~P,~u , . ,  (2.8) 
i,J 

Lemma 2.3, [22]. A vector field ~ is a (generalized) symmetry of (2.1) tf  and 
only i f  its standard form ~ is. 

For this reason, we can work exclusively with vector fields in standard form. 
Note that even if b ~ generates a Lie symmetry group, b is a generalized symmetry 
since by (2.5) the ~o i depend on first derivatives u/. However, we immediately have 
the criterion that a generalized symmetry b is the standard form of a geometrical 
symmetry if and only if ~Pt have the form (2.5) where ~0 i and ~ depend only on x 
and u. 

The integration of a generalized symmetry in standard form can be effected 
by solving the system of evolution equations, [1, 22], 

8e ~i, u(x, O) f(x).  (2.9) 

Again e denotes the group parameter, so that the transformations take the form 

g~ :f(x) u(x, O) ~ f ( x )  = u(x, ~), 
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where u(x, e) is the solution of (2.9). (Here we are assuming that (2.9) is locally 
uniquely solvable for initial data u----f(x) in some appropriate space of func- 

tions.) Thus b is a generalized infinitesimal symmetry of the system (2.1) if u = f~(x) 
is a solution whenever u ----f(x) is. With this interpretation, theorem 2.2 remains 
in force. 

C. Symmetries of  Variational Problems 

For a variational problem 

Idu]  = f ~ W ( x ,  u, au . . . . .  ~"u) dx (2.10) 

with Euler-Lagrange equations 

M 
~u 0 (2.11) 

there are several types of symmetry groups. The most common, and most re- 
strictive, is to require that the integral la is invariant under all group transfor- 
mations: 

Ib[fi] = Ia[u] 

for all u = f ( x ) ,  all subdomains O Q R  p, all g E G where fi = f ( ~ )  is the 

transformed function and ~ ---- g..(2 the transformed domain (which may depend 
onfi tself) .  The group is necessarily geometrical. The corresponding infinitesimal 
condition is 

pr b~(W) + WDiv~ e = 0 (2.12) 

for every infinitesimal generator b" of G, where Div ~ ---- 2' D ~ ;  cf. [1, 22, 25]. 
BESSEL-FIAGEN, [4], noted that one can easily generalize these symmetry 

groups to include divergence symmetries, with infinitesimal criterion 

pr b~(W) + WDiv~  = DivB  (2.13) 

for some p-tuple B = (B~ . . . . .  Bp). The effect of the corresponding group trans- 
formations on 1~ is less obvious. 

Proposition 2.4, [22]. I f  b" is an infinitesimal divergence symmetry of (2.10), 
then b ~ is an infinitesimal symmetry of the Euler-Lagrange equations (2.11). 

The converse is not true, the main source of counterexamples being groups of 
scale transformations. This proposition provides an effective means for computing 
divergence symmetries: namely it suffices to check which of the symmetries of 
(2.11), calculated using theorem 2.2, satisfy the additional criterion (2A3). This 
avoids the awkward fact that B in (2.13) is not known a priori. See [22] for examples. 
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In particular, b" is a divergence symmetry if and only if its standard form b is. 
(This is not true for the restrictive criterion (2.12).) For ~ in standard form, 
(2.13) simplifies to 

pr v(W) = Div B (2.14) 

for some B (not necessarily the same as above). 
Finally we can generalize (2.14) to include generalized symmetry groups. 

For brevity, given a variational problem symmetry will mean infinitesimal gen- 
eralized symmetry in standard form of the Euler-Lagrange equations, and varia- 
tional symmetry an infinitesimal divergence symmetry in standard form of the 
variational problem. In particular, every variational symmetry is a symmetry, 
but not conversely. 

D. Conservation Laws and Noether's Theorem 

Given a system of partial differential equations (e.g. the Euler-Lagrange 
equations for some variational problem), a conservation law is an equation of 
the form 

Div A = 0, (2.15) 

where A = (A1 . . . . .  Ap) can depend on x, u and the derivatives of u, which 
must be satisfied for all solutions u = f ( x )  of the given system. 

A conservation law is trivial if (2.15) holds identically. This is equivalent, 
[21], to the statement that 

A~ = ~ D~B~ (2.16) 

where B~ depend on x, u, and derivatives of u, with 

A deeper characterization of trivial conservation laws is discussed in [23]; this 
will be used in subsequent analysis here. 

NOETHER'S theorem asserts that to each variational symmetry of a given varia- 
tional problem, there corresponds a nontrivial conservation law. 

Theorem 2.5 [1, 22]. I f  ~ as in (2.7) is a standard variational symmetry of(2.10), 
then the expression 

Xv/,~u-Tu i = Div A (2.17) 

constitutes a conservation law for the Euler-Lagrange equations (2.11). 

Explicit formulae for the p-tuple A in (2.16) can be given (cf. [22]) but in 
practice it is simpler to reconstruct A directly. 
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As detailed in [22], there is also a converse to this theorem, so that to every 
(nontrivial) conservation law there is a corresponding generalized symmetry. 
The q-tuple ~p ---- 0Pl . . . . .  ~pp) in (2.16) is called the characteristic of the conser- 
vation law 

Div A = 0. 

Note that trivial conservation laws have zero characteristic. 

3 .  H y p e r e l a s t i e i t y  a n d  V a r i a t i o n a l  P r o b l e m s  

In three-dimensional elasticity, the independent variables x = (x 1, X 2, X 3) E 
B ( R 3 represent material coordinates, the dependent variables u = (u 1, u 2, u a) 
the deformation so that a particle at position x is deformed to position u(x). 

i The deformation gradient is ~u(x), which is a 3 • 3 matrix with entries us = 
~ui/~x ~. 

The equations of  elastostatics for a hyperelastic material arise as the Euler- 
Lagrange equations for the variational problem 

f {W(x, Ou) + b(x, u)} dx (3.1) 
B 

where W is the stored energy function and b the body-force potential. 
The body is homogeneous if W is independent of  x. For simplicity we consider 

the case of  a homogeneous elastic body in the absence of body forces, so that 
(3.1) simplifies to 

I = .(W(Ou) dx. (3.2) 
B 

(A subsequent paper will detail how the results change in the more general 
problem (3.1).) 

More generally, we can consider variational problems of the type (3.2) with 
x = (x I . . . . .  x')  E B Q R p and u = (u ~ . . . . .  u q) C R q. For n-dimensional elasti- 
city p = q = n, but many of our results will remain true even if p =4= q. 

We shall use summation notation on repeated indices throughout. Latin 
indices i, j,  k, l will run from 1 to q, while Greek indices or 7, ~ will run from 1 
to p. The stored energy or Lagrangian W(~u) will be assumed to be at least C 3 

i although this, assumption can certainly be weakened in certain in its arguments us, 
results. 

The Euler-Lagrange equations for (3.2) take the form Ni(w) = 0, where 

- -  8" - -  - -  _--,-. + - -  ( 3 . 3 )  ~u i --Do, ou ~ ~u i 

is the Euler operator or variational derivative. Let 

~W ~2W 
W~ -- Ou~' WAi~ -- eu~ Ou~' etc., 
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so that 

gt(W) = O~ Wi~ = WSu~ ~ ----- 0. (3.4) 

Note that W~ a depends on 8u. We linearize (3.4) by fixing 8u at some value; the 
resulting equations are just the Euler-Lagrange equations for the quadratic 
variational problem 

I : f dx, 
where 

= ( 3 . 5 )  

is the elasticity tensor at the fixed deformation uo; cf [15]. (More commonly it 
is denoted Ci~j,.) The Euler-Lagrange equations read 

Ccq3/j ,,Y "=a = 0. (3.6) 

Fixing ~Uo, define the symmetric q•  q matrix Q(~) = (qu(~)) of quadratic 
polynomials in ~ E R p by 

qu(~) = C~a~ ~. (3.7) 

We note that the Legendre-Hadamard condition for strong ellipticity of (3.2) can 
be written in terms of Q as 

BrQ(~) ~ >= 0 (3.8) 

for every 0 =~ r/E R q, 0 =~ ~: 6 R p. The matrix Q will be used in our subsequent 
analysis. 

4. Reduction to x, u-Independent Symmetries 

The first step in the discussion of symmetries is to eliminate the x, u-dependence 
of the coefficient functions. In this section we give the basic method whereby 
this can be effected, and outline the procedure for finding the general symmetries 
from knowledge of the x, u-independent ones. Symmetries and variational sym- 
metries/conservation laws must be treated separately, but the basic result is the 
same in each case. 

A. The Symmetry Equations 

To analyze the symmetries of the variational problem (3.2), the first step is 
to write down the symmetry conditions (2.6) for the Euler-Lagrange equations 
(3.5). Here we exclusively look at symmetries in standard form (2.7), whose coef- 

i 
ficient functions ~0 depend only on x, u, ~u. These include all Lie symmetries of 
(2.6) as well as first order generalized symmetries.' 
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From (2.8), (3.4) we see 

where 

and 
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;,vUk , , j  n ,~ pr b'(d"(W)) = W~D~,Dt~ ~ -}- "~4~r"~,a'-'vv 

~3 W 
- 

(4.1) 

Note that (4.1) involves derivatives of u of at most third order; hence for (2.6) 
to be satisfied 

pr b'(g~(W)) = 2~D~g~(W) + #qg~(W), (4.3) 

for functions 2~, #~J depending on derivatives of u of order ~ 3. 
The terms on the left-hand side of (4.3) depending on 83u or quadratic in 

~92u are 

i f f / i j k ,  l , , j  , , l  W~ t Yk k Jkl. k . l  ] k 
t~pvu~aa + ~&n,~,:,,a6] + ,, ~,avwn-~,~-vn 

J k  J k where ~pe : ~p/~ur, etc. On the other hand 

D~SJ(W) : TA,'Jk, k TXz~kl. k .  t 

Substituting into (4.3), the coefficient of U~ark yields 

W ~ Z k  ~0 rxzJ~ sym [oq3~,] ; (4.4) 7..~, ~--- ,,~a,v ft./, 

hence 2~ depends only on x, u, ~u. In (4.4) sym [0~fly] indicates that each side of 
the equation must be summed over all permutations of the indices 0q37. Similarly, 

k t is, after use of (4.4), the coefficient of u~,vu~ 

( [ 
~3_~, W__ w0t 2k ,~z~kJt = [#0~ _ W~, sym [k[fl~], l[0~ 01], (4.5) 

where 
"" , , i j l ,  l "" 

~n a n d / ~  depending only on x, u, 8u. Here (4.5) must be summed over permu- 
tations of f17 and ~ together with permutations of k[fly], l[o~]. (In other words 
the subgroup of the groups of permutations of kl  and o~flTO which leaves the 

k t unchanged.) monomial U#vU~,~ 
As a consequence of (4.4), (4.5) we find the important result. 

i 
Proposition 4.1. If  v" = ~p(x, u, Ou) 8/Ou i is a symmetry of (3.5), then for 

i 
each fixed Xo, uo, the vector field V'o = ~(Xo, Uo, Ou) O/Ou i is also a symmetry. 

i 0  
=W~--~d" (4.2) 
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This simplifies the computation of symmetries as follows: If b'l . . . . .  b~N form 
a basis for the space of x, u-independent symmetries, i.e. those of the form 

~(Su) 8/8u i, then the proposition implies that all remaining symmetries depending 
on x, u, 8u take the form 

N 

v" = ~ Z~(x, u) b'~ (4.6) 

for suitable functions g ~. Substituting (4.6) into the general symmetry equations 
(2.6) leads to a more manageable system for the coefficient functions Z ~. It is 
thus good strategy to concentrate first on the computation of x, u-independent 
symmetries before proceeding to the general case. Note that since Wis independent 
of x, u, the vector fields 

8 8 
k i  8u i , Pe~ i (4.7) 

- -  ~ Uc~ ~U i , 

representing translation in the u i direction, and translation in the x ~ direction, 
respectively, are always symmetries. If  no other x, u-independent symmetries 
exist, we conclude that all symmetries of (3.4) depending on at most first order 
derivatives of u are geometrical; otherwise there exist generalized symmetries 
and, indeed, x, u-independent ones. Note further that the conservation laws 
corresponding to (4.7) are, respectively, the Euler-Lagrange equations themselves 
and ESHELBY'S energy-momentum tensor, [9]. 

B. Variational Symmetries 

i 

According to theorem 2.5, a vector field b ~ = ~p 8/8u' is a variational symmetry 
of (3.2) if and only if 

ct 

(ogi(W) = Div A = D~A, (4.8) 

where A is the corresponding conservation law. We first note an intrinsic char- 
acterization of variational symmetries based on the symmetry equations (4.3); 
the proof will be deferred until subsection C. 

Lemma 4.2. A vector field ~ is a variational symmetry of  (3.2) / f  and only i f  
in (4.3) 

Ji "" 2~ ---- ~v~ and #'J ---- 8i(~) (4.9) 

(cf. (3.3)). 

Thus if (4.9) hold, the existence of a conservation law A satisfying (4.8) is 
assured. A second useful fact is that A can, without loss of generality, be taken 
to depend on x, u, 8u. 
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Lemma 4.3. I f  ~ depend only on x, u, 8u and satisfy (4.8), then A = A + B 

where B is a trivial null divergence, and A depends on x, u, 8u. 

This is a direct consequence of theorem 5.1 in [23] since the left-hand side of 

(4.8) is linear in 82u. Replacing A by A in (4.8), the coefficient of u~ is 
or 

~w~i~ = A~, sym [~/3] (4.10) 
or cr 

where At~ = ~A/~u~. For q = 1, equations (4.10) form the conformal equations 
for a Riemannian manifold with metric g~  = W~J + W~;  e f  [8]. For this 
reason we name (4.10) vector conformal equations. 

If  ~o and A are independent of x and u, then (4.10) is equivalent to (4.8). Thus 
we have the analogue of proposition 4.1 for variational symmetries. 

i 
Proposition 4.4. If  b ~ = ~p(x, u, ~u) 8/8u i is a variational symmetry of (3.2) 

with conservation law A(x, u, 8u), then for each fixed Xo, Uo, the vector field 
i 

~o = ~O(Xo, Uo, 8u)8/~u i is a variational symmetry with conservation law 
A(Xo, Uo, ~u). 

Thus a representation similar to (4.6) for variational symmetries exists. 
In the case of conservation laws, the simplification is more striking. I f  A~ . . . .  , AN 
form a basis for the x, u-independent conservation laws, (corresponding to varia- 
tional symmetries b'1 . . . . .  b~N), and B1 . . . . .  B M a basis for the null divergences 
depending only on &t (these are suitable combinations of Jacobian determinants; 
cf. [23]) then all conservation laws depending on x, u, ~u are of the form 

N M 

A = ~ % ( x , u )  A , - k  if', O,(x,u) B, (4.11) 
~ = 1  t = l  

for appropriate scalar function co, O. 

Theorem 4.5. I f  A1 . . . .  , AN, BI . . . . .  BM, A are as above, then A is a conser- 
vation law i f  and only i f  

S(D~,~o~) A~ + S(D~,0,) B~' = 0 (4.12) 

identically in x, u, 8u. (A~ = (A~, e . . . .  A,) ,  etc.) 

Proof. Substitute (4.11) into (4.8) and note that A~, B, are already conserved, 
so the only remaining terms on the right-hand side are given by (4.12). Moreover 
these only depend on x, u, 8u, hence must vanish. 

C. Proof of  Lemma 4.2 

The result is equivalent to the formula 

pr ~" [d't(W)] Ji j 8i = + (4.13) 
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being necessary and sufficient for ~" to be variational. There are a number of ways 
to establish this formula. One method is to apply the Euler operator Cg directly 
to (4.8) and use the basic fact, [13, 21], that 

~" Div A = 0 

for any A. The computations are rather lengthy in general. They can be simplified 
using formulae in chapter 5 of [22], specifically those required in the proof of 
proposition 5.13 there, which is the same as proposition 2.4 here. Alternatively, 
the analogue of proposition 2.6 from [20] for partial differential operators will 
work. In all cases, however, the converse is considerable more tricky. 

Computationally, the easiest method is to utilize the theory of differential 
forms in the formal calculus of variations developed in [21] (see also [13]), whose 
notation we use here. Since 

d, w = - ~ (  w )  du g 

(since the Euler operator (3.3)here is the negative of the usual one), if b ~ is a varia- 
tional symmetry, 

0 = - -d ,  [pr b'(W)], 

= --pr b'(d, W), 

= pr b~[Sg(W) dui], 

i 
= pr b'[gi(W)] du g q- St(W) d,~o. 

Moreover, integration by parts shows 

e i (w)  d ,~  = eg(w) w~ du~ + e'  g : i i (W) c~7@u . duS, 

= --D~[8~(W) ~pj] du j -k 8~(W) O~/Ou'. du', 

i .  . . i  I 
- - - -  -- {~o~Z~:'(W) + ~'(W) e'(~)s du:. 

Therefore, changing indices, we have 

0 = {pr b ' t e g ( w ) ] -  ~o~D~,e:(W) -- e g (~)8:(w)} au j, 

from which (4.13) follows immediately. 
To prove the converse, suppose (4.13) holds. Then by the above computation 

But this implies 

hence the converse. 

d,  [pr b'(W)] = O. 

pr v"(W) = Div A, 

(This will be the only place we will utilize this differential form theory, but 
the above proof should give the reader some idea of its power and efficacy for 
proving complicated variational formulae.) 
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5. Linearization and Symmetries 

From now on we restrict attention to x, u-independent symmetries. The 
main result of this section is that if the variational problem (3.2) admits an x, u 
independent symmetry, then for any fixed OUo the corresponding linearized varia- 
tional problem admits a linearized version of the same symmetry. Of course, 
truly nonlinear conditions also arise, so the above condition is not sufficient. 
We subsequently analyze the linear symmetry conditions, which reduce to ques- 
tions about matrices of quadratic polynomials, but only partial results have been 
determined so far, leaving many open questions. 

A. Linearized Symmetries 

i 
Given a vector field b"----~, ~/Ou ~, and a fixed deformation gradient OUo, 

defines the linearized vector fieM 

~'o = ~ , ( eUo)  u ' - - - ,  ~u' " 

Theorem 5.1. I f  the nonlinear variational problem (3.2) admits an x, u-indepen- 
dent symmetry ~, then for each fixed OUo, the linearized vector field ~o is a symmetry 
of  the corresponding linearized problem (3.6). The same result holds for variational 
symmetries, although the forms of the corresponding conservation laws necessarily 
differ. 

Proof. It suffices to note that (x, u-independent) b ~ = ~o O[Ou ~ is a symmetry 
of (3.6) if and only if 

C ~ ' ~  = 2~C~, sym [o~f17 ] (5.1) 

holds; indeed this is just (4.4), and the quadratic terms in 82u leading to (4.5) do 
not appear in the case of a linear symmetry. But (5.1) is just (4.4) at fixed 8Uo, so 
the result holds. The statement for variational symmetries follows analogously 
from lemma 4.2. 

Analyzing (5.1) further, recall that Q(~) is the matrix with entries 

qo(~ e) : C~o~'~ ~. 

Define L(~) to be the matrix with 

i )  c, 
Iu(~) = ~ o ~  , 

and M(~) to have entries 

m,j(~) = , ~ .  

Then (5.1) is just the matrix equation 

Q(~) L(~) : M(~) Q(~e). (5.2) 
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P r o p o s i t i o n  5.2. Let Q(~) be the matrix of quadratic polynomials corresponding 
to the quadratic variational problem (3.6). Then (3.6) admits a nonvariational 
symmetry if and only if there exists a non-zero matrix N(~:) of linear polynomials 
is ~ such that 

Q(~) N(~) = --Nr(~ :) Q(~:). (5.3) 

Similarly, (3.6) admits an x, u-independent variational symmetry not of the form 
(4.7) if and only if there exists a matrix L(~) of linear polynomials in ~, with 
Lff) + l(~) I, such that 

Q(~) L(~) = Lr(~) Q(~:). (5.4) 

P r o o f .  The second statement is obvious from lemma 4.2. Thus there exist 
nonvariational symmetries if and only if (5.2) holds for some M =~ L r. Set 
N = M - -  L r, and it easily follows that N satisfies (5.3). 

It remains to determine what (5.3) or (5.4) imply for the form of Q. The 
second condition seems particularly difficult, and I have been unable to make 
any progress in discerning its general meaning. In three dimensions (5.3) can be 
fully analyzed, as will be seen. 

B. Nonvariational Symmetries in three Dimensions 

In this section we restrict attention to quadratic variational problems satis- 
fying the Legendre-Hadamard condition with x E R 3, u E R 3. 

T h e o r e m  5.3. Suppose W(Ou) is quadratic, satisfies the Legendre-Hadamard 
condition. The linear Euler-Lagrange equations admit nonvariational symmetries 
i f  and only if  there is a linear change of variables ft = Au such that either 

a) W(~fi) ---= Fl(O~t 1) + Fl(~t  2) + F3(~3), 

so the Euler-Lagrange equations decouple with at least two being identical, or 

b) W(c~t) ---- F(St] 1) + r(cSu 2) -]- r(ofi 3) + [g(O~)]2, 

where F is quadratic and g linear in their arguments. 

Note that the case of linear isotropic elasticity falls into case b), which we 
therefore name quasi-isotropie. For most g, a further linear change in the x 
variables will convert this to the isotropic case. The Euler-Lagrange equation for 
a quasi-isotropic W take the form 

Lu + (~ | ~ ) u = O ,  

where L is a scalar second order and ~ a first order differential operator. 
For a nonlinear variational problem, the question of whether every linearized 

version is equivalent, under a change of variables, to a decoupled or quasi-isotropic 
quadratic problem seems to be rather difficult. The problem is that the linear 
charge of variables can depend on the point OUo at which the linearization is 
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taken. More work is needed on this problem. One further cautionary note should 
be added. It is not true that for (3.2) to admit nonvariational symmetries every 
linearized problem admit nonvariational symmetries. Indeed, in (4.9) if the ;t~ 
are correct, the corresponding linearized symmetry must be variational, whereas 
it does not necessarily follow that the #ij will be of the right form. 

Lemma 5.4. I f  Q & symmetric, positive definite, QN skew-symmetric, then 

O = CrQ1C, 

C independent of  ~, with either 

a) 

o r  

b) 

Qx = A(O + ).(0 | ) .(0,  (5.5) 

Q1 = A(O + / ~ ( 0  M(O, (5.6) 

where A is a diagonal matrix of  quadratic functions 01, 02, 03, and #, )., M are, 
respectively, a scalar, vector, matrix of  linear functions. 

Proof. The (1, 1) entry of QN is 

q l / O  nj~(O = o. 
J 

Since qll  is positive definite, 

(~1 n i l  = O) < {~1 n~l = n~, = 0}, 

hence there are constants a, b with 

n~l + an21 + bnal = O. 

Then (5.7) reads 

n 2 1 ( q 1 2  - -  a q 1 1 )  + n 3 1 ( q 1 3  - -  bq11) = 0; 

hence there is a l inear /z l (0  with q12 - -  aqll = nal#l, 
Let 

C 1 =  1 ; 

0 

so that the matrix 

has first row 

0.= C~QCl 

(ql 1, #1n31, - - / z l n 2 1 ) -  

(5.7) 

qa3 - - b q l t  = --n2~pl. 
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This changes N to 

with first column 

br = C - 1 N C I ,  

(0, n21, n11) r. 

Similar analysis of the (2, 2) entry of QN shows that 

for constants a', b' and linear #2- Moreover, since Q is symmetric, a' = 0, as 
otherwise q22 would vanish whenever #1 = # 2  = 0. NOW set 

C 2 =  1 - - '  , 

0 

Q ,  = c O_c , 

N *  = C ; I N C 2 .  

A similar analysis of the (3, 3) entry shows that the off-diagonal entries of Q* 
are all products of linear functions of ~. Further, the symmetry of Q* shows 
easily that there is a diagonal matrix C3 with 

Q1 = CrQ*C3 

and with Q~ of one of the two forms in the lemma. 
We now prove theorem 5.3 for Q1 of the form (5.5). (For QI of the form 

(5.6) it can be shown by similar methods that Q is similar to a diagonal matrix.) 
Assume no two entries of p are multiples of the same linear function, otherwise 
we are back in case (5.6). The above calculations show that N~ = C N C  -~ takes 
the form 

Q 0 a2/z3 --aa/z2) 

NI = --a1#3 0 a3/. Q 

o al/z2 --a2#1 

for a,. independent of ~:. Comparing the off-diagonal entries of Q1N1 (which 
must be skew-symmetric) we find that 

ai(O j _ #2) : aj(O i _ ~2) 

for all i, j, hence a i ~= 0 for all i, and 

~i = aip + tz~ 

for some quadratic p. Thus 

Q t = p A +  p |  
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with A diagonal with entries at. Finally choose B with BrAB = I, and let 

Qo = BrQ1B, 3 , =  BH, 

proving the theorem in this case. 

The research reported here was supported in part by the U. S. National Science 
Foundation, Grant NSF MCS 81-00786. 
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