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ABSTRACT

Noether's general theorem gives a one-to-one correspondence
between nontrivial conservation laws or path independent
integrals for the Euler-Lagrange equations of some
variational problem and the generalized variational
symmetries of the variational problem itself, provided
it satisfy certain nondegeneracy assuvmptions. Here we
give a brief introduction to the theory of generalized
symmetries and their connections with conservation laws.
Applications are given to the classification of
congervation laws for the equations of two dimensional
elagticity, especially the linear isotropic and
anisotropic cases.

1. INTRCDUCTION

One of Professor Eshelby's lasting contributions to the
study of dislocations and fracture mechanics was his discovery in 1956
of the celebrated energy-momentum tensor. It was the first example
in a collection of four (seven in three dimensions) well-known and
important path independent integrals that arise in both finite and
linear elasticity, the applications of which are well documented in
the other contributions to this memorial volume.

Subsequently, Giinther (6) and Knowles and Sternberg (9)
firmly established the group theoretic origins of these integrals by
showing how they arise from the invariance of the underlying
variational problem, under groups of translations, rotations and
scaling symmetries, through a straight-forward application of Noether's
Theorem relating symmetry groups to conservation laws. Although
Knowles and Sternberg made claims that these are the only path
independent integrals arising in this fashion, a closer analysis of
their work shows that they employed only a limited version of the full"
power of Noether's Theorem. Indeed, in her widely quoted, but less
widely appreciated paper (12), Emmy Noether not only gave the means to
construct congervation laws from ordinary geometrical symmetry groups
of the type studied by Glunther and Knowleg and Sternberg, she
introduced the important concept of generglized symmetry groups, whose
transformations depend on the deformation gradients and possibly higher
order derivatives of the relevant -dependent variables, AND showed that
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ALL path independent integrals could be constructed from a knowledge of
the generalized symmetries of the variational problem. Moreover, the
fundamental infinitesimal methods introduced by Sophus Lie in his
study of symmetry groups of differential equations, (10) -see also
(13,18) - provide a systematic computational method of finding all such
symmetry groups, and hence all path independent integrals. (A number
of symbol-manipulating computer programs are now being developed to
compute these symmetries - see (19,20) for instance - although as yet I
am unaware of their extension to computing the corresponding integrals.)

To the best of my knowledge, despite the fact that Noether's
Theorem has been available for well over 60 years, there was no attempt
to apply this powerful result .to any of the equations of elasticity
until my own complete classification of the first order symmetries and
conservation laws for the equations of two and three dimensional
elasticity (14,15). The results are surprising. In three dimensions
there are, in addition to the seven well-known conservation laws, six
additional laws arising from generalized symmetries, except in a
special case (when the Lemé moduli satisfy T+ 3A=0 ) where 13
additional laws result from generalized symmetries and ordinary
conformal symmetries. (For 7@4—3%;40 , these further laws still give
rise to interesting divergence identities.) 1In two dimensions, there
are whole families of conservation laws depending on a pair of
arbitrary analytic functions. (These latter results were also
indicated in some recent work of Tsamasphyros and Theocaris (21).)

The present paper consists of two parts. TFirst we will
review the general theory of generalized symmetries of differential
equations, and Noether's general theorem relating these to conservation
laws. One qustion that is of importance in the classification of
conservation laws or symmetries is the question of triviality. Usually
one is only interested in nontrivial conservation laws, but the issue
of their precise relationship to nontrivial symmetries has not been
dealt with adequately in the literature to date. Here we announce the
result that for systems satisfying certain nondegeneracy assumptions
there is a one-to-one correspondence between nontrivial generalized
symmetries of a variational problem, and nontrivial conservation laws
of the corresponding Euler-lagrange equations. (Interestingly,
according to some very recent results (17) this theorem is intimately
related to the question of when a system of differential equations can
be put into Cauchy-Kowalewski form.)

The second part of this paper deals with the applications of
the general form of Noether's Theorem to the classification of path
independent integrals for the equations of two dimensional elasticity.
A complete analysis has only been completed for the linear case, but
it is shown that for both isotropic and anisotropic linear elasticity,
there are families of path independent integrals depending on pairs
of arbitrary analytic functions. The precise structure of these
integrals, though, does depend on whether or not the material is
"equivalent" to an isotropic material or not. This latter analysis is
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based on a partial solution to the equivalence problem for linear, two
dimensional elasticity: when are two problems equivalent under a
linear change of variables in both the independent and dependent
variables? The solution, perhaps surprising, indicates that for
strongly elliptic problems there are, under this general notion of
equivalence, only two independent invariants among the 16 elasticities.
The case of nonlinear, two-dimensional elasticity has yet to be fully
analyzed. However, striking similarities between the symmetry
equations and the equations for conformal symmetries for Riemannian
metrics leads to the conjecture that even in this case there will
again be whole families of path independent integrals depending on two
arbitrary analytic functions.
Of course, while this problem of classification of path
independent integrals has some intrinsic interest, the real question
is whether these new integrals have genuine applications to problems in
fracture mechanics, dislocation theory, scattering of waves in elastic
media and so on. Unfortunately, lack of time has precluded my
addressing this important question in these papers, but it is an area
that well deserves a concerted investigation, the results of which I
hope to report on at a later date.

My thanks go to John Ball, who originally sparked my
interest in applying Noether's Theorem to the problems of elasticity;
and Professors Bilby, Miller and Rice for inviting me to participate
in this conference.

2. SYMMERY GROUPS OF DIFFERENTIAT, EQUATIONS

Let 'x==(xl,...,xp) , u =(ul,...,uq) be the independent
and dependent variables in a system of differential equations

Ai(x,u(n))=o , i=1,...,1, . (1)
where u(n) denotes the partial derivatives u§ = bkui,/bxal...bxak
of orders O<k<n . A GEOMETRICAL SYMMETRY GROUP of the system is a
connected (local) group of “transformations g: (x,u) > (X,U4) with the
property that if u=f(x) is a solution, and 5¢=%(§) is the function
obtained from f by transforming its graph by the group element g ,

then %:zg-f is also a solution. For instance, if G 1is the group of

rotations gez(x,u)ka(x cos €+u sin € , -x sin €+ u cos €) , then
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f = gef is obtained from f by rotating the graph of f through the
angle €

Fach one-parameter subgroup of G is characterized by its
NP . i i J
infinitesimal generator v =2 E (x,u)d/dx +ZI tpj(x,u)b /du’ , the
group elements being recovered by solving the system of ordinary

differentisl equations dx /de = g*

s du‘j /d€ =cpj , € Dbeing the group
parameter. (For the rotation group v-—=u b/bx - X b/bu .) Since G
acts on functions, it also acts on their derivatives - this defines the
prolonged group action pr(n)g: (x,u(n))\—)(§,ﬁ(n)) , where ﬁ(n) are
the derivatives of T(X). Similarly, an infinitesimal generator v
prolongs to the space of derivatives:

Pr1=z+2@§b/bu§
where

J_ e gl id
QPJ' - DJ((Pj ?g ui)+2i g uJ,i

= buf;/bxl s and D_=D is

in which wd = duwd /dx" , ud , D, ...D,
J T3k

i J,1
the total derivé,tive (treating u as a function of x ).
THEOREM. If the system (1) is nondegenerate (see below), then G is
a symmetry group if and only if

pr X(Ai)=0 , i=1,...,0 , (2)
whenever A=0 .

‘The infinitesimal condition {2) for invariance yields a
large number of elementary differential equations for the coefficient
functions Ei R cpj of v . In practice, there can always be solved,

and hence the most general symmetry group of the system can be system-

atically computed - see (10,13,18) for examples.
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DEFINITION. A system of differential equations is NONDEGENERATE if it

satisfies
a) MAXIMAL RANK. The Jacobian matrix of A with respect to

all variables x,u(n) is of rank 4 everywhere.

(n)

o ~ are any fixed values

b) LOCAL SOLVABILITY If X ou

satisfying A(xo,ugn))==0 , then there exists a solution u =f(x) of

(n) = f(n)(x )

the system with ug

A result of Nirenberg (11) shows that quasi-linear elliptic
systems are nondegenerate on a dense subset of {(x,u(n)): A(x,ﬁ(n))=¥0}
which is enough for.the preceding theorem to be valid. A second class
of nondegenerate systems are those in Cauchy-Kowalewski form

bnui

n

~(n .
= Ki(y,t,u( )) , i=1,...,9 ,
bt

for K; analytic, (2) in which (y,t) =(y.

l,...,yn_l,t) is obtained

from x by a change of variables, and G(n) denotes all
derivatives of u of orders <n . eXCept'lbnul/’btn . Any strongly
elliptic system can, by a suitable change of variables, be put into

Cauchy-Kowalewski form.

If we allow the coefficients §1,¢j of the infinitesimal
generator v to depend on derivatives of u , we have a GENERALIZED

SYMMETRY. It is not difficult to see that we can assume, without loss

_ (m) S : . 5ol
Yo = z Kj(x,u ) /du’ , in which Kﬁ'—@j g up

group transformations are obtained by solving the system of evolution

The corresponding

equations

buj/be = Kj(x’u(m)) , u(x,0) =f(x) , (3)
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with fe(x) =g . f(x) =u(x,e) . Again, v_ generates a symmetry group

€ —K
of (1), meaning that whenever f(x) is a solution, so is fe(x) for
all € , if and only if (2) is satisfied for all solutions of A=0 .
(This requires that the prolonged systems A(n)==0 obtained by
differentiating: DJAi==O , are all nondegenerate - this still holds
for elliptic systems and analytic Cauchy-Kowalewski - type systems). A
symmetry Ve is TRIVIAL if K=0 on solutions of 4=0 ; two

symmetries are EQUIVALENT if their difference is trivial, and we are

really interested in equivalence clagses of nontrivial symmetries.

3. CONSERVATION LAWS AND PATH-INDEPENDENT INTEGRALS
Given a system of differential equations (1), a

CONSERVATION LAW is a divergence expression

p
Div P= ED,P, =0, P=P(x,u(k)) , (&)
i=1 7t

which vanishes on all solutions u =f(x) of the system. Each
conservation law in two dimensions (p=2 , (Xl,x2)==(x,y) , provides
a path independént integral, héméi§3bymGreen's theorem

§ Pe,u™ay - qex,u™yax = o (5)

C

for all closed curves C provided u=f(x) is a solution to the
system. (In three dimensions, we end up with a "surface independent"
integral IP-dS .)

These are two types of TRIVIAT, CONSERVATION LAWS: I) If
P=0 itself for all solutions of the system, then Div P=0 for all
solutions tooy II) If Div P=0 for ALL functions u=f(x) , then the
law is also trivial. An example of a conservation law of this latter
type is Dx(uy)4-Dy(—uX)=:O - see (16) for a complete classification.

Two laws P and P are EQUIVALENT if their difference P- P is a
sum of trivial laws of the two types. As with symmetries, we are
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interested in classifying equivalence classes of nontrivial conservation
laws.

Under the assumption of nondegeneracy, (L4) is equivalent to
the existence of functions Ki(x,u(m)) such that
J
iv P = A, .
DivP=2ZX Ki DJ 5
A simple integration by parts shows that there is an equivalent
conservation law P in CHARACTERISTIC FORM.
iv P = A
piv P =L K -4, , (6)
where Ki==2(—D)JKi is the CHARACTERISTIC of P (and hence P Y. A
characteristic is TRIVIAL if Ki=:O on all solutions of the system

(1), it can be seen that in (5) the characteristic K=(Ky5---5K) 1s

uniquely defined up to addition of a trivial characteristic, sc we
should really talk about equivalence classes of characteristics as well.

THEOREM. If (1) is equivalent to a system in Cauchy-Kowalewski form,
then there is a one-to-one correspondence between (equivalence classes
of) nontrivial conservation laws and (equivalence classes of) nontrivial
characteristics.

In other words, a nontrivial characteristic uniquely
determines a nontrivial conservation law and vice versa. The
requirement that' the system be equivalent to one in Cauchy-Kowalewski
form turns out to be essential, if this is not the case then elther the

local solvability condition for some prolongation A(m)==0 is NOT
satisfied, or there is a nontrivial relation of the form

ToA =0 (7)
among the equations, the Sv being certain differential operators.
If the Av actually arise as the Euler-Lagrange equations of some
variational problem, then (7) means that Noether's second theorem, (12),
is applicable, and there are nontrivial symmetry groups depending on

arbitrary functions which give rise to only trivial conservation laws.
The proofs of these statements will appear in (17).



P.J. Olver: Symmetry Groups and Path-Independent Integrals

L. NOETHER'S THEOREM
We now suppose that our system of differential equations
are the Euler-Lagrange equations
E(W) = /80" =0 , i=1,..., (8)
for some variational problem %Qo[u]-:fnw(x,u(n))dx . If ¥

satisfies the Legendre-Hadsmard conditiog, the system is nondegenerate.

’

DEFINITION. A generalized wector field e is a VARIATIONAL SYMMETRY

of % if for every QC Qo C ®P and every solution u (x) of (3),
€
%O[ue] = 9/’0[110] + "ro ﬁbﬂ[ue']de' (9)

where
k
ﬁbﬁ[u] = "erB(X,u( ))'ds

depends only on the boundary behavior of u on 00 .

Thus, up to the addition of boundary terms, % 1is invariant
under the group action of Yy - (Another way of stating definition k4

is that %[u] is a conservation law for the evolution equations (3),

i.e. DF¥+DivX=0 for some flux X(x,u

LEMMA- A vector'field x is a variational symmetry of % if and

only if

pr v (W) = Div B (10)

K
for some p-tuple B=(Bl,...,B )

This is the form of variational symmetry proposed by
Bessel-Hagen (1); Noether (12) omitted B (and hence the c0fr§§ponding
boundary term in (9)), but could no longer just consider evolutionary
vector fields. (In this case (10) has the extra term -L Div £ .)

A simple computation shows that

pr XK(L) =Z K.lEi(W) +Div A ,
where A=(Al,...,Ap) depends on K and W ; the explicit form of A

is not required. As a result we immediatély have Noether's Theorem.
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THEOREM. There is a one-to-one correspondence between (equivalence
classes of) nontrivial conservation laws and (equivalence classes of)
variational symmetries; namely K is the characteristic of a con-
servation law if and only if Yy is & variational symmetry.

Every variational symmetry of % is a symmetry of the
Fuler-Lagrange equations E(W) =0 in the sense of section 2, but the
most common counter-examples being groups of scaling transformations

(x,u) —> (Kx,xau) . One practical method of finding variational
symmetries, thus, is to first compute all symmetries of the Euler-
Lagrange equations using Theorem 1, and then check which of these
satisfy the additional variational condition (10). (There are, however,
more direct ways of doing this - see (13).)

5. TWO DIMENSIONAL ELASTICITY

For simplicity, we treat the path-independent integrals for
two~dimensional homogeneous hyperelastic materials in the abscence of
body forces. Thus the variational problem is

% = [ W(vu)dxay
Q

(x,y) the material

u = (uxauy'svx:vy) =

in which W is the stored energy function, x
coordinates, u = (u,v) the deformation, so

(p,asr,s) is the deformation gradient. The Euler-Lagrange equations
are the second order system

Eu(W) = wap+ Dqu =0,
EV(W) = DM +DW_ =

The goal is to analyze all first order path independent integrals, i.e.
those of the form

$ Pdy-Q ax
in which P and Q are functions of x,u,Vu .

For computational purposes, it is advantageous to begin by
looking at those integrals in which P and Q depend solely on the
deformation gradient vu (see (15).) In this case, Noether's theorem
says that P(VE) , Q(Vg) are the components of a conservation law
if and only if there exists functions X(vu) , L(Vu) such that

P =o0K+BL , P + = 'K+p'L = "K +BR"L
pL , q Qp 'L , Qq gL , (11)

b
P, = BK+ YL , Pt Q= B'K+Y'L, @, = B'K+ 'L,
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where

= = .:: L ' =
o= pr s B Wpr s Y Wrr s O 2qu » B Wps4-qu s

Yt = Ewrs , o' = wqq , Bn = qu , Y" = WSS .
These equations bear & remarkable similarity to a "vector version" of
the equations for a conformal symmetry of a Riemannian metric, (3),
and are so called the two-dimensional VECTOR CONFORMAIL EQUATIONS. To
date, no progress has been made to their solution for general nonlinear
W , although the following CONJECTURE seems plausible: For the two-
dimensional vector conformal equations there are an infinite feamily of
solutions, hence an infinite family of path independent integrals with
P,Q depending only on Vu . (In the analogous situation for two
dimensional Riemannian metrlcs, this result is true, since every such

metric is conformal to a flat metric, in which case, each complex
analytic function provides a conformal symmetry.) Finally, if P,Q
are a solution of (1), then v = K0 _+1d_ is a (generalized)

R - u v
variational symmetry of % .

For quadratic W(Vu) , leading to the equations of linear
two dimensional elasticity, the situation is much better understood.
Here the coefficients a,...,¥" in the vector conformal equations
are related to the more usual elasticity constants «c,. according
to the rule 15kt

= o = t = .
O = Ciyqpp B=Cinq sYTCoyy5 & =20 9909B =C150F Cipm o

1 "o "o_ " .
Y =21 0p s & = Cy015 9 BT =C 0p5 5 Y = Conng
Of course, the cijkL'S obey additional symmetry properties when
arising from a theory of linear elasticity (7) leading to the following
relations among Q,...,{ :

g = Q' , 2" = ¥ s Y = o s
but these do not appear to be egpecially relevant to the subsequent
analysis.

et VP = (P P ) , and similarly for VvQ .

p*Fq Fr?
Eliminating K and L fram (10), we obtain a system of the form
MVP=NVQ . (12)
in which M and N are 4XL matrices whose entries depend on the
constants «,...,C . (The precise expressions are easy to write down,

but rather messy.) The nature of the solutions to (12) depends on the

structure of the eigenvalues of the matrix M_lN 5 in general it can
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be shown that M~1N has two pairs of complex conjugate eigenvalues

k,£it, and k,*il, . If these pairs are distinct, then My s

diagonalizeble, otherwise we will (usually) have & nondiagonal Jordan

canonical form. The structure of the space of path-independent
integrals is different in each case.

THEOREM. Given the matrix M_lN there exist two independent complex-

linear combinations § and M of p,q,r,s such that the complex
function F==F<VE) = P+1iQ 1is a conservation law if and only if

a) In case MMlN is diagonalizable, with distinct eigen-
values

F=F (§) +F (M)
b) In case M_lN is not diagonalizable
F = gFl('ﬂ) +W+ FE(T]) ’

where Fl’FE are analytic in 1 .

(The combinations €, can be constructed from the eigen-

vectors to the matrix M—lN )

It is thus important to know whether a given elastic
material is in the diasgonalizable or nondiagonalizable case. The only
case analyzed to date, the case of linear isotropic materials is non-
diagonalizable (15). To attempt any analysis of nonisotropic materials
it is necessary to simplify the constants CijkL as much as possible.

6. THE EQUIVALENCE PROBLEM

In its general form, the EQUIVAIENCE PROBLEM is connected
with the question of when two variational problems % and %' are the
same under a change of both independent and dependent variab.e. (See
section 6 of (5) for an "elementary" case.). Here we are first

interested in the special two-dimensional quadratic equivalence problem:
When are

JW(va)ax and [ W(VR)&X ,

for W,W quadratic in the deformation gradient, equivalent under a
linear change of variables:

%X =Ax , 4= Bu? (13)

Equivalently, when are two sets of elasticitles Cs a1t and CijkL

!/
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related under such a change of variables? Included in the equivalence
problem is the problem of finding simple (or canonical) forms of
veriational problemsi Given f W(vu)dx , find A,B such that (13) makes

#(vi)d%x as simple as possible. Even the relatively easy case of
wo independent and two dependent variables presents a number of
difficulties, and so far I have only incomplete, but nevertheless
intriguing results.

‘DEFINITION. A two-dimensional problem is called QUASI-ISOTROPIC if its
elasticities have the form

=20+A , C [V

€111 7 Co002 1212 % ®o121 T C1001 T Cp112 7

1100 = Cop11 =Y »

for some constants M,A,vV , with all unspecified elasticities vanishing.

In particular, if v=X , then the material is isotropic.
Note that actually only two of the constants W,A,v are arbitrary,

since by rescaling u we can salways arrange that =1, say. It is
easy to check that a quasi-isotropic material is strongly elliptic if
and only if

L>0 , -hp-A<v<op+r .

THEOREM. Every quadratic W(VE) satisfying the Legendre-Hadamard
condition and sufficiently close to the linear isotropic case is
equivalent to a strongly elliptic quasi-isotropic prablem.

The phrase "close to isotropic" means tlmt the elasticities
cijkL do not differ too much from the isotropic elasticities. T
conjecture that the theorem remains true if this condition is dropped
i.e. any strongly elliptic quadratic W<VE) is equivalent to a quasi-
jisotropic one, but to prove this looks rather complicated. The
present proof relies on some Lie-algebraic tools and a generalization
of Frobenius' theorem due to Hermasnn (8). Unfortunately, the proof is
nonconstructive; it gives no clues as to how to find the requisite
matrices A,B such that (12) transforms W(vu) into a quasi-isotropic
problem. The values of A,V , however, can be found using invaeriant
theory.

Note that in principle the theorem says that there are only
two independent elasticities in two-dimensional elasticity, up to the
above generalized notion of equivalence. (Contrast this with the more
standard six independent elasticities (7) when one just uses the basic
symmetry relations on the subscripts CijkL )

Returning to our classification of path independent
integrals it is not to difficult to prove that for a strongly elliptic
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quasi-isotropic problem, the eigenvalues of the matrix MnlN of
section 5 are distinct unless V=X or Vv=-2u-A . The first is the
isotropic case, the second equivalent under a reflection

(u,v) Y— (u,-v) .

PROPOSITION. If W(vu) is strongly elliptic, then M’lN is diagonal-
izable unless W(Vu) is equivalent to an isotropic material.

(Of course, this is subject to the establishment of our
earlier conjecture.) Thus the isotropic materials are thus
distinguished by the structure of their space of path independent

integrals. (This is probably only true in two dimensionsl elasticity!)

7. FURTHER INTEGRALS.

So far we have c¢oncentrated on path-independent integrals
in which § Pdy -Qdx 1is such that P+ iQ=F depends only on Vu .

If we now relax the requirements so that F depends on X,u and Vu ,
then in (15) it was shown that for linear isotropic elasticity all such
integrals were given as follows.

THEOREM For linear, isotropic two-dimensional elasticity, every path
independent integral is given by a linear combination on the following

2u(20 + A)EOF, /0N + (W +RA)iF 4 F,

1N -wM) 5 (bu(2p+ A)w- (w+ ) izm)7 ,
where z=x+ iy » w=u+iv , € = (ux—vy)+i(uy+vx) s
ﬂ==u(vy-—ux)+—i(a¢4—k)(gxa-vy) ; and Fl(E,n) s FE(E,H) are analytic

in their arguments, and %(x,y) is an arbitrary solution of the system

with corresponding ﬁ(X,Y)

A similar result holds for anisotropic materials, but I have
not completed the details in it.

(x
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