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Synopsis
The problem of classifying homogeneous null Lagrangians satisfying an nth order divergence identity
is completely solved. All such differential polynomials are affine combinations of higher order Jacobian
determinants, called hyperjacobians, which can be expressed as higher dimensional determinants of
higher order Jacobian matrices. Special cases, called transvectants, are of importance in classical
invariant theory. Transform techniques reduce this question to the characterization of the symbolic
powers of certain determinantal ideals. Applications to the proof of existence of minimizers of certain
quasi-convex variational problems with weakened growth conditions are discussed.

1. Introduction

In earlier joint work with J. M. Ball and J. C. Currie, [5], (hereafter referred to as
BCO), on variational problems in non-linear elasticity, the concept of a null
Lagrangian was the key ingredient in providing interesting classes of non-convex
variational problems for which the existence of minimizers could be proved. If
x, u are the independent and dependent variables in the problem, a null Lagrangian
is a continuous function of x, u and the derivatives of u so that the Euler-
Lagrange equations for the corresponding variational problem jLdx vanish
identically. In essence, the variational problems treated in BCO are convex
functions of null Lagrangians depending on the highest order derivatives of u, and
satisfying certain growth conditions in these arguments.

A classical result states that L is a null Lagrangian if and only if it can be
written as a divergence

L=DivP, (1.1)

for some P. The Jacobian determinant

d(u, v)
x, y)

= uxvy-uyvx=Dx(uvy)-Dy(uvx) (1.2)

is the simplest example. (Here subscripts denote partial derivatives, and Dx

denotes the total derivative with respect to x.) It was noted in BCO that the
divergence identity (1.1) can be used to "weakly" define L as a distribution over a
wider class of functions, and thus enable one to weaken the growth conditions in
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318 Peter J. Olver

the relevant variational problems, yet still be able to prove existence of minimiz-
ers. (One slight difficulty is the as yet unsolved problem of whether this distribu-
tionally defined L agrees with L itself if the former is a function. See [4] for a
discussion of this point.) It was noted in BCO that certain null Lagrangians had
nicer identities, in other words could be written as higher order divergences, the
archetypal example being

d(xy) '"**"" "*»

y(uxUy)-D2£ul). (1.3)

d(x,y) "**"" "*»

Such identities can be similarly utilized to further weaken the growth conditions in
the relevant types of variational problems.

One of the principal results of BCO was that any homogeneous null Lagran-
gian, meaning one depending exclusively on kth order partial derivatives of u for
some fixed k, is necessarily an affine combination of Jacobian determinants whose
arguments (e.g. the u, v in (1.2)) are (fc — l)st order derivatives of u. (It should be
mentioned that this result was independently proved by Anderson and Duchamp,
[3].) The problem was then raised of effecting a similar classification of
homogeneous null Lagrangians which are nth order divergences, i.e. satisfy a "nice
identity" of the form

L= I D'Q, (1.4)

for certain Qx. (See subsection 2.1 for the multi-index notation.)
The main result of this paper is that any homogeneous null Lagrangian which is

an nth order divergence is necessarily an affine combination of an interesting new
class of differential polynomials, which we name n-th order hyperjacobians. These
hyperjacobians bear an analogous relation to the ordinary Jacobian determinants
(which are the same as first order hyperjacobians) to that which higher order
derivatives bear to first order derivatives. Simple examples of second and third
order hyperjacobians are

d2(u, v) _d(ux, Vy) d(Uy,Vx)

d{x,y)2~ d(x,y) 3(x, y)

^ + UyyVxx (1.5)

and

d3(u,v)=d2(ux,vy) d2(Uy,vx)

d(x, y)3 d(x, y)2 d(x, y)2

y ' -^'^xyy^xxy ^yyy^xxx

ydUyV^ 4" U ^ )

-DxD
2(UyVxx + 2uxvxy) + D3y(uxvxx). (1.6)

Note that the nice identity (1.3) for an ordinary Jacobian is a special case of the
second order hyperjacobian identity (1.5) when u = v. The reader can easily
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Hyper]acobians, determinantal ideals and weak solutions 319

imagine the general formula for a hyperjacobian, which can be expressed using
Cayley's theory of higher dimensional determinants. They were apparently first
written down by Escherich, [7], and Gegenbauer, [9]. Special types of hyperjaco-
bians with polynomial functions as arguments are of great importance in classical
invariant theory, where they are called transvectants (German: Uberschiebung)
[10], [11], [12]. Cayley originally investigated certain special cases in his theory of
hyperdeterminants, cf. [11, p. 84]. All these earlier investigations were limited to
polynomial functions and, moreover, as far as I can determine, none of these
authors was aware of the key property that these differential polynomials are
higher order divergences. See sections 2.4 and 3.3 for these connections.

In BCO, a transform similar to that discussed by Gel'fand and Dikii, [8], and
Shakiban, [21], [22] was introduced. It changes questions about differential
polynomials to problems in the theory of ordinary algebraic polynomials, to which
powerful techniques in algebraic geometry and commutative algebra can be
applied. (It is significant that, for polynomial functions, this transform is essen-
tially equivalent to the powerful symbolic method of Aronhold in classical
invariant theory.) The problem of classifying homogeneous null Lagrangians
transforms into the problem of whether the determinantal ideal generated by the
maximal minors of a matrix of independent variables is prime, a result proved by
Northcott, [17], and Mount, [16], in the 1960's. The characterization of n-th
order divergences as hyperjacobians rests on the deeper fact that the symbolic
powers of this same determinantal ideal are the same as the actual powers of it.
By a rather fortuitous coincidence, this theorem has been recently proved by
Trung, [24], and, in further generality, by DeConcini, Eisenbud and Procesi, [6].
The application of this important result to our classification problem via transform
theory is presented in section 3.

The final section returns to the original inspiration for the development of the
preceding theory. An n-th order hyperjacobian of degree r can be defined for
functions in Sobolev spaces with [n/r] fewer derivatives. ([ ] denotes integer part.)
Compact embeddings of Sobolev spaces over bounded domains then yield se-
quential weak continuity results for hyperjacobians of the type found in BCO for
ordinary Jacobian determinants. This in turn, again by methods of BCO, yields
existence results for minimizers of certain special types of quasi-convex varia-
tional problems with weakened growth conditions on the integrands. The applica-
tion of this result, however, is somewhat limited until the problem on the
agreement of weak and classical definition of these hyperjacobians mentioned
above is fully resolved.

The one remaining problem in the development of hyperjacobians is the
efficient computation of the polynomials Qx in the identity (1.4). A quick perusal
of the examples at the end of section 3 should convince the reader that for all but
the simplest hyperjacobians this is a non-trivial algebraic computation. For
ordinary Jacobian determinants, the standard divergence identities can be found
from reading off the coefficient of dxkl A . .. A dxK in the differential form identity

du1 A . . .Adur = d(u1 du2A. . .AduT).

This indicates the possibility of developing a theory of higher order differential
forms, so that the hyperjacobian identities can be found as coefficients in certain
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320 Peter J. Olver

easier differential form identities. Thus, identities (1.5), (1.6) would be the
coefficients of (dxA,dy)2, (dxAdy)3 respectively in the "hyperform identities"

2v = d2(du*dv),

d3u*d3v = d3(du*d2v).

Such a theory has been developed in the companion paper [20] to this. The theory
relies on the concept of a Schur functor, [15], [23], which has been recently
developed for studying resolutions of determinantal ideals. The resulting differen-
tial hyperforms can be defined over smooth manifolds, and lead to interesting
generalizations of the de Rham complex and "hypercohomology" theories based
on higher order derivatives of the defining functions. Lack of space precludes any
further discussion here of this theory, which is still under development.

2. Hyperjacobians

Suppose u\ . .. ,ur are functions of x 1 , . . . , xr. The Jacobian determinant

d(u\...,ur)
d(x\...,xr)

= det

is well-known to be expressible in divergence form. In this section, higher order
analogues of this Jacobian determinant, which we name "hyperjacobians", are
introduced and their elementary properties derived. The resulting formulae can
also be written using the theory of higher dimensional determinants, as discussed
at the end of this section. For homogeneous polynomial functions, certain
hyperjacobians appear in classical invariant theory under the same transvectant, a
connection noted in section 3.3.

2.1. Multi-index notation

The spaces X = W and U = Rq representing the independent variables x =
(x 1 ; . . . , Xp) and dependent variables u = (u 1 , . . . , uq), will be fixed throughout,
the u's being thought of as functions of the x's. There are two types of
multi-indices used in this paper. The first, denoted by I or /, are p-tuples
I = (i1,...,ip) with i v so . Set 1/1 = 1! + . . . + ^ x1 = (JCO'1 • • • (jtp)'-, d1 =
(di)'1... (dp)S where d, = d/dx,, etc. The Greek letters a, 0 will denote pairs
a = (I, v) with I a multi-index and l S c g q : these are in one-to-one correspon-
dence with the partial derivatives ua = uj" = dru" of the u's.

The second type of multi-index, denoted by K or L, are r-tuples K =
(fc1? ...,fcr) with l S k . S p . Let # K = r. If 1 S V S # K , let Kc =
(ki,..., fcv-i, fcv^i,..., kr). Let xK denote the r-tuple (xk i , . . . , xfc). Similarly, if
a = ( a 1 ; . . . , ar) where each at is a pair as above, ua will denote the r-tuple of
partial derivatives (ua i , . . . , u^).

2.2. Definition of hyperjacobians

Given an r-tuple of partial derivatives ua and a multi-index K = (fc1;..., fcr), of
the second type, set
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Hyperjacobians, determinantal ideals and weak solutions 321

Define the skew-symmetrized K-Xh derivative of u,, to be the formal linear sum of
r-tuples

^ = ̂  = Isign(7r)u_( K ) , (2.D
oK dxK

the sum being over all permutations TT of { 1 , . . . , r}, with ir(K) = (kirl,..., km).
For example,

d(u, v)

_ = („„„,)-(„,,„,).
Clearly, duJdK is alternating in K;

duJdTr(K) = sign v duJdK

for any permutation TT. The above definition extends linearly to R -linear sums of
r-tuples. An easy computation proves that these "derivatives" commute.

LEMMA 2.1. For any a, K, L,

J iidL idKi dKdL'

This permits us to define unambiguously the n-th order derivative

=

dK 3KX... dKn '

which is symmetric in K = (Klt... ,Kn). These lead directly to the definition of
hyperjacobians.

DEFINITION 2.2. Given a, K as above, the n-th order hyperjacobian is the
differential polynomial

where each r-tuple u p in the resulting sum is identified with the product of its
entries.

EXAMPLE 2.3. For the first order case,

d(u . . . , U,J v dW.,, dU dU

O^fc,. • • • ) Xkr) -n

Therefore, a first order hyperjacobian is nothing but an ordinary Jacobian
determinant.

EXAMPLE 2.4. Now let n = 2. Second order hyperjacobians are symmetric
functions of the dependent variables, and we can consider the special case when
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322 Peter J. Olver

the arguments are all the same. Then,

92(u,.. . , u) v d("fc . . . , uk= ? ( S l g n ̂
= Z Z (sign

= r!

t d ( t i k i , . . . , uK) _

, , . . . , xu)

(Here Uj =du/dx;, etc.) Therefore, a Jacobian determinant whose arguments are all
derivatives of a single dependent variable is actually a second order hyperjacobian
in disguise. This will explain the observation in BCO that these Jacobians could
be expressed as second order derivatives.

EXAMPLE 2.5. Let p = r = 2. The various hyperjacobians have the forms

a(u,v) =

d(x, y) y

d2(u, v)_^v _2^v +

d(x, y)2 yy v xy

d3(u, V) __ _
. / \3 *^xxx^yyy --'*/f)cxy^xyy -^"xyyKxxy ^^yyy^xxxi

and, by induction,

dn(u,v)_ i

d(x,y)n i%
3)

For polynomial functions u, v, the hyperjacobian (2.3) is known as the n-th
transvectant of u and v, and can be found in Gordan, [10, p. 36], and Gurevich,
[12, p. 227]. See section 3.3 for more details on this connection. Note that these
are symmetric or alternating in u, v depending on whether n is even or odd. More
generally, the following lemma can be easily proved by induction on n.

LEMMA 2.6. The hyperjacobian J£ of order n is alternating or symmetric in a.
depending on whether n is odd or even:

(or) _ [(sign 17)J£' n odd,

IJK! n even.

2.3. Row expansion formulae

The above definition allows one to compute n-th order hyperjacobians of
degree r recursively from the (n - l)-st order hyperjacobians of the same degree.
An alternative procedure is to use the analogue of a row expansion formula for
determinants expressing them in terms of n-th order hyperjacobians of degree
r-\.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500013020
Downloaded from https://www.cambridge.org/core. University of Minnesota Libraries, on 13 Apr 2020 at 19:14:30, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500013020
https://www.cambridge.org/core


Hyperjacobians, determinantal ideals and weak solutions 323

THEOREM 2.7. Given a, K, suppose 1 S v = r. Then,

^ = ( - I ) * - " I (sign J) ^ ^ , (2.4)
dK j L dL

the sum being over all J = (/i, • • - , / „ ) , l = / i = • • -=L = P , and all L = ( L X , . . . , L,,),
I * = ( I f , . . . , !*_,), l S l { < . . . < / r

f c _ 1 ^ p , such that Kk = 7r k ( / k ) / J , . . . , I J ; _ 1 ) /or
some permutation irk. In formula (2.4),

sign / = I1 sign (irfc)
and

V j — O: O; . . . C/,- .

Proo/. This is done by induction on the order n. For n = 1, (2.4) is simply the
expansion of a Jacobian determinant by its i>-th row.

Now suppose we have proved (2.4) for given n. Without loss of generality (see
Lemma 2.6), set v=\. Let P = ( a 2 , . . . , ar), a=ax. Then, by (2.1), and the
induction hypothesis,

= L L S 18n P S 1 § n

p J,L

where i = fcpl, Lp = (fcp 2 , . . . , kpr). Given K and p, let TT be the permutation of
{1, . . . , r - l } such that TT(LP) = L'P, where h<l2<- • •<lr-i- Then sign p =
(sign ir)(sign i), where sign i is the sign of the permutation TT0, with
770(i, lu ., Ui ) = (fei fcr)- Thus
(sign ir)(sign i), where sign i is
770(i, lu ., Ui ) = (fei, • • •, fcr)- Thus,

-in + 1

= X (sign 0(sign J) dt djUa ̂  sign

where J ' = (i, / , , . . . , ; n ) , L' = (L, L , , . . . , L,,). This completes the induction.

EXAMPLE 2.8. Suppose r = 2. If K = ((fcj, k l ) , . . . , (k?, kS)), then (2.4) reads

3K
5)

where v = ( v 1 ; . . . , vn) ranges over all n-tuples with v, = 1 or 2, and v\ = 3 — Vj.
Also, s(v) = #{vJ=2} = S ( v ] - l ) . In particular, if 1= ((1, 2), (1, 2 ) , . . . , (1, 2)), we

recover (2.3) by identifying xt = x, x2 = y, since there are ( . j v's with i entries

equal to 1 and n — i entries equal to 2.

EXAMPLE 2.9. Suppose r = 3 = p. We compute the second and third order cases.
By (2.4),

a2(u, v, w) d\v, w) d\v, w) t t .
T7 r r = " — 72 ~ 2u*y T, 7T7 T + (cyclic in x, y, z),

f a(x z) a(y z)
a(x, y, zf a(y, zf a(x, z) a(y, z)
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324 Peter J. Olver

the remaining terms being obtained by cyclically permuting the variables x, y, z.
(However, any duplicate terms should be disregarded. Thus, we would write
UxXvyy — 2 ^ 1 ) ^ + UyyUxx as u^Vyy —2uxyvxy 4- (cyclic in x, y) in this notation.) These
can be further expanded by (2.5), so

d, ' \ 2 = "xx(vyywzz + u22wyy - 2uy2wyz) - 2 ^ (t>xyw2Z + vzzwxy - vxzwyz -vyzwxz)

+ (cyclic in x, y, z).

Similar considerations give

d3(u, v, w) d3(v, w) „ 33(u, w) d\v, w)

^ (y , z ) 2 3 (x , z ) " ^ a(x, y) 3(x, z) 3(y, z)

(cyclic in x, y, z)

*-'^yzz"yyz ^zzz yyy /

-2u x y z w y z z - u y y z w x z z +ux z zwy y z +2uy z 2wx y z -uZ 2 Zwy y y)

- 6ux y z(ux x ywy z z - uXX2wyy2 + uXZ2wxyy - uxyywX2z + uy2zwxxz - uyzzwxxy)

+ (cyclic in x, y, z)

= "xxxUyyy Wzzz ~ 3ux x xUy y zWy z z - 6ux y zUx x yWy z z + . . . , (2 .6)

where in the last expression the remaining terms are obtained by cyclically
permuting x, y, z and u, v, w, and multiplying by the sign of the permutation on u,
v, w.

In fact, as can be seen in the above examples, a simple induction using the row
expansion formula (2.4) yields a closed form expression for an n-th order
hyperjacobian.

COROLLARY 2.10. Let a, K be as above. Then,

^ = I (sign J) flj,uai... dju^, (2.7)

where the sum is over all 3 = (Ju ..., Jr), Jv = (j\,..., /£), 1 = /£ S p, such tfiaf

^ k = 1Tfc0'fc» • • • > Jk)>

/or some permutation irk. Finally,

sign J = I! sign TTV

This, in (2.6), the coefficient of Mxyzuxxywyzz is —6, since there are exactly 6 ways
of choosing the (unordered) triples (xyz), (xxy), (yzz) from the triples (xyz),
(xyz), (xyz) with each of the former containing one symbol in each of the latter,
and the permutations always have product of signs - 1 . For instance, in the case
Jj = (xyz), J2 = {yxx), J3 = (zzy), the permutations irfc have signs:

(xyz) = +(xyz), (yxz) = -(xyz), (zxy) = +(xyz).

2.4. Higher dimensional determinants

The above formulae for hyperjacobians can be rewritten by using Cayley's
theory of higher dimensional determinants. Just as an ordinary Jacobian deter-
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Hyperjacobians, determinantal ideals and weak solutions 325

minant is the determinant of a two-dimensional square matrix of first order partial
derivatives of the arguments, so can an n-th order hyperjacobian be written as the
"determinant" of an (n + l)-dimensional hypercubical array of n-th order partial
derivatives. Our previous results on hyperjacobians thereby translate into known
results in the theory of higher dimensional determinants. See Oldenburger, [18],
and the references therein for a more complete exposition of this theory.

An m-dimensional matrix A of order (or size) r is a hypercubical array of rm

numbers ax indexed by I = (iu ..., im), 1 g iv S r. The (full signed) determinant of
A is the number

det A= £ (sign I)aI la,2. . . ah, (2.8)

summed over all I = (Iu . . . , Ir), such that 7, = (J'I, . . . , i'm), 1S i[,S r, i\ — j , and
Vvf i'l for jfk, l S c S m . For each such I, sign I denotes the product of the signs
of the permutations (il,..., ir

v) of the integers ( 1 , . . . , r).
The (m - l)-dimensional matrix obtained from A by fixing one of the indices

iv = k is called the fc-th v-layer of A, or layer for short. The layers just consist of
those entries in A contained in a hyperplane orthogonal to one of the coordinate
axes, generalizing the notion of row and column for an ordinary (two-
dimensional) matrix. From (2.8), if a pair of v-layers in A is interchanged, for m
even, det A always changes sign, whereas for m odd, det A changes sign if v S 2,
but remains the same if v=\.

Given J = ( J i , . . . , Jm), with Jv = (jl,... ,jl), where l S s S r , lS/j ,Sr, and
Hf it f°r if k> define the J-th minor of A to be the m-dimensional matrix Aj of
order s consisting of those entries ar of A where, for 1S v 5= m, iv= ft for some
lgfeSs . In other words, Aj consists of those entries of A lying on the ^-layers of
A indexed by Jv. The entries of A, are ordered so that the fc-th v-layer of Aj
consists of those entries of the jt-th v-layer of A satisfying the above condition.
(Note: if Jv is not increasing, the v-layers of Aj will not be in the same order as
those of A.) More generally, we can consider an m-dimensional hyperrectangular
matrix B of order r , x . . . x r m with entries bt indexed by I = (iu ... . im), 1 g iv S rv.
The J-th minor B, is hypercubical of order s, where 3 = (J1,... ,Jm), Jv =
Ul, • • • ,jl), l=]'v^rv, \'vf]

k
v for if k. Note that sSmin rv.

Suppose u1(x), . . . , uq(x) are smooth functions of xu ..., Xp. Given n ^ l , form
the n-th order hyperjacobian matrix U(n), which is defined to be the (n + 1)-
dimensional hyperrectangular matrix of order q x p x . . . x p with entries Mf") =
dju' for / = (»!,. . . , in+i), l S i i ^ q , l ^ j v = P> v = 2 and where i = i\, J =
(i2, • • •, in+i)- The following result shows how n-th order hyperjacobians of the u"
are given by determinants of suitable minors of the hyperjacobian matrix t/<n).

THEOREM 2.11. Given K = (KU ..., Kp), Ki=(ki
l,... ,K), l S k ^ P , and ot =

(« ! , . . . , ar), ak = (0, ik), 1S ik gq, define 3=(JU ..., Jn+l) so that ft = ik, 1S fc S r,
;i=fe|/_i, 2SvSn + l, lS ig r . Then,

^ = detUi">. (2.9)
dK

For more general a, (2.9) can clearly be generalized by forming the correspond-
ing n-th order hyperjacobian matrix of the ua.. Note that ( J 2 , . . . , Jn+1) is
essentially the "transpose" of (Klt..., Kr). For instance, if K =
((1, 2), (3,4), (5,6)), then (J2, J3) = ((1, 3, 5), (2, 4, 6)). The first multi-index Jl tells
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326 Peter J. Olver

which uv are the arguments in the hyperjacobian. The proof of (2.9) follows
directly from a comparison of (2.7) and (2.8). The differential polynomials
detUin) were first written down by Escherich, [7], and Gegenbauer, [9], where
they proved that for homogeneous polynomial functions u 1 , . . . , u" these are
covariants under the action of the general linear group GL(p). Apparently they
never noticed that detUjn) could be expressed as an n-th order divergence.

In light of (2.9), our preceding results can be rederived from the elementary
properties of higher dimensional determinants. In particular, the fact that an n-th
order hyperjacobian is a symmetric or alternating function of its arguments
depending on whether n is even or odd reflects the corresponding behaviour of an
(n + l)-dimensional determinant under interchange of 1-layers. The remark on
second order hyperjacobians in Example 2.4 arises from a theorem relating
cubical determinants with identical 1-layers to an ordinary determinant of the
given layer, [18, Theorem 9]. I have been unable to locate any further work on
these determinants of hyperjacobian matrices after Escherich and Gegenbauer,
although their work was largely subsumed by the invariant-theoretic notion of
transvectant, discussed in section 3.3.

3. Transform theory and determinantal ideals

For the study of homogeneous null Lagrangians, BCO introduced a transform
for differential polynomials inspired by work of Gel'fand and Dikii, [8], and
Shakiban, [22], on the formal variational calculus. By analogy with the Fourier
transform of classical analysis, this transform has the useful property of changing
differential operations to algebraic operations, thereby enabling questions about
differential polynomials to be attacked by the powerful techniques of algebraic
geometry. Here we employ transform techniques to prove two fundamental
results on hyperjacobians. First, each n-th order hyperjacobian is an n-th order
divergence, i.e. satisfies an identity of the form (1.4). Secondly, any continuous
function L of the fc-th order derivatives of u for some fixed k which is an n-th
order divergence is necessarily an affine combination of n-th order hyperjacobians
with appropriate arguments. This provides a complete solution to the problem of
classifying homogeneous null Lagrangians with nice identities. The connection
between the transform and Aronhold's symbolic method in classical invariant
theory is discussed in subsection 3.3.

3.1. The transform and derivatives

The first task is to investigate the transform introduced in BCO, whose notation
we use without further comment, in more detail. Recall that the transform 2F
provides a linear isomorphism between i?r, the space of homogeneous differential
polynomials of degree r, and Zr

0, the space of symmetric algebraic polynomials
(p(a\ ft1;... ; ar, br), a" e Uq, ft" e W, which are linear in the a". Here, Zr

0 is
simply the direct sum of the spaces Zr* of polynomials linear in the a" and
homogeneous of degree k in the b" considered in BCO. If we identify utt with the
product of its entries, as in section 2.2, then 2F has the explicit representation

= <r[(a®b) J = ̂  I (a®b)wte),
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Hyperjacobians, determinantal ideals and weak solutions 327

where, for a = ((I1, i/t), . . . , ( / „ vr)), . ^ ^ ^
bl as in section 2, and the sum is over all permutations TT of {1, . . . , r}.

Given a linear map G:J£r—>££s, there is an induced linear map G:
called the transform of G, defined by

We need to find the transform of the total derivative operator; the proof is
elementary, cf. [22].

LEMMA 3.1. If l ^ i g p , cp eZT
Q, then

More generally, for any multi-index /,

We now consider the inverse problem of determining when a differential
polynomial is an n-th order derivative. Our criterion will be in the transform
space ZQ, but, as shall be indicated, this can easily be restated so as not to rely on
the transform itself. Given a = (J, v), define the partial derivative da =
dm+Alda'v{db\)'1 ... (dbp)'", acting on Z[y Given <p eZ(

r,, let (p\0&Zr
0~

A denote the
polynomial

<p|0 = cp(a1, b1;...; a r \ b ' " 1 ;0 , - b 1 - b 2 - . . .-brl).

LEMMA 3.2. Let P&S£r. Then P is an n-th order divergence if and only if

da(&P)\o = 0, (3.2)

for all a = (J, v), with | J\ S n - 1, l S v g q .

Proof. First recall a calculus lemma. Let <p(y), y = ( y i , . . . , yp), be a polynomial
and let c = ( c L , . . . , cp) be constant. Then <p can be written as a sum of terms, each
of degree ^ n in the monomials yt— ct if and only if

ay7
y = e

for all J with |J| S n - 1 . By identifying y( with b[ and c; with - b / - . . . - & [ \ and
using (3.1'), we infer that P is an n-th order derivative if and only if

Finally, recall that 2FP is linear in a' to complete the proof.

The counterpart of the operator da |0 on 56' is the higher order Euler operators
introduced and studied independently in [2] and [19]. These are given by
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and it can be shown, [21], that

Thus, we have proved the following:

LEMMA 3.3. A differential polynomial P is an n-th order divergence if and only if
Ea(P) = 0 for all a = (J, v) with \J\^n-1.

We will not use this result here.

3.2. Transform of hyperjacobians

We now compute the transform of a hyperjacobian. Recall that if C = (cj) is an
rxr matrix, the permanant of C is denned as

the sum being over all permutations IT of { 1 , . . . , r}. Next, recall some notation
from BCO. Given K, let BK denote the rxr submatrix with entries b'kf. Given a,
(A<g)B)a denotes the rxr matrix with entries al

vb\. Note that permCA^i?),* is
just r! times the transform of the monomial u,,.

LEMMA 3.4. The transform of the n-th order hyperjacobian J£ is given by

= f l d e t ( B K ) . \ dCt ](A <g>B)tt, (3.3)
„=! ipermJ

where det is used for n odd, and perm for n even.

Proof. Lemma 4.5 of BCO proves (3.3) for an ordinary Jacobian, and we use
induction on n to prove it in general. Given K, set K = Kn. By transforming the
definition (2.2) of J£, and using (2.1) and the induction hypothesis, we find

a = I (sign 77) fl det {BKj\P<:T™}(A®B)a,1T(K),

where throughout the proof the upper line in the brackets refers to n odd and the
lower to n even. It thus suffices to prove the identity

I (sign ^){Pj™}(A®BU(K, = det (B

Let a = ((Ii, v j ) , . . . , (Ir, vr)); then, on expanding both sides of the previous
formula,

These expressions are clearly equal.
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3.3. Transvectants and the symbolic method

For homogeneous polynomial functions, the transform presented in BCO is
equivalent to the powerful symbolic method of Aronhold in classical invariant
theory. Here this connection will be briefly indicated, but lack of space precludes
a more detailed exposition, and we refer the reader to [10], [11], [12], for detailed
developments of the symbolic method and its applications to computing
covariants. Once the connection has been made, it is easy to see how transvec-
tants arise as special types of hyperjacobians with polynomial arguments.

An m-th order homogeneous polynomial or form (in classical terminology)

summed over I = (ilt... ,im), l ^ i v g p , is represented by its coefficients

bi= — d'u(x),
m\

or, equivalently, all its m-th order partial derivatives. The symbolic expression for
u is

where bx = b1xl +... + bpXp. The key to the symbolic method lies in the identifica-
tion of the coefficient bt with the product b' = b\'... b'^ in the m-th power of bx.

Given several forms of various degrees

consider an algebraically homogeneous differential polynomial of the special form

P ( u \ . . . , u r ) = 1 0 ^ 6 ^ ,

summed over a = ( a l l . . . , a r ) , where a, = (Ijt j). (In other words, each u" occurs
precisely once in each monomial in P.) Clearly,

P - 1
where each coefficient Aj is a polynomial in the coefficients b\ of the forms. The
symbolic expression for P is obtained by replacing b\ by the product (b"Y,
wherever it occurs in As. For example, the symbolic expression for a Jacobian
determinant is

d(li\ . . . , U') t B ) ( b l x )m,-1 {brxr,-\

d(xu. ..,Xr)

where x = ( x ! , . . . , xr) and B is the rxr matrix with entries bv
t, cf. [12, p. 192].

The essential equivalence between the symbolic expression for P and its trans-
form can be easily seen.

THEOREM 3.5. Let P&5£r be as described above, and let 8F(P) be its transform.
The symbolic expression for P is obtained by replacing each monomial
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in &(P) by the product

(b?; ... b]:)(b-'x)m^ . . . (b"'x)m'-\

where j, =\Ij\.

More generally, if P has monomials in which some uv occurs more than once, a
different symbolic expression for u" must be used for each occurrence. An
analogous result holds, but is more complicated to formulate explicitly, and thus is
left to the reader. In this case, the transform seems to offer slight advantages over
the symbolic method. (Of course, our transform is more widely applicable than
the symbolic method, being not restricted to just polynomial functions.)

Of particular importance for invariant theory are differential polynomials P left
unchanged (up to a factor) under the action of the general linear group GL(p);
these are called covariants. A particular covariant is the n-th transvectant, which
has symbolic expression

(u\ . .., ur)(n) = (det B)n(blx)m'-n ... (brx)m--n,

using the same notation as in the above Jacobian determinant. As an immediate
consequence of Theorem 3.5 we find:

COROLLARY 3.6. The n-th transvectant of u ^ x ) , . . . , ur(x), x = (xu ..., x,) is the
special n-th order hyperjacobian

(u\ . .., u')tn) = dn(u\ ..., u')/d(Xl,..., JO".

This explains the agreement between our hyperjacobian examples and the
formulae for transvectants in [10], [11], [12]. Moreover, the general formula (2.7)
for a hyperjacobian, or its equivalent higher order determinantal form (2.9), give
an explicit non-symbolic representation of a general transvectant. I have been
unable to find this general formula in the invariant theory literature, nor have I
found any explicit connection between transvectants and multi-dimensional deter-
minants. Moreover, the key result that an n-th order transvectant is an n-th order
divergence does not appear in the invariant theory literature either. It would be
interesting to pursue these links in more detail.

In the special case when all the arguments are the same, the n-th transvectant

( u , . . . , u ) M = d n ( u , . . . , u ) / d ( x u ..., x , ) " ,

n necessarily even, was orginially considered by Cayley in his presymbolic theory
of "hyperdeterminants", cf. [11, p. 84]. This justifies our introduction of the name
"hyperjacobian" for our more general expression, rather than retaining the
classical invariant theoretic term "transvectant", which is restricted to hyperjaco-
bians of the special type in Corollary 3.6, with polynomial arguments.

3.4. Hyperjacobians as derivatives

The proof of the main result of this section, that n-th order divergences and
n-th order hyperjacobians are essentially the same objects, parallels the proof of
Theorem 4.1 in BCO identifying ordinary Jacobians and first order divergences.
The relevant results from algebraic geometry, though, have only recently been
proved.
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THEOREM 3.7. Let P be a function depending (smoothly) exclusively on the k-th
order partial derivatives of u. Then P is an n-th order divergence if and only if P is
an affine combination of n-th hyperjacobians whose arguments are (k - n)-th order
derivatives of u.

We first prove that each n-th order Jacobian is indeed an n-th order
divergence. (This result is not as obvious as the fact that each Jacobian determin-
ant is a divergence!). On expanding det BK by its /-th row, we find

r

det BK = Z fr'ic det &'£">

where B'£ denotes the minor obtained from BK by deleting the j-th row and the
column corresponding to k in K. Also, for i=£j, a similar expansion yields

0= Z b^ det(B'£).

By adding these formulae together, and using the expression (3.1) for the
transform of the total derivative, we see that

f

det (BK) = Z DK det (B'£-)

= Z Adet(B'i),
i = l

where, by convention, B£ = 0, if i does not appear in K. Thus, from Lemma 3.4
and the algebraic nature of the D;,

" f p '-x ~\ f det 1
^(J£) = FI Z A det B& x | (AOB).,

(3.4)

(3.5)

where 13i / i , . . . , /„ = r can be chosen arbitrarily.
The fact that & is an isomorphism, and Lemma 3.1, imply that

for certain differential polynomials QI; which are defined by their transforms
according to the previous formula, (3.4). Thus, each n-th order hyperjacobian is
an n-th order derivative. The explicit form of Ql is extremely complicated in
general.

We now turn to a proof of the converse proposition, that every homogeneous
n-th order divergence is an affine combination of hyperjacobians. Theorem 3.4,
(vii) of BCO shows that all such Lagrangians are polynomials, and clearly we can
restrict our attention to differential polynomials which are homogeneous of
degree r and depend exclusively on k-th order derivatives. These all transform
into the homogeneous space Z^k, and we first require a slight strengthing of
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Lemma 3.2 for this space. Given /3 = (i1,jl;... ; im, jm) with I S i v = p, l S / v S r ,
let #/3 = m, and d0 =am/db{; . . . d %

LEMMA 3.8. Let P be an r-th degree differential polynomial depending only on
k-th order derivatives of u. Then P is an n-th order derivative if and only if, for all /3
with # |3Sn- l ,

de(&P)[a\b1;...;ar,br] = Q, (3.6)

whenever b1,..., br are linearly dependent.

If n = 1, Lemma 3.8 is just a restatement of condition iv) of Theorem 3.4 of
BCO; thus the following proof specializes to a new proof of this condition, which,
as discussed in BCO, originally arose in work of Murat and Tartar on compen-
sated compactness.

Proof of Lemma 3.8. First note that conditions (3.2) of Lemma 3.2 can be
replaced by equivalent conditions

O, (3.6')

whenever ft1 + . . . + br = 0 for all /3 with # | 3 § n - l . Indeed, this includes the
indices (i1, r;.. . ; im, r), so (3.6') includes (3.2). It is easy to check that all the
superfluous extra conditions in (3.6') must also hold when (3.2) holds. Now, since
2FP is homogeneous of degree k in the bl',

2 • • • K ) k • &P[a\ bl;...;a\ br],

whenever A . j , . . . , A.r e R. Differentiation proves that (3.6') must also hold
whenever Ajft1 K . . + \rb

r = 0, thus proving the lemma.

Let $ be the polynomial ideal introduced in BCO; $ is generated by all the
r x r minors of the rxp matrix B = (£>,'). A polynomial < p ( b \ . . . , br) is said to
vanish on $ if <p(fo\ . . . , br) = 0 whenever b1,..., br are linearly dependent. (In
algebraic geometry, <p vanishing on $ means that <p = 0 on the variety defined by
the members of J>.) In BCO, we needed the result that 3 is a prime ideal, and
hence <p vanishes on 3 if and only if <p belongs to S, so <p = X ipK det BK for
certain polynomials i//K. Here we require a stronger result characterizing those
polynomials which, together with all their partial derivatives of order less than n,
vanish on 3. The ideal of such polynomials is known as the n-th symbolic power of
$, denoted by J(n). The key result has fortunately been recently established, and
states that the symbolic n-th power of 3 is the same as the algebraic n-th power
of $j which is the ideal generated by all n-fold products of elements of 3.
Hochster, [13], proved this in the case p = r + 1; subsequently Trung, [24], proved
the result for general p, and DeConcini, Eisenbud and Procesi, [6], have
generalized this result to ideals generated by subdeterminants of arbitrary size. In
this latter case, it is not true in general that the symbolic n-th power equals the
actual n-th power.

THEOREM 3.9. (Hochster-Trung-DeConcini-Eisenbud-Procesi). Let 3 be the
ideal generated by the rxr minors det BK of an rxp matrix of indeterminants
B ( r S p ) . For each positive integer n, the symbolic n-th power of 3 is equal to the
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algebraic n-th power of $. In other words, for any polynomial <p,

whenever b1,..., br are linearly independent for all (Z with #j3 i n - 1 //and only
if

(3.7)

suitable polynomials i/*K.

This theorem, in conjunction with Lemma 3.8, proves that P is an n-th order
divergence if and only if its transform cFP = (p is of the form (3.7) (where the t/>K

can now depend on the a"). Thus, to complete the proof of Theorem 3.9, we only
need to show that the polynomials i/«K can be taken to be linear combinations of
determinants or permanents of the matrices (A<S>B)a depending on the parity of
n. This can be deduced from the fact that 3FP must be a symmetric function of its
arguments, so Lemma 4.9 of BCO when n is odd and a similar lemma when n is
even, coupled with the remaining arguments in the proof of Theorem 4.1 of BCO,
can be utilized here to complete the proof of Theorem 3.9.

3.5. Quadratic p-relations

Any attempt to try to compute the number of linearly independent hyperjaco-
bians is hampered, as for ordinary Jacobians, by the appearance of non-trivial
linear relations amongst the hyperjacobians. These arise from the quadratic
p-relations between products of pairs of determinants in the transform space.

THEOREM 3.10. Suppose <p(..., y K , . . . ) , is a polynomial such that
<p(..., det BK,...) vanishes identically. Then <p is in the ideal generated by the
quadratic p-relations, which are

r

PKL= Z (-l)"yK;V|c,,,L=0

for all K = ( k 0 , . . . , k , ) , L = ( l u ... , 1 , ^ ) .

For a proof see Hodge and Pedoe, [14]. Thus, all the relations amongst
polynomials in the det BK are derivable from the identities

COROLLARY 3.11. For each set of multi-indices K = (k0,..., k,), L =
li,..., Ui ) , K = ( k 3 , . . . , fcj the relation

f ( 1Y d"utt
v% dK, d(kv, L) dK

holds.

The proof is by transform. I suspect that these are all the relations satisfied by
hyperjacobians, which means any other relation amongst n-th order hyperjaco-
bians must either be a linear combination of the above relations, or derivable
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from a similar relation amongst m-th order hyper jacobians for some m >n. I do
not have a proof of this conjecture, or know how to count the number of
independent relations and so get a fix on the dimension of the space of hyperjaco-
bians.

3.6. Divergence formulae and distributing derivatives

We now know that if /£ is an n-th order hyperjacobian, there is a nice identity
of the form

J K = I D'Qj (3.8)

for certain differential polynomials Qt, which can, in principle, be constructed
from (3.4). The explicit construction of the Ox is an extremely difficult computa-
tional problem in general. It can, however, be implemented directly using a new
theory of higher order differential forms based on the theory of Schur functors,
which is developed in the paper [20]. Here we just present a couple of examples.

EXAMPLE 3.12. Let r = 2, and consider the n-th order hyper jacobians
d"(u, v)/d(x, y)" given in Example 2.5. The n-th order divergence identities are

d(x,y)n i% H 7 \ / A i - / Idx'dy"

when n =2m + l is odd, and

m

a(jcy)" t % x y V * ' t V/Ai- /7ax '>-"- 'ax ' - 'ay '"+ ' - 1J

when n = 2m is even. (In both cases, the second sum is over all / such that the
binomial coefficients are well defined.) These can be checked directly without too
much difficulty.

EXAMPLE 3.13. Consider the third order hyperjacobian d3(u, v, w)/d(x, y, z)3

given in Example 2.9. To write down the identity, we use the notation

d(u,v, w) I
• = d e t | vxd(xx,xz,yz) \ *

(and similarly for other triples of pairs of independent variables) for Hessian-type
determinants. Then the identity is

d3(u, v, w) _ , a(u, v, w) 2 f d(u, v, w) d(u, v, w) 1_ , a(u, v, w) 2 f
: d( ) z yL

yLd(x, y, z)3 : d(xx, xy, yy) z yL d(xx, xy, yz) d(xx, yy, xz)\

.ic in x, y, z). (3.9)^ + 4 ^ ^
xx,yy, zz) d(xy, xz, y

Attempts to derive, or even to verify, this rather pretty identity should be
sufficient motivation for the reader to look at the theory of differential hyper-
forms, [20], from which it can be written down! Higher order cases can also be
treated by this method with a minimum of computational distress.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500013020
Downloaded from https://www.cambridge.org/core. University of Minnesota Libraries, on 13 Apr 2020 at 19:14:30, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500013020
https://www.cambridge.org/core


Hyperjacobians, determinantal ideals and weak solutions 335

The reader should note that in all the above identities, the various partial
derivatives in the relevant Q/s are distributed among the dependent variables as
evenly as possible. For instance, in (3.9), all the u, v, w's appear with second
order derivatives in the Hessian-type determinants therein. For the purposes of
reducing growth conditions in the variational problems, we need lo know this can
always be done.

THEOREM 3.14. Let n = sr+t, where s and O S K r are integers. Let a =
(I'I, Iu ... ; ir, Ir) be homogeneous, i.e. \IV\ = k for all v. Then the hyperjacobian /£
has a nice identity of the form (3.8) with each Qj being a linear combination of
monomials each of which is a product of t (k + n — s — \)-st order derivatives and
r — t (k + n — s)-th order derivatives of the u'».

To prove this result, it suffices to choose the indices j u ..., jn in (3.4) judi-
ciously so that each Or is of degree k + n — s — 1 in b1,. .., b' and degree k + n — s
in b'+x,..., b'. This can clearly be done.

4. Weak solutions to variational problems

The hyperjacobian identities allow one to define these special differential
polynomials for functions in lower order Sobolev spaces than might ordinarily be
expected. The method is a straightforward application of the Sobolev embedding
theorem. Roughly speaking, an n-th order hyperjacobian of degree r can be
defined for functions with n/r fewer derivatives than usual. (Of course, when r
does not evenly divide n, the exact numerology is a little more complicated.) A
slight strengthening of this condition allows one to use a compact Sobolev
embedding and thereby prove weak continuity results for hyperjacobians of the
type discussed in BCO. This in turn can be used to prove the existence of weak
minimizers for certain special kinds of quasi-convex variational problems which
could prove of interest in non-linear elasticity. One could attempt to write out a
general theorem on the types of convexity conditions required to prove the
existence of weak minimizers, but the rather special nature of the variational
problems involved makes this kind of general result of minimal practical import.
Rather, I have chosen to illustrate the kind of existence results obtainable with a
couple of examples of interest.

4.1. Weak definition and continuity properties oi hyperjacobians

Throughout this section, O<=X=IRP will be a bounded, connected open
domain whose boundary dfl is strongly Lipschitz, cf. BCO, although some of the
results will hold under somewhat weaker hypotheses. Let Wly = Wly{Cl) denote
the Sobolev space of (equivalence classes of) functions u : fl —» U = W with
generalized l-th order derivatives in Ly(£l). We first determine on exactly which
Sobolev spaces a hyperjacobian can be defined.

THEOREM 4.1. Let n = sr + t, 0 S l < r . The n-th order hyperjacobian J^(u) of
degree r can be defined as a distribution provided u e wk+n~s'y, where

(4.1)
p + t
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unless r = p + tandt>0, in which case only the strict inequality in (4.1) is allowed.
When this hyperjacobian is defined distributionally rather than classically, it will be
denoted as 7^u)-

Note that in general to define an r-th degree differential polynomial which, like
JK, depnds on (n + fc)-th order derivatives of u, u should be in the Sobolev space
Wk+"'r. Thus, for an n-th order hyperjacobian, u needs s fewer derivatives, where
s is the greatest integer ^n/r. When n is not evenly divisible by r, so (>0, further
weakening of the requirements on u is reflected in the less stringent conditions on
the exponent y of the Sobolev space.

Proof of Theorem 4.1. To define J£ as a distribution, it suffices to require that
each of the polynomials Qf in the identity (3.8) be in L^Cfl). By theorem 3.14,
each monomial in the Qj is a product of t (k + n — s — l)-st order derivatives and
r—t(k + n — s)-th order derivatives of the components of u. The case f = 0 is trivial,
so assume t > 0 for the remainder of the proof. The function u must then be
an element of both Wk+n ^ and w k + n - s - 1 6 , where

— (
+ ^ l . (4.2)

y 8

To complete the argument, we require the Sobolev embedding theorem, cf.
Adams [1], which gives an embedding

Wl+^ ^ Wls, (4.3)

where 7 and 8 satisfy one of the following conditions:

(i) Y<P and SSpy/(p-y) ;

(ii) 7 = p and 5<°°; (4.4)

(iii) 7 > p and Sgoo.

It is easy to check that these conditions and (4.2) are both satisfied if and only if y
satisfies the conditions of the theorem, and hence J£ is defined as a distribution
precisely in these cases.

The reader might wonder whether the theorem could be improved by a suitably
clever grouping of the various factors in the Qj and further use of identities. For
instance, row expansions of the Hessian determinants in the third order identity
(3.9) would give terms involving second order derivatives of u multiplying
Jacobian determinants of v and w. However, each n-th order identity only
reduces the number of required derivatives by [n/r], whereas to ensure that the
term again lies in an Ly-space requires the raising of the number of derivatives by
n. Clearly, any such attempts are counter-productive, and so Theorem 4.1 cannot
be improved.

An interesting consequence of this observation and of the classification of all
null Lagrangians with nice identities is that we can obtain an upper bound on
the order of derivatives which a differential polynomial can depend on in order to
have any chance of being defined even distributionally over a given Sobolev
space.
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Hyperjacobians, determinantal ideals and weak solutions 337

THEOREM 4.2. Consider the Sobolev space Wlr. Let P be an r-th degree differen-
tial polynomial depending exclusively on the n-th order derivatives of u s Wlr. Then
P cannot be defined as a distribution over Wlr using divergence identities if

(4.5)

where [ ] denotes integer part.

Proof. Clearly, the greatest relaxation of requirements on derivatives is
achieved for the hyperjacobians of the form JK(u) = d"(u'i,.. ., u'')/dK, i.e. no
derivatives of the u's appear in the arguments of /K(")- If we Wlr, then JK(u) is
well defined provided

,.„-[=].
The upper bound of all such n is

no =

(Note that if n is odd and q, the dimension of the range space, is Sr, this bound
may be further reduced owing to the skew-symmetry of such hyperjacobians.)

Next, we look at the sequential weak continuity properties of hyperjacobians.
The basic ingredient of the proof, which is then trivial, is that the embedding (4.3)
is compact as long as y and 8 satisfy one of the conditions (4.4), the only proviso
being that in condition (i) only the strict inequality is allowed.

THEOREM 4.3. Let n, r, s, t, /£ be as in Theorem 4.1. The mapping u —* J^(u) is
sequentially weakly continuous from Wk+n~""y to 3)'(n) provided

f pr 1
7 > max \ , r — t i,

lr + t J

except in the special case t = 0, when it is only sequentially weakly continuous from

4.2. Examples of variations^ problems with weak minimizers

We now illustrate the application of the sequential weak continuity results of
Theorem 4.3 with a couple of prototypical variational problems. The proofs
follow exactly along the lines of BCO, to which we refer the reader for missing
details.

In the first example, let u, v be functions of the real variables x, y. The second
order hyperjacobians

d2(u, u) d2(u, v) d\v, v)

W 2 ' a ( x , y ) 2 ' a ( x , y ) 2

- 2u2
xy, u^vyy + u^yvxx - 2 ^ ^ , 2vxxvyy - 2v2

xy),

can be identified with the principal curvatures of the deformation of the plane
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338 Peter J. Olver

described by the map (u, v). According to Theorem 4.3, these three functions are
sequentially weakly continuous on W2-y for any y.

Consider the variational problem

I(u,v)= I F(x, y;u, u;V(u, v);V2(u, v))dxdy, (4.6)

n

where Vk(u, v), fc = l ,2 denotes all the fc-th order derivatives of u and v. We
propose to minimize (4.6) subject to non-linear boundary conditions

G(x,y;u,v;V(u,v)) = O, (x,y)eflfl. (4.7)

The hypotheses on F and G are as follows:
(HI) There is a function <i>(x, y; u, v; V(u, v); V2(u, v); J2(u, v)) such that

F(x, y; c0; C l ; H) = <D(x, y; c0; c,; H, J2(H)),

for all coe U2;, c, G U4, He R6_and almost all (x, y)eft.
(H2) <J>(-;co;c!;H; J2):Cl^U is measurable for each c0, Ci, H, J2.

( R = I U { H )
(H3) O(x, y; • ; • ; • ; • ) : IR'5-*IR is continuous for almost all (x, y ) e f l
(H4) <fr(x, y; c0; c, ; • ; • ) : R 9 ̂  K is convex for all c0 e U2, c, e R4 and almost all

(H5) F(x,y;Co-cl;H)^<p(x,y) + C(\H\+n\J2(H)\)) (4.8)

for all C 0 G R 2 , c ,eR4, H e R 6 , almost all (x,y)efl where (peL^fl), C > 0 , and
•*?: R+^>IR is convex and satisfies *P(r)/f—»o° as t—»oo.

(Cl) G{-;co,c1):dH^Rm is fA-measurable for all c0elR2, Ci£lR4, where /x
denotes one-dimensional Hausdorff measure.

(C2) G(x, y ; • ; • ) : R 6 ^ Rm is continuous for jx-almost all (x, y)e d(l.
(C3) There exist measurable subsets 3fij of 3ft, i = 1, 2, with ^(dftJX), and a

constant KgO such that if G(x, y;co;c,) = 0 for some (x, y)edft( and Co = (ci, CQ),
then |cj,|=£K

The integrand (4.6) as it stands cannot, strictly speaking, be defined on W21, so
we replace it by the weakly defined integral

(",«)= | JI(u,v)= *(x, y; u, v;V(u, u);V2(u, v);J2(u, v))dxdy,

n

where J2 are the distributionally defined hyperjacobians as in Theorem 4.1. The
set of admissible functions is

si ••= {(u, v) G W21: I(u, v) < oo, G(x, y; u, v; V(u, u)) = 0,

in-almost everywhere in dfl}.

We assume ^ is non-empty.

THEOREM 4.4. Under the above hypotheses, I attains its minimum on si.
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The key difference of this result to that of BCO is that the growth condition in
(4.8) has been weakened from an exponent of 2 on \H\ needed in BCO. Note that
/ is being minimized over the space of functions u, v such that the distributionally
denned curvatures J2 are functions. However, as mentioned in the introduction, it
is not known whether in this case these agree in general with the actual
curvatures, in case the latter can be denned, so the precise meaning of the above
result is not entirely clear.

As a second example, we show how the higher order identities allow us to
construct variational problems where the convexity conditions are placed mainly
on lower order derivatives. Let x, y, u, v be as above, and consider the third order
hyperjacobian

d3(u, v)
J (u, u) = — 75 = uxxxuyyy - 3uxxyvxyy + iu^yV^ - Uy^v^.

o{x, y)

Theorem 4.3 shows that J3(u, v) is sequentially weakly continuous on W2a for
a > 4 / 3 . Consider the variational problem

I=\\ F(x, y; u, v; V(u, v); V2(u, v); V3(u, v)) dxdy (4.9)

n

with boundary conditions (4.7). The hypotheses on G are the same as before;
those on F are

(HI) There exists <£>(x, y; u, v; V(u, v); V2(w, v); J3(u, v)),

such that

F(x, y; c0; ct; c2;H) = <P(x, y; c0; d ; c2; /
3(H)),

for all c0 e U2, C l E R4, C2 e IR6, H G US and almost all (x, y) € H.

(H5) $(x, y; c0; C l ; H, J3)s cp(x, y) + C(\H\a +^(|/3|)).

where <p, W, C are as before and a > f.
The remaining hypotheses (H2-4) are similar to these above, and are left to the

reader to state explicitly. Again, the integral J must be replaced by

I(u, v) = 4>(x, y; u, v; V(u, u); V2(u, v);J3(u, v) dx dy.

n

The set of admissible functions is

si = {(u, v) e W2-a: I(u, v) < oo, G(x, y; u, v; V(M, u)) = 0

for jLi-almost all (x, y)6f)fl},

and we assume si is non-empty.

THEOREM 4.5. Under the above hypotheses, I attains its minimum on si.

The point here is that the convexity conditions are placed mainly on the second
derivatives of u, v, except for the convex dependence of the integrand on J3.
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